Properties

Label 840.4.a.p
Level $840$
Weight $4$
Character orbit 840.a
Self dual yes
Analytic conductor $49.562$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,4,Mod(1,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-9,0,-15,0,-21,0,27,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.5616044048\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.821313.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 117x - 340 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} - 5 q^{5} - 7 q^{7} + 9 q^{9} + ( - \beta_{2} - 2) q^{11} + (\beta_{2} + 12) q^{13} + 15 q^{15} + (\beta_{2} + \beta_1 + 30) q^{17} + (\beta_{2} - 2 \beta_1 + 26) q^{19} + 21 q^{21} + ( - \beta_{2} + \beta_1) q^{23}+ \cdots + ( - 9 \beta_{2} - 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} - 15 q^{5} - 21 q^{7} + 27 q^{9} - 6 q^{11} + 36 q^{13} + 45 q^{15} + 90 q^{17} + 78 q^{19} + 63 q^{21} + 75 q^{25} - 81 q^{27} + 162 q^{29} + 114 q^{31} + 18 q^{33} + 105 q^{35} + 246 q^{37}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 117x - 340 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 78 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 7\nu - 78 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 7\beta _1 + 624 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.86938
12.0505
−3.18112
0 −3.00000 0 −5.00000 0 −7.00000 0 9.00000 0
1.2 0 −3.00000 0 −5.00000 0 −7.00000 0 9.00000 0
1.3 0 −3.00000 0 −5.00000 0 −7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 840.4.a.p 3
4.b odd 2 1 1680.4.a.bs 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
840.4.a.p 3 1.a even 1 1 trivial
1680.4.a.bs 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{3} + 6T_{11}^{2} - 3144T_{11} + 42752 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(840))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( (T + 7)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 6 T^{2} + \cdots + 42752 \) Copy content Toggle raw display
$13$ \( T^{3} - 36 T^{2} + \cdots - 12912 \) Copy content Toggle raw display
$17$ \( T^{3} - 90 T^{2} + \cdots + 675112 \) Copy content Toggle raw display
$19$ \( T^{3} - 78 T^{2} + \cdots + 1928192 \) Copy content Toggle raw display
$23$ \( T^{3} - 7488 T - 174080 \) Copy content Toggle raw display
$29$ \( T^{3} - 162 T^{2} + \cdots + 916680 \) Copy content Toggle raw display
$31$ \( T^{3} - 114 T^{2} + \cdots + 115520 \) Copy content Toggle raw display
$37$ \( T^{3} - 246 T^{2} + \cdots + 9674936 \) Copy content Toggle raw display
$41$ \( T^{3} + 42 T^{2} + \cdots - 689768 \) Copy content Toggle raw display
$43$ \( T^{3} + 348 T^{2} + \cdots - 98481408 \) Copy content Toggle raw display
$47$ \( T^{3} + 480 T^{2} + \cdots - 2392704 \) Copy content Toggle raw display
$53$ \( T^{3} + 252 T^{2} + \cdots - 49294384 \) Copy content Toggle raw display
$59$ \( T^{3} + 408 T^{2} + \cdots - 171481216 \) Copy content Toggle raw display
$61$ \( T^{3} + 534 T^{2} + \cdots + 3668520 \) Copy content Toggle raw display
$67$ \( T^{3} + 372 T^{2} + \cdots - 133798400 \) Copy content Toggle raw display
$71$ \( T^{3} + 366 T^{2} + \cdots - 23564800 \) Copy content Toggle raw display
$73$ \( T^{3} + 60 T^{2} + \cdots + 35106768 \) Copy content Toggle raw display
$79$ \( T^{3} + 624 T^{2} + \cdots - 244063232 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 1064186432 \) Copy content Toggle raw display
$89$ \( T^{3} + 510 T^{2} + \cdots + 226497000 \) Copy content Toggle raw display
$97$ \( T^{3} + 2304 T^{2} + \cdots + 827040 \) Copy content Toggle raw display
show more
show less