Properties

Label 840.4.a.p.1.2
Level $840$
Weight $4$
Character 840.1
Self dual yes
Analytic conductor $49.562$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,4,Mod(1,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-9,0,-15,0,-21,0,27,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.5616044048\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.821313.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 117x - 340 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(12.0505\) of defining polynomial
Character \(\chi\) \(=\) 840.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} +15.1389 q^{11} -5.13892 q^{13} +15.0000 q^{15} +92.1262 q^{17} -149.669 q^{19} +21.0000 q^{21} +96.4040 q^{23} +25.0000 q^{25} -27.0000 q^{27} +88.2778 q^{29} +117.265 q^{31} -45.4168 q^{33} +35.0000 q^{35} -207.212 q^{37} +15.4168 q^{39} -7.57050 q^{41} +524.550 q^{43} -45.0000 q^{45} -290.682 q^{47} +49.0000 q^{49} -276.379 q^{51} -315.366 q^{53} -75.6946 q^{55} +449.007 q^{57} -500.197 q^{59} +117.642 q^{61} -63.0000 q^{63} +25.6946 q^{65} -805.258 q^{67} -289.212 q^{69} -462.629 q^{71} +39.9766 q^{73} -75.0000 q^{75} -105.972 q^{77} +659.636 q^{79} +81.0000 q^{81} -1228.10 q^{83} -460.631 q^{85} -264.834 q^{87} +451.262 q^{89} +35.9724 q^{91} -351.795 q^{93} +748.346 q^{95} -1.04780 q^{97} +136.250 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} - 15 q^{5} - 21 q^{7} + 27 q^{9} - 6 q^{11} + 36 q^{13} + 45 q^{15} + 90 q^{17} + 78 q^{19} + 63 q^{21} + 75 q^{25} - 81 q^{27} + 162 q^{29} + 114 q^{31} + 18 q^{33} + 105 q^{35} + 246 q^{37}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 15.1389 0.414960 0.207480 0.978239i \(-0.433474\pi\)
0.207480 + 0.978239i \(0.433474\pi\)
\(12\) 0 0
\(13\) −5.13892 −0.109637 −0.0548185 0.998496i \(-0.517458\pi\)
−0.0548185 + 0.998496i \(0.517458\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) 92.1262 1.31435 0.657173 0.753740i \(-0.271752\pi\)
0.657173 + 0.753740i \(0.271752\pi\)
\(18\) 0 0
\(19\) −149.669 −1.80718 −0.903591 0.428397i \(-0.859079\pi\)
−0.903591 + 0.428397i \(0.859079\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) 96.4040 0.873984 0.436992 0.899465i \(-0.356044\pi\)
0.436992 + 0.899465i \(0.356044\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 88.2778 0.565268 0.282634 0.959228i \(-0.408792\pi\)
0.282634 + 0.959228i \(0.408792\pi\)
\(30\) 0 0
\(31\) 117.265 0.679401 0.339701 0.940534i \(-0.389674\pi\)
0.339701 + 0.940534i \(0.389674\pi\)
\(32\) 0 0
\(33\) −45.4168 −0.239577
\(34\) 0 0
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) −207.212 −0.920688 −0.460344 0.887741i \(-0.652274\pi\)
