Properties

Label 840.4.a.p.1.3
Level $840$
Weight $4$
Character 840.1
Self dual yes
Analytic conductor $49.562$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,4,Mod(1,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-9,0,-15,0,-21,0,27,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.5616044048\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.821313.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 117x - 340 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.18112\) of defining polynomial
Character \(\chi\) \(=\) 840.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} +43.6126 q^{11} -33.6126 q^{13} +15.0000 q^{15} -86.6741 q^{17} +122.511 q^{19} +21.0000 q^{21} -25.4490 q^{23} +25.0000 q^{25} -27.0000 q^{27} +145.225 q^{29} -33.0616 q^{31} -130.838 q^{33} +35.0000 q^{35} +158.347 q^{37} +100.838 q^{39} +285.124 q^{41} -385.368 q^{43} -45.0000 q^{45} -225.776 q^{47} +49.0000 q^{49} +260.022 q^{51} +428.309 q^{53} -218.063 q^{55} -367.532 q^{57} -541.228 q^{59} +44.7775 q^{61} -63.0000 q^{63} +168.063 q^{65} -244.981 q^{67} +76.3470 q^{69} -182.491 q^{71} -988.435 q^{73} -75.0000 q^{75} -305.288 q^{77} -437.041 q^{79} +81.0000 q^{81} -634.752 q^{83} +433.371 q^{85} -435.675 q^{87} -1336.74 q^{89} +235.288 q^{91} +99.1847 q^{93} -612.553 q^{95} -418.956 q^{97} +392.513 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} - 15 q^{5} - 21 q^{7} + 27 q^{9} - 6 q^{11} + 36 q^{13} + 45 q^{15} + 90 q^{17} + 78 q^{19} + 63 q^{21} + 75 q^{25} - 81 q^{27} + 162 q^{29} + 114 q^{31} + 18 q^{33} + 105 q^{35} + 246 q^{37}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 43.6126 1.19543 0.597713 0.801710i \(-0.296076\pi\)
0.597713 + 0.801710i \(0.296076\pi\)
\(12\) 0 0
\(13\) −33.6126 −0.717112 −0.358556 0.933508i \(-0.616731\pi\)
−0.358556 + 0.933508i \(0.616731\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) −86.6741 −1.23656 −0.618281 0.785957i \(-0.712171\pi\)
−0.618281 + 0.785957i \(0.712171\pi\)
\(18\) 0 0
\(19\) 122.511 1.47926 0.739628 0.673016i \(-0.235002\pi\)
0.739628 + 0.673016i \(0.235002\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) −25.4490 −0.230717 −0.115358 0.993324i \(-0.536802\pi\)
−0.115358 + 0.993324i \(0.536802\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 145.225 0.929918 0.464959 0.885332i \(-0.346069\pi\)
0.464959 + 0.885332i \(0.346069\pi\)
\(30\) 0 0
\(31\) −33.0616 −0.191549 −0.0957747 0.995403i \(-0.530533\pi\)
−0.0957747 + 0.995403i \(0.530533\pi\)
\(32\) 0 0
\(33\) −130.838 −0.690180
\(34\) 0 0
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) 158.347 0.703570 0.351785 0.936081i \(-0.385575\pi\)
0.351785 + 0.936081i \(0.385575\pi\)
\(38\) 0 0
\(39\) 100.838 0.414025
\(40\) 0 0
\(41\) 285.124 1.08607 0.543036 0.839709i \(-0.317275\pi\)
0.543036 + 0.839709i \(0.317275\pi\)
\(42\) 0 0
\(43\) −385.368 −1.36670 −0.683350 0.730091i \(-0.739478\pi\)
−0.683350 + 0.730091i \(0.739478\pi\)
\(44\) 0 0
\(45\) −45.0000 −0.149071
\(46\) 0 0
\(47\) −225.776 −0.700699 −0.350349 0.936619i \(-0.613937\pi\)
−0.350349 + 0.936619i \(0.613937\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 260.022 0.713930
\(52\) 0 0
\(53\) 428.309 1.11005 0.555026 0.831833i \(-0.312708\pi\)
0.555026 + 0.831833i \(0.312708\pi\)
\(54\) 0 0
\(55\) −218.063 −0.534611
\(56\) 0 0
\(57\) −367.532 −0.854048
\(58\) 0 0
\(59\) −541.228 −1.19427 −0.597134 0.802141i \(-0.703694\pi\)
−0.597134 + 0.802141i \(0.703694\pi\)
\(60\) 0 0
\(61\) 44.7775 0.0939864 0.0469932 0.998895i \(-0.485036\pi\)
0.0469932 + 0.998895i \(0.485036\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) 0 0
\(65\) 168.063 0.320702
\(66\) 0 0
\(67\) −244.981 −0.446705 −0.223353 0.974738i \(-0.571700\pi\)
−0.223353 + 0.974738i \(0.571700\pi\)
\(68\) 0 0
\(69\) 76.3470 0.133204
\(70\) 0 0
\(71\) −182.491 −0.305038 −0.152519 0.988301i \(-0.548738\pi\)
−0.152519 + 0.988301i \(0.548738\pi\)
\(72\) 0 0
\(73\) −988.435 −1.58476 −0.792381 0.610027i \(-0.791159\pi\)
−0.792381 + 0.610027i \(0.791159\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) −305.288 −0.451829
\(78\) 0 0
