Properties

Label 8410.2.a.bx.1.8
Level $8410$
Weight $2$
Character 8410.1
Self dual yes
Analytic conductor $67.154$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8410,2,Mod(1,8410)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8410.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8410 = 2 \cdot 5 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8410.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12,-4,12,-12,-4,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.1541880999\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 13 x^{10} + 56 x^{9} + 41 x^{8} - 234 x^{7} - 8 x^{6} + 298 x^{5} + 41 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 290)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.400832\) of defining polynomial
Character \(\chi\) \(=\) 8410.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.401106 q^{3} +1.00000 q^{4} -1.00000 q^{5} +0.401106 q^{6} +1.20419 q^{7} +1.00000 q^{8} -2.83911 q^{9} -1.00000 q^{10} -5.12054 q^{11} +0.401106 q^{12} -1.87948 q^{13} +1.20419 q^{14} -0.401106 q^{15} +1.00000 q^{16} +7.71390 q^{17} -2.83911 q^{18} +4.07654 q^{19} -1.00000 q^{20} +0.483009 q^{21} -5.12054 q^{22} -5.78639 q^{23} +0.401106 q^{24} +1.00000 q^{25} -1.87948 q^{26} -2.34210 q^{27} +1.20419 q^{28} -0.401106 q^{30} +9.82669 q^{31} +1.00000 q^{32} -2.05388 q^{33} +7.71390 q^{34} -1.20419 q^{35} -2.83911 q^{36} +2.16055 q^{37} +4.07654 q^{38} -0.753871 q^{39} -1.00000 q^{40} -1.58080 q^{41} +0.483009 q^{42} -7.56183 q^{43} -5.12054 q^{44} +2.83911 q^{45} -5.78639 q^{46} -6.64980 q^{47} +0.401106 q^{48} -5.54992 q^{49} +1.00000 q^{50} +3.09409 q^{51} -1.87948 q^{52} -1.67046 q^{53} -2.34210 q^{54} +5.12054 q^{55} +1.20419 q^{56} +1.63513 q^{57} -11.6820 q^{59} -0.401106 q^{60} +9.33425 q^{61} +9.82669 q^{62} -3.41884 q^{63} +1.00000 q^{64} +1.87948 q^{65} -2.05388 q^{66} +11.5028 q^{67} +7.71390 q^{68} -2.32096 q^{69} -1.20419 q^{70} -7.15146 q^{71} -2.83911 q^{72} -4.34840 q^{73} +2.16055 q^{74} +0.401106 q^{75} +4.07654 q^{76} -6.16612 q^{77} -0.753871 q^{78} -3.94475 q^{79} -1.00000 q^{80} +7.57791 q^{81} -1.58080 q^{82} +12.1828 q^{83} +0.483009 q^{84} -7.71390 q^{85} -7.56183 q^{86} -5.12054 q^{88} -17.9033 q^{89} +2.83911 q^{90} -2.26326 q^{91} -5.78639 q^{92} +3.94155 q^{93} -6.64980 q^{94} -4.07654 q^{95} +0.401106 q^{96} -16.1921 q^{97} -5.54992 q^{98} +14.5378 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{2} - 4 q^{3} + 12 q^{4} - 12 q^{5} - 4 q^{6} - 8 q^{7} + 12 q^{8} + 6 q^{9} - 12 q^{10} - 14 q^{11} - 4 q^{12} - 4 q^{13} - 8 q^{14} + 4 q^{15} + 12 q^{16} - 8 q^{17} + 6 q^{18} + 16 q^{19}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.401106 0.231579 0.115789 0.993274i \(-0.463060\pi\)
0.115789 + 0.993274i \(0.463060\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0.401106 0.163751
\(7\) 1.20419 0.455142 0.227571 0.973761i \(-0.426922\pi\)
0.227571 + 0.973761i \(0.426922\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.83911 −0.946371
\(10\) −1.00000 −0.316228
\(11\) −5.12054 −1.54390 −0.771950 0.635683i \(-0.780719\pi\)
−0.771950 + 0.635683i \(0.780719\pi\)
\(12\) 0.401106 0.115789
\(13\) −1.87948 −0.521274 −0.260637 0.965437i \(-0.583933\pi\)
−0.260637 + 0.965437i \(0.583933\pi\)
\(14\) 1.20419 0.321834
\(15\) −0.401106 −0.103565
\(16\) 1.00000 0.250000
\(17\) 7.71390 1.87090 0.935448 0.353465i \(-0.114997\pi\)
0.935448 + 0.353465i \(0.114997\pi\)
\(18\) −2.83911 −0.669186
\(19\) 4.07654 0.935223 0.467611 0.883934i \(-0.345115\pi\)
0.467611 + 0.883934i \(0.345115\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0.483009 0.105401
\(22\) −5.12054 −1.09170
\(23\) −5.78639 −1.20655 −0.603273 0.797535i \(-0.706137\pi\)
−0.603273 + 0.797535i \(0.706137\pi\)
\(24\) 0.401106 0.0818754
\(25\) 1.00000 0.200000
\(26\) −1.87948 −0.368596
\(27\) −2.34210 −0.450738
\(28\) 1.20419 0.227571
\(29\) 0 0
\(30\) −0.401106 −0.0732316
\(31\) 9.82669 1.76493 0.882463 0.470382i \(-0.155884\pi\)
0.882463 + 0.470382i \(0.155884\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.05388 −0.357535
\(34\) 7.71390 1.32292
\(35\) −1.20419 −0.203546
\(36\) −2.83911 −0.473186
\(37\) 2.16055 0.355192 0.177596 0.984104i \(-0.443168\pi\)
0.177596 + 0.984104i \(0.443168\pi\)
\(38\) 4.07654 0.661302
\(39\) −0.753871 −0.120716
\(40\) −1.00000 −0.158114
\(41\) −1.58080 −0.246880 −0.123440 0.992352i \(-0.539393\pi\)
−0.123440 + 0.992352i \(0.539393\pi\)
\(42\) 0.483009 0.0745300
\(43\) −7.56183 −1.15317 −0.576584 0.817038i \(-0.695615\pi\)
−0.576584 + 0.817038i \(0.695615\pi\)
\(44\) −5.12054 −0.771950
\(45\) 2.83911 0.423230
\(46\) −5.78639 −0.853157
\(47\) −6.64980 −0.969974 −0.484987 0.874521i \(-0.661176\pi\)
−0.484987 + 0.874521i \(0.661176\pi\)
\(48\) 0.401106 0.0578947
\(49\) −5.54992 −0.792845
\(50\) 1.00000 0.141421
\(51\) 3.09409 0.433260
\(52\) −1.87948 −0.260637
\(53\) −1.67046 −0.229455 −0.114728 0.993397i \(-0.536600\pi\)
−0.114728 + 0.993397i \(0.536600\pi\)
\(54\) −2.34210 −0.318720
\(55\) 5.12054 0.690453
\(56\) 1.20419 0.160917
\(57\) 1.63513 0.216578
\(58\) 0 0
\(59\) −11.6820 −1.52087 −0.760435 0.649414i \(-0.775014\pi\)
