Properties

Label 8410.2.a.bx.1.5
Level $8410$
Weight $2$
Character 8410.1
Self dual yes
Analytic conductor $67.154$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8410,2,Mod(1,8410)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8410.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8410 = 2 \cdot 5 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8410.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12,-4,12,-12,-4,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.1541880999\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 13 x^{10} + 56 x^{9} + 41 x^{8} - 234 x^{7} - 8 x^{6} + 298 x^{5} + 41 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 290)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.28705\) of defining polynomial
Character \(\chi\) \(=\) 8410.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -0.959933 q^{3} +1.00000 q^{4} -1.00000 q^{5} -0.959933 q^{6} +4.10940 q^{7} +1.00000 q^{8} -2.07853 q^{9} -1.00000 q^{10} -4.21069 q^{11} -0.959933 q^{12} +3.81231 q^{13} +4.10940 q^{14} +0.959933 q^{15} +1.00000 q^{16} -7.44933 q^{17} -2.07853 q^{18} +4.70595 q^{19} -1.00000 q^{20} -3.94475 q^{21} -4.21069 q^{22} -1.16549 q^{23} -0.959933 q^{24} +1.00000 q^{25} +3.81231 q^{26} +4.87505 q^{27} +4.10940 q^{28} +0.959933 q^{30} -3.85350 q^{31} +1.00000 q^{32} +4.04198 q^{33} -7.44933 q^{34} -4.10940 q^{35} -2.07853 q^{36} +1.60320 q^{37} +4.70595 q^{38} -3.65956 q^{39} -1.00000 q^{40} -0.116852 q^{41} -3.94475 q^{42} +0.648590 q^{43} -4.21069 q^{44} +2.07853 q^{45} -1.16549 q^{46} -9.31488 q^{47} -0.959933 q^{48} +9.88715 q^{49} +1.00000 q^{50} +7.15086 q^{51} +3.81231 q^{52} -5.39773 q^{53} +4.87505 q^{54} +4.21069 q^{55} +4.10940 q^{56} -4.51739 q^{57} -0.531452 q^{59} +0.959933 q^{60} -10.9858 q^{61} -3.85350 q^{62} -8.54150 q^{63} +1.00000 q^{64} -3.81231 q^{65} +4.04198 q^{66} -3.75707 q^{67} -7.44933 q^{68} +1.11879 q^{69} -4.10940 q^{70} +12.6402 q^{71} -2.07853 q^{72} +5.31428 q^{73} +1.60320 q^{74} -0.959933 q^{75} +4.70595 q^{76} -17.3034 q^{77} -3.65956 q^{78} -17.4174 q^{79} -1.00000 q^{80} +1.55587 q^{81} -0.116852 q^{82} +3.65039 q^{83} -3.94475 q^{84} +7.44933 q^{85} +0.648590 q^{86} -4.21069 q^{88} +7.35968 q^{89} +2.07853 q^{90} +15.6663 q^{91} -1.16549 q^{92} +3.69910 q^{93} -9.31488 q^{94} -4.70595 q^{95} -0.959933 q^{96} +15.3893 q^{97} +9.88715 q^{98} +8.75204 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{2} - 4 q^{3} + 12 q^{4} - 12 q^{5} - 4 q^{6} - 8 q^{7} + 12 q^{8} + 6 q^{9} - 12 q^{10} - 14 q^{11} - 4 q^{12} - 4 q^{13} - 8 q^{14} + 4 q^{15} + 12 q^{16} - 8 q^{17} + 6 q^{18} + 16 q^{19}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.959933 −0.554217 −0.277109 0.960839i \(-0.589376\pi\)
−0.277109 + 0.960839i \(0.589376\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) −0.959933 −0.391891
\(7\) 4.10940 1.55321 0.776603 0.629990i \(-0.216941\pi\)
0.776603 + 0.629990i \(0.216941\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.07853 −0.692843
\(10\) −1.00000 −0.316228
\(11\) −4.21069 −1.26957 −0.634785 0.772688i \(-0.718912\pi\)
−0.634785 + 0.772688i \(0.718912\pi\)
\(12\) −0.959933 −0.277109
\(13\) 3.81231 1.05734 0.528672 0.848826i \(-0.322690\pi\)
0.528672 + 0.848826i \(0.322690\pi\)
\(14\) 4.10940 1.09828
\(15\) 0.959933 0.247854
\(16\) 1.00000 0.250000
\(17\) −7.44933 −1.80673 −0.903364 0.428875i \(-0.858910\pi\)
−0.903364 + 0.428875i \(0.858910\pi\)
\(18\) −2.07853 −0.489914
\(19\) 4.70595 1.07962 0.539809 0.841787i \(-0.318496\pi\)
0.539809 + 0.841787i \(0.318496\pi\)
\(20\) −1.00000 −0.223607
\(21\) −3.94475 −0.860814
\(22\) −4.21069 −0.897722
\(23\) −1.16549 −0.243022 −0.121511 0.992590i \(-0.538774\pi\)
−0.121511 + 0.992590i \(0.538774\pi\)
\(24\) −0.959933 −0.195945
\(25\) 1.00000 0.200000
\(26\) 3.81231 0.747655
\(27\) 4.87505 0.938203
\(28\) 4.10940 0.776603
\(29\) 0 0
\(30\) 0.959933 0.175259
\(31\) −3.85350 −0.692109 −0.346055 0.938214i \(-0.612479\pi\)
−0.346055 + 0.938214i \(0.612479\pi\)
\(32\) 1.00000 0.176777
\(33\) 4.04198 0.703618
\(34\) −7.44933 −1.27755
\(35\) −4.10940 −0.694615
\(36\) −2.07853 −0.346421
\(37\) 1.60320 0.263565 0.131783 0.991279i \(-0.457930\pi\)
0.131783 + 0.991279i \(0.457930\pi\)
\(38\) 4.70595 0.763405
\(39\) −3.65956 −0.585999
\(40\) −1.00000 −0.158114
\(41\) −0.116852 −0.0182492 −0.00912462 0.999958i \(-0.502904\pi\)
−0.00912462 + 0.999958i \(0.502904\pi\)
\(42\) −3.94475 −0.608688
\(43\) 0.648590 0.0989090 0.0494545 0.998776i \(-0.484252\pi\)
0.0494545 + 0.998776i \(0.484252\pi\)
\(44\) −4.21069 −0.634785
\(45\) 2.07853 0.309849
\(46\) −1.16549 −0.171842
\(47\) −9.31488 −1.35872 −0.679358 0.733807i \(-0.737741\pi\)
−0.679358 + 0.733807i \(0.737741\pi\)
\(48\) −0.959933 −0.138554
\(49\) 9.88715 1.41245
\(50\) 1.00000 0.141421
\(51\) 7.15086 1.00132
\(52\) 3.81231 0.528672
\(53\) −5.39773 −0.741436 −0.370718 0.928746i \(-0.620888\pi\)
−0.370718 + 0.928746i \(0.620888\pi\)
\(54\) 4.87505 0.663410
\(55\) 4.21069 0.567769
\(56\) 4.10940 0.549141
\(57\) −4.51739 −0.598343
\(58\) 0 0
\(59\) −0.531452 −0.0691892 −0.0345946 0.999401i \(-0.511014\pi\)
−0.0345946 + 0.999401i \(0.511014\pi\)
