Properties

Label 8410.2.a.bh
Level $8410$
Weight $2$
Character orbit 8410.a
Self dual yes
Analytic conductor $67.154$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8410,2,Mod(1,8410)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8410.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8410 = 2 \cdot 5 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8410.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,3,6,6,-3,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.1541880999\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.300125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 7x^{4} + 2x^{3} + 7x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 290)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + ( - \beta_{3} + \beta_1) q^{3} + q^{4} + q^{5} + (\beta_{3} - \beta_1) q^{6} + ( - \beta_{5} - 2 \beta_{4} + \cdots - 2 \beta_{2}) q^{7} - q^{8} + ( - \beta_{5} + \beta_{4} + \cdots - \beta_1) q^{9}+ \cdots + ( - 4 \beta_{5} + 3 \beta_{4} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 3 q^{3} + 6 q^{4} + 6 q^{5} - 3 q^{6} - 5 q^{7} - 6 q^{8} + 3 q^{9} - 6 q^{10} + 13 q^{11} + 3 q^{12} - 10 q^{13} + 5 q^{14} + 3 q^{15} + 6 q^{16} - 3 q^{17} - 3 q^{18} + 4 q^{19} + 6 q^{20}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 7x^{4} + 2x^{3} + 7x^{2} - 2x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -2\nu^{5} + \nu^{4} + 14\nu^{3} + 4\nu^{2} - 10\nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\nu^{5} + 15\nu^{3} + 10\nu^{2} - 10\nu - 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 3\nu^{5} - \nu^{4} - 21\nu^{3} - 9\nu^{2} + 12\nu + 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -4\nu^{5} + \nu^{4} + 29\nu^{3} + 13\nu^{2} - 19\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{3} + \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{4} + \beta_{3} + 2\beta_{2} + 6\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -6\beta_{5} + 2\beta_{4} + 6\beta_{3} + 9\beta_{2} + 12\beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -5\beta_{5} + 15\beta_{4} + 12\beta_{3} + 20\beta_{2} + 45\beta _1 + 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.11366
−2.01766
0.770676
−0.275051
2.91560
0.720093
−1.00000 −2.36064 1.00000 1.00000 2.36064 −2.42483 −1.00000 2.57261 −1.00000
1.2 −1.00000 −1.57261 1.00000 1.00000 1.57261 −2.16424 −1.00000 −0.526887 −1.00000
1.3 −1.00000 1.21572 1.00000 1.00000 −1.21572 3.65820 −1.00000 −1.52203 −1.00000
1.4 −1.00000 1.52689 1.00000 1.00000 −1.52689 −4.85141 −1.00000 −0.668617 −1.00000
1.5 −1.00000 1.66862 1.00000 1.00000 −1.66862 −2.17905 −1.00000 −0.215718 −1.00000
1.6 −1.00000 2.52203 1.00000 1.00000 −2.52203 2.96132 −1.00000 3.36064 −1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8410.2.a.bh 6
29.b even 2 1 8410.2.a.bi 6
29.d even 7 2 290.2.k.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
290.2.k.b 12 29.d even 7 2
8410.2.a.bh 6 1.a even 1 1 trivial
8410.2.a.bi 6 29.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8410))\):

\( T_{3}^{6} - 3T_{3}^{5} - 6T_{3}^{4} + 24T_{3}^{3} - 3T_{3}^{2} - 41T_{3} + 29 \) Copy content Toggle raw display
\( T_{7}^{6} + 5T_{7}^{5} - 18T_{7}^{4} - 107T_{7}^{3} + 11T_{7}^{2} + 558T_{7} + 601 \) Copy content Toggle raw display
\( T_{11}^{6} - 13T_{11}^{5} + 53T_{11}^{4} - 32T_{11}^{3} - 258T_{11}^{2} + 501T_{11} - 181 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 3 T^{5} + \cdots + 29 \) Copy content Toggle raw display
$5$ \( (T - 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 5 T^{5} + \cdots + 601 \) Copy content Toggle raw display
$11$ \( T^{6} - 13 T^{5} + \cdots - 181 \) Copy content Toggle raw display
$13$ \( T^{6} + 10 T^{5} + \cdots + 71 \) Copy content Toggle raw display
$17$ \( T^{6} + 3 T^{5} + \cdots + 281 \) Copy content Toggle raw display
$19$ \( T^{6} - 4 T^{5} + \cdots + 1189 \) Copy content Toggle raw display
$23$ \( T^{6} + 9 T^{5} + \cdots + 71 \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} - 9 T^{5} + \cdots + 12151 \) Copy content Toggle raw display
$37$ \( T^{6} + 17 T^{5} + \cdots + 41 \) Copy content Toggle raw display
$41$ \( T^{6} - 16 T^{5} + \cdots + 349 \) Copy content Toggle raw display
$43$ \( T^{6} - 9 T^{5} + \cdots + 101569 \) Copy content Toggle raw display
$47$ \( T^{6} - 2 T^{5} + \cdots + 71 \) Copy content Toggle raw display
$53$ \( T^{6} + 27 T^{5} + \cdots - 24389 \) Copy content Toggle raw display
$59$ \( T^{6} - 41 T^{5} + \cdots + 58841 \) Copy content Toggle raw display
$61$ \( T^{6} - 19 T^{5} + \cdots + 618169 \) Copy content Toggle raw display
$67$ \( T^{6} - 11 T^{5} + \cdots - 139 \) Copy content Toggle raw display
$71$ \( T^{6} + 9 T^{5} + \cdots + 24389 \) Copy content Toggle raw display
$73$ \( T^{6} - 18 T^{5} + \cdots - 9799 \) Copy content Toggle raw display
$79$ \( T^{6} - 14 T^{5} + \cdots - 233659 \) Copy content Toggle raw display
$83$ \( T^{6} + 18 T^{5} + \cdots - 123031 \) Copy content Toggle raw display
$89$ \( T^{6} - 31 T^{5} + \cdots + 2419789 \) Copy content Toggle raw display
$97$ \( T^{6} - 28 T^{5} + \cdots - 2292661 \) Copy content Toggle raw display
show more
show less