\(79\) −437.041 −0.622417 −0.311209 0.950342i \(-0.600734\pi\)
−0.311209 + 0.950342i \(0.600734\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −634.752 −0.839435 −0.419718 0.907655i \(-0.637871\pi\)
−0.419718 + 0.907655i \(0.637871\pi\)
\(84\) 0 0
\(85\) 433.371 0.553008
\(86\) 0 0
\(87\) −435.675 −0.536889
\(88\) 0 0
\(89\) −1336.74 −1.59207 −0.796035 0.605250i \(-0.793073\pi\)
−0.796035 + 0.605250i \(0.793073\pi\)
\(90\) 0 0
\(91\) 235.288 0.271043
\(92\) 0 0
\(93\) 99.1847 0.110591
\(94\) 0 0
\(95\) −612.553 −0.661543
\(96\) 0 0
\(97\) −418.956 −0.438541 −0.219271 0.975664i \(-0.570368\pi\)
−0.219271 + 0.975664i \(0.570368\pi\)
\(98\) 0 0
\(99\) 392.513 0.398475
\(100\) 0 0
\(101\) −804.269 −0.792354 −0.396177 0.918174i \(-0.629663\pi\)
−0.396177 + 0.918174i \(0.629663\pi\)
\(102\) 0 0
\(103\) 1958.38 1.87344 0.936722 0.350074i \(-0.113844\pi\)
0.936722 + 0.350074i \(0.113844\pi\)
\(104\) 0 0
\(105\) −105.000 −0.0975900
\(106\) 0 0
\(107\) −2000.92 −1.80782 −0.903908 0.427727i \(-0.859314\pi\)
−0.903908 + 0.427727i \(0.859314\pi\)
\(108\) 0 0
\(109\) 383.087 0.336634 0.168317 0.985733i \(-0.446167\pi\)
0.168317 + 0.985733i \(0.446167\pi\)
\(110\) 0 0
\(111\) −475.041 −0.406206
\(112\) 0 0
\(113\) 1080.84 0.899797 0.449898 0.893080i \(-0.351460\pi\)
0.449898 + 0.893080i \(0.351460\pi\)
\(114\) 0 0
\(115\) 127.245 0.103180
\(116\) 0 0
\(117\) −302.513 −0.239037
\(118\) 0 0
\(119\) 606.719 0.467377
\(120\) 0 0
\(121\) 571.057 0.429043
\(122\) 0 0
\(123\) −855.373 −0.627044
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 511.497 0.357386 0.178693 0.983905i \(-0.442813\pi\)
0.178693 + 0.983905i \(0.442813\pi\)
\(128\) 0 0
\(129\) 1156.10 0.789064
\(130\) 0 0
\(131\) −2881.89 −1.92207 −0.961036 0.276422i \(-0.910851\pi\)
−0.961036 + 0.276422i \(0.910851\pi\)
\(132\) 0 0
\(133\) −857.574 −0.559106
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) 541.985 0.337992 0.168996 0.985617i \(-0.445948\pi\)
0.168996 + 0.985617i \(0.445948\pi\)
\(138\) 0 0
\(139\) −1186.83 −0.724215 −0.362107 0.932136i \(-0.617943\pi\)
−0.362107 + 0.932136i \(0.617943\pi\)
\(140\) 0 0
\(141\) 677.328 0.404549
\(142\) 0 0
\(143\) −1465.93 −0.857254
\(144\) 0 0
\(145\) −726.126 −0.415872
\(146\) 0 0
\(147\) −147.000 −0.0824786
\(148\) 0 0
\(149\) −1963.28 −1.07945 −0.539726 0.841841i \(-0.681472\pi\)
−0.539726 + 0.841841i \(0.681472\pi\)
\(150\) 0 0
\(151\) −920.523 −0.496100 −0.248050 0.968747i \(-0.579790\pi\)
−0.248050 + 0.968747i \(0.579790\pi\)
\(152\) 0 0
\(153\) −780.067 −0.412188
\(154\) 0 0
\(155\) 165.308 0.0856635
\(156\) 0 0
\(157\) 2892.70 1.47046 0.735230 0.677818i \(-0.237074\pi\)
0.735230 + 0.677818i \(0.237074\pi\)
\(158\) 0 0
\(159\) −1284.93 −0.640889
\(160\) 0 0
\(161\) 178.143 0.0872027
\(162\) 0 0
\(163\) −2408.56 −1.15738 −0.578691 0.815547i \(-0.696436\pi\)
−0.578691 + 0.815547i \(0.696436\pi\)
\(164\) 0 0
\(165\) 654.189 0.308658
\(166\) 0 0
\(167\) −2682.53 −1.24300 −0.621498 0.783415i \(-0.713476\pi\)
−0.621498 + 0.783415i \(0.713476\pi\)
\(168\) 0 0
\(169\) −1067.19 −0.485751
\(170\) 0 0
\(171\) 1102.60 0.493085
\(172\) 0 0
\(173\) 432.128 0.189908 0.0949541 0.995482i \(-0.469730\pi\)
0.0949541 + 0.995482i \(0.469730\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 1623.68 0.689511
\(178\) 0 0
\(179\) 511.575 0.213614 0.106807 0.994280i \(-0.465937\pi\)
0.106807 + 0.994280i \(0.465937\pi\)
\(180\) 0 0
\(181\) −2895.94 −1.18925 −0.594623 0.804004i \(-0.702699\pi\)
−0.594623 + 0.804004i \(0.702699\pi\)
\(182\) 0 0
\(183\) −134.332 −0.0542630
\(184\) 0 0
\(185\) −791.735 −0.314646
\(186\) 0 0
\(187\) −3780.08 −1.47822
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 2617.00 0.991412 0.495706 0.868490i \(-0.334909\pi\)
0.495706 + 0.868490i \(0.334909\pi\)
\(192\) 0 0
\(193\) 138.928 0.0518147 0.0259073 0.999664i \(-0.491753\pi\)
0.0259073 + 0.999664i \(0.491753\pi\)
\(194\) 0 0
\(195\) −504.189 −0.185157
\(196\) 0 0
\(197\) −3767.74 −1.36264 −0.681322 0.731984i \(-0.738594\pi\)
−0.681322 + 0.731984i \(0.738594\pi\)
\(198\) 0 0
\(199\) −238.868 −0.0850900 −0.0425450 0.999095i \(-0.513547\pi\)