\(60\) 0.959933 0.123927
\(61\) −10.9858 −1.40659 −0.703293 0.710900i \(-0.748288\pi\)
−0.703293 + 0.710900i \(0.748288\pi\)
\(62\) −3.85350 −0.489395
\(63\) −8.54150 −1.07613
\(64\) 1.00000 0.125000
\(65\) −3.81231 −0.472859
\(66\) 4.04198 0.497533
\(67\) −3.75707 −0.458999 −0.229500 0.973309i \(-0.573709\pi\)
−0.229500 + 0.973309i \(0.573709\pi\)
\(68\) −7.44933 −0.903364
\(69\) 1.11879 0.134687
\(70\) −4.10940 −0.491167
\(71\) 12.6402 1.50011 0.750056 0.661374i \(-0.230026\pi\)
0.750056 + 0.661374i \(0.230026\pi\)
\(72\) −2.07853 −0.244957
\(73\) 5.31428 0.621989 0.310995 0.950412i \(-0.399338\pi\)
0.310995 + 0.950412i \(0.399338\pi\)
\(74\) 1.60320 0.186369
\(75\) −0.959933 −0.110843
\(76\) 4.70595 0.539809
\(77\) −17.3034 −1.97191
\(78\) −3.65956 −0.414364
\(79\) −17.4174 −1.95961 −0.979805 0.199956i \(-0.935920\pi\)
−0.979805 + 0.199956i \(0.935920\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.55587 0.172874
\(82\) −0.116852 −0.0129042
\(83\) 3.65039 0.400682 0.200341 0.979726i \(-0.435795\pi\)
0.200341 + 0.979726i \(0.435795\pi\)
\(84\) −3.94475 −0.430407
\(85\) 7.44933 0.807993
\(86\) 0.648590 0.0699393
\(87\) 0 0
\(88\) −4.21069 −0.448861
\(89\) 7.35968 0.780124 0.390062 0.920789i \(-0.372454\pi\)
0.390062 + 0.920789i \(0.372454\pi\)
\(90\) 2.07853 0.219096
\(91\) 15.6663 1.64227
\(92\) −1.16549 −0.121511
\(93\) 3.69910 0.383579
\(94\) −9.31488 −0.960757
\(95\) −4.70595 −0.482820
\(96\) −0.959933 −0.0979727
\(97\) 15.3893 1.56254 0.781272 0.624191i \(-0.214571\pi\)
0.781272 + 0.624191i \(0.214571\pi\)
\(98\) 9.88715 0.998753
\(99\) 8.75204 0.879613
\(100\) 1.00000 0.100000
\(101\) −18.1348 −1.80448 −0.902242 0.431231i \(-0.858079\pi\)
−0.902242 + 0.431231i \(0.858079\pi\)
\(102\) 7.15086 0.708040
\(103\) 2.03192 0.200211 0.100105 0.994977i \(-0.468082\pi\)
0.100105 + 0.994977i \(0.468082\pi\)
\(104\) 3.81231 0.373828
\(105\) 3.94475 0.384968
\(106\) −5.39773 −0.524274
\(107\) −7.83283 −0.757228 −0.378614 0.925555i \(-0.623599\pi\)
−0.378614 + 0.925555i \(0.623599\pi\)
\(108\) 4.87505 0.469102
\(109\) −13.8320 −1.32487 −0.662433 0.749121i \(-0.730476\pi\)
−0.662433 + 0.749121i \(0.730476\pi\)
\(110\) 4.21069 0.401474
\(111\) −1.53897 −0.146072
\(112\) 4.10940 0.388302
\(113\) −7.89404 −0.742609 −0.371304 0.928511i \(-0.621089\pi\)
−0.371304 + 0.928511i \(0.621089\pi\)
\(114\) −4.51739 −0.423093
\(115\) 1.16549 0.108683
\(116\) 0 0
\(117\) −7.92400 −0.732574
\(118\) −0.531452 −0.0489241
\(119\) −30.6123 −2.80622
\(120\) 0.959933 0.0876295
\(121\) 6.72991 0.611810
\(122\) −10.9858 −0.994606
\(123\) 0.112170 0.0101140
\(124\) −3.85350 −0.346055
\(125\) −1.00000 −0.0894427
\(126\) −8.54150 −0.760938
\(127\) 3.28402 0.291410 0.145705 0.989328i \(-0.453455\pi\)
0.145705 + 0.989328i \(0.453455\pi\)
\(128\) 1.00000 0.0883883
\(129\) −0.622603 −0.0548171
\(130\) −3.81231 −0.334362
\(131\) −11.9835 −1.04701 −0.523503 0.852024i \(-0.675375\pi\)
−0.523503 + 0.852024i \(0.675375\pi\)
\(132\) 4.04198 0.351809
\(133\) 19.3386 1.67687
\(134\) −3.75707 −0.324561
\(135\) −4.87505 −0.419577
\(136\) −7.44933 −0.638775
\(137\) 22.9142 1.95769 0.978846 0.204597i \(-0.0655884\pi\)
0.978846 + 0.204597i \(0.0655884\pi\)
\(138\) 1.11879 0.0952379
\(139\) −14.6593 −1.24339 −0.621694 0.783260i \(-0.713555\pi\)
−0.621694 + 0.783260i \(0.713555\pi\)
\(140\) −4.10940 −0.347308
\(141\) 8.94166 0.753024
\(142\) 12.6402 1.06074
\(143\) −16.0525 −1.34237
\(144\) −2.07853 −0.173211
\(145\) 0 0
\(146\) 5.31428 0.439813
\(147\) −9.49100 −0.782805
\(148\) 1.60320 0.131783
\(149\) 2.44324 0.200158 0.100079 0.994979i \(-0.468090\pi\)
0.100079 + 0.994979i \(0.468090\pi\)
\(150\) −0.959933 −0.0783782
\(151\) −15.2563 −1.24154 −0.620769 0.783993i \(-0.713180\pi\)
−0.620769 + 0.783993i \(0.713180\pi\)
\(152\) 4.70595 0.381703
\(153\) 15.4836 1.25178
\(154\) −17.3034 −1.39435
\(155\) 3.85350 0.309521
\(156\) −3.65956 −0.292999
\(157\) −17.9046 −1.42894 −0.714472 0.699664i \(-0.753333\pi\)
−0.714472 + 0.699664i \(0.753333\pi\)
\(158\) −17.4174 −1.38565
\(159\) 5.18146 0.410917
\(160\) −1.00000 −0.0790569
\(161\) −4.78946 −0.377463
\(162\) 1.55587 0.122241
\(163\) 8.12882 0.636698 0.318349 0.947974i \(-0.396872\pi\)
0.318349 + 0.947974i \(0.396872\pi\)
\(164\) −0.116852 −0.00912462
\(165\) −4.04198 −0.314668
\(166\) 3.65039 0.283325
\(167\) −18.9947 −1.46985 −0.734927 0.678146i \(-0.762784\pi\)
−0.734927 + 0.678146i \(0.762784\pi\)
\(168\) −3.94475 −0.304344
\(169\) 1.53371 0.117977
\(170\) 7.44933 0.571337
\(171\) −9.78145 −0.748006
\(172\) 0.648590 0.0494545
\(173\) 18.8696 1.43463 0.717314 0.696750i \(-0.245371\pi\)
0.717314 + 0.696750i \(0.245371\pi\)
\(174\) 0 0
\(175\) 4.10940 0.310641
\(176\) −4.21069 −0.317393
\(177\) 0.510158 0.0383458
\(178\) 7.35968 0.551631
\(179\) −3.73175 −0.278924 −0.139462 0.990227i \(-0.544537\pi\)
−0.139462 + 0.990227i \(0.544537\pi\)
\(180\) 2.07853 0.154924
\(181\) −3.28579 −0.244231 −0.122116 0.992516i \(-0.538968\pi\)
−0.122116 + 0.992516i \(0.538968\pi\)
\(182\) 15.6663 1.16126
\(183\) 10.5456 0.779554
\(184\) −1.16549 −0.0859211
\(185\) −1.60320 −0.117870
\(186\) 3.69910 0.271231