−0.460344 + 0.887741i \(0.652274\pi\)
\(38\) 0 0
\(39\) 15.4168 0.0632989
\(40\) 0 0
\(41\) −7.57050 −0.0288369 −0.0144185 0.999896i \(-0.504590\pi\)
−0.0144185 + 0.999896i \(0.504590\pi\)
\(42\) 0 0
\(43\) 524.550 1.86031 0.930153 0.367172i \(-0.119674\pi\)
0.930153 + 0.367172i \(0.119674\pi\)
\(44\) 0 0
\(45\) −45.0000 −0.149071
\(46\) 0 0
\(47\) −290.682 −0.902134 −0.451067 0.892490i \(-0.648956\pi\)
−0.451067 + 0.892490i \(0.648956\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −276.379 −0.758838
\(52\) 0 0
\(53\) −315.366 −0.817336 −0.408668 0.912683i \(-0.634007\pi\)
−0.408668 + 0.912683i \(0.634007\pi\)
\(54\) 0 0
\(55\) −75.6946 −0.185576
\(56\) 0 0
\(57\) 449.007 1.04338
\(58\) 0 0
\(59\) −500.197 −1.10373 −0.551866 0.833933i \(-0.686084\pi\)
−0.551866 + 0.833933i \(0.686084\pi\)
\(60\) 0 0
\(61\) 117.642 0.246926 0.123463 0.992349i \(-0.460600\pi\)
0.123463 + 0.992349i \(0.460600\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) 0 0
\(65\) 25.6946 0.0490311
\(66\) 0 0
\(67\) −805.258 −1.46833 −0.734163 0.678973i \(-0.762425\pi\)
−0.734163 + 0.678973i \(0.762425\pi\)
\(68\) 0 0
\(69\) −289.212 −0.504595
\(70\) 0 0
\(71\) −462.629 −0.773295 −0.386647 0.922228i \(-0.626367\pi\)
−0.386647 + 0.922228i \(0.626367\pi\)
\(72\) 0 0
\(73\) 39.9766 0.0640946 0.0320473 0.999486i \(-0.489797\pi\)
0.0320473 + 0.999486i \(0.489797\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) −105.972 −0.156840
\(78\) 0 0
\(79\) 659.636 0.939429 0.469714 0.882818i \(-0.344357\pi\)
0.469714 + 0.882818i \(0.344357\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −1228.10 −1.62412 −0.812058 0.583577i \(-0.801653\pi\)
−0.812058 + 0.583577i \(0.801653\pi\)
\(84\) 0 0
\(85\) −460.631 −0.587793
\(86\) 0 0
\(87\) −264.834 −0.326358
\(88\) 0 0
\(89\) 451.262 0.537457 0.268728 0.963216i \(-0.413397\pi\)
0.268728 + 0.963216i \(0.413397\pi\)
\(90\) 0 0
\(91\) 35.9724 0.0414389
\(92\) 0 0
\(93\) −351.795 −0.392252
\(94\) 0 0
\(95\) 748.346 0.808196
\(96\) 0 0
\(97\) −1.04780 −0.00109678 −0.000548392 1.00000i \(-0.500175\pi\)
−0.000548392 1.00000i \(0.500175\pi\)
\(98\) 0 0
\(99\) 136.250 0.138320
\(100\) 0 0
\(101\) 333.439 0.328499 0.164250 0.986419i \(-0.447480\pi\)
0.164250 + 0.986419i \(0.447480\pi\)
\(102\) 0 0
\(103\) −1877.25 −1.79584 −0.897918 0.440164i \(-0.854920\pi\)
−0.897918 + 0.440164i \(0.854920\pi\)
\(104\) 0 0
\(105\) −105.000 −0.0975900
\(106\) 0 0
\(107\) −1220.81 −1.10300 −0.551498 0.834176i \(-0.685943\pi\)
−0.551498 + 0.834176i \(0.685943\pi\)
\(108\) 0 0
\(109\) 1210.94 1.06411 0.532053 0.846711i \(-0.321421\pi\)
0.532053 + 0.846711i \(0.321421\pi\)
\(110\) 0 0