−0.760435 + 0.649414i \(0.775014\pi\)
\(60\) −0.401106 −0.0517826
\(61\) 9.33425 1.19513 0.597564 0.801821i \(-0.296135\pi\)
0.597564 + 0.801821i \(0.296135\pi\)
\(62\) 9.82669 1.24799
\(63\) −3.41884 −0.430734
\(64\) 1.00000 0.125000
\(65\) 1.87948 0.233121
\(66\) −2.05388 −0.252815
\(67\) 11.5028 1.40529 0.702647 0.711538i \(-0.252001\pi\)
0.702647 + 0.711538i \(0.252001\pi\)
\(68\) 7.71390 0.935448
\(69\) −2.32096 −0.279410
\(70\) −1.20419 −0.143929
\(71\) −7.15146 −0.848722 −0.424361 0.905493i \(-0.639501\pi\)
−0.424361 + 0.905493i \(0.639501\pi\)
\(72\) −2.83911 −0.334593
\(73\) −4.34840 −0.508941 −0.254471 0.967080i \(-0.581901\pi\)
−0.254471 + 0.967080i \(0.581901\pi\)
\(74\) 2.16055 0.251158
\(75\) 0.401106 0.0463157
\(76\) 4.07654 0.467611
\(77\) −6.16612 −0.702695
\(78\) −0.753871 −0.0853590
\(79\) −3.94475 −0.443820 −0.221910 0.975067i \(-0.571229\pi\)
−0.221910 + 0.975067i \(0.571229\pi\)
\(80\) −1.00000 −0.111803
\(81\) 7.57791 0.841990
\(82\) −1.58080 −0.174570
\(83\) 12.1828 1.33723 0.668616 0.743608i \(-0.266887\pi\)
0.668616 + 0.743608i \(0.266887\pi\)
\(84\) 0.483009 0.0527007
\(85\) −7.71390 −0.836690
\(86\) −7.56183 −0.815413
\(87\) 0 0
\(88\) −5.12054 −0.545851
\(89\) −17.9033 −1.89774 −0.948871 0.315663i \(-0.897773\pi\)
−0.948871 + 0.315663i \(0.897773\pi\)
\(90\) 2.83911 0.299269
\(91\) −2.26326 −0.237254
\(92\) −5.78639 −0.603273
\(93\) 3.94155 0.408719
\(94\) −6.64980 −0.685875
\(95\) −4.07654 −0.418244
\(96\) 0.401106 0.0409377
\(97\) −16.1921 −1.64405 −0.822027 0.569448i \(-0.807157\pi\)
−0.822027 + 0.569448i \(0.807157\pi\)
\(98\) −5.54992 −0.560626
\(99\) 14.5378 1.46110
\(100\) 1.00000 0.100000
\(101\) −0.834611 −0.0830469 −0.0415234 0.999138i \(-0.513221\pi\)
−0.0415234 + 0.999138i \(0.513221\pi\)
\(102\) 3.09409 0.306361
\(103\) −2.50718 −0.247040 −0.123520 0.992342i \(-0.539418\pi\)
−0.123520 + 0.992342i \(0.539418\pi\)
\(104\) −1.87948 −0.184298
\(105\) −0.483009 −0.0471369
\(106\) −1.67046 −0.162249
\(107\) −3.98032 −0.384792 −0.192396 0.981317i \(-0.561626\pi\)
−0.192396 + 0.981317i \(0.561626\pi\)
\(108\) −2.34210 −0.225369
\(109\) −18.5782 −1.77947 −0.889736 0.456476i \(-0.849111\pi\)
−0.889736 + 0.456476i \(0.849111\pi\)
\(110\) 5.12054 0.488224
\(111\) 0.866608 0.0822548
\(112\) 1.20419 0.113786
\(113\) −20.9429 −1.97014 −0.985071 0.172146i \(-0.944930\pi\)
−0.985071 + 0.172146i \(0.944930\pi\)
\(114\) 1.63513 0.153144
\(115\) 5.78639 0.539584
\(116\) 0 0
\(117\) 5.33606 0.493318
\(118\) −11.6820 −1.07542
\(119\) 9.28903 0.851524
\(120\) −0.401106 −0.0366158
\(121\) 15.2199 1.38363
\(122\) 9.33425 0.845083
\(123\) −0.634069 −0.0571720
\(124\) 9.82669 0.882463
\(125\) −1.00000 −0.0894427
\(126\) −3.41884 −0.304575
\(127\) 6.34362 0.562905 0.281452 0.959575i \(-0.409184\pi\)
0.281452 + 0.959575i \(0.409184\pi\)
\(128\) 1.00000 0.0883883
\(129\) −3.03310 −0.267049
\(130\) 1.87948 0.164841
\(131\) −16.4511 −1.43734 −0.718671 0.695350i \(-0.755249\pi\)
−0.718671 + 0.695350i \(0.755249\pi\)
\(132\) −2.05388 −0.178767
\(133\) 4.90895 0.425660
\(134\) 11.5028 0.993693
\(135\) 2.34210 0.201576
\(136\) 7.71390 0.661461
\(137\) −0.569445 −0.0486510 −0.0243255 0.999704i \(-0.507744\pi\)
−0.0243255 + 0.999704i \(0.507744\pi\)
\(138\) −2.32096 −0.197573
\(139\) −6.60701 −0.560399 −0.280200 0.959942i \(-0.590401\pi\)
−0.280200 + 0.959942i \(0.590401\pi\)
\(140\) −1.20419 −0.101773
\(141\) −2.66728 −0.224625
\(142\) −7.15146 −0.600137
\(143\) 9.62395 0.804795
\(144\) −2.83911 −0.236593
\(145\) 0 0
\(146\) −4.34840 −0.359876
\(147\) −2.22611 −0.183606
\(148\) 2.16055 0.177596
\(149\) −7.46758 −0.611768 −0.305884 0.952069i \(-0.598952\pi\)
−0.305884 + 0.952069i \(0.598952\pi\)
\(150\) 0.401106 0.0327502
\(151\) 13.9145 1.13235 0.566173 0.824286i \(-0.308423\pi\)
0.566173 + 0.824286i \(0.308423\pi\)
\(152\) 4.07654 0.330651
\(153\) −21.9006 −1.77056
\(154\) −6.16612 −0.496880
\(155\) −9.82669 −0.789299
\(156\) −0.753871 −0.0603579
\(157\) −4.41997 −0.352752 −0.176376 0.984323i \(-0.556437\pi\)
−0.176376 + 0.984323i \(0.556437\pi\)
\(158\) −3.94475 −0.313828
\(159\) −0.670031 −0.0531369
\(160\) −1.00000 −0.0790569
\(161\) −6.96793 −0.549150
\(162\) 7.57791 0.595377
\(163\) 2.61511 0.204831 0.102415 0.994742i \(-0.467343\pi\)
0.102415 + 0.994742i \(0.467343\pi\)
\(164\) −1.58080 −0.123440
\(165\) 2.05388 0.159894
\(166\) 12.1828 0.945566
\(167\) −14.2987 −1.10646 −0.553232 0.833028i \(-0.686606\pi\)
−0.553232 + 0.833028i \(0.686606\pi\)
\(168\) 0.483009 0.0372650
\(169\) −9.46756 −0.728274
\(170\) −7.71390 −0.591629
\(171\) −11.5738 −0.885068
\(172\) −7.56183 −0.576584
\(173\) −14.7050 −1.11800 −0.559001 0.829167i \(-0.688815\pi\)
−0.559001 + 0.829167i \(0.688815\pi\)
\(174\) 0 0
\(175\) 1.20419 0.0910285
\(176\) −5.12054 −0.385975
\(177\) −4.68573 −0.352201
\(178\) −17.9033 −1.34191
\(179\) −6.96738 −0.520767 −0.260383 0.965505i \(-0.583849\pi\)
−0.260383 + 0.965505i \(0.583849\pi\)
\(180\) 2.83911 0.211615
\(181\) 11.4760 0.853002 0.426501 0.904487i \(-0.359746\pi\)
0.426501 + 0.904487i \(0.359746\pi\)
\(182\) −2.26326 −0.167764
\(183\) 3.74402 0.276766
\(184\) −5.78639 −0.426578
\(185\) −2.16055 −0.158847