\(187\) 31.3668 2.29377
\(188\) −9.31488 −0.679358
\(189\) 20.0335 1.45722
\(190\) −4.70595 −0.341405
\(191\) 14.0579 1.01719 0.508596 0.861005i \(-0.330165\pi\)
0.508596 + 0.861005i \(0.330165\pi\)
\(192\) −0.959933 −0.0692772
\(193\) −2.97324 −0.214018 −0.107009 0.994258i \(-0.534127\pi\)
−0.107009 + 0.994258i \(0.534127\pi\)
\(194\) 15.3893 1.10489
\(195\) 3.65956 0.262067
\(196\) 9.88715 0.706225
\(197\) −4.21263 −0.300138 −0.150069 0.988676i \(-0.547950\pi\)
−0.150069 + 0.988676i \(0.547950\pi\)
\(198\) 8.75204 0.621980
\(199\) −23.4542 −1.66262 −0.831310 0.555808i \(-0.812409\pi\)
−0.831310 + 0.555808i \(0.812409\pi\)
\(200\) 1.00000 0.0707107
\(201\) 3.60653 0.254385
\(202\) −18.1348 −1.27596
\(203\) 0 0
\(204\) 7.15086 0.500660
\(205\) 0.116852 0.00816131
\(206\) 2.03192 0.141570
\(207\) 2.42251 0.168376
\(208\) 3.81231 0.264336
\(209\) −19.8153 −1.37065
\(210\) 3.94475 0.272213
\(211\) −1.63033 −0.112237 −0.0561184 0.998424i \(-0.517872\pi\)
−0.0561184 + 0.998424i \(0.517872\pi\)
\(212\) −5.39773 −0.370718
\(213\) −12.1337 −0.831388
\(214\) −7.83283 −0.535441
\(215\) −0.648590 −0.0442335
\(216\) 4.87505 0.331705
\(217\) −15.8356 −1.07499
\(218\) −13.8320 −0.936822
\(219\) −5.10135 −0.344717
\(220\) 4.21069 0.283885
\(221\) −28.3991 −1.91033
\(222\) −1.53897 −0.103289
\(223\) 12.2060 0.817378 0.408689 0.912674i \(-0.365986\pi\)
0.408689 + 0.912674i \(0.365986\pi\)
\(224\) 4.10940 0.274571
\(225\) −2.07853 −0.138569
\(226\) −7.89404 −0.525104
\(227\) 14.7048 0.975991 0.487995 0.872846i \(-0.337728\pi\)
0.487995 + 0.872846i \(0.337728\pi\)
\(228\) −4.51739 −0.299172
\(229\) −9.73181 −0.643096 −0.321548 0.946893i \(-0.604203\pi\)
−0.321548 + 0.946893i \(0.604203\pi\)
\(230\) 1.16549 0.0768502
\(231\) 16.6101 1.09286
\(232\) 0 0
\(233\) −19.2700 −1.26242 −0.631209 0.775613i \(-0.717441\pi\)
−0.631209 + 0.775613i \(0.717441\pi\)
\(234\) −7.92400 −0.518008
\(235\) 9.31488 0.607636
\(236\) −0.531452 −0.0345946
\(237\) 16.7195 1.08605
\(238\) −30.6123 −1.98430
\(239\) −12.5692 −0.813032 −0.406516 0.913644i \(-0.633256\pi\)
−0.406516 + 0.913644i \(0.633256\pi\)
\(240\) 0.959933 0.0619634
\(241\) −13.9791 −0.900472 −0.450236 0.892910i \(-0.648660\pi\)
−0.450236 + 0.892910i \(0.648660\pi\)
\(242\) 6.72991 0.432615
\(243\) −16.1187 −1.03401
\(244\) −10.9858 −0.703293
\(245\) −9.88715 −0.631667
\(246\) 0.112170 0.00715171
\(247\) 17.9405 1.14153
\(248\) −3.85350 −0.244698
\(249\) −3.50413 −0.222065
\(250\) −1.00000 −0.0632456
\(251\) 11.3099 0.713877 0.356938 0.934128i \(-0.383821\pi\)
0.356938 + 0.934128i \(0.383821\pi\)
\(252\) −8.54150 −0.538064
\(253\) 4.90752 0.308533
\(254\) 3.28402 0.206058
\(255\) −7.15086 −0.447804
\(256\) 1.00000 0.0625000
\(257\) 20.6322 1.28700 0.643502 0.765445i \(-0.277481\pi\)
0.643502 + 0.765445i \(0.277481\pi\)
\(258\) −0.622603 −0.0387616
\(259\) 6.58820 0.409371
\(260\) −3.81231 −0.236429
\(261\) 0 0
\(262\) −11.9835 −0.740345
\(263\) −18.2705 −1.12661 −0.563304 0.826250i \(-0.690470\pi\)
−0.563304 + 0.826250i \(0.690470\pi\)
\(264\) 4.04198 0.248767
\(265\) 5.39773 0.331580
\(266\) 19.3386 1.18573
\(267\) −7.06480 −0.432359
\(268\) −3.75707 −0.229500
\(269\) 1.75159 0.106797 0.0533983 0.998573i \(-0.482995\pi\)
0.0533983 + 0.998573i \(0.482995\pi\)
\(270\) −4.87505 −0.296686
\(271\) 14.4741 0.879238 0.439619 0.898184i \(-0.355113\pi\)
0.439619 + 0.898184i \(0.355113\pi\)
\(272\) −7.44933 −0.451682
\(273\) −15.0386 −0.910177
\(274\) 22.9142 1.38430
\(275\) −4.21069 −0.253914
\(276\) 1.11879 0.0673434
\(277\) −15.3192 −0.920439 −0.460220 0.887805i \(-0.652229\pi\)
−0.460220 + 0.887805i \(0.652229\pi\)
\(278\) −14.6593 −0.879208
\(279\) 8.00961 0.479523
\(280\) −4.10940 −0.245584
\(281\) 19.3776 1.15597 0.577986 0.816047i \(-0.303839\pi\)
0.577986 + 0.816047i \(0.303839\pi\)
\(282\) 8.94166 0.532468
\(283\) 25.7297 1.52947 0.764735 0.644345i \(-0.222870\pi\)
0.764735 + 0.644345i \(0.222870\pi\)
\(284\) 12.6402 0.750056
\(285\) 4.51739 0.267587
\(286\) −16.0525 −0.949202
\(287\) −0.480192 −0.0283448
\(288\) −2.07853 −0.122478
\(289\) 38.4925 2.26426
\(290\) 0 0
\(291\) −14.7727 −0.865989
\(292\) 5.31428 0.310995
\(293\) −12.1860 −0.711912 −0.355956 0.934503i \(-0.615845\pi\)
−0.355956 + 0.934503i \(0.615845\pi\)
\(294\) −9.49100 −0.553526
\(295\) 0.531452 0.0309423
\(296\) 1.60320 0.0931843
\(297\) −20.5273 −1.19112
\(298\) 2.44324 0.141533
\(299\) −4.44321 −0.256958
\(300\) −0.959933 −0.0554217
\(301\) 2.66531 0.153626
\(302\) −15.2563 −0.877901
\(303\) 17.4082 1.00008
\(304\) 4.70595 0.269905
\(305\) 10.9858 0.629044
\(306\) 15.4836 0.885141
\(307\) −1.19779 −0.0683613 −0.0341807 0.999416i \(-0.510882\pi\)
−0.0341807 + 0.999416i \(0.510882\pi\)
\(308\) −17.3034 −0.985953
\(309\) −1.95050 −0.110960
\(310\) 3.85350 0.218864
\(311\) −16.2878 −0.923596 −0.461798 0.886985i \(-0.652796\pi\)
−0.461798 + 0.886985i \(0.652796\pi\)
\(312\) −3.65956 −0.207182
\(313\) −1.02513 −0.0579438 −0.0289719 0.999580i \(-0.509223\pi\)
−0.0289719 + 0.999580i \(0.509223\pi\)
\(314\) −17.9046 −1.01042
\(315\) 8.54150 0.481259
\(316\) −17.4174 −0.979805
\(317\) −21.6671 −1.21695 −0.608473 0.793575i \(-0.708218\pi\)