\(111\) 621.636 0.531559
\(112\) 0 0
\(113\) −1970.08 −1.64009 −0.820043 0.572302i \(-0.806051\pi\)
−0.820043 + 0.572302i \(0.806051\pi\)
\(114\) 0 0
\(115\) −482.020 −0.390857
\(116\) 0 0
\(117\) −46.2503 −0.0365456
\(118\) 0 0
\(119\) −644.883 −0.496776
\(120\) 0 0
\(121\) −1101.81 −0.827809
\(122\) 0 0
\(123\) 22.7115 0.0166490
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −667.242 −0.466206 −0.233103 0.972452i \(-0.574888\pi\)
−0.233103 + 0.972452i \(0.574888\pi\)
\(128\) 0 0
\(129\) −1573.65 −1.07405
\(130\) 0 0
\(131\) −248.870 −0.165984 −0.0829918 0.996550i \(-0.526448\pi\)
−0.0829918 + 0.996550i \(0.526448\pi\)
\(132\) 0 0
\(133\) 1047.68 0.683050
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) −372.532 −0.232318 −0.116159 0.993231i \(-0.537058\pi\)
−0.116159 + 0.993231i \(0.537058\pi\)
\(138\) 0 0
\(139\) −1069.58 −0.652665 −0.326332 0.945255i \(-0.605813\pi\)
−0.326332 + 0.945255i \(0.605813\pi\)
\(140\) 0 0
\(141\) 872.046 0.520847
\(142\) 0 0
\(143\) −77.7977 −0.0454949
\(144\) 0 0
\(145\) −441.389 −0.252796
\(146\) 0 0
\(147\) −147.000 −0.0824786
\(148\) 0 0
\(149\) 2084.22 1.14595 0.572973 0.819574i \(-0.305790\pi\)
0.572973 + 0.819574i \(0.305790\pi\)
\(150\) 0 0
\(151\) 770.741 0.415378 0.207689 0.978195i \(-0.433406\pi\)
0.207689 + 0.978195i \(0.433406\pi\)
\(152\) 0 0
\(153\) 829.136 0.438115
\(154\) 0 0
\(155\) −586.325 −0.303837
\(156\) 0 0
\(157\) −1638.86 −0.833090 −0.416545 0.909115i \(-0.636759\pi\)
−0.416545 + 0.909115i \(0.636759\pi\)
\(158\) 0 0
\(159\) 946.097 0.471889
\(160\) 0 0
\(161\) −674.828 −0.330335
\(162\) 0 0
\(163\) 387.337 0.186126 0.0930631 0.995660i \(-0.470334\pi\)
0.0930631 + 0.995660i \(0.470334\pi\)
\(164\) 0 0
\(165\) 227.084 0.107142
\(166\) 0 0
\(167\) −3356.70 −1.55539 −0.777693 0.628645i \(-0.783610\pi\)
−0.777693 + 0.628645i \(0.783610\pi\)
\(168\) 0 0
\(169\) −2170.59 −0.987980
\(170\) 0 0
\(171\) −1347.02 −0.602394
\(172\) 0 0
\(173\) 163.309 0.0717695 0.0358847 0.999356i \(-0.488575\pi\)
0.0358847 + 0.999356i \(0.488575\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 1500.59 0.637239
\(178\) 0 0
\(179\) −4375.10 −1.82687 −0.913437 0.406980i \(-0.866582\pi\)
−0.913437 + 0.406980i \(0.866582\pi\)
\(180\) 0 0
\(181\) 746.210 0.306438 0.153219 0.988192i \(-0.451036\pi\)
0.153219 + 0.988192i \(0.451036\pi\)
\(182\) 0 0
\(183\) −352.925 −0.142563
\(184\) 0 0
\(185\) 1036.06 0.411744
\(186\) 0 0
\(187\) 1394.69 0.545400
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) −4156.89 −1.57478 −0.787388 0.616458i \(-0.788567\pi\)
−0.787388 + 0.616458i \(0.788567\pi\)
\(192\) 0 0
\(193\) 4705.67 1.75504 0.877518 0.479544i \(-0.159198\pi\)