\(186\) 3.94155 0.289008
\(187\) −39.4993 −2.88848
\(188\) −6.64980 −0.484987
\(189\) −2.82035 −0.205150
\(190\) −4.07654 −0.295743
\(191\) 10.1386 0.733607 0.366803 0.930299i \(-0.380452\pi\)
0.366803 + 0.930299i \(0.380452\pi\)
\(192\) 0.401106 0.0289473
\(193\) −7.41474 −0.533724 −0.266862 0.963735i \(-0.585987\pi\)
−0.266862 + 0.963735i \(0.585987\pi\)
\(194\) −16.1921 −1.16252
\(195\) 0.753871 0.0539858
\(196\) −5.54992 −0.396423
\(197\) 10.9903 0.783026 0.391513 0.920173i \(-0.371952\pi\)
0.391513 + 0.920173i \(0.371952\pi\)
\(198\) 14.5378 1.03316
\(199\) −17.8698 −1.26676 −0.633379 0.773842i \(-0.718333\pi\)
−0.633379 + 0.773842i \(0.718333\pi\)
\(200\) 1.00000 0.0707107
\(201\) 4.61386 0.325436
\(202\) −0.834611 −0.0587230
\(203\) 0 0
\(204\) 3.09409 0.216630
\(205\) 1.58080 0.110408
\(206\) −2.50718 −0.174684
\(207\) 16.4282 1.14184
\(208\) −1.87948 −0.130318
\(209\) −20.8741 −1.44389
\(210\) −0.483009 −0.0333308
\(211\) 1.96288 0.135130 0.0675651 0.997715i \(-0.478477\pi\)
0.0675651 + 0.997715i \(0.478477\pi\)
\(212\) −1.67046 −0.114728
\(213\) −2.86849 −0.196546
\(214\) −3.98032 −0.272089
\(215\) 7.56183 0.515713
\(216\) −2.34210 −0.159360
\(217\) 11.8332 0.803293
\(218\) −18.5782 −1.25828
\(219\) −1.74417 −0.117860
\(220\) 5.12054 0.345227
\(221\) −14.4981 −0.975249
\(222\) 0.866608 0.0581629
\(223\) 2.99161 0.200333 0.100167 0.994971i \(-0.468062\pi\)
0.100167 + 0.994971i \(0.468062\pi\)
\(224\) 1.20419 0.0804586
\(225\) −2.83911 −0.189274
\(226\) −20.9429 −1.39310
\(227\) 10.4575 0.694091 0.347045 0.937848i \(-0.387185\pi\)
0.347045 + 0.937848i \(0.387185\pi\)
\(228\) 1.63513 0.108289
\(229\) −11.7226 −0.774651 −0.387325 0.921943i \(-0.626601\pi\)
−0.387325 + 0.921943i \(0.626601\pi\)
\(230\) 5.78639 0.381543
\(231\) −2.47327 −0.162729
\(232\) 0 0
\(233\) 7.36396 0.482429 0.241215 0.970472i \(-0.422454\pi\)
0.241215 + 0.970472i \(0.422454\pi\)
\(234\) 5.33606 0.348829
\(235\) 6.64980 0.433785
\(236\) −11.6820 −0.760435
\(237\) −1.58227 −0.102779
\(238\) 9.28903 0.602118
\(239\) −4.11217 −0.265994 −0.132997 0.991116i \(-0.542460\pi\)
−0.132997 + 0.991116i \(0.542460\pi\)
\(240\) −0.401106 −0.0258913
\(241\) −0.466864 −0.0300734 −0.0150367 0.999887i \(-0.504787\pi\)
−0.0150367 + 0.999887i \(0.504787\pi\)
\(242\) 15.2199 0.978374
\(243\) 10.0659 0.645725
\(244\) 9.33425 0.597564
\(245\) 5.54992 0.354571
\(246\) −0.634069 −0.0404267
\(247\) −7.66178 −0.487507
\(248\) 9.82669 0.623996
\(249\) 4.88658 0.309674
\(250\) −1.00000 −0.0632456
\(251\) −20.9372 −1.32155 −0.660773 0.750586i \(-0.729771\pi\)
−0.660773 + 0.750586i \(0.729771\pi\)
\(252\) −3.41884 −0.215367
\(253\) 29.6294 1.86279
\(254\) 6.34362 0.398034
\(255\) −3.09409 −0.193760
\(256\) 1.00000 0.0625000
\(257\) 14.0275 0.875011 0.437506 0.899216i \(-0.355862\pi\)
0.437506 + 0.899216i \(0.355862\pi\)
\(258\) −3.03310 −0.188832
\(259\) 2.60172 0.161663
\(260\) 1.87948 0.116560
\(261\) 0 0
\(262\) −16.4511 −1.01635
\(263\) 14.4990 0.894048 0.447024 0.894522i \(-0.352484\pi\)
0.447024 + 0.894522i \(0.352484\pi\)
\(264\) −2.05388 −0.126408
\(265\) 1.67046 0.102615
\(266\) 4.90895 0.300987
\(267\) −7.18111 −0.439477
\(268\) 11.5028 0.702647
\(269\) 7.28808 0.444362 0.222181 0.975005i \(-0.428682\pi\)
0.222181 + 0.975005i \(0.428682\pi\)
\(270\) 2.34210 0.142536
\(271\) −4.76330 −0.289350 −0.144675 0.989479i \(-0.546214\pi\)
−0.144675 + 0.989479i \(0.546214\pi\)
\(272\) 7.71390 0.467724
\(273\) −0.907806 −0.0549429
\(274\) −0.569445 −0.0344014
\(275\) −5.12054 −0.308780
\(276\) −2.32096 −0.139705
\(277\) 5.31620 0.319419 0.159710 0.987164i \(-0.448944\pi\)
0.159710 + 0.987164i \(0.448944\pi\)
\(278\) −6.60701 −0.396262
\(279\) −27.8991 −1.67028
\(280\) −1.20419 −0.0719643
\(281\) 13.4195 0.800538 0.400269 0.916398i \(-0.368917\pi\)
0.400269 + 0.916398i \(0.368917\pi\)
\(282\) −2.66728 −0.158834
\(283\) −14.6017 −0.867983 −0.433991 0.900917i \(-0.642895\pi\)
−0.433991 + 0.900917i \(0.642895\pi\)
\(284\) −7.15146 −0.424361
\(285\) −1.63513 −0.0968565
\(286\) 9.62395 0.569076
\(287\) −1.90359 −0.112365
\(288\) −2.83911 −0.167296
\(289\) 42.5042 2.50025
\(290\) 0 0
\(291\) −6.49473 −0.380728
\(292\) −4.34840 −0.254471
\(293\) −14.2013 −0.829649 −0.414824 0.909901i \(-0.636157\pi\)
−0.414824 + 0.909901i \(0.636157\pi\)
\(294\) −2.22611 −0.129829
\(295\) 11.6820 0.680154
\(296\) 2.16055 0.125579
\(297\) 11.9928 0.695895
\(298\) −7.46758 −0.432585
\(299\) 10.8754 0.628941
\(300\) 0.401106 0.0231579
\(301\) −9.10591 −0.524856
\(302\) 13.9145 0.800690
\(303\) −0.334767 −0.0192319
\(304\) 4.07654 0.233806
\(305\) −9.33425 −0.534478
\(306\) −21.9006 −1.25198
\(307\) 10.7324 0.612533 0.306266 0.951946i \(-0.400920\pi\)
0.306266 + 0.951946i \(0.400920\pi\)
\(308\) −6.16612 −0.351347
\(309\) −1.00565 −0.0572092
\(310\) −9.82669 −0.558119
\(311\) −12.9785 −0.735944 −0.367972 0.929837i \(-0.619948\pi\)
−0.367972 + 0.929837i \(0.619948\pi\)
\(312\) −0.753871 −0.0426795
\(313\) −3.08478 −0.174362 −0.0871811 0.996192i \(-0.527786\pi\)
−0.0871811 + 0.996192i \(0.527786\pi\)
\(314\) −4.41997 −0.249433
\(315\) 3.41884 0.192630
\(316\) −3.94475 −0.221910