−0.608473 + 0.793575i \(0.708218\pi\)
\(318\) 5.18146 0.290562
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) 7.51899 0.419669
\(322\) −4.78946 −0.266906
\(323\) −35.0561 −1.95058
\(324\) 1.55587 0.0864372
\(325\) 3.81231 0.211469
\(326\) 8.12882 0.450214
\(327\) 13.2778 0.734264
\(328\) −0.116852 −0.00645208
\(329\) −38.2786 −2.11037
\(330\) −4.04198 −0.222504
\(331\) −16.8469 −0.925991 −0.462996 0.886361i \(-0.653225\pi\)
−0.462996 + 0.886361i \(0.653225\pi\)
\(332\) 3.65039 0.200341
\(333\) −3.33231 −0.182609
\(334\) −18.9947 −1.03934
\(335\) 3.75707 0.205271
\(336\) −3.94475 −0.215204
\(337\) 27.4529 1.49545 0.747726 0.664007i \(-0.231145\pi\)
0.747726 + 0.664007i \(0.231145\pi\)
\(338\) 1.53371 0.0834227
\(339\) 7.57775 0.411567
\(340\) 7.44933 0.403997
\(341\) 16.2259 0.878682
\(342\) −9.78145 −0.528920
\(343\) 11.8645 0.640620
\(344\) 0.648590 0.0349696
\(345\) −1.11879 −0.0602338
\(346\) 18.8696 1.01444
\(347\) 19.9237 1.06956 0.534781 0.844991i \(-0.320394\pi\)
0.534781 + 0.844991i \(0.320394\pi\)
\(348\) 0 0
\(349\) 27.1775 1.45478 0.727388 0.686226i \(-0.240734\pi\)
0.727388 + 0.686226i \(0.240734\pi\)
\(350\) 4.10940 0.219657
\(351\) 18.5852 0.992004
\(352\) −4.21069 −0.224431
\(353\) −13.5278 −0.720013 −0.360006 0.932950i \(-0.617225\pi\)
−0.360006 + 0.932950i \(0.617225\pi\)
\(354\) 0.510158 0.0271146
\(355\) −12.6402 −0.670871
\(356\) 7.35968 0.390062
\(357\) 29.3857 1.55526
\(358\) −3.73175 −0.197229
\(359\) −10.3500 −0.546250 −0.273125 0.961979i \(-0.588057\pi\)
−0.273125 + 0.961979i \(0.588057\pi\)
\(360\) 2.07853 0.109548
\(361\) 3.14593 0.165575
\(362\) −3.28579 −0.172698
\(363\) −6.46026 −0.339076
\(364\) 15.6663 0.821137
\(365\) −5.31428 −0.278162
\(366\) 10.5456 0.551228
\(367\) −13.2019 −0.689132 −0.344566 0.938762i \(-0.611974\pi\)
−0.344566 + 0.938762i \(0.611974\pi\)
\(368\) −1.16549 −0.0607554
\(369\) 0.242881 0.0126439
\(370\) −1.60320 −0.0833466
\(371\) −22.1814 −1.15160
\(372\) 3.69910 0.191789
\(373\) 9.10105 0.471234 0.235617 0.971846i \(-0.424289\pi\)
0.235617 + 0.971846i \(0.424289\pi\)
\(374\) 31.3668 1.62194
\(375\) 0.959933 0.0495707
\(376\) −9.31488 −0.480378
\(377\) 0 0
\(378\) 20.0335 1.03041
\(379\) 0.168819 0.00867166 0.00433583 0.999991i \(-0.498620\pi\)
0.00433583 + 0.999991i \(0.498620\pi\)
\(380\) −4.70595 −0.241410
\(381\) −3.15244 −0.161504
\(382\) 14.0579 0.719264
\(383\) −37.6079 −1.92167 −0.960836 0.277118i \(-0.910621\pi\)
−0.960836 + 0.277118i \(0.910621\pi\)
\(384\) −0.959933 −0.0489864
\(385\) 17.3034 0.881863
\(386\) −2.97324 −0.151334
\(387\) −1.34811 −0.0685284
\(388\) 15.3893 0.781272
\(389\) 1.45750 0.0738980 0.0369490 0.999317i \(-0.488236\pi\)
0.0369490 + 0.999317i \(0.488236\pi\)
\(390\) 3.65956 0.185309
\(391\) 8.68212 0.439074
\(392\) 9.88715 0.499377
\(393\) 11.5034 0.580269
\(394\) −4.21263 −0.212229
\(395\) 17.4174 0.876364
\(396\) 8.75204 0.439807
\(397\) −8.51165 −0.427188 −0.213594 0.976923i \(-0.568517\pi\)
−0.213594 + 0.976923i \(0.568517\pi\)
\(398\) −23.4542 −1.17565
\(399\) −18.5638 −0.929351
\(400\) 1.00000 0.0500000
\(401\) −18.4975 −0.923722 −0.461861 0.886952i \(-0.652818\pi\)
−0.461861 + 0.886952i \(0.652818\pi\)
\(402\) 3.60653 0.179878
\(403\) −14.6907 −0.731798
\(404\) −18.1348 −0.902242
\(405\) −1.55587 −0.0773118
\(406\) 0 0
\(407\) −6.75059 −0.334615
\(408\) 7.15086 0.354020
\(409\) −13.3082 −0.658047 −0.329023 0.944322i \(-0.606719\pi\)
−0.329023 + 0.944322i \(0.606719\pi\)
\(410\) 0.116852 0.00577092
\(411\) −21.9961 −1.08499
\(412\) 2.03192 0.100105
\(413\) −2.18395 −0.107465
\(414\) 2.42251 0.119060
\(415\) −3.65039 −0.179190
\(416\) 3.81231 0.186914
\(417\) 14.0720 0.689107
\(418\) −19.8153 −0.969197
\(419\) −16.7277 −0.817203 −0.408602 0.912713i \(-0.633983\pi\)
−0.408602 + 0.912713i \(0.633983\pi\)
\(420\) 3.94475 0.192484
\(421\) 34.7977 1.69593 0.847967 0.530048i \(-0.177826\pi\)
0.847967 + 0.530048i \(0.177826\pi\)
\(422\) −1.63033 −0.0793634
\(423\) 19.3613 0.941376
\(424\) −5.39773 −0.262137
\(425\) −7.44933 −0.361346
\(426\) −12.1337 −0.587880
\(427\) −45.1449 −2.18472
\(428\) −7.83283 −0.378614
\(429\) 15.4093 0.743967
\(430\) −0.648590 −0.0312778
\(431\) 17.0050 0.819104 0.409552 0.912287i \(-0.365685\pi\)
0.409552 + 0.912287i \(0.365685\pi\)
\(432\) 4.87505 0.234551
\(433\) −33.5266 −1.61118 −0.805592 0.592471i \(-0.798152\pi\)
−0.805592 + 0.592471i \(0.798152\pi\)
\(434\) −15.8356 −0.760132
\(435\) 0 0
\(436\) −13.8320 −0.662433
\(437\) −5.48474 −0.262370
\(438\) −5.10135 −0.243752
\(439\) −13.0712 −0.623856 −0.311928 0.950106i \(-0.600975\pi\)
−0.311928 + 0.950106i \(0.600975\pi\)
\(440\) 4.21069 0.200737
\(441\) −20.5507 −0.978606
\(442\) −28.3991 −1.35081
\(443\) 6.64141 0.315543 0.157772 0.987476i \(-0.449569\pi\)
0.157772 + 0.987476i \(0.449569\pi\)
\(444\) −1.53897 −0.0730362
\(445\) −7.35968 −0.348882
\(446\) 12.2060 0.577973
\(447\) −2.34535 −0.110931
\(448\) 4.10940 0.194151
\(449\) −19.7479 −0.931962 −0.465981 0.884795i \(-0.654298\pi\)
−0.465981 + 0.884795i \(0.654298\pi\)
\(450\) −2.07853 −0.0979828
\(451\) 0.492028 0.0231687
\(452\) −7.89404 −0.371304