0.877518 + 0.479544i \(0.159198\pi\)
\(194\) 0 0
\(195\) −77.0838 −0.0283081
\(196\) 0 0
\(197\) −504.948 −0.182620 −0.0913099 0.995823i \(-0.529105\pi\)
−0.0913099 + 0.995823i \(0.529105\pi\)
\(198\) 0 0
\(199\) 335.204 0.119407 0.0597034 0.998216i \(-0.480985\pi\)
0.0597034 + 0.998216i \(0.480985\pi\)
\(200\) 0 0
\(201\) 2415.77 0.847739
\(202\) 0 0
\(203\) −617.945 −0.213651
\(204\) 0 0
\(205\) 37.8525 0.0128963
\(206\) 0 0
\(207\) 867.636 0.291328
\(208\) 0 0
\(209\) −2265.83 −0.749907
\(210\) 0 0
\(211\) 609.859 0.198978 0.0994891 0.995039i \(-0.468279\pi\)
0.0994891 + 0.995039i \(0.468279\pi\)
\(212\) 0 0
\(213\) 1387.89 0.446462
\(214\) 0 0
\(215\) −2622.75 −0.831954
\(216\) 0 0
\(217\) −820.856 −0.256789
\(218\) 0 0
\(219\) −119.930 −0.0370050
\(220\) 0 0
\(221\) −473.429 −0.144101
\(222\) 0 0
\(223\) −4754.27 −1.42766 −0.713832 0.700317i \(-0.753042\pi\)
−0.713832 + 0.700317i \(0.753042\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) −2623.86 −0.767187 −0.383594 0.923502i \(-0.625314\pi\)
−0.383594 + 0.923502i \(0.625314\pi\)
\(228\) 0 0
\(229\) −3793.83 −1.09477 −0.547387 0.836880i \(-0.684377\pi\)
−0.547387 + 0.836880i \(0.684377\pi\)
\(230\) 0 0
\(231\) 317.917 0.0905516
\(232\) 0 0
\(233\) 4264.30 1.19899 0.599493 0.800380i \(-0.295369\pi\)
0.599493 + 0.800380i \(0.295369\pi\)
\(234\) 0 0
\(235\) 1453.41 0.403447
\(236\) 0 0
\(237\) −1978.91 −0.542379
\(238\) 0 0
\(239\) 4557.87 1.23357 0.616787 0.787130i \(-0.288434\pi\)
0.616787 + 0.787130i \(0.288434\pi\)
\(240\) 0 0
\(241\) 4643.17 1.24105 0.620524 0.784187i \(-0.286920\pi\)
0.620524 + 0.784187i \(0.286920\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) 769.138 0.198134
\(248\) 0 0
\(249\) 3684.30 0.937683
\(250\) 0 0
\(251\) 2578.36 0.648386 0.324193 0.945991i \(-0.394907\pi\)
0.324193 + 0.945991i \(0.394907\pi\)
\(252\) 0 0
\(253\) 1459.45 0.362668
\(254\) 0 0
\(255\) 1381.89 0.339363
\(256\) 0 0
\(257\) −3339.44 −0.810538 −0.405269 0.914197i \(-0.632822\pi\)
−0.405269 + 0.914197i \(0.632822\pi\)
\(258\) 0 0
\(259\) 1450.48 0.347987
\(260\) 0 0
\(261\) 794.501 0.188423
\(262\) 0 0
\(263\) 6948.29 1.62909 0.814543 0.580103i \(-0.196988\pi\)
0.814543 + 0.580103i \(0.196988\pi\)
\(264\) 0 0
\(265\) 1576.83 0.365524
\(266\) 0 0
\(267\) −1353.79 −0.310301
\(268\) 0 0
\(269\) 128.376 0.0290975 0.0145487 0.999894i \(-0.495369\pi\)
0.0145487 + 0.999894i \(0.495369\pi\)
\(270\) 0 0
\(271\) 4003.21 0.897335 0.448668 0.893699i \(-0.351899\pi\)
0.448668 + 0.893699i \(0.351899\pi\)
\(272\) 0 0
\(273\) −107.917 −0.0239247
\(274\) 0 0
\(275\) 378.473 0.0829919
\(276\) 0 0