−0.0425450 + 0.999095i \(0.513547\pi\)
\(200\) 0 0
\(201\) 734.944 0.257905
\(202\) 0 0
\(203\) −1016.58 −0.351476
\(204\) 0 0
\(205\) −1425.62 −0.485706
\(206\) 0 0
\(207\) −229.041 −0.0769055
\(208\) 0 0
\(209\) 5343.00 1.76834
\(210\) 0 0
\(211\) −31.2397 −0.0101926 −0.00509628 0.999987i \(-0.501622\pi\)
−0.00509628 + 0.999987i \(0.501622\pi\)
\(212\) 0 0
\(213\) 547.472 0.176114
\(214\) 0 0
\(215\) 1926.84 0.611207
\(216\) 0 0
\(217\) 231.431 0.0723989
\(218\) 0 0
\(219\) 2965.30 0.914962
\(220\) 0 0
\(221\) 2913.34 0.886754
\(222\) 0 0
\(223\) 2142.37 0.643334 0.321667 0.946853i \(-0.395757\pi\)
0.321667 + 0.946853i \(0.395757\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) 67.3453 0.0196910 0.00984551 0.999952i \(-0.496866\pi\)
0.00984551 + 0.999952i \(0.496866\pi\)
\(228\) 0 0
\(229\) 4016.44 1.15901 0.579506 0.814968i \(-0.303246\pi\)
0.579506 + 0.814968i \(0.303246\pi\)
\(230\) 0 0
\(231\) 915.864 0.260863
\(232\) 0 0
\(233\) 2896.68 0.814455 0.407227 0.913327i \(-0.366496\pi\)
0.407227 + 0.913327i \(0.366496\pi\)
\(234\) 0 0
\(235\) 1128.88 0.313362
\(236\) 0 0
\(237\) 1311.12 0.359353
\(238\) 0 0
\(239\) −5286.22 −1.43070 −0.715350 0.698766i \(-0.753733\pi\)
−0.715350 + 0.698766i \(0.753733\pi\)
\(240\) 0 0
\(241\) 4069.45 1.08770 0.543852 0.839181i \(-0.316965\pi\)
0.543852 + 0.839181i \(0.316965\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) −4117.90 −1.06079
\(248\) 0 0
\(249\) 1904.26 0.484648
\(250\) 0 0
\(251\) −6760.28 −1.70002 −0.850011 0.526766i \(-0.823405\pi\)
−0.850011 + 0.526766i \(0.823405\pi\)
\(252\) 0 0
\(253\) −1109.90 −0.275805
\(254\) 0 0
\(255\) −1300.11 −0.319279
\(256\) 0 0
\(257\) −5479.56 −1.32998 −0.664991 0.746851i \(-0.731565\pi\)
−0.664991 + 0.746851i \(0.731565\pi\)
\(258\) 0 0
\(259\) −1108.43 −0.265924
\(260\) 0 0
\(261\) 1307.03 0.309973
\(262\) 0 0
\(263\) −557.611 −0.130737 −0.0653684 0.997861i \(-0.520822\pi\)
−0.0653684 + 0.997861i \(0.520822\pi\)
\(264\) 0 0
\(265\) −2141.55 −0.496431
\(266\) 0 0
\(267\) 4010.22 0.919183
\(268\) 0 0
\(269\) −4911.11 −1.11314 −0.556571 0.830800i \(-0.687883\pi\)
−0.556571 + 0.830800i \(0.687883\pi\)
\(270\) 0 0
\(271\) 6301.62 1.41253 0.706266 0.707947i \(-0.250378\pi\)
0.706266 + 0.707947i \(0.250378\pi\)
\(272\) 0 0
\(273\) −705.864 −0.156487
\(274\) 0 0
\(275\) 1090.31 0.239085
\(276\) 0 0
\(277\) 3649.72 0.791661 0.395831 0.918324i \(-0.370457\pi\)
0.395831 + 0.918324i \(0.370457\pi\)
\(278\) 0 0
\(279\) −297.554 −0.0638498
\(280\) 0 0
\(281\) 578.282 0.122767 0.0613833 0.998114i \(-0.480449\pi\)
0.0613833 + 0.998114i \(0.480449\pi\)
\(282\) 0 0
\(283\) 7265.87 1.52619 0.763094 0.646288i \(-0.223680\pi\)
0.763094 + 0.646288i \(0.223680\pi\)
\(284\) 0 0
\(285\) 1837.66 0.381942
\(286\) 0 0
\(287\) −1995.87 −0.410497
\(288\) 0 0
\(289\) 2599.41 0.529088
\(290\) 0 0
\(291\) 1256.87 0.253192
\(292\) 0 0
\(293\) 3821.77 0.762015 0.381007 0.924572i \(-0.375577\pi\)
0.381007 + 0.924572i \(0.375577\pi\)
\(294\) 0 0
\(295\) 2706.14 0.534093
\(296\) 0 0
\(297\) −1177.54 −0.230060
\(298\) 0 0
\(299\) 855.406 0.165450
\(300\) 0 0
\(301\) 2697.58 0.516564
\(302\) 0 0
\(303\) 2412.81 0.457466
\(304\) 0 0
\(305\) −223.887 −0.0420320
\(306\) 0 0
\(307\) −3833.93 −0.712749 −0.356375 0.934343i \(-0.615987\pi\)
−0.356375 + 0.934343i \(0.615987\pi\)
\(308\) 0 0
\(309\) −5875.14 −1.08163
\(310\) 0 0
\(311\) 3434.32 0.626182 0.313091 0.949723i \(-0.398636\pi\)
0.313091 + 0.949723i \(0.398636\pi\)
\(312\) 0 0
\(313\) 6694.17 1.20887 0.604436 0.796654i \(-0.293399\pi\)
0.604436 + 0.796654i \(0.293399\pi\)
\(314\) 0 0
\(315\) 315.000 0.0563436
\(316\) 0 0
\(317\) −3772.18 −0.668348 −0.334174 0.942511i \(-0.608457\pi\)
−0.334174 + 0.942511i \(0.608457\pi\)
\(318\) 0 0
\(319\) 6333.64 1.11165
\(320\) 0 0
\(321\) 6002.76 1.04374
\(322\) 0 0
\(323\) −10618.5 −1.82919
\(324\) 0 0
\(325\) −840.314 −0.143422
\(326\) 0 0
\(327\) −1149.26 −0.194356
\(328\) 0 0
\(329\) 1580.43 0.264839
\(330\) 0 0
\(331\) 5474.12 0.909017 0.454508 0.890742i \(-0.349815\pi\)
0.454508 + 0.890742i \(0.349815\pi\)
\(332\) 0 0