\(317\) −23.6585 −1.32879 −0.664396 0.747381i \(-0.731311\pi\)
−0.664396 + 0.747381i \(0.731311\pi\)
\(318\) −0.670031 −0.0375735
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) −1.59653 −0.0891096
\(322\) −6.96793 −0.388308
\(323\) 31.4460 1.74970
\(324\) 7.57791 0.420995
\(325\) −1.87948 −0.104255
\(326\) 2.61511 0.144837
\(327\) −7.45184 −0.412088
\(328\) −1.58080 −0.0872851
\(329\) −8.00765 −0.441476
\(330\) 2.05388 0.113062
\(331\) −2.74733 −0.151007 −0.0755034 0.997146i \(-0.524056\pi\)
−0.0755034 + 0.997146i \(0.524056\pi\)
\(332\) 12.1828 0.668616
\(333\) −6.13404 −0.336143
\(334\) −14.2987 −0.782388
\(335\) −11.5028 −0.628467
\(336\) 0.483009 0.0263503
\(337\) 28.6955 1.56314 0.781571 0.623816i \(-0.214418\pi\)
0.781571 + 0.623816i \(0.214418\pi\)
\(338\) −9.46756 −0.514967
\(339\) −8.40033 −0.456243
\(340\) −7.71390 −0.418345
\(341\) −50.3180 −2.72487
\(342\) −11.5738 −0.625838
\(343\) −15.1125 −0.816000
\(344\) −7.56183 −0.407707
\(345\) 2.32096 0.124956
\(346\) −14.7050 −0.790547
\(347\) 15.2155 0.816810 0.408405 0.912801i \(-0.366085\pi\)
0.408405 + 0.912801i \(0.366085\pi\)
\(348\) 0 0
\(349\) 4.20894 0.225300 0.112650 0.993635i \(-0.464066\pi\)
0.112650 + 0.993635i \(0.464066\pi\)
\(350\) 1.20419 0.0643669
\(351\) 4.40194 0.234958
\(352\) −5.12054 −0.272926
\(353\) 26.2481 1.39704 0.698522 0.715589i \(-0.253841\pi\)
0.698522 + 0.715589i \(0.253841\pi\)
\(354\) −4.68573 −0.249044
\(355\) 7.15146 0.379560
\(356\) −17.9033 −0.948871
\(357\) 3.72589 0.197195
\(358\) −6.96738 −0.368238
\(359\) −15.2588 −0.805326 −0.402663 0.915348i \(-0.631915\pi\)
−0.402663 + 0.915348i \(0.631915\pi\)
\(360\) 2.83911 0.149634
\(361\) −2.38180 −0.125358
\(362\) 11.4760 0.603163
\(363\) 6.10481 0.320419
\(364\) −2.26326 −0.118627
\(365\) 4.34840 0.227605
\(366\) 3.74402 0.195703
\(367\) 4.20604 0.219553 0.109777 0.993956i \(-0.464986\pi\)
0.109777 + 0.993956i \(0.464986\pi\)
\(368\) −5.78639 −0.301636
\(369\) 4.48807 0.233640
\(370\) −2.16055 −0.112321
\(371\) −2.01156 −0.104435
\(372\) 3.94155 0.204360
\(373\) 21.2914 1.10243 0.551213 0.834365i \(-0.314165\pi\)
0.551213 + 0.834365i \(0.314165\pi\)
\(374\) −39.4993 −2.04246
\(375\) −0.401106 −0.0207130
\(376\) −6.64980 −0.342937
\(377\) 0 0
\(378\) −2.82035 −0.145063
\(379\) 1.13313 0.0582050 0.0291025 0.999576i \(-0.490735\pi\)
0.0291025 + 0.999576i \(0.490735\pi\)
\(380\) −4.07654 −0.209122
\(381\) 2.54446 0.130357
\(382\) 10.1386 0.518738
\(383\) 9.08051 0.463992 0.231996 0.972717i \(-0.425474\pi\)
0.231996 + 0.972717i \(0.425474\pi\)
\(384\) 0.401106 0.0204689
\(385\) 6.16612 0.314255
\(386\) −7.41474 −0.377400
\(387\) 21.4689 1.09133
\(388\) −16.1921 −0.822027
\(389\) 29.3352 1.48735 0.743677 0.668539i \(-0.233080\pi\)
0.743677 + 0.668539i \(0.233080\pi\)
\(390\) 0.753871 0.0381737
\(391\) −44.6356 −2.25732
\(392\) −5.54992 −0.280313
\(393\) −6.59865 −0.332858
\(394\) 10.9903 0.553683
\(395\) 3.94475 0.198482
\(396\) 14.5378 0.730552
\(397\) 2.27814 0.114336 0.0571682 0.998365i \(-0.481793\pi\)
0.0571682 + 0.998365i \(0.481793\pi\)
\(398\) −17.8698 −0.895733
\(399\) 1.96901 0.0985737
\(400\) 1.00000 0.0500000
\(401\) 1.33609 0.0667213 0.0333607 0.999443i \(-0.489379\pi\)
0.0333607 + 0.999443i \(0.489379\pi\)
\(402\) 4.61386 0.230118
\(403\) −18.4691 −0.920010
\(404\) −0.834611 −0.0415234
\(405\) −7.57791 −0.376549
\(406\) 0 0
\(407\) −11.0632 −0.548381
\(408\) 3.09409 0.153180
\(409\) 10.9733 0.542594 0.271297 0.962496i \(-0.412547\pi\)
0.271297 + 0.962496i \(0.412547\pi\)
\(410\) 1.58080 0.0780702
\(411\) −0.228408 −0.0112665
\(412\) −2.50718 −0.123520
\(413\) −14.0674 −0.692213
\(414\) 16.4282 0.807403
\(415\) −12.1828 −0.598028
\(416\) −1.87948 −0.0921490
\(417\) −2.65011 −0.129777
\(418\) −20.8741 −1.02099
\(419\) 10.5441 0.515114 0.257557 0.966263i \(-0.417083\pi\)
0.257557 + 0.966263i \(0.417083\pi\)
\(420\) −0.483009 −0.0235684
\(421\) 13.4758 0.656768 0.328384 0.944544i \(-0.393496\pi\)
0.328384 + 0.944544i \(0.393496\pi\)
\(422\) 1.96288 0.0955515
\(423\) 18.8796 0.917955
\(424\) −1.67046 −0.0811246
\(425\) 7.71390 0.374179
\(426\) −2.86849 −0.138979
\(427\) 11.2402 0.543954
\(428\) −3.98032 −0.192396
\(429\) 3.86022 0.186373
\(430\) 7.56183 0.364664
\(431\) 15.6644 0.754528 0.377264 0.926106i \(-0.376865\pi\)
0.377264 + 0.926106i \(0.376865\pi\)
\(432\) −2.34210 −0.112685
\(433\) −13.1208 −0.630546 −0.315273 0.949001i \(-0.602096\pi\)
−0.315273 + 0.949001i \(0.602096\pi\)
\(434\) 11.8332 0.568014
\(435\) 0 0
\(436\) −18.5782 −0.889736
\(437\) −23.5885 −1.12839
\(438\) −1.74417 −0.0833396
\(439\) −7.43776 −0.354985 −0.177492 0.984122i \(-0.556799\pi\)
−0.177492 + 0.984122i \(0.556799\pi\)
\(440\) 5.12054 0.244112
\(441\) 15.7568 0.750326
\(442\) −14.4981 −0.689605
\(443\) 31.9403 1.51753 0.758764 0.651365i \(-0.225803\pi\)
0.758764 + 0.651365i \(0.225803\pi\)
\(444\) 0.866608 0.0411274
\(445\) 17.9033 0.848696
\(446\) 2.99161 0.141657
\(447\) −2.99529 −0.141672
\(448\) 1.20419 0.0568928
\(449\) −11.5345 −0.544347 −0.272173 0.962248i \(-0.587742\pi\)
−0.272173 + 0.962248i \(0.587742\pi\)
\(450\) −2.83911 −0.133837
\(451\) 8.09455 0.381158
\(452\) −20.9429 −0.985071