\(277\) −2924.87 −0.634434 −0.317217 0.948353i \(-0.602748\pi\)
−0.317217 + 0.948353i \(0.602748\pi\)
\(278\) 0 0
\(279\) 1055.39 0.226467
\(280\) 0 0
\(281\) 1837.84 0.390166 0.195083 0.980787i \(-0.437502\pi\)
0.195083 + 0.980787i \(0.437502\pi\)
\(282\) 0 0
\(283\) 5864.82 1.23190 0.615949 0.787786i \(-0.288773\pi\)
0.615949 + 0.787786i \(0.288773\pi\)
\(284\) 0 0
\(285\) −2245.04 −0.466612
\(286\) 0 0
\(287\) 52.9935 0.0108993
\(288\) 0 0
\(289\) 3574.23 0.727505
\(290\) 0 0
\(291\) 3.14340 0.000633228 0
\(292\) 0 0
\(293\) 1553.08 0.309665 0.154832 0.987941i \(-0.450516\pi\)
0.154832 + 0.987941i \(0.450516\pi\)
\(294\) 0 0
\(295\) 2500.99 0.493604
\(296\) 0 0
\(297\) −408.751 −0.0798590
\(298\) 0 0
\(299\) −495.412 −0.0958209
\(300\) 0 0
\(301\) −3671.85 −0.703130
\(302\) 0 0
\(303\) −1000.32 −0.189659
\(304\) 0 0
\(305\) −588.208 −0.110428
\(306\) 0 0
\(307\) −9088.29 −1.68956 −0.844782 0.535111i \(-0.820270\pi\)
−0.844782 + 0.535111i \(0.820270\pi\)
\(308\) 0 0
\(309\) 5631.75 1.03683
\(310\) 0 0
\(311\) 607.829 0.110826 0.0554129 0.998464i \(-0.482353\pi\)
0.0554129 + 0.998464i \(0.482353\pi\)
\(312\) 0 0
\(313\) −4474.40 −0.808012 −0.404006 0.914756i \(-0.632383\pi\)
−0.404006 + 0.914756i \(0.632383\pi\)
\(314\) 0 0
\(315\) 315.000 0.0563436
\(316\) 0 0
\(317\) −4608.87 −0.816593 −0.408297 0.912849i \(-0.633877\pi\)
−0.408297 + 0.912849i \(0.633877\pi\)
\(318\) 0 0
\(319\) 1336.43 0.234564
\(320\) 0 0
\(321\) 3662.44 0.636815
\(322\) 0 0
\(323\) −13788.4 −2.37526
\(324\) 0 0
\(325\) −128.473 −0.0219274
\(326\) 0 0
\(327\) −3632.83 −0.614361
\(328\) 0 0
\(329\) 2034.77 0.340975
\(330\) 0 0
\(331\) −173.392 −0.0287930 −0.0143965 0.999896i \(-0.504583\pi\)
−0.0143965 + 0.999896i \(0.504583\pi\)
\(332\) 0 0
\(333\) −1864.91 −0.306896
\(334\) 0 0
\(335\) 4026.29 0.656656
\(336\) 0 0
\(337\) 5905.79 0.954627 0.477313 0.878733i \(-0.341611\pi\)
0.477313 + 0.878733i \(0.341611\pi\)
\(338\) 0 0
\(339\) 5910.25 0.946904
\(340\) 0 0
\(341\) 1775.27 0.281924
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 1446.06 0.225662
\(346\) 0 0
\(347\) 2991.10 0.462740 0.231370 0.972866i \(-0.425679\pi\)
0.231370 + 0.972866i \(0.425679\pi\)
\(348\) 0 0
\(349\) 4697.34 0.720466 0.360233 0.932862i \(-0.382697\pi\)
0.360233 + 0.932862i \(0.382697\pi\)
\(350\) 0 0
\(351\) 138.751 0.0210996
\(352\) 0 0
\(353\) −6315.00 −0.952163 −0.476082 0.879401i \(-0.657943\pi\)
−0.476082 + 0.879401i \(0.657943\pi\)
\(354\) 0 0
\(355\) 2313.14 0.345828
\(356\) 0 0
\(357\) 1934.65 0.286814
\(358\) 0 0
\(359\) −6877.46 −1.01108 −0.505541 0.862803i \(-0.668707\pi\)
−0.505541 + 0.862803i \(0.668707\pi\)
\(360\) 0 0