\(333\) 1425.12 0.234523
\(334\) 0 0
\(335\) 1224.91 0.199773
\(336\) 0 0
\(337\) −7222.50 −1.16746 −0.583731 0.811947i \(-0.698408\pi\)
−0.583731 + 0.811947i \(0.698408\pi\)
\(338\) 0 0
\(339\) −3242.52 −0.519498
\(340\) 0 0
\(341\) −1441.90 −0.228983
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −381.735 −0.0595708
\(346\) 0 0
\(347\) 5472.91 0.846689 0.423345 0.905969i \(-0.360856\pi\)
0.423345 + 0.905969i \(0.360856\pi\)
\(348\) 0 0
\(349\) −5256.06 −0.806161 −0.403081 0.915164i \(-0.632061\pi\)
−0.403081 + 0.915164i \(0.632061\pi\)
\(350\) 0 0
\(351\) 907.540 0.138008
\(352\) 0 0
\(353\) 1045.17 0.157588 0.0787940 0.996891i \(-0.474893\pi\)
0.0787940 + 0.996891i \(0.474893\pi\)
\(354\) 0 0
\(355\) 912.454 0.136417
\(356\) 0 0
\(357\) −1820.16 −0.269840
\(358\) 0 0
\(359\) 2640.87 0.388245 0.194122 0.980977i \(-0.437814\pi\)
0.194122 + 0.980977i \(0.437814\pi\)
\(360\) 0 0
\(361\) 8149.84 1.18820
\(362\) 0 0
\(363\) −1713.17 −0.247708
\(364\) 0 0
\(365\) 4942.17 0.708727
\(366\) 0 0
\(367\) −166.143 −0.0236311 −0.0118155 0.999930i \(-0.503761\pi\)
−0.0118155 + 0.999930i \(0.503761\pi\)
\(368\) 0 0
\(369\) 2566.12 0.362024
\(370\) 0 0
\(371\) −2998.16 −0.419560
\(372\) 0 0
\(373\) 12311.1 1.70896 0.854480 0.519484i \(-0.173876\pi\)
0.854480 + 0.519484i \(0.173876\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) −4881.39 −0.666855
\(378\) 0 0
\(379\) 4943.54 0.670007 0.335004 0.942217i \(-0.391262\pi\)
0.335004 + 0.942217i \(0.391262\pi\)
\(380\) 0 0
\(381\) −1534.49 −0.206337
\(382\) 0 0
\(383\) −11086.7 −1.47912 −0.739562 0.673088i \(-0.764967\pi\)
−0.739562 + 0.673088i \(0.764967\pi\)
\(384\) 0 0
\(385\) 1526.44 0.202064
\(386\) 0 0
\(387\) −3468.31 −0.455567
\(388\) 0 0
\(389\) −272.697 −0.0355431 −0.0177716 0.999842i \(-0.505657\pi\)
−0.0177716 + 0.999842i \(0.505657\pi\)
\(390\) 0 0
\(391\) 2205.77 0.285296
\(392\) 0 0
\(393\) 8645.66 1.10971
\(394\) 0 0
\(395\) 2185.20 0.278353
\(396\) 0 0
\(397\) −14255.5 −1.80218 −0.901088 0.433637i \(-0.857230\pi\)
−0.901088 + 0.433637i \(0.857230\pi\)
\(398\) 0 0
\(399\) 2572.72 0.322800
\(400\) 0 0
\(401\) 13445.0 1.67434 0.837171 0.546941i \(-0.184208\pi\)
0.837171 + 0.546941i \(0.184208\pi\)
\(402\) 0 0
\(403\) 1111.28 0.137362
\(404\) 0 0
\(405\) −405.000 −0.0496904
\(406\) 0 0
\(407\) 6905.92 0.841066
\(408\) 0 0
\(409\) −764.564 −0.0924334 −0.0462167 0.998931i \(-0.514716\pi\)
−0.0462167 + 0.998931i \(0.514716\pi\)
\(410\) 0 0
\(411\) −1625.95 −0.195140
\(412\) 0 0
\(413\) 3788.59 0.451391
\(414\) 0 0
\(415\) 3173.76 0.375407
\(416\) 0 0
\(417\) 3560.50 0.418125
\(418\) 0 0
\(419\) −5682.20 −0.662514 −0.331257 0.943540i \(-0.607473\pi\)
−0.331257 + 0.943540i \(0.607473\pi\)
\(420\) 0 0
\(421\) 2443.20 0.282836 0.141418 0.989950i \(-0.454834\pi\)
0.141418 + 0.989950i \(0.454834\pi\)
\(422\) 0 0
\(423\) −2031.99 −0.233566
\(424\) 0 0
\(425\) −2166.85 −0.247313
\(426\) 0 0
\(427\) −313.442 −0.0355235
\(428\) 0 0
\(429\) 4397.79 0.494936
\(430\) 0 0
\(431\) 8799.01 0.983373 0.491686 0.870772i \(-0.336381\pi\)
0.491686 + 0.870772i \(0.336381\pi\)
\(432\) 0 0
\(433\) 9790.83 1.08665 0.543323 0.839524i \(-0.317166\pi\)
0.543323 + 0.839524i \(0.317166\pi\)
\(434\) 0 0
\(435\) 2178.38 0.240104
\(436\) 0 0
\(437\) −3117.77 −0.341289
\(438\) 0 0
\(439\) −17875.3 −1.94337 −0.971687 0.236271i \(-0.924075\pi\)
−0.971687 + 0.236271i \(0.924075\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) −10407.7 −1.11622 −0.558110 0.829767i \(-0.688473\pi\)
−0.558110 + 0.829767i \(0.688473\pi\)
\(444\) 0 0
\(445\) 6683.71 0.711996
\(446\) 0 0
\(447\) 5889.84 0.623222
\(448\) 0 0
\(449\) 877.278 0.0922078 0.0461039 0.998937i \(-0.485319\pi\)
0.0461039 + 0.998937i \(0.485319\pi\)
\(450\) 0 0
\(451\) 12435.0 1.29832
\(452\) 0 0
\(453\) 2761.57 0.286423
\(454\) 0 0
\(455\) −1176.44 −0.121214
\(456\) 0 0
\(457\) 6739.70 0.689869 0.344934 0.938627i \(-0.387901\pi\)
0.344934 + 0.938627i \(0.387901\pi\)
\(458\) 0 0
\(459\) 2340.20 0.237977
\(460\) 0 0
\(461\) 4053.51 0.409525 0.204762 0.978812i \(-0.434358\pi\)
0.204762 + 0.978812i \(0.434358\pi\)
\(462\) 0 0