\(453\) 14.6450 0.688083
\(454\) 14.7048 0.690130
\(455\) −15.6663 −0.734447
\(456\) −4.51739 −0.211546
\(457\) 6.12161 0.286357 0.143179 0.989697i \(-0.454268\pi\)
0.143179 + 0.989697i \(0.454268\pi\)
\(458\) −9.73181 −0.454738
\(459\) −36.3158 −1.69508
\(460\) 1.16549 0.0543413
\(461\) −24.4356 −1.13808 −0.569040 0.822310i \(-0.692685\pi\)
−0.569040 + 0.822310i \(0.692685\pi\)
\(462\) 16.6101 0.772772
\(463\) −31.5188 −1.46480 −0.732402 0.680873i \(-0.761601\pi\)
−0.732402 + 0.680873i \(0.761601\pi\)
\(464\) 0 0
\(465\) −3.69910 −0.171542
\(466\) −19.2700 −0.892664
\(467\) −19.5284 −0.903665 −0.451833 0.892103i \(-0.649230\pi\)
−0.451833 + 0.892103i \(0.649230\pi\)
\(468\) −7.92400 −0.366287
\(469\) −15.4393 −0.712920
\(470\) 9.31488 0.429663
\(471\) 17.1872 0.791946
\(472\) −0.531452 −0.0244621
\(473\) −2.73101 −0.125572
\(474\) 16.7195 0.767953
\(475\) 4.70595 0.215924
\(476\) −30.6123 −1.40311
\(477\) 11.2193 0.513698
\(478\) −12.5692 −0.574901
\(479\) 1.48149 0.0676911 0.0338456 0.999427i \(-0.489225\pi\)
0.0338456 + 0.999427i \(0.489225\pi\)
\(480\) 0.959933 0.0438147
\(481\) 6.11191 0.278679
\(482\) −13.9791 −0.636730
\(483\) 4.59756 0.209196
\(484\) 6.72991 0.305905
\(485\) −15.3893 −0.698791
\(486\) −16.1187 −0.731158
\(487\) 3.80566 0.172451 0.0862255 0.996276i \(-0.472519\pi\)
0.0862255 + 0.996276i \(0.472519\pi\)
\(488\) −10.9858 −0.497303
\(489\) −7.80312 −0.352869
\(490\) −9.88715 −0.446656
\(491\) −10.0979 −0.455713 −0.227856 0.973695i \(-0.573172\pi\)
−0.227856 + 0.973695i \(0.573172\pi\)
\(492\) 0.112170 0.00505702
\(493\) 0 0
\(494\) 17.9405 0.807182
\(495\) −8.75204 −0.393375
\(496\) −3.85350 −0.173027
\(497\) 51.9435 2.32998
\(498\) −3.50413 −0.157024
\(499\) 4.30988 0.192937 0.0964685 0.995336i \(-0.469245\pi\)
0.0964685 + 0.995336i \(0.469245\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 18.2336 0.814619
\(502\) 11.3099 0.504787
\(503\) −29.3703 −1.30956 −0.654779 0.755820i \(-0.727238\pi\)
−0.654779 + 0.755820i \(0.727238\pi\)
\(504\) −8.54150 −0.380469
\(505\) 18.1348 0.806989
\(506\) 4.90752 0.218166
\(507\) −1.47226 −0.0653852
\(508\) 3.28402 0.145705
\(509\) 29.3308 1.30007 0.650033 0.759906i \(-0.274755\pi\)
0.650033 + 0.759906i \(0.274755\pi\)
\(510\) −7.15086 −0.316645
\(511\) 21.8385 0.966077
\(512\) 1.00000 0.0441942
\(513\) 22.9417 1.01290
\(514\) 20.6322 0.910049
\(515\) −2.03192 −0.0895370
\(516\) −0.622603 −0.0274086
\(517\) 39.2221 1.72499
\(518\) 6.58820 0.289469
\(519\) −18.1135 −0.795096
\(520\) −3.81231 −0.167181
\(521\) −17.1811 −0.752716 −0.376358 0.926474i \(-0.622824\pi\)
−0.376358 + 0.926474i \(0.622824\pi\)
\(522\) 0 0
\(523\) −7.90704 −0.345751 −0.172875 0.984944i \(-0.555306\pi\)
−0.172875 + 0.984944i \(0.555306\pi\)
\(524\) −11.9835 −0.523503
\(525\) −3.94475 −0.172163
\(526\) −18.2705 −0.796632
\(527\) 28.7060 1.25045
\(528\) 4.04198 0.175905
\(529\) −21.6416 −0.940941
\(530\) 5.39773 0.234463
\(531\) 1.10464 0.0479372
\(532\) 19.3386 0.838435
\(533\) −0.445477 −0.0192957
\(534\) −7.06480 −0.305724
\(535\) 7.83283 0.338643
\(536\) −3.75707 −0.162281
\(537\) 3.58223 0.154585
\(538\) 1.75159 0.0755166
\(539\) −41.6317 −1.79321
\(540\) −4.87505 −0.209789
\(541\) −9.62411 −0.413773 −0.206886 0.978365i \(-0.566333\pi\)
−0.206886 + 0.978365i \(0.566333\pi\)
\(542\) 14.4741 0.621715
\(543\) 3.15414 0.135357
\(544\) −7.44933 −0.319387
\(545\) 13.8320 0.592498
\(546\) −15.0386 −0.643592
\(547\) 37.5682 1.60630 0.803150 0.595776i \(-0.203155\pi\)
0.803150 + 0.595776i \(0.203155\pi\)
\(548\) 22.9142 0.978846
\(549\) 22.8343 0.974543
\(550\) −4.21069 −0.179544
\(551\) 0 0
\(552\) 1.11879 0.0476190
\(553\) −71.5750 −3.04368
\(554\) −15.3192 −0.650849
\(555\) 1.53897 0.0653256
\(556\) −14.6593 −0.621694
\(557\) 43.1083 1.82656 0.913278 0.407336i \(-0.133542\pi\)
0.913278 + 0.407336i \(0.133542\pi\)
\(558\) 8.00961 0.339074
\(559\) 2.47263 0.104581
\(560\) −4.10940 −0.173654
\(561\) −30.1100 −1.27125
\(562\) 19.3776 0.817395
\(563\) 15.5705 0.656219 0.328109 0.944640i \(-0.393589\pi\)
0.328109 + 0.944640i \(0.393589\pi\)
\(564\) 8.94166 0.376512
\(565\) 7.89404 0.332105
\(566\) 25.7297 1.08150
\(567\) 6.39369 0.268510
\(568\) 12.6402 0.530370
\(569\) 12.0100 0.503484 0.251742 0.967794i \(-0.418997\pi\)
0.251742 + 0.967794i \(0.418997\pi\)
\(570\) 4.51739 0.189213
\(571\) 14.5166 0.607499 0.303750 0.952752i \(-0.401761\pi\)
0.303750 + 0.952752i \(0.401761\pi\)
\(572\) −16.0525 −0.671187
\(573\) −13.4946 −0.563746
\(574\) −0.480192 −0.0200428
\(575\) −1.16549 −0.0486043
\(576\) −2.07853 −0.0866054
\(577\) 36.0660 1.50145 0.750724 0.660617i \(-0.229705\pi\)
0.750724 + 0.660617i \(0.229705\pi\)
\(578\) 38.4925 1.60108
\(579\) 2.85411 0.118613
\(580\) 0 0
\(581\) 15.0009 0.622342
\(582\) −14.7727 −0.612347
\(583\) 22.7282 0.941305
\(584\) 5.31428 0.219906
\(585\) 7.92400 0.327617
\(586\) −12.1860 −0.503397
\(587\) 1.27023 0.0524279 0.0262140 0.999656i \(-0.491655\pi\)
0.0262140 + 0.999656i \(0.491655\pi\)
\(588\) −9.49100 −0.391402
\(589\) −18.1344 −0.747214
\(590\) 0.531452 0.0218795
\(591\) 4.04385 0.166342
\(592\) 1.60320 0.0658913
\(593\) −10.0385 −0.412233 −0.206117 0.978527i \(-0.566083\pi\)