\(361\) 15541.8 2.26590
\(362\) 0 0
\(363\) 3305.44 0.477935
\(364\) 0 0
\(365\) −199.883 −0.0286640
\(366\) 0 0
\(367\) 11964.7 1.70178 0.850888 0.525348i \(-0.176065\pi\)
0.850888 + 0.525348i \(0.176065\pi\)
\(368\) 0 0
\(369\) −68.1345 −0.00961230
\(370\) 0 0
\(371\) 2207.56 0.308924
\(372\) 0 0
\(373\) 9640.01 1.33818 0.669090 0.743182i \(-0.266684\pi\)
0.669090 + 0.743182i \(0.266684\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) −453.653 −0.0619743
\(378\) 0 0
\(379\) −12231.0 −1.65769 −0.828845 0.559478i \(-0.811002\pi\)
−0.828845 + 0.559478i \(0.811002\pi\)
\(380\) 0 0
\(381\) 2001.73 0.269164
\(382\) 0 0
\(383\) −7501.51 −1.00081 −0.500404 0.865792i \(-0.666815\pi\)
−0.500404 + 0.865792i \(0.666815\pi\)
\(384\) 0 0
\(385\) 529.862 0.0701410
\(386\) 0 0
\(387\) 4720.95 0.620102
\(388\) 0 0
\(389\) 442.505 0.0576758 0.0288379 0.999584i \(-0.490819\pi\)
0.0288379 + 0.999584i \(0.490819\pi\)
\(390\) 0 0
\(391\) 8881.33 1.14872
\(392\) 0 0
\(393\) 746.610 0.0958307
\(394\) 0 0
\(395\) −3298.18 −0.420125
\(396\) 0 0
\(397\) 4903.36 0.619880 0.309940 0.950756i \(-0.399691\pi\)
0.309940 + 0.950756i \(0.399691\pi\)
\(398\) 0 0
\(399\) −3143.05 −0.394359
\(400\) 0 0
\(401\) 12478.7 1.55400 0.777001 0.629500i \(-0.216740\pi\)
0.777001 + 0.629500i \(0.216740\pi\)
\(402\) 0 0
\(403\) −602.616 −0.0744874
\(404\) 0 0
\(405\) −405.000 −0.0496904
\(406\) 0 0
\(407\) −3136.97 −0.382048
\(408\) 0 0
\(409\) −4627.07 −0.559399 −0.279699 0.960088i \(-0.590235\pi\)
−0.279699 + 0.960088i \(0.590235\pi\)
\(410\) 0 0
\(411\) 1117.60 0.134129
\(412\) 0 0
\(413\) 3501.38 0.417171
\(414\) 0 0
\(415\) 6140.50 0.726326
\(416\) 0 0
\(417\) 3208.73 0.376816
\(418\) 0 0
\(419\) −6137.78 −0.715633 −0.357816 0.933792i \(-0.616479\pi\)
−0.357816 + 0.933792i \(0.616479\pi\)
\(420\) 0 0
\(421\) −11384.4 −1.31791 −0.658956 0.752182i \(-0.729002\pi\)
−0.658956 + 0.752182i \(0.729002\pi\)
\(422\) 0 0
\(423\) −2616.14 −0.300711
\(424\) 0 0
\(425\) 2303.15 0.262869
\(426\) 0 0
\(427\) −823.491 −0.0933291
\(428\) 0 0
\(429\) 233.393 0.0262665
\(430\) 0 0
\(431\) 5070.20 0.566643 0.283321 0.959025i \(-0.408564\pi\)
0.283321 + 0.959025i \(0.408564\pi\)
\(432\) 0 0
\(433\) 3694.82 0.410073 0.205037 0.978754i \(-0.434269\pi\)
0.205037 + 0.978754i \(0.434269\pi\)
\(434\) 0 0
\(435\) 1324.17 0.145952
\(436\) 0 0
\(437\) −14428.7 −1.57945
\(438\) 0 0
\(439\) 8787.71 0.955386 0.477693 0.878527i \(-0.341473\pi\)
0.477693 + 0.878527i \(0.341473\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 2129.70 0.228409 0.114205 0.993457i \(-0.463568\pi\)
0.114205 + 0.993457i \(0.463568\pi\)
\(444\) 0 0