\(463\) −7688.40 −0.771728 −0.385864 0.922556i \(-0.626097\pi\)
−0.385864 + 0.922556i \(0.626097\pi\)
\(464\) 0 0
\(465\) −495.924 −0.0494579
\(466\) 0 0
\(467\) −7130.29 −0.706532 −0.353266 0.935523i \(-0.614929\pi\)
−0.353266 + 0.935523i \(0.614929\pi\)
\(468\) 0 0
\(469\) 1714.87 0.168839
\(470\) 0 0
\(471\) −8678.09 −0.848970
\(472\) 0 0
\(473\) −16806.9 −1.63379
\(474\) 0 0
\(475\) 3062.76 0.295851
\(476\) 0 0
\(477\) 3854.78 0.370018
\(478\) 0 0
\(479\) −9476.48 −0.903949 −0.451974 0.892031i \(-0.649280\pi\)
−0.451974 + 0.892031i \(0.649280\pi\)
\(480\) 0 0
\(481\) −5322.45 −0.504538
\(482\) 0 0
\(483\) −534.429 −0.0503465
\(484\) 0 0
\(485\) 2094.78 0.196122
\(486\) 0 0
\(487\) 14935.3 1.38970 0.694850 0.719155i \(-0.255471\pi\)
0.694850 + 0.719155i \(0.255471\pi\)
\(488\) 0 0
\(489\) 7225.69 0.668214
\(490\) 0 0
\(491\) −13636.7 −1.25340 −0.626698 0.779262i \(-0.715594\pi\)
−0.626698 + 0.779262i \(0.715594\pi\)
\(492\) 0 0
\(493\) −12587.3 −1.14990
\(494\) 0 0
\(495\) −1962.57 −0.178204
\(496\) 0 0
\(497\) 1277.44 0.115293
\(498\) 0 0
\(499\) 548.198 0.0491798 0.0245899 0.999698i \(-0.492172\pi\)
0.0245899 + 0.999698i \(0.492172\pi\)
\(500\) 0 0
\(501\) 8047.59 0.717645
\(502\) 0 0
\(503\) −4734.56 −0.419689 −0.209844 0.977735i \(-0.567296\pi\)
−0.209844 + 0.977735i \(0.567296\pi\)
\(504\) 0 0
\(505\) 4021.34 0.354351
\(506\) 0 0
\(507\) 3201.58 0.280448
\(508\) 0 0
\(509\) 15606.1 1.35899 0.679495 0.733680i \(-0.262199\pi\)
0.679495 + 0.733680i \(0.262199\pi\)
\(510\) 0 0
\(511\) 6919.04 0.598983
\(512\) 0 0
\(513\) −3307.79 −0.284683
\(514\) 0 0
\(515\) −9791.89 −0.837830
\(516\) 0 0
\(517\) −9846.68 −0.837633
\(518\) 0 0
\(519\) −1296.39 −0.109644
\(520\) 0 0
\(521\) 3248.19 0.273139 0.136570 0.990630i \(-0.456392\pi\)
0.136570 + 0.990630i \(0.456392\pi\)
\(522\) 0 0
\(523\) −8129.71 −0.679708 −0.339854 0.940478i \(-0.610378\pi\)
−0.339854 + 0.940478i \(0.610378\pi\)
\(524\) 0 0
\(525\) 525.000 0.0436436
\(526\) 0 0
\(527\) 2865.58 0.236863
\(528\) 0 0
\(529\) −11519.3 −0.946770
\(530\) 0 0
\(531\) −4871.05 −0.398090
\(532\) 0 0
\(533\) −9583.77 −0.778835
\(534\) 0 0
\(535\) 10004.6 0.808480
\(536\) 0 0
\(537\) −1534.73 −0.123330
\(538\) 0 0
\(539\) 2137.02 0.170775
\(540\) 0 0
\(541\) −2709.72 −0.215342 −0.107671 0.994187i \(-0.534339\pi\)
−0.107671 + 0.994187i \(0.534339\pi\)
\(542\) 0 0
\(543\) 8687.82 0.686612
\(544\) 0 0
\(545\) −1915.44 −0.150547
\(546\) 0 0
\(547\) −1018.76 −0.0796326 −0.0398163 0.999207i \(-0.512677\pi\)
−0.0398163 + 0.999207i \(0.512677\pi\)
\(548\) 0 0
\(549\) 402.997 0.0313288
\(550\) 0 0
\(551\) 17791.6 1.37559
\(552\) 0 0
\(553\) 3059.29 0.235252
\(554\) 0 0
\(555\) 2375.20 0.181661
\(556\) 0 0
\(557\) −5045.16 −0.383789 −0.191894 0.981416i \(-0.561463\pi\)
−0.191894 + 0.981416i \(0.561463\pi\)
\(558\) 0 0
\(559\) 12953.2 0.980076
\(560\) 0 0
\(561\) 11340.2 0.853450
\(562\) 0 0
\(563\) 6370.11 0.476853 0.238426 0.971161i \(-0.423368\pi\)
0.238426 + 0.971161i \(0.423368\pi\)
\(564\) 0 0
\(565\) −5404.21 −0.402401
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) −18225.0 −1.34276 −0.671382 0.741111i \(-0.734299\pi\)
−0.671382 + 0.741111i \(0.734299\pi\)
\(570\) 0 0
\(571\) −2289.86 −0.167824 −0.0839121 0.996473i \(-0.526741\pi\)
−0.0839121 + 0.996473i \(0.526741\pi\)
\(572\) 0 0
\(573\) −7851.01 −0.572392
\(574\) 0 0
\(575\) −636.225 −0.0461433
\(576\) 0 0
\(577\) 3758.40 0.271169 0.135584 0.990766i \(-0.456709\pi\)
0.135584 + 0.990766i \(0.456709\pi\)
\(578\) 0 0
\(579\) −416.783 −0.0299152
\(580\) 0 0
\(581\) 4443.27 0.317277
\(582\) 0 0
\(583\) 18679.7 1.32699
\(584\) 0 0
\(585\) 1512.57 0.106901
\(586\) 0 0
\(587\) −5374.98 −0.377937 −0.188969 0.981983i \(-0.560514\pi\)
−0.188969 + 0.981983i \(0.560514\pi\)
\(588\) 0 0
\(589\) −4050.39 −0.283351
\(590\) 0 0
\(591\) 11303.2 0.786722
\(592\) 0 0
\(593\) −22616.9 −1.56621 −0.783106 0.621888i \(-0.786366\pi\)
−0.783106 + 0.621888i \(0.786366\pi\)
\(594\) 0 0
\(595\) −3033.60 −0.209017
\(596\) 0 0
\(597\) 716.604 0.0491267
\(598\) 0 0
\(599\) −5098.46 −0.347775 −0.173888 0.984766i \(-0.555633\pi\)