\(453\) 5.58119 0.262227
\(454\) 10.4575 0.490796
\(455\) 2.26326 0.106103
\(456\) 1.63513 0.0765718
\(457\) −4.38046 −0.204909 −0.102455 0.994738i \(-0.532670\pi\)
−0.102455 + 0.994738i \(0.532670\pi\)
\(458\) −11.7226 −0.547761
\(459\) −18.0668 −0.843284
\(460\) 5.78639 0.269792
\(461\) 19.3754 0.902401 0.451201 0.892423i \(-0.350996\pi\)
0.451201 + 0.892423i \(0.350996\pi\)
\(462\) −2.47327 −0.115067
\(463\) 12.5730 0.584315 0.292158 0.956370i \(-0.405627\pi\)
0.292158 + 0.956370i \(0.405627\pi\)
\(464\) 0 0
\(465\) −3.94155 −0.182785
\(466\) 7.36396 0.341129
\(467\) 33.0324 1.52856 0.764280 0.644885i \(-0.223095\pi\)
0.764280 + 0.644885i \(0.223095\pi\)
\(468\) 5.33606 0.246659
\(469\) 13.8516 0.639609
\(470\) 6.64980 0.306733
\(471\) −1.77288 −0.0816898
\(472\) −11.6820 −0.537709
\(473\) 38.7207 1.78038
\(474\) −1.58227 −0.0726758
\(475\) 4.07654 0.187045
\(476\) 9.28903 0.425762
\(477\) 4.74262 0.217150
\(478\) −4.11217 −0.188086
\(479\) 28.7013 1.31139 0.655697 0.755024i \(-0.272375\pi\)
0.655697 + 0.755024i \(0.272375\pi\)
\(480\) −0.401106 −0.0183079
\(481\) −4.06070 −0.185152
\(482\) −0.466864 −0.0212651
\(483\) −2.79488 −0.127172
\(484\) 15.2199 0.691815
\(485\) 16.1921 0.735243
\(486\) 10.0659 0.456597
\(487\) −33.8080 −1.53199 −0.765993 0.642849i \(-0.777752\pi\)
−0.765993 + 0.642849i \(0.777752\pi\)
\(488\) 9.33425 0.422542
\(489\) 1.04893 0.0474345
\(490\) 5.54992 0.250720
\(491\) −13.7655 −0.621228 −0.310614 0.950536i \(-0.600535\pi\)
−0.310614 + 0.950536i \(0.600535\pi\)
\(492\) −0.634069 −0.0285860
\(493\) 0 0
\(494\) −7.66178 −0.344720
\(495\) −14.5378 −0.653425
\(496\) 9.82669 0.441232
\(497\) −8.61174 −0.386289
\(498\) 4.88658 0.218973
\(499\) −0.991058 −0.0443658 −0.0221829 0.999754i \(-0.507062\pi\)
−0.0221829 + 0.999754i \(0.507062\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −5.73528 −0.256233
\(502\) −20.9372 −0.934474
\(503\) −42.5461 −1.89704 −0.948518 0.316722i \(-0.897418\pi\)
−0.948518 + 0.316722i \(0.897418\pi\)
\(504\) −3.41884 −0.152287
\(505\) 0.834611 0.0371397
\(506\) 29.6294 1.31719
\(507\) −3.79750 −0.168653
\(508\) 6.34362 0.281452
\(509\) −15.2016 −0.673799 −0.336899 0.941541i \(-0.609378\pi\)
−0.336899 + 0.941541i \(0.609378\pi\)
\(510\) −3.09409 −0.137009
\(511\) −5.23631 −0.231641
\(512\) 1.00000 0.0441942
\(513\) −9.54769 −0.421541
\(514\) 14.0275 0.618726
\(515\) 2.50718 0.110480
\(516\) −3.03310 −0.133525
\(517\) 34.0506 1.49754
\(518\) 2.60172 0.114313
\(519\) −5.89827 −0.258905
\(520\) 1.87948 0.0824206
\(521\) −2.83871 −0.124366 −0.0621831 0.998065i \(-0.519806\pi\)
−0.0621831 + 0.998065i \(0.519806\pi\)
\(522\) 0 0
\(523\) 28.2327 1.23453 0.617266 0.786755i \(-0.288240\pi\)
0.617266 + 0.786755i \(0.288240\pi\)
\(524\) −16.4511 −0.718671
\(525\) 0.483009 0.0210803
\(526\) 14.4990 0.632187
\(527\) 75.8021 3.30199
\(528\) −2.05388 −0.0893836
\(529\) 10.4823 0.455753
\(530\) 1.67046 0.0725601
\(531\) 33.1666 1.43931
\(532\) 4.90895 0.212830
\(533\) 2.97108 0.128692
\(534\) −7.18111 −0.310757
\(535\) 3.98032 0.172084
\(536\) 11.5028 0.496847
\(537\) −2.79466 −0.120599
\(538\) 7.28808 0.314211
\(539\) 28.4186 1.22407
\(540\) 2.34210 0.100788
\(541\) −29.3853 −1.26337 −0.631687 0.775223i \(-0.717637\pi\)
−0.631687 + 0.775223i \(0.717637\pi\)
\(542\) −4.76330 −0.204601
\(543\) 4.60308 0.197537
\(544\) 7.71390 0.330731
\(545\) 18.5782 0.795804
\(546\) −0.907806 −0.0388505
\(547\) 0.395706 0.0169192 0.00845958 0.999964i \(-0.497307\pi\)
0.00845958 + 0.999964i \(0.497307\pi\)
\(548\) −0.569445 −0.0243255
\(549\) −26.5010 −1.13103
\(550\) −5.12054 −0.218341
\(551\) 0 0
\(552\) −2.32096 −0.0987865
\(553\) −4.75025 −0.202001
\(554\) 5.31620 0.225864
\(555\) −0.866608 −0.0367855
\(556\) −6.60701 −0.280200
\(557\) 36.1822 1.53309 0.766545 0.642190i \(-0.221974\pi\)
0.766545 + 0.642190i \(0.221974\pi\)
\(558\) −27.8991 −1.18106
\(559\) 14.2123 0.601116
\(560\) −1.20419 −0.0508865
\(561\) −15.8434 −0.668910
\(562\) 13.4195 0.566066
\(563\) 24.5885 1.03628 0.518140 0.855296i \(-0.326624\pi\)
0.518140 + 0.855296i \(0.326624\pi\)
\(564\) −2.66728 −0.112313
\(565\) 20.9429 0.881075
\(566\) −14.6017 −0.613757
\(567\) 9.12527 0.383225
\(568\) −7.15146 −0.300068
\(569\) −33.9862 −1.42477 −0.712387 0.701787i \(-0.752386\pi\)
−0.712387 + 0.701787i \(0.752386\pi\)
\(570\) −1.63513 −0.0684879
\(571\) −11.6510 −0.487579 −0.243789 0.969828i \(-0.578391\pi\)
−0.243789 + 0.969828i \(0.578391\pi\)
\(572\) 9.62395 0.402397
\(573\) 4.06667 0.169888
\(574\) −1.90359 −0.0794543
\(575\) −5.78639 −0.241309
\(576\) −2.83911 −0.118296
\(577\) 6.13917 0.255577 0.127789 0.991801i \(-0.459212\pi\)
0.127789 + 0.991801i \(0.459212\pi\)
\(578\) 42.5042 1.76794
\(579\) −2.97410 −0.123599
\(580\) 0 0
\(581\) 14.6704 0.608631
\(582\) −6.49473 −0.269215
\(583\) 8.55365 0.354256
\(584\) −4.34840 −0.179938
\(585\) −5.33606 −0.220619
\(586\) −14.2013 −0.586650
\(587\) 11.2280 0.463427 0.231714 0.972784i \(-0.425567\pi\)
0.231714 + 0.972784i \(0.425567\pi\)
\(588\) −2.22611 −0.0918031
\(589\) 40.0589 1.65060
\(590\) 11.6820 0.480942
\(591\) 4.40827 0.181332
\(592\) 2.16055 0.0887979