−0.206117 + 0.978527i \(0.566083\pi\)
\(594\) −20.5273 −0.842246
\(595\) 30.6123 1.25498
\(596\) 2.44324 0.100079
\(597\) 22.5144 0.921454
\(598\) −4.44321 −0.181696
\(599\) 25.7627 1.05264 0.526318 0.850288i \(-0.323572\pi\)
0.526318 + 0.850288i \(0.323572\pi\)
\(600\) −0.959933 −0.0391891
\(601\) 1.38969 0.0566867 0.0283434 0.999598i \(-0.490977\pi\)
0.0283434 + 0.999598i \(0.490977\pi\)
\(602\) 2.66531 0.108630
\(603\) 7.80918 0.318014
\(604\) −15.2563 −0.620769
\(605\) −6.72991 −0.273610
\(606\) 17.4082 0.707161
\(607\) −0.403309 −0.0163698 −0.00818491 0.999967i \(-0.502605\pi\)
−0.00818491 + 0.999967i \(0.502605\pi\)
\(608\) 4.70595 0.190851
\(609\) 0 0
\(610\) 10.9858 0.444801
\(611\) −35.5112 −1.43663
\(612\) 15.4836 0.625889
\(613\) −39.0402 −1.57682 −0.788409 0.615152i \(-0.789095\pi\)
−0.788409 + 0.615152i \(0.789095\pi\)
\(614\) −1.19779 −0.0483387
\(615\) −0.112170 −0.00452314
\(616\) −17.3034 −0.697174
\(617\) −30.4047 −1.22405 −0.612023 0.790840i \(-0.709644\pi\)
−0.612023 + 0.790840i \(0.709644\pi\)
\(618\) −1.95050 −0.0784608
\(619\) 36.0224 1.44786 0.723932 0.689872i \(-0.242333\pi\)
0.723932 + 0.689872i \(0.242333\pi\)
\(620\) 3.85350 0.154760
\(621\) −5.68182 −0.228004
\(622\) −16.2878 −0.653081
\(623\) 30.2438 1.21169
\(624\) −3.65956 −0.146500
\(625\) 1.00000 0.0400000
\(626\) −1.02513 −0.0409725
\(627\) 19.0213 0.759639
\(628\) −17.9046 −0.714472
\(629\) −11.9428 −0.476190
\(630\) 8.54150 0.340302
\(631\) −39.2534 −1.56265 −0.781327 0.624122i \(-0.785457\pi\)
−0.781327 + 0.624122i \(0.785457\pi\)
\(632\) −17.4174 −0.692827
\(633\) 1.56501 0.0622036
\(634\) −21.6671 −0.860511
\(635\) −3.28402 −0.130322
\(636\) 5.18146 0.205458
\(637\) 37.6929 1.49345
\(638\) 0 0
\(639\) −26.2730 −1.03934
\(640\) −1.00000 −0.0395285
\(641\) −44.8695 −1.77224 −0.886119 0.463457i \(-0.846609\pi\)
−0.886119 + 0.463457i \(0.846609\pi\)
\(642\) 7.51899 0.296751
\(643\) 20.3336 0.801879 0.400939 0.916105i \(-0.368684\pi\)
0.400939 + 0.916105i \(0.368684\pi\)
\(644\) −4.78946 −0.188731
\(645\) 0.622603 0.0245150
\(646\) −35.0561 −1.37927
\(647\) −15.0425 −0.591381 −0.295690 0.955284i \(-0.595550\pi\)
−0.295690 + 0.955284i \(0.595550\pi\)
\(648\) 1.55587 0.0611203
\(649\) 2.23778 0.0878406
\(650\) 3.81231 0.149531
\(651\) 15.2011 0.595777
\(652\) 8.12882 0.318349
\(653\) −37.3149 −1.46024 −0.730122 0.683316i \(-0.760537\pi\)
−0.730122 + 0.683316i \(0.760537\pi\)
\(654\) 13.2778 0.519203
\(655\) 11.9835 0.468236
\(656\) −0.116852 −0.00456231
\(657\) −11.0459 −0.430941
\(658\) −38.2786 −1.49225
\(659\) −0.0979351 −0.00381501 −0.00190751 0.999998i \(-0.500607\pi\)
−0.00190751 + 0.999998i \(0.500607\pi\)
\(660\) −4.04198 −0.157334
\(661\) −21.2498 −0.826521 −0.413260 0.910613i \(-0.635610\pi\)
−0.413260 + 0.910613i \(0.635610\pi\)
\(662\) −16.8469 −0.654775
\(663\) 27.2613 1.05874
\(664\) 3.65039 0.141663
\(665\) −19.3386 −0.749919
\(666\) −3.33231 −0.129124
\(667\) 0 0
\(668\) −18.9947 −0.734927
\(669\) −11.7170 −0.453005
\(670\) 3.75707 0.145148
\(671\) 46.2577 1.78576
\(672\) −3.94475 −0.152172
\(673\) 7.19665 0.277410 0.138705 0.990334i \(-0.455706\pi\)
0.138705 + 0.990334i \(0.455706\pi\)
\(674\) 27.4529 1.05744
\(675\) 4.87505 0.187641
\(676\) 1.53371 0.0589887
\(677\) −28.0561 −1.07828 −0.539141 0.842215i \(-0.681251\pi\)
−0.539141 + 0.842215i \(0.681251\pi\)
\(678\) 7.57775 0.291022
\(679\) 63.2407 2.42695
\(680\) 7.44933 0.285669
\(681\) −14.1156 −0.540911
\(682\) 16.2259 0.621322
\(683\) −31.0220 −1.18702 −0.593511 0.804826i \(-0.702259\pi\)
−0.593511 + 0.804826i \(0.702259\pi\)
\(684\) −9.78145 −0.374003
\(685\) −22.9142 −0.875507
\(686\) 11.8645 0.452987
\(687\) 9.34189 0.356415
\(688\) 0.648590 0.0247273
\(689\) −20.5778 −0.783953
\(690\) −1.11879 −0.0425917
\(691\) 28.9514 1.10136 0.550682 0.834715i \(-0.314368\pi\)
0.550682 + 0.834715i \(0.314368\pi\)
\(692\) 18.8696 0.717314
\(693\) 35.9656 1.36622
\(694\) 19.9237 0.756295
\(695\) 14.6593 0.556060
\(696\) 0 0
\(697\) 0.870470 0.0329714
\(698\) 27.1775 1.02868
\(699\) 18.4979 0.699654
\(700\) 4.10940 0.155321
\(701\) −0.653120 −0.0246680 −0.0123340 0.999924i \(-0.503926\pi\)
−0.0123340 + 0.999924i \(0.503926\pi\)
\(702\) 18.5852 0.701453
\(703\) 7.54459 0.284550
\(704\) −4.21069 −0.158696
\(705\) −8.94166 −0.336762
\(706\) −13.5278 −0.509126
\(707\) −74.5232 −2.80274
\(708\) 0.510158 0.0191729
\(709\) 2.36896 0.0889683 0.0444842 0.999010i \(-0.485836\pi\)
0.0444842 + 0.999010i \(0.485836\pi\)
\(710\) −12.6402 −0.474377
\(711\) 36.2026 1.35770
\(712\) 7.35968 0.275816
\(713\) 4.49122 0.168197
\(714\) 29.3857 1.09973
\(715\) 16.0525 0.600328
\(716\) −3.73175 −0.139462
\(717\) 12.0656 0.450597
\(718\) −10.3500 −0.386257
\(719\) 33.4174 1.24626 0.623130 0.782118i \(-0.285861\pi\)
0.623130 + 0.782118i \(0.285861\pi\)
\(720\) 2.07853 0.0774622
\(721\) 8.34996 0.310969
\(722\) 3.14593 0.117079
\(723\) 13.4190 0.499057
\(724\) −3.28579 −0.122116
\(725\) 0 0
\(726\) −6.46026 −0.239763
\(727\) −2.91504 −0.108113 −0.0540565 0.998538i \(-0.517215\pi\)
−0.0540565 + 0.998538i \(0.517215\pi\)
\(728\) 15.6663 0.580632
\(729\) 10.8052 0.400194