−0.173888 + 0.984766i \(0.555633\pi\)
\(600\) 0 0
\(601\) 16140.6 1.09549 0.547745 0.836645i \(-0.315486\pi\)
0.547745 + 0.836645i \(0.315486\pi\)
\(602\) 0 0
\(603\) −2204.83 −0.148902
\(604\) 0 0
\(605\) −2855.28 −0.191874
\(606\) 0 0
\(607\) 24797.5 1.65815 0.829077 0.559135i \(-0.188867\pi\)
0.829077 + 0.559135i \(0.188867\pi\)
\(608\) 0 0
\(609\) 3049.73 0.202925
\(610\) 0 0
\(611\) 7588.92 0.502479
\(612\) 0 0
\(613\) 14367.2 0.946632 0.473316 0.880893i \(-0.343057\pi\)
0.473316 + 0.880893i \(0.343057\pi\)
\(614\) 0 0
\(615\) 4276.87 0.280423
\(616\) 0 0
\(617\) −1486.16 −0.0969699 −0.0484849 0.998824i \(-0.515439\pi\)
−0.0484849 + 0.998824i \(0.515439\pi\)
\(618\) 0 0
\(619\) 4047.27 0.262801 0.131400 0.991329i \(-0.458053\pi\)
0.131400 + 0.991329i \(0.458053\pi\)
\(620\) 0 0
\(621\) 687.123 0.0444014
\(622\) 0 0
\(623\) 9357.19 0.601746
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −16029.0 −1.02095
\(628\) 0 0
\(629\) −13724.6 −0.870008
\(630\) 0 0
\(631\) −8304.27 −0.523911 −0.261956 0.965080i \(-0.584367\pi\)
−0.261956 + 0.965080i \(0.584367\pi\)
\(632\) 0 0
\(633\) 93.7192 0.00588468
\(634\) 0 0
\(635\) −2557.48 −0.159828
\(636\) 0 0
\(637\) −1647.02 −0.102445
\(638\) 0 0
\(639\) −1642.42 −0.101679
\(640\) 0 0
\(641\) 19916.6 1.22724 0.613618 0.789603i \(-0.289714\pi\)
0.613618 + 0.789603i \(0.289714\pi\)
\(642\) 0 0
\(643\) −2751.60 −0.168760 −0.0843799 0.996434i \(-0.526891\pi\)
−0.0843799 + 0.996434i \(0.526891\pi\)
\(644\) 0 0
\(645\) −5780.52 −0.352880
\(646\) 0 0
\(647\) −20003.7 −1.21550 −0.607750 0.794129i \(-0.707928\pi\)
−0.607750 + 0.794129i \(0.707928\pi\)
\(648\) 0 0
\(649\) −23604.3 −1.42766
\(650\) 0 0
\(651\) −694.293 −0.0417995
\(652\) 0 0
\(653\) 20024.2 1.20001 0.600005 0.799996i \(-0.295165\pi\)
0.600005 + 0.799996i \(0.295165\pi\)
\(654\) 0 0
\(655\) 14409.4 0.859577
\(656\) 0 0
\(657\) −8895.91 −0.528254
\(658\) 0 0
\(659\) −29213.6 −1.72686 −0.863430 0.504469i \(-0.831688\pi\)
−0.863430 + 0.504469i \(0.831688\pi\)
\(660\) 0 0
\(661\) −26257.8 −1.54510 −0.772548 0.634957i \(-0.781018\pi\)
−0.772548 + 0.634957i \(0.781018\pi\)
\(662\) 0 0
\(663\) −8740.02 −0.511967
\(664\) 0 0
\(665\) 4287.87 0.250040
\(666\) 0 0
\(667\) −3695.83 −0.214548
\(668\) 0 0
\(669\) −6427.10 −0.371429
\(670\) 0 0
\(671\) 1952.86 0.112354
\(672\) 0 0
\(673\) −31083.6 −1.78036 −0.890181 0.455606i \(-0.849423\pi\)
−0.890181 + 0.455606i \(0.849423\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) −7341.96 −0.416801 −0.208401 0.978044i \(-0.566826\pi\)
−0.208401 + 0.978044i \(0.566826\pi\)
\(678\) 0 0
\(679\) 2932.69 0.165753
\(680\) 0 0
\(681\) −202.036 −0.0113686
\(682\) 0 0
\(683\) 18541.4 1.03875 0.519377 0.854545i \(-0.326164\pi\)
0.519377 + 0.854545i \(0.326164\pi\)
\(684\) 0 0
\(685\) −2709.92 −0.151155
\(686\) 0 0
\(687\) −12049.3 −0.669156
\(688\) 0 0
\(689\) −14396.6 −0.796032
\(690\) 0 0
\(691\) −4576.60 −0.251957 −0.125978 0.992033i \(-0.540207\pi\)
−0.125978 + 0.992033i \(0.540207\pi\)
\(692\) 0 0
\(693\) −2747.59 −0.150610
\(694\) 0 0
\(695\) 5934.16 0.323879
\(696\) 0 0
\(697\) −24712.9 −1.34300
\(698\) 0 0
\(699\) −8690.05 −0.470226
\(700\) 0 0
\(701\) −11071.0 −0.596499 −0.298249 0.954488i \(-0.596403\pi\)
−0.298249 + 0.954488i \(0.596403\pi\)
\(702\) 0 0
\(703\) 19399.2 1.04076
\(704\) 0 0
\(705\) −3386.64 −0.180920
\(706\) 0 0
\(707\) 5629.88 0.299482
\(708\) 0 0
\(709\) 12475.9 0.660852 0.330426 0.943832i \(-0.392808\pi\)
0.330426 + 0.943832i \(0.392808\pi\)
\(710\) 0 0
\(711\) −3933.37 −0.207472
\(712\) 0 0
\(713\) 841.384 0.0441936
\(714\) 0 0
\(715\) 7329.66 0.383376
\(716\) 0 0
\(717\) 15858.7 0.826015
\(718\) 0 0
\(719\) −24824.7 −1.28763 −0.643815 0.765181i \(-0.722649\pi\)
−0.643815 + 0.765181i \(0.722649\pi\)
\(720\) 0 0
\(721\) −13708.6 −0.708095
\(722\) 0 0
\(723\) −12208.4 −0.627986
\(724\) 0 0
\(725\) 3630.63 0.185984
\(726\) 0 0
\(727\) −36455.6 −1.85979 −0.929893 0.367829i \(-0.880101\pi\)
−0.929893 + 0.367829i \(0.880101\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 33401.5 1.69001
\(732\) 0 0
\(733\) −14124.5 −0.711732 −0.355866 0.934537i \(-0.615814\pi\)