\(593\) −21.0174 −0.863080 −0.431540 0.902094i \(-0.642030\pi\)
−0.431540 + 0.902094i \(0.642030\pi\)
\(594\) 11.9928 0.492072
\(595\) −9.28903 −0.380813
\(596\) −7.46758 −0.305884
\(597\) −7.16770 −0.293354
\(598\) 10.8754 0.444728
\(599\) −44.5658 −1.82091 −0.910454 0.413610i \(-0.864268\pi\)
−0.910454 + 0.413610i \(0.864268\pi\)
\(600\) 0.401106 0.0163751
\(601\) −14.8735 −0.606701 −0.303351 0.952879i \(-0.598105\pi\)
−0.303351 + 0.952879i \(0.598105\pi\)
\(602\) −9.10591 −0.371129
\(603\) −32.6579 −1.32993
\(604\) 13.9145 0.566173
\(605\) −15.2199 −0.618778
\(606\) −0.334767 −0.0135990
\(607\) −10.2220 −0.414900 −0.207450 0.978246i \(-0.566516\pi\)
−0.207450 + 0.978246i \(0.566516\pi\)
\(608\) 4.07654 0.165326
\(609\) 0 0
\(610\) −9.33425 −0.377933
\(611\) 12.4982 0.505622
\(612\) −21.9006 −0.885281
\(613\) 18.5677 0.749944 0.374972 0.927036i \(-0.377652\pi\)
0.374972 + 0.927036i \(0.377652\pi\)
\(614\) 10.7324 0.433126
\(615\) 0.634069 0.0255681
\(616\) −6.16612 −0.248440
\(617\) −43.8868 −1.76682 −0.883408 0.468605i \(-0.844757\pi\)
−0.883408 + 0.468605i \(0.844757\pi\)
\(618\) −1.00565 −0.0404530
\(619\) 8.21915 0.330356 0.165178 0.986264i \(-0.447180\pi\)
0.165178 + 0.986264i \(0.447180\pi\)
\(620\) −9.82669 −0.394649
\(621\) 13.5523 0.543836
\(622\) −12.9785 −0.520391
\(623\) −21.5590 −0.863743
\(624\) −0.753871 −0.0301790
\(625\) 1.00000 0.0400000
\(626\) −3.08478 −0.123293
\(627\) −8.37273 −0.334375
\(628\) −4.41997 −0.176376
\(629\) 16.6662 0.664526
\(630\) 3.41884 0.136210
\(631\) 33.2083 1.32200 0.661000 0.750386i \(-0.270132\pi\)
0.661000 + 0.750386i \(0.270132\pi\)
\(632\) −3.94475 −0.156914
\(633\) 0.787323 0.0312933
\(634\) −23.6585 −0.939598
\(635\) −6.34362 −0.251739
\(636\) −0.670031 −0.0265685
\(637\) 10.4310 0.413289
\(638\) 0 0
\(639\) 20.3038 0.803206
\(640\) −1.00000 −0.0395285
\(641\) 0.589087 0.0232675 0.0116338 0.999932i \(-0.496297\pi\)
0.0116338 + 0.999932i \(0.496297\pi\)
\(642\) −1.59653 −0.0630100
\(643\) −44.7230 −1.76370 −0.881851 0.471529i \(-0.843702\pi\)
−0.881851 + 0.471529i \(0.843702\pi\)
\(644\) −6.96793 −0.274575
\(645\) 3.03310 0.119428
\(646\) 31.4460 1.23723
\(647\) −19.4912 −0.766279 −0.383140 0.923690i \(-0.625157\pi\)
−0.383140 + 0.923690i \(0.625157\pi\)
\(648\) 7.57791 0.297688
\(649\) 59.8183 2.34807
\(650\) −1.87948 −0.0737192
\(651\) 4.74639 0.186026
\(652\) 2.61511 0.102415
\(653\) 19.8642 0.777345 0.388672 0.921376i \(-0.372934\pi\)
0.388672 + 0.921376i \(0.372934\pi\)
\(654\) −7.45184 −0.291390
\(655\) 16.4511 0.642799
\(656\) −1.58080 −0.0617199
\(657\) 12.3456 0.481647
\(658\) −8.00765 −0.312171
\(659\) 18.4571 0.718987 0.359494 0.933148i \(-0.382949\pi\)
0.359494 + 0.933148i \(0.382949\pi\)
\(660\) 2.05388 0.0799472
\(661\) −9.39538 −0.365438 −0.182719 0.983165i \(-0.558490\pi\)
−0.182719 + 0.983165i \(0.558490\pi\)
\(662\) −2.74733 −0.106778
\(663\) −5.81528 −0.225847
\(664\) 12.1828 0.472783
\(665\) −4.90895 −0.190361
\(666\) −6.13404 −0.237689
\(667\) 0 0
\(668\) −14.2987 −0.553232
\(669\) 1.19995 0.0463929
\(670\) −11.5028 −0.444393
\(671\) −47.7964 −1.84516
\(672\) 0.483009 0.0186325
\(673\) −47.2583 −1.82167 −0.910837 0.412766i \(-0.864563\pi\)
−0.910837 + 0.412766i \(0.864563\pi\)
\(674\) 28.6955 1.10531
\(675\) −2.34210 −0.0901476
\(676\) −9.46756 −0.364137
\(677\) −45.1670 −1.73591 −0.867954 0.496644i \(-0.834565\pi\)
−0.867954 + 0.496644i \(0.834565\pi\)
\(678\) −8.40033 −0.322613
\(679\) −19.4984 −0.748279
\(680\) −7.71390 −0.295815
\(681\) 4.19458 0.160737
\(682\) −50.3180 −1.92677
\(683\) 19.0875 0.730362 0.365181 0.930937i \(-0.381007\pi\)
0.365181 + 0.930937i \(0.381007\pi\)
\(684\) −11.5738 −0.442534
\(685\) 0.569445 0.0217574
\(686\) −15.1125 −0.576999
\(687\) −4.70200 −0.179393
\(688\) −7.56183 −0.288292
\(689\) 3.13959 0.119609
\(690\) 2.32096 0.0883573
\(691\) −13.3245 −0.506886 −0.253443 0.967350i \(-0.581563\pi\)
−0.253443 + 0.967350i \(0.581563\pi\)
\(692\) −14.7050 −0.559001
\(693\) 17.5063 0.665010
\(694\) 15.2155 0.577572
\(695\) 6.60701 0.250618
\(696\) 0 0
\(697\) −12.1941 −0.461886
\(698\) 4.20894 0.159311
\(699\) 2.95373 0.111720
\(700\) 1.20419 0.0455142
\(701\) −30.8132 −1.16380 −0.581899 0.813261i \(-0.697690\pi\)
−0.581899 + 0.813261i \(0.697690\pi\)
\(702\) 4.40194 0.166140
\(703\) 8.80756 0.332183
\(704\) −5.12054 −0.192988
\(705\) 2.66728 0.100455
\(706\) 26.2481 0.987859
\(707\) −1.00503 −0.0377982
\(708\) −4.68573 −0.176101
\(709\) −10.8891 −0.408948 −0.204474 0.978872i \(-0.565548\pi\)
−0.204474 + 0.978872i \(0.565548\pi\)
\(710\) 7.15146 0.268389
\(711\) 11.1996 0.420018
\(712\) −17.9033 −0.670953
\(713\) −56.8611 −2.12946
\(714\) 3.72589 0.139438
\(715\) −9.62395 −0.359915
\(716\) −6.96738 −0.260383
\(717\) −1.64942 −0.0615986
\(718\) −15.2588 −0.569452
\(719\) 53.2899 1.98738 0.993689 0.112169i \(-0.0357799\pi\)
0.993689 + 0.112169i \(0.0357799\pi\)
\(720\) 2.83911 0.105808
\(721\) −3.01913 −0.112438
\(722\) −2.38180 −0.0886416
\(723\) −0.187262 −0.00696435
\(724\) 11.4760 0.426501
\(725\) 0 0
\(726\) 6.10481 0.226571
\(727\) −10.2393 −0.379754 −0.189877 0.981808i \(-0.560809\pi\)
−0.189877 + 0.981808i \(0.560809\pi\)