\(730\) −5.31428 −0.196690
\(731\) −4.83156 −0.178702
\(732\) 10.5456 0.389777
\(733\) 11.7142 0.432673 0.216336 0.976319i \(-0.430589\pi\)
0.216336 + 0.976319i \(0.430589\pi\)
\(734\) −13.2019 −0.487290
\(735\) 9.49100 0.350081
\(736\) −1.16549 −0.0429605
\(737\) 15.8199 0.582732
\(738\) 0.242881 0.00894056
\(739\) −32.2147 −1.18504 −0.592519 0.805556i \(-0.701867\pi\)
−0.592519 + 0.805556i \(0.701867\pi\)
\(740\) −1.60320 −0.0589349
\(741\) −17.2217 −0.632655
\(742\) −22.1814 −0.814306
\(743\) −12.2621 −0.449853 −0.224927 0.974376i \(-0.572214\pi\)
−0.224927 + 0.974376i \(0.572214\pi\)
\(744\) 3.69910 0.135616
\(745\) −2.44324 −0.0895135
\(746\) 9.10105 0.333213
\(747\) −7.58744 −0.277610
\(748\) 31.3668 1.14688
\(749\) −32.1882 −1.17613
\(750\) 0.959933 0.0350518
\(751\) 53.3230 1.94578 0.972891 0.231264i \(-0.0742860\pi\)
0.972891 + 0.231264i \(0.0742860\pi\)
\(752\) −9.31488 −0.339679
\(753\) −10.8568 −0.395643
\(754\) 0 0
\(755\) 15.2563 0.555233
\(756\) 20.0335 0.728612
\(757\) 1.74254 0.0633338 0.0316669 0.999498i \(-0.489918\pi\)
0.0316669 + 0.999498i \(0.489918\pi\)
\(758\) 0.168819 0.00613179
\(759\) −4.71089 −0.170994
\(760\) −4.70595 −0.170703
\(761\) 28.2498 1.02406 0.512028 0.858969i \(-0.328894\pi\)
0.512028 + 0.858969i \(0.328894\pi\)
\(762\) −3.15244 −0.114201
\(763\) −56.8412 −2.05779
\(764\) 14.0579 0.508596
\(765\) −15.4836 −0.559812
\(766\) −37.6079 −1.35883
\(767\) −2.02606 −0.0731568
\(768\) −0.959933 −0.0346386
\(769\) −9.81324 −0.353874 −0.176937 0.984222i \(-0.556619\pi\)
−0.176937 + 0.984222i \(0.556619\pi\)
\(770\) 17.3034 0.623571
\(771\) −19.8056 −0.713280
\(772\) −2.97324 −0.107009
\(773\) −13.4221 −0.482761 −0.241381 0.970431i \(-0.577600\pi\)
−0.241381 + 0.970431i \(0.577600\pi\)
\(774\) −1.34811 −0.0484569
\(775\) −3.85350 −0.138422
\(776\) 15.3893 0.552443
\(777\) −6.32423 −0.226881
\(778\) 1.45750 0.0522538
\(779\) −0.549900 −0.0197022
\(780\) 3.65956 0.131033
\(781\) −53.2238 −1.90450
\(782\) 8.68212 0.310472
\(783\) 0 0
\(784\) 9.88715 0.353113
\(785\) 17.9046 0.639043
\(786\) 11.5034 0.410312
\(787\) −39.7206 −1.41589 −0.707944 0.706269i \(-0.750377\pi\)
−0.707944 + 0.706269i \(0.750377\pi\)
\(788\) −4.21263 −0.150069
\(789\) 17.5385 0.624386
\(790\) 17.4174 0.619683
\(791\) −32.4398 −1.15342
\(792\) 8.75204 0.310990
\(793\) −41.8812 −1.48725
\(794\) −8.51165 −0.302067
\(795\) −5.18146 −0.183767
\(796\) −23.4542 −0.831310
\(797\) 27.0561 0.958378 0.479189 0.877712i \(-0.340931\pi\)
0.479189 + 0.877712i \(0.340931\pi\)
\(798\) −18.5638 −0.657150
\(799\) 69.3896 2.45483
\(800\) 1.00000 0.0353553
\(801\) −15.2973 −0.540504
\(802\) −18.4975 −0.653170
\(803\) −22.3768 −0.789659
\(804\) 3.60653 0.127193
\(805\) 4.78946 0.168806
\(806\) −14.6907 −0.517459
\(807\) −1.68141 −0.0591885
\(808\) −18.1348 −0.637981
\(809\) 7.59995 0.267200 0.133600 0.991035i \(-0.457346\pi\)
0.133600 + 0.991035i \(0.457346\pi\)
\(810\) −1.55587 −0.0546677
\(811\) 11.8236 0.415182 0.207591 0.978216i \(-0.433438\pi\)
0.207591 + 0.978216i \(0.433438\pi\)
\(812\) 0 0
\(813\) −13.8942 −0.487289
\(814\) −6.75059 −0.236608
\(815\) −8.12882 −0.284740
\(816\) 7.15086 0.250330
\(817\) 3.05223 0.106784
\(818\) −13.3082 −0.465309
\(819\) −32.5629 −1.13784
\(820\) 0.116852 0.00408065
\(821\) −26.3202 −0.918581 −0.459290 0.888286i \(-0.651896\pi\)
−0.459290 + 0.888286i \(0.651896\pi\)
\(822\) −21.9961 −0.767202
\(823\) 26.8289 0.935197 0.467599 0.883941i \(-0.345119\pi\)
0.467599 + 0.883941i \(0.345119\pi\)
\(824\) 2.03192 0.0707852
\(825\) 4.04198 0.140724
\(826\) −2.18395 −0.0759893
\(827\) 19.1316 0.665272 0.332636 0.943055i \(-0.392062\pi\)
0.332636 + 0.943055i \(0.392062\pi\)
\(828\) 2.42251 0.0841879
\(829\) −13.7458 −0.477410 −0.238705 0.971092i \(-0.576723\pi\)
−0.238705 + 0.971092i \(0.576723\pi\)
\(830\) −3.65039 −0.126707
\(831\) 14.7054 0.510123
\(832\) 3.81231 0.132168
\(833\) −73.6526 −2.55191
\(834\) 14.0720 0.487272
\(835\) 18.9947 0.657339
\(836\) −19.8153 −0.685326
\(837\) −18.7860 −0.649339
\(838\) −16.7277 −0.577850
\(839\) −39.0427 −1.34790 −0.673952 0.738775i \(-0.735404\pi\)
−0.673952 + 0.738775i \(0.735404\pi\)
\(840\) 3.94475 0.136107
\(841\) 0 0
\(842\) 34.7977 1.19921
\(843\) −18.6012 −0.640660
\(844\) −1.63033 −0.0561184
\(845\) −1.53371 −0.0527611
\(846\) 19.3613 0.665654
\(847\) 27.6559 0.950267
\(848\) −5.39773 −0.185359
\(849\) −24.6987 −0.847659
\(850\) −7.44933 −0.255510
\(851\) −1.86852 −0.0640520
\(852\) −12.1337 −0.415694
\(853\) −24.5689 −0.841223 −0.420612 0.907241i \(-0.638184\pi\)
−0.420612 + 0.907241i \(0.638184\pi\)
\(854\) −45.1449 −1.54483
\(855\) 9.78145 0.334518
\(856\) −7.83283 −0.267721
\(857\) −2.33010 −0.0795948 −0.0397974 0.999208i \(-0.512671\pi\)
−0.0397974 + 0.999208i \(0.512671\pi\)
\(858\) 15.4093 0.526064
\(859\) 23.5168 0.802382 0.401191 0.915994i \(-0.368596\pi\)
0.401191 + 0.915994i \(0.368596\pi\)
\(860\) −0.648590 −0.0221167
\(861\) 0.460952 0.0157092
\(862\) 17.0050 0.579194
\(863\) −6.26920 −0.213406 −0.106703 0.994291i \(-0.534029\pi\)
−0.106703 + 0.994291i \(0.534029\pi\)
\(864\) 4.87505 0.165852
\(865\) −18.8696 −0.641585
\(866\) −33.5266 −1.13928
