Properties

Label 2-845-1.1-c3-0-119
Degree $2$
Conductor $845$
Sign $-1$
Analytic cond. $49.8566$
Root an. cond. $7.06092$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.27·2-s − 7.17·3-s + 10.2·4-s − 5·5-s − 30.6·6-s + 5.20·7-s + 9.78·8-s + 24.4·9-s − 21.3·10-s + 46.2·11-s − 73.7·12-s + 22.2·14-s + 35.8·15-s − 40.4·16-s + 14.9·17-s + 104.·18-s − 75.6·19-s − 51.4·20-s − 37.3·21-s + 197.·22-s + 134.·23-s − 70.1·24-s + 25·25-s + 18.2·27-s + 53.5·28-s − 236.·29-s + 153.·30-s + ⋯
L(s)  = 1  + 1.51·2-s − 1.38·3-s + 1.28·4-s − 0.447·5-s − 2.08·6-s + 0.281·7-s + 0.432·8-s + 0.905·9-s − 0.676·10-s + 1.26·11-s − 1.77·12-s + 0.425·14-s + 0.617·15-s − 0.632·16-s + 0.212·17-s + 1.36·18-s − 0.914·19-s − 0.575·20-s − 0.388·21-s + 1.91·22-s + 1.22·23-s − 0.596·24-s + 0.200·25-s + 0.130·27-s + 0.361·28-s − 1.51·29-s + 0.933·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(845\)    =    \(5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(49.8566\)
Root analytic conductor: \(7.06092\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 845,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 5T \)
13 \( 1 \)
good2 \( 1 - 4.27T + 8T^{2} \)
3 \( 1 + 7.17T + 27T^{2} \)
7 \( 1 - 5.20T + 343T^{2} \)
11 \( 1 - 46.2T + 1.33e3T^{2} \)
17 \( 1 - 14.9T + 4.91e3T^{2} \)
19 \( 1 + 75.6T + 6.85e3T^{2} \)
23 \( 1 - 134.T + 1.21e4T^{2} \)
29 \( 1 + 236.T + 2.43e4T^{2} \)
31 \( 1 - 65.0T + 2.97e4T^{2} \)
37 \( 1 + 311.T + 5.06e4T^{2} \)
41 \( 1 - 86.3T + 6.89e4T^{2} \)
43 \( 1 + 299.T + 7.95e4T^{2} \)
47 \( 1 + 108.T + 1.03e5T^{2} \)
53 \( 1 + 700.T + 1.48e5T^{2} \)
59 \( 1 - 287.T + 2.05e5T^{2} \)
61 \( 1 - 59.0T + 2.26e5T^{2} \)
67 \( 1 + 304.T + 3.00e5T^{2} \)
71 \( 1 - 274.T + 3.57e5T^{2} \)
73 \( 1 - 835.T + 3.89e5T^{2} \)
79 \( 1 + 382.T + 4.93e5T^{2} \)
83 \( 1 + 1.49e3T + 5.71e5T^{2} \)
89 \( 1 + 1.49e3T + 7.04e5T^{2} \)
97 \( 1 - 1.50e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.527305584159843397357051268026, −8.462781982379936451975343687616, −6.99513955938993475819644892335, −6.56106809770528012448405488904, −5.65578068547923085093176807277, −4.92433513643470122754518588365, −4.18561092634141280017893749586, −3.25889635565543021201752253144, −1.56254481572502820800695790331, 0, 1.56254481572502820800695790331, 3.25889635565543021201752253144, 4.18561092634141280017893749586, 4.92433513643470122754518588365, 5.65578068547923085093176807277, 6.56106809770528012448405488904, 6.99513955938993475819644892335, 8.462781982379936451975343687616, 9.527305584159843397357051268026

Graph of the $Z$-function along the critical line