\(728\) −2.26326 −0.0838819
\(729\) −18.6963 −0.692454
\(730\) 4.34840 0.160941
\(731\) −58.3312 −2.15746
\(732\) 3.74402 0.138383
\(733\) −22.0629 −0.814911 −0.407456 0.913225i \(-0.633584\pi\)
−0.407456 + 0.913225i \(0.633584\pi\)
\(734\) 4.20604 0.155248
\(735\) 2.22611 0.0821111
\(736\) −5.78639 −0.213289
\(737\) −58.9007 −2.16964
\(738\) 4.48807 0.165208
\(739\) 17.0280 0.626385 0.313192 0.949690i \(-0.398602\pi\)
0.313192 + 0.949690i \(0.398602\pi\)
\(740\) −2.16055 −0.0794233
\(741\) −3.07318 −0.112896
\(742\) −2.01156 −0.0738465
\(743\) −32.6429 −1.19755 −0.598777 0.800916i \(-0.704346\pi\)
−0.598777 + 0.800916i \(0.704346\pi\)
\(744\) 3.94155 0.144504
\(745\) 7.46758 0.273591
\(746\) 21.2914 0.779532
\(747\) −34.5883 −1.26552
\(748\) −39.4993 −1.44424
\(749\) −4.79308 −0.175135
\(750\) −0.401106 −0.0146463
\(751\) 11.8277 0.431600 0.215800 0.976438i \(-0.430764\pi\)
0.215800 + 0.976438i \(0.430764\pi\)
\(752\) −6.64980 −0.242493
\(753\) −8.39805 −0.306042
\(754\) 0 0
\(755\) −13.9145 −0.506401
\(756\) −2.82035 −0.102575
\(757\) −47.7965 −1.73719 −0.868597 0.495519i \(-0.834978\pi\)
−0.868597 + 0.495519i \(0.834978\pi\)
\(758\) 1.13313 0.0411571
\(759\) 11.8846 0.431382
\(760\) −4.07654 −0.147872
\(761\) −30.4117 −1.10242 −0.551212 0.834366i \(-0.685834\pi\)
−0.551212 + 0.834366i \(0.685834\pi\)
\(762\) 2.54446 0.0921762
\(763\) −22.3718 −0.809913
\(764\) 10.1386 0.366803
\(765\) 21.9006 0.791819
\(766\) 9.08051 0.328092
\(767\) 21.9561 0.792790
\(768\) 0.401106 0.0144737
\(769\) −40.6558 −1.46609 −0.733043 0.680182i \(-0.761901\pi\)
−0.733043 + 0.680182i \(0.761901\pi\)
\(770\) 6.16612 0.222212
\(771\) 5.62651 0.202634
\(772\) −7.41474 −0.266862
\(773\) 23.0776 0.830045 0.415022 0.909811i \(-0.363774\pi\)
0.415022 + 0.909811i \(0.363774\pi\)
\(774\) 21.4689 0.771684
\(775\) 9.82669 0.352985
\(776\) −16.1921 −0.581261
\(777\) 1.04356 0.0374377
\(778\) 29.3352 1.05172
\(779\) −6.44420 −0.230887
\(780\) 0.753871 0.0269929
\(781\) 36.6193 1.31034
\(782\) −44.6356 −1.59617
\(783\) 0 0
\(784\) −5.54992 −0.198211
\(785\) 4.41997 0.157755
\(786\) −6.59865 −0.235366
\(787\) 34.7647 1.23923 0.619613 0.784907i \(-0.287289\pi\)
0.619613 + 0.784907i \(0.287289\pi\)
\(788\) 10.9903 0.391513
\(789\) 5.81564 0.207042
\(790\) 3.94475 0.140348
\(791\) −25.2193 −0.896696
\(792\) 14.5378 0.516578
\(793\) −17.5435 −0.622989
\(794\) 2.27814 0.0808480
\(795\) 0.670031 0.0237636
\(796\) −17.8698 −0.633379
\(797\) −4.73922 −0.167872 −0.0839358 0.996471i \(-0.526749\pi\)
−0.0839358 + 0.996471i \(0.526749\pi\)
\(798\) 1.96901 0.0697021
\(799\) −51.2959 −1.81472
\(800\) 1.00000 0.0353553
\(801\) 50.8294 1.79597
\(802\) 1.33609 0.0471791
\(803\) 22.2661 0.785755
\(804\) 4.61386 0.162718
\(805\) 6.96793 0.245587
\(806\) −18.4691 −0.650545
\(807\) 2.92329 0.102905
\(808\) −0.834611 −0.0293615
\(809\) −42.3373 −1.48850 −0.744250 0.667901i \(-0.767193\pi\)
−0.744250 + 0.667901i \(0.767193\pi\)
\(810\) −7.57791 −0.266261
\(811\) 19.0268 0.668123 0.334061 0.942551i \(-0.391581\pi\)
0.334061 + 0.942551i \(0.391581\pi\)
\(812\) 0 0
\(813\) −1.91059 −0.0670073
\(814\) −11.0632 −0.387764
\(815\) −2.61511 −0.0916032
\(816\) 3.09409 0.108315
\(817\) −30.8261 −1.07847
\(818\) 10.9733 0.383672
\(819\) 6.42564 0.224530
\(820\) 1.58080 0.0552039
\(821\) 32.7747 1.14385 0.571923 0.820307i \(-0.306198\pi\)
0.571923 + 0.820307i \(0.306198\pi\)
\(822\) −0.228408 −0.00796664
\(823\) −20.5673 −0.716933 −0.358466 0.933543i \(-0.616700\pi\)
−0.358466 + 0.933543i \(0.616700\pi\)
\(824\) −2.50718 −0.0873418
\(825\) −2.05388 −0.0715069
\(826\) −14.0674 −0.489468
\(827\) 15.1382 0.526409 0.263204 0.964740i \(-0.415221\pi\)
0.263204 + 0.964740i \(0.415221\pi\)
\(828\) 16.4282 0.570920
\(829\) 53.0868 1.84378 0.921890 0.387453i \(-0.126645\pi\)
0.921890 + 0.387453i \(0.126645\pi\)
\(830\) −12.1828 −0.422870
\(831\) 2.13236 0.0739707
\(832\) −1.87948 −0.0651592
\(833\) −42.8115 −1.48333
\(834\) −2.65011 −0.0917659
\(835\) 14.2987 0.494825
\(836\) −20.8741 −0.721946
\(837\) −23.0151 −0.795520
\(838\) 10.5441 0.364240
\(839\) 8.79127 0.303508 0.151754 0.988418i \(-0.451508\pi\)
0.151754 + 0.988418i \(0.451508\pi\)
\(840\) −0.483009 −0.0166654
\(841\) 0 0
\(842\) 13.4758 0.464405
\(843\) 5.38263 0.185388
\(844\) 1.96288 0.0675651
\(845\) 9.46756 0.325694
\(846\) 18.8796 0.649092
\(847\) 18.3277 0.629749
\(848\) −1.67046 −0.0573638
\(849\) −5.85684 −0.201006
\(850\) 7.71390 0.264585
\(851\) −12.5018 −0.428555
\(852\) −2.86849 −0.0982729
\(853\) 18.4255 0.630876 0.315438 0.948946i \(-0.397849\pi\)
0.315438 + 0.948946i \(0.397849\pi\)
\(854\) 11.2402 0.384633
\(855\) 11.5738 0.395814
\(856\) −3.98032 −0.136045
\(857\) 13.4279 0.458688 0.229344 0.973345i \(-0.426342\pi\)
0.229344 + 0.973345i \(0.426342\pi\)
\(858\) 3.86022 0.131786
\(859\) −35.2867 −1.20397 −0.601983 0.798509i \(-0.705623\pi\)
−0.601983 + 0.798509i \(0.705623\pi\)
\(860\) 7.56183 0.257856
\(861\) −0.763541 −0.0260214
\(862\) 15.6644 0.533532
\(863\) 0.520905 0.0177318 0.00886591 0.999961i \(-0.497178\pi\)
0.00886591 + 0.999961i \(0.497178\pi\)
\(864\) −2.34210 −0.0796800
\(865\) 14.7050 0.499986