\(867\) −36.9502 −1.25489
\(868\) −15.8356 −0.537494
\(869\) 73.3392 2.48786
\(870\) 0 0
\(871\) −14.3231 −0.485320
\(872\) −13.8320 −0.468411
\(873\) −31.9871 −1.08260
\(874\) −5.48474 −0.185524
\(875\) −4.10940 −0.138923
\(876\) −5.10135 −0.172359
\(877\) 35.5522 1.20051 0.600257 0.799807i \(-0.295065\pi\)
0.600257 + 0.799807i \(0.295065\pi\)
\(878\) −13.0712 −0.441133
\(879\) 11.6977 0.394554
\(880\) 4.21069 0.141942
\(881\) 57.0453 1.92190 0.960952 0.276715i \(-0.0892459\pi\)
0.960952 + 0.276715i \(0.0892459\pi\)
\(882\) −20.5507 −0.691979
\(883\) 16.6921 0.561734 0.280867 0.959747i \(-0.409378\pi\)
0.280867 + 0.959747i \(0.409378\pi\)
\(884\) −28.3991 −0.955167
\(885\) −0.510158 −0.0171488
\(886\) 6.64141 0.223123
\(887\) −1.04928 −0.0352313 −0.0176157 0.999845i \(-0.505608\pi\)
−0.0176157 + 0.999845i \(0.505608\pi\)
\(888\) −1.53897 −0.0516444
\(889\) 13.4953 0.452619
\(890\) −7.35968 −0.246697
\(891\) −6.55129 −0.219476
\(892\) 12.2060 0.408689
\(893\) −43.8353 −1.46689
\(894\) −2.34535 −0.0784402
\(895\) 3.73175 0.124739
\(896\) 4.10940 0.137285
\(897\) 4.26518 0.142410
\(898\) −19.7479 −0.658996
\(899\) 0 0
\(900\) −2.07853 −0.0692843
\(901\) 40.2095 1.33957
\(902\) 0.492028 0.0163827
\(903\) −2.55852 −0.0851423
\(904\) −7.89404 −0.262552
\(905\) 3.28579 0.109224
\(906\) 14.6450 0.486548
\(907\) 49.1378 1.63159 0.815797 0.578338i \(-0.196298\pi\)
0.815797 + 0.578338i \(0.196298\pi\)
\(908\) 14.7048 0.487995
\(909\) 37.6938 1.25022
\(910\) −15.6663 −0.519333
\(911\) 13.6376 0.451833 0.225917 0.974147i \(-0.427462\pi\)
0.225917 + 0.974147i \(0.427462\pi\)
\(912\) −4.51739 −0.149586
\(913\) −15.3707 −0.508694
\(914\) 6.12161 0.202485
\(915\) −10.5456 −0.348627
\(916\) −9.73181 −0.321548
\(917\) −49.2451 −1.62622
\(918\) −36.3158 −1.19860
\(919\) −37.2201 −1.22778 −0.613889 0.789392i \(-0.710396\pi\)
−0.613889 + 0.789392i \(0.710396\pi\)
\(920\) 1.16549 0.0384251
\(921\) 1.14980 0.0378870
\(922\) −24.4356 −0.804744
\(923\) 48.1882 1.58614
\(924\) 16.6101 0.546432
\(925\) 1.60320 0.0527130
\(926\) −31.5188 −1.03577
\(927\) −4.22340 −0.138715
\(928\) 0 0
\(929\) −25.0203 −0.820891 −0.410445 0.911885i \(-0.634627\pi\)
−0.410445 + 0.911885i \(0.634627\pi\)
\(930\) −3.69910 −0.121298
\(931\) 46.5284 1.52491
\(932\) −19.2700 −0.631209
\(933\) 15.6352 0.511873
\(934\) −19.5284 −0.638988
\(935\) −31.3668 −1.02580
\(936\) −7.92400 −0.259004
\(937\) 13.5433 0.442440 0.221220 0.975224i \(-0.428996\pi\)
0.221220 + 0.975224i \(0.428996\pi\)
\(938\) −15.4393 −0.504111
\(939\) 0.984057 0.0321135
\(940\) 9.31488 0.303818
\(941\) 42.5667 1.38764 0.693818 0.720150i \(-0.255927\pi\)
0.693818 + 0.720150i \(0.255927\pi\)
\(942\) 17.1872 0.559990
\(943\) 0.136190 0.00443496
\(944\) −0.531452 −0.0172973
\(945\) −20.0335 −0.651690
\(946\) −2.73101 −0.0887928
\(947\) 24.0731 0.782270 0.391135 0.920333i \(-0.372082\pi\)
0.391135 + 0.920333i \(0.372082\pi\)
\(948\) 16.7195 0.543025
\(949\) 20.2597 0.657657
\(950\) 4.70595 0.152681
\(951\) 20.7990 0.674453
\(952\) −30.6123 −0.992149
\(953\) −1.80965 −0.0586204 −0.0293102 0.999570i \(-0.509331\pi\)
−0.0293102 + 0.999570i \(0.509331\pi\)
\(954\) 11.2193 0.363240
\(955\) −14.0579 −0.454902
\(956\) −12.5692 −0.406516
\(957\) 0 0
\(958\) 1.48149 0.0478648
\(959\) 94.1636 3.04070
\(960\) 0.959933 0.0309817
\(961\) −16.1505 −0.520985
\(962\) 6.11191 0.197056
\(963\) 16.2808 0.524640
\(964\) −13.9791 −0.450236
\(965\) 2.97324 0.0957119
\(966\) 4.59756 0.147924
\(967\) 11.5895 0.372692 0.186346 0.982484i \(-0.440335\pi\)
0.186346 + 0.982484i \(0.440335\pi\)
\(968\) 6.72991 0.216308
\(969\) 33.6515 1.08104
\(970\) −15.3893 −0.494120
\(971\) 11.3734 0.364991 0.182495 0.983207i \(-0.441583\pi\)
0.182495 + 0.983207i \(0.441583\pi\)
\(972\) −16.1187 −0.517007
\(973\) −60.2410 −1.93124
\(974\) 3.80566 0.121941
\(975\) −3.65956 −0.117200
\(976\) −10.9858 −0.351646
\(977\) 29.4365 0.941755 0.470878 0.882198i \(-0.343937\pi\)
0.470878 + 0.882198i \(0.343937\pi\)
\(978\) −7.80312 −0.249516
\(979\) −30.9893 −0.990423
\(980\) −9.88715 −0.315833
\(981\) 28.7502 0.917924
\(982\) −10.0979 −0.322238
\(983\) −45.8337 −1.46187 −0.730934 0.682448i \(-0.760915\pi\)
−0.730934 + 0.682448i \(0.760915\pi\)
\(984\) 0.112170 0.00357586
\(985\) 4.21263 0.134226
\(986\) 0 0
\(987\) 36.7448 1.16960
\(988\) 17.9405 0.570764
\(989\) −0.755925 −0.0240370
\(990\) −8.75204 −0.278158
\(991\) −7.12814 −0.226433 −0.113216 0.993570i \(-0.536115\pi\)
−0.113216 + 0.993570i \(0.536115\pi\)
\(992\) −3.85350 −0.122349
\(993\) 16.1719 0.513200
\(994\) 51.9435 1.64755
\(995\) 23.4542 0.743547
\(996\) −3.50413 −0.111033
\(997\) −19.4496 −0.615973 −0.307987 0.951391i \(-0.599655\pi\)
−0.307987 + 0.951391i \(0.599655\pi\)
\(998\) 4.30988 0.136427
\(999\) 7.81569 0.247278
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8410.2.a.bx.1.5 12
29.8 odd 28 290.2.m.a.151.3 yes 24
29.11 odd 28 290.2.m.a.121.3 24
29.28 even 2 8410.2.a.bw.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
290.2.m.a.121.3 24 29.11 odd 28
290.2.m.a.151.3 yes 24 29.8 odd 28
8410.2.a.bw.1.8 12 29.28 even 2
8410.2.a.bx.1.5 12 1.1 even 1 trivial