−0.355866 + 0.934537i \(0.615814\pi\)
\(734\) 0 0
\(735\) 735.000 0.0368856
\(736\) 0 0
\(737\) −10684.3 −0.534003
\(738\) 0 0
\(739\) −29272.5 −1.45711 −0.728557 0.684986i \(-0.759808\pi\)
−0.728557 + 0.684986i \(0.759808\pi\)
\(740\) 0 0
\(741\) 12353.7 0.612448
\(742\) 0 0
\(743\) 10705.4 0.528589 0.264294 0.964442i \(-0.414861\pi\)
0.264294 + 0.964442i \(0.414861\pi\)
\(744\) 0 0
\(745\) 9816.41 0.482745
\(746\) 0 0
\(747\) −5712.77 −0.279812
\(748\) 0 0
\(749\) 14006.4 0.683290
\(750\) 0 0
\(751\) 13921.9 0.676457 0.338228 0.941064i \(-0.390172\pi\)
0.338228 + 0.941064i \(0.390172\pi\)
\(752\) 0 0
\(753\) 20280.9 0.981508
\(754\) 0 0
\(755\) 4602.61 0.221863
\(756\) 0 0
\(757\) −30160.8 −1.44810 −0.724050 0.689747i \(-0.757722\pi\)
−0.724050 + 0.689747i \(0.757722\pi\)
\(758\) 0 0
\(759\) 3329.69 0.159236
\(760\) 0 0
\(761\) 12882.8 0.613670 0.306835 0.951763i \(-0.400730\pi\)
0.306835 + 0.951763i \(0.400730\pi\)
\(762\) 0 0
\(763\) −2681.61 −0.127236
\(764\) 0 0
\(765\) 3900.34 0.184336
\(766\) 0 0
\(767\) 18192.1 0.856424
\(768\) 0 0
\(769\) −41394.6 −1.94113 −0.970564 0.240842i \(-0.922576\pi\)
−0.970564 + 0.240842i \(0.922576\pi\)
\(770\) 0 0
\(771\) 16438.7 0.767866
\(772\) 0 0
\(773\) 11180.8 0.520239 0.260119 0.965576i \(-0.416238\pi\)
0.260119 + 0.965576i \(0.416238\pi\)
\(774\) 0 0
\(775\) −826.539 −0.0383099
\(776\) 0 0
\(777\) 3325.29 0.153532
\(778\) 0 0
\(779\) 34930.8 1.60658
\(780\) 0 0
\(781\) −7958.89 −0.364650
\(782\) 0 0
\(783\) −3921.08 −0.178963
\(784\) 0 0
\(785\) −14463.5 −0.657610
\(786\) 0 0
\(787\) 33954.3 1.53792 0.768959 0.639298i \(-0.220775\pi\)
0.768959 + 0.639298i \(0.220775\pi\)
\(788\) 0 0
\(789\) 1672.83 0.0754809
\(790\) 0 0
\(791\) −7565.89 −0.340091
\(792\) 0 0
\(793\) −1505.09 −0.0673987
\(794\) 0 0
\(795\) 6424.64 0.286614
\(796\) 0 0
\(797\) −20436.1 −0.908263 −0.454131 0.890935i \(-0.650050\pi\)
−0.454131 + 0.890935i \(0.650050\pi\)
\(798\) 0 0
\(799\) 19569.0 0.866458
\(800\) 0 0
\(801\) −12030.7 −0.530690
\(802\) 0 0
\(803\) −43108.2 −1.89446
\(804\) 0 0
\(805\) −890.715 −0.0389982
\(806\) 0 0
\(807\) 14733.3 0.642673
\(808\) 0 0
\(809\) 4624.34 0.200968 0.100484 0.994939i \(-0.467961\pi\)
0.100484 + 0.994939i \(0.467961\pi\)
\(810\) 0 0
\(811\) 14943.4 0.647023 0.323511 0.946224i \(-0.395137\pi\)
0.323511 + 0.946224i \(0.395137\pi\)
\(812\) 0 0
\(813\) −18904.9 −0.815526
\(814\) 0 0
\(815\) 12042.8 0.517597
\(816\) 0 0
\(817\) −47211.7 −2.02170
\(818\) 0 0
\(819\) 2117.59 0.0903476
\(820\) 0 0
\(821\) −15212.7 −0.646684 −0.323342 0.946282i \(-0.604806\pi\)
−0.323342 + 0.946282i \(0.604806\pi\)
\(822\) 0 0
\(823\) 4450.00 0.188478 0.0942390 0.995550i \(-0.469958\pi\)
0.0942390 + 0.995550i \(0.469958\pi\)
\(824\) 0 0
\(825\) −3270.94 −0.138036
\(826\) 0 0
\(827\) −12702.4 −0.534107 −0.267054 0.963682i \(-0.586050\pi\)
−0.267054 + 0.963682i \(0.586050\pi\)
\(828\) 0 0
\(829\) 18908.1 0.792164 0.396082 0.918215i \(-0.370370\pi\)
0.396082 + 0.918215i \(0.370370\pi\)
\(830\) 0 0
\(831\) −10949.1 −0.457066
\(832\) 0 0
\(833\) −4247.03 −0.176652
\(834\) 0 0
\(835\) 13412.7 0.555885
\(836\) 0 0
\(837\) 892.662 0.0368637
\(838\) 0 0
\(839\) −3192.93 −0.131385 −0.0656925 0.997840i \(-0.520926\pi\)
−0.0656925 + 0.997840i \(0.520926\pi\)
\(840\) 0 0
\(841\) −3298.65 −0.135252
\(842\) 0 0
\(843\) −1734.85 −0.0708794
\(844\) 0 0
\(845\) 5335.97 0.217234
\(846\) 0 0
\(847\) −3997.40 −0.162163
\(848\) 0 0
\(849\) −21797.6 −0.881145
\(850\) 0 0
\(851\) −4029.77 −0.162325
\(852\) 0 0
\(853\) 17579.9 0.705655 0.352827 0.935688i \(-0.385220\pi\)
0.352827 + 0.935688i \(0.385220\pi\)
\(854\) 0 0
\(855\) −5512.98 −0.220514
\(856\) 0 0
\(857\) −44839.3 −1.78726 −0.893629 0.448807i \(-0.851849\pi\)
−0.893629 + 0.448807i \(0.851849\pi\)
\(858\) 0 0
\(859\) −33893.1 −1.34624 −0.673118 0.739535i \(-0.735046\pi\)
−0.673118 + 0.739535i \(0.735046\pi\)
\(860\) 0 0
\(861\) 5987.61 0.237000
\(862\) 0 0
\(863\) −46411.4 −1.83066 −0.915332 0.402700i \(-0.868072\pi\)
−0.915332 + 0.402700i \(0.868072\pi\)
\(864\) 0 0
\(865\) −2160.64 −0.0849295
\(866\) 0 0