\(866\) −13.1208 −0.445863
\(867\) 17.0487 0.579005
\(868\) 11.8332 0.401646
\(869\) 20.1993 0.685213
\(870\) 0 0
\(871\) −21.6193 −0.732543
\(872\) −18.5782 −0.629138
\(873\) 45.9711 1.55589
\(874\) −23.5885 −0.797892
\(875\) −1.20419 −0.0407092
\(876\) −1.74417 −0.0589300
\(877\) 34.3565 1.16014 0.580068 0.814568i \(-0.303026\pi\)
0.580068 + 0.814568i \(0.303026\pi\)
\(878\) −7.43776 −0.251012
\(879\) −5.69623 −0.192129
\(880\) 5.12054 0.172613
\(881\) 40.0617 1.34971 0.674856 0.737949i \(-0.264206\pi\)
0.674856 + 0.737949i \(0.264206\pi\)
\(882\) 15.7568 0.530561
\(883\) 4.88799 0.164494 0.0822469 0.996612i \(-0.473790\pi\)
0.0822469 + 0.996612i \(0.473790\pi\)
\(884\) −14.4981 −0.487624
\(885\) 4.68573 0.157509
\(886\) 31.9403 1.07305
\(887\) −4.10888 −0.137963 −0.0689814 0.997618i \(-0.521975\pi\)
−0.0689814 + 0.997618i \(0.521975\pi\)
\(888\) 0.866608 0.0290815
\(889\) 7.63894 0.256202
\(890\) 17.9033 0.600119
\(891\) −38.8030 −1.29995
\(892\) 2.99161 0.100167
\(893\) −27.1082 −0.907141
\(894\) −2.99529 −0.100178
\(895\) 6.96738 0.232894
\(896\) 1.20419 0.0402293
\(897\) 4.36219 0.145649
\(898\) −11.5345 −0.384911
\(899\) 0 0
\(900\) −2.83911 −0.0946371
\(901\) −12.8858 −0.429287
\(902\) 8.09455 0.269519
\(903\) −3.65244 −0.121545
\(904\) −20.9429 −0.696551
\(905\) −11.4760 −0.381474
\(906\) 5.58119 0.185423
\(907\) 23.2015 0.770392 0.385196 0.922835i \(-0.374134\pi\)
0.385196 + 0.922835i \(0.374134\pi\)
\(908\) 10.4575 0.347045
\(909\) 2.36956 0.0785932
\(910\) 2.26326 0.0750262
\(911\) −49.1718 −1.62913 −0.814567 0.580070i \(-0.803025\pi\)
−0.814567 + 0.580070i \(0.803025\pi\)
\(912\) 1.63513 0.0541444
\(913\) −62.3823 −2.06455
\(914\) −4.38046 −0.144893
\(915\) −3.74402 −0.123774
\(916\) −11.7226 −0.387325
\(917\) −19.8104 −0.654195
\(918\) −18.0668 −0.596292
\(919\) −17.9553 −0.592291 −0.296145 0.955143i \(-0.595701\pi\)
−0.296145 + 0.955143i \(0.595701\pi\)
\(920\) 5.78639 0.190772
\(921\) 4.30485 0.141850
\(922\) 19.3754 0.638094
\(923\) 13.4410 0.442416
\(924\) −2.47327 −0.0813646
\(925\) 2.16055 0.0710383
\(926\) 12.5730 0.413173
\(927\) 7.11818 0.233792
\(928\) 0 0
\(929\) 32.1278 1.05408 0.527039 0.849841i \(-0.323302\pi\)
0.527039 + 0.849841i \(0.323302\pi\)
\(930\) −3.94155 −0.129248
\(931\) −22.6245 −0.741487
\(932\) 7.36396 0.241215
\(933\) −5.20576 −0.170429
\(934\) 33.0324 1.08085
\(935\) 39.4993 1.29177
\(936\) 5.33606 0.174414
\(937\) 2.86375 0.0935545 0.0467773 0.998905i \(-0.485105\pi\)
0.0467773 + 0.998905i \(0.485105\pi\)
\(938\) 13.8516 0.452272
\(939\) −1.23732 −0.0403786
\(940\) 6.64980 0.216893
\(941\) −14.9440 −0.487161 −0.243581 0.969881i \(-0.578322\pi\)
−0.243581 + 0.969881i \(0.578322\pi\)
\(942\) −1.77288 −0.0577634
\(943\) 9.14713 0.297871
\(944\) −11.6820 −0.380218
\(945\) 2.82035 0.0917459
\(946\) 38.7207 1.25892
\(947\) −56.3452 −1.83097 −0.915487 0.402347i \(-0.868194\pi\)
−0.915487 + 0.402347i \(0.868194\pi\)
\(948\) −1.58227 −0.0513896
\(949\) 8.17272 0.265298
\(950\) 4.07654 0.132260
\(951\) −9.48955 −0.307720
\(952\) 9.28903 0.301059
\(953\) 2.06486 0.0668874 0.0334437 0.999441i \(-0.489353\pi\)
0.0334437 + 0.999441i \(0.489353\pi\)
\(954\) 4.74262 0.153548
\(955\) −10.1386 −0.328079
\(956\) −4.11217 −0.132997
\(957\) 0 0
\(958\) 28.7013 0.927296
\(959\) −0.685722 −0.0221431
\(960\) −0.401106 −0.0129456
\(961\) 65.5639 2.11496
\(962\) −4.06070 −0.130922
\(963\) 11.3006 0.364156
\(964\) −0.466864 −0.0150367
\(965\) 7.41474 0.238689
\(966\) −2.79488 −0.0899238
\(967\) −9.72478 −0.312728 −0.156364 0.987700i \(-0.549977\pi\)
−0.156364 + 0.987700i \(0.549977\pi\)
\(968\) 15.2199 0.489187
\(969\) 12.6132 0.405194
\(970\) 16.1921 0.519896
\(971\) −18.1706 −0.583124 −0.291562 0.956552i \(-0.594175\pi\)
−0.291562 + 0.956552i \(0.594175\pi\)
\(972\) 10.0659 0.322863
\(973\) −7.95612 −0.255061
\(974\) −33.8080 −1.08328
\(975\) −0.753871 −0.0241432
\(976\) 9.33425 0.298782
\(977\) 14.0419 0.449240 0.224620 0.974446i \(-0.427886\pi\)
0.224620 + 0.974446i \(0.427886\pi\)
\(978\) 1.04893 0.0335412
\(979\) 91.6744 2.92993
\(980\) 5.54992 0.177286
\(981\) 52.7457 1.68404
\(982\) −13.7655 −0.439275
\(983\) 25.2076 0.803996 0.401998 0.915641i \(-0.368316\pi\)
0.401998 + 0.915641i \(0.368316\pi\)
\(984\) −0.634069 −0.0202134
\(985\) −10.9903 −0.350180
\(986\) 0 0
\(987\) −3.21192 −0.102236
\(988\) −7.66178 −0.243754
\(989\) 43.7557 1.39135
\(990\) −14.5378 −0.462041
\(991\) 17.3913 0.552451 0.276226 0.961093i \(-0.410916\pi\)
0.276226 + 0.961093i \(0.410916\pi\)
\(992\) 9.82669 0.311998
\(993\) −1.10197 −0.0349699
\(994\) −8.61174 −0.273148
\(995\) 17.8698 0.566511
\(996\) 4.88658 0.154837
\(997\) 33.7186 1.06788 0.533939 0.845523i \(-0.320711\pi\)
0.533939 + 0.845523i \(0.320711\pi\)
\(998\) −0.991058 −0.0313714
\(999\) −5.06023 −0.160098
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8410.2.a.bx.1.8 12
29.19 odd 28 290.2.m.a.71.2 24
29.26 odd 28 290.2.m.a.241.2 yes 24
29.28 even 2 8410.2.a.bw.1.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
290.2.m.a.71.2 24 29.19 odd 28
290.2.m.a.241.2 yes 24 29.26 odd 28
8410.2.a.bw.1.5 12 29.28 even 2
8410.2.a.bx.1.8 12 1.1 even 1 trivial