\(867\) −7798.22 −0.305469
\(868\) 0 0
\(869\) −19060.5 −0.744054
\(870\) 0 0
\(871\) 8234.46 0.320338
\(872\) 0 0
\(873\) −3770.60 −0.146180
\(874\) 0 0
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) −38925.3 −1.49876 −0.749382 0.662138i \(-0.769649\pi\)
−0.749382 + 0.662138i \(0.769649\pi\)
\(878\) 0 0
\(879\) −11465.3 −0.439950
\(880\) 0 0
\(881\) 27018.9 1.03324 0.516622 0.856213i \(-0.327189\pi\)
0.516622 + 0.856213i \(0.327189\pi\)
\(882\) 0 0
\(883\) −17707.9 −0.674880 −0.337440 0.941347i \(-0.609561\pi\)
−0.337440 + 0.941347i \(0.609561\pi\)
\(884\) 0 0
\(885\) −8118.42 −0.308359
\(886\) 0 0
\(887\) −3078.09 −0.116519 −0.0582594 0.998301i \(-0.518555\pi\)
−0.0582594 + 0.998301i \(0.518555\pi\)
\(888\) 0 0
\(889\) −3580.48 −0.135079
\(890\) 0 0
\(891\) 3532.62 0.132825
\(892\) 0 0
\(893\) −27660.0 −1.03651
\(894\) 0 0
\(895\) −2557.88 −0.0955311
\(896\) 0 0
\(897\) −2566.22 −0.0955224
\(898\) 0 0
\(899\) −4801.37 −0.178125
\(900\) 0 0
\(901\) −37123.3 −1.37265
\(902\) 0 0
\(903\) −8092.73 −0.298238
\(904\) 0 0
\(905\) 14479.7 0.531847
\(906\) 0 0
\(907\) −29103.8 −1.06547 −0.532733 0.846284i \(-0.678835\pi\)
−0.532733 + 0.846284i \(0.678835\pi\)
\(908\) 0 0
\(909\) −7238.42 −0.264118
\(910\) 0 0
\(911\) 18644.6 0.678073 0.339037 0.940773i \(-0.389899\pi\)
0.339037 + 0.940773i \(0.389899\pi\)
\(912\) 0 0
\(913\) −27683.2 −1.00348
\(914\) 0 0
\(915\) 671.662 0.0242672
\(916\) 0 0
\(917\) 20173.2 0.726475
\(918\) 0 0
\(919\) 44196.5 1.58641 0.793203 0.608957i \(-0.208412\pi\)
0.793203 + 0.608957i \(0.208412\pi\)
\(920\) 0 0
\(921\) 11501.8 0.411506
\(922\) 0 0
\(923\) 6133.98 0.218746
\(924\) 0 0
\(925\) 3958.67 0.140714
\(926\) 0 0
\(927\) 17625.4 0.624481
\(928\) 0 0
\(929\) 5307.06 0.187426 0.0937132 0.995599i \(-0.470126\pi\)
0.0937132 + 0.995599i \(0.470126\pi\)
\(930\) 0 0
\(931\) 6003.02 0.211322
\(932\) 0 0
\(933\) −10303.0 −0.361526
\(934\) 0 0
\(935\) 18900.4 0.661080
\(936\) 0 0
\(937\) 15158.6 0.528505 0.264253 0.964454i \(-0.414875\pi\)
0.264253 + 0.964454i \(0.414875\pi\)
\(938\) 0 0
\(939\) −20082.5 −0.697942
\(940\) 0 0
\(941\) 39704.6 1.37549 0.687743 0.725954i \(-0.258602\pi\)
0.687743 + 0.725954i \(0.258602\pi\)
\(942\) 0 0
\(943\) −7256.13 −0.250575
\(944\) 0 0
\(945\) −945.000 −0.0325300
\(946\) 0 0
\(947\) 40502.9 1.38983 0.694913 0.719093i \(-0.255443\pi\)
0.694913 + 0.719093i \(0.255443\pi\)
\(948\) 0 0
\(949\) 33223.8 1.13645
\(950\) 0 0
\(951\) 11316.5 0.385871
\(952\) 0 0
\(953\) 53381.6 1.81448 0.907239 0.420615i \(-0.138186\pi\)
0.907239 + 0.420615i \(0.138186\pi\)
\(954\) 0 0
\(955\) −13085.0 −0.443373
\(956\) 0 0
\(957\) −19000.9 −0.641811
\(958\) 0 0
\(959\) −3793.89 −0.127749
\(960\) 0 0
\(961\) −28697.9 −0.963309
\(962\) 0 0
\(963\) −18008.3 −0.602605
\(964\) 0 0
\(965\) −694.638 −0.0231722
\(966\) 0 0
\(967\) 43794.1 1.45638 0.728192 0.685373i \(-0.240361\pi\)
0.728192 + 0.685373i \(0.240361\pi\)
\(968\) 0 0
\(969\) 31855.5 1.05608
\(970\) 0 0
\(971\) −32515.3 −1.07463 −0.537315 0.843382i \(-0.680561\pi\)
−0.537315 + 0.843382i \(0.680561\pi\)
\(972\) 0 0
\(973\) 8307.83 0.273727
\(974\) 0 0
\(975\) 2520.94 0.0828049
\(976\) 0 0
\(977\) 41204.2 1.34927 0.674636 0.738150i \(-0.264301\pi\)
0.674636 + 0.738150i \(0.264301\pi\)
\(978\) 0 0
\(979\) −58298.7 −1.90320
\(980\) 0 0
\(981\) 3447.79 0.112211
\(982\) 0 0
\(983\) 31333.5 1.01667 0.508333 0.861161i \(-0.330262\pi\)
0.508333 + 0.861161i \(0.330262\pi\)
\(984\) 0 0
\(985\) 18838.7 0.609393
\(986\) 0 0
\(987\) −4741.30 −0.152905
\(988\) 0 0
\(989\) 9807.23 0.315320
\(990\) 0 0
\(991\) −6807.75 −0.218219 −0.109110 0.994030i \(-0.534800\pi\)
−0.109110 + 0.994030i \(0.534800\pi\)
\(992\) 0 0
\(993\) −16422.3 −0.524821
\(994\) 0 0
\(995\) 1194.34 0.0380534
\(996\) 0 0
\(997\) −33301.6 −1.05785 −0.528923 0.848670i \(-0.677404\pi\)
−0.528923 + 0.848670i \(0.677404\pi\)
\(998\) 0 0
\(999\) −4275.37 −0.135402
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.4.a.p.1.3 3
4.3 odd 2 1680.4.a.bs.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.4.a.p.1.3 3 1.1 even 1 trivial
1680.4.a.bs.1.1 3 4.3 odd 2