\(445\) −2256.31 −0.240358
\(446\) 0 0
\(447\) −6252.66 −0.661612
\(448\) 0 0
\(449\) −7821.51 −0.822093 −0.411047 0.911614i \(-0.634837\pi\)
−0.411047 + 0.911614i \(0.634837\pi\)
\(450\) 0 0
\(451\) −114.609 −0.0119661
\(452\) 0 0
\(453\) −2312.22 −0.239818
\(454\) 0 0
\(455\) −179.862 −0.0185320
\(456\) 0 0
\(457\) −11192.3 −1.14563 −0.572817 0.819683i \(-0.694149\pi\)
−0.572817 + 0.819683i \(0.694149\pi\)
\(458\) 0 0
\(459\) −2487.41 −0.252946
\(460\) 0 0
\(461\) 5287.96 0.534240 0.267120 0.963663i \(-0.413928\pi\)
0.267120 + 0.963663i \(0.413928\pi\)
\(462\) 0 0
\(463\) 10311.0 1.03497 0.517487 0.855691i \(-0.326867\pi\)
0.517487 + 0.855691i \(0.326867\pi\)
\(464\) 0 0
\(465\) 1758.98 0.175421
\(466\) 0 0
\(467\) −13752.6 −1.36273 −0.681366 0.731943i \(-0.738614\pi\)
−0.681366 + 0.731943i \(0.738614\pi\)
\(468\) 0 0
\(469\) 5636.80 0.554975
\(470\) 0 0
\(471\) 4916.58 0.480985
\(472\) 0 0
\(473\) 7941.12 0.771952
\(474\) 0 0
\(475\) −3741.73 −0.361436
\(476\) 0 0
\(477\) −2838.29 −0.272445
\(478\) 0 0
\(479\) −10897.0 −1.03945 −0.519724 0.854334i \(-0.673965\pi\)
−0.519724 + 0.854334i \(0.673965\pi\)
\(480\) 0 0
\(481\) 1064.85 0.100941
\(482\) 0 0
\(483\) 2024.48 0.190719
\(484\) 0 0
\(485\) 5.23900 0.000490496 0
\(486\) 0 0
\(487\) 1423.07 0.132413 0.0662066 0.997806i \(-0.478910\pi\)
0.0662066 + 0.997806i \(0.478910\pi\)
\(488\) 0 0
\(489\) −1162.01 −0.107460
\(490\) 0 0
\(491\) −383.757 −0.0352724 −0.0176362 0.999844i \(-0.505614\pi\)
−0.0176362 + 0.999844i \(0.505614\pi\)
\(492\) 0 0
\(493\) 8132.70 0.742958
\(494\) 0 0
\(495\) −681.251 −0.0618585
\(496\) 0 0
\(497\) 3238.40 0.292278
\(498\) 0 0
\(499\) 13625.0 1.22232 0.611162 0.791505i \(-0.290702\pi\)
0.611162 + 0.791505i \(0.290702\pi\)
\(500\) 0 0
\(501\) 10070.1 0.898002
\(502\) 0 0
\(503\) −10203.3 −0.904456 −0.452228 0.891902i \(-0.649371\pi\)
−0.452228 + 0.891902i \(0.649371\pi\)
\(504\) 0 0
\(505\) −1667.19 −0.146909
\(506\) 0 0
\(507\) 6511.77 0.570410
\(508\) 0 0
\(509\) −5919.84 −0.515505 −0.257753 0.966211i \(-0.582982\pi\)
−0.257753 + 0.966211i \(0.582982\pi\)
\(510\) 0 0
\(511\) −279.836 −0.0242255
\(512\) 0 0
\(513\) 4041.07 0.347792
\(514\) 0 0
\(515\) 9386.25 0.803122
\(516\) 0 0
\(517\) −4400.61 −0.374349
\(518\) 0 0
\(519\) −489.926 −0.0414361
\(520\) 0 0
\(521\) 10282.6 0.864661 0.432331 0.901715i \(-0.357691\pi\)
0.432331 + 0.901715i \(0.357691\pi\)
\(522\) 0 0
\(523\) −859.562 −0.0718662 −0.0359331 0.999354i \(-0.511440\pi\)
−0.0359331 + 0.999354i \(0.511440\pi\)
\(524\) 0 0
\(525\) 525.000 0.0436436
\(526\) 0 0
\(527\) 10803.2 0.892968
\(528\) 0 0
\(529\) −2873.27 −0.236152
\(530\) 0 0
\(531\) −4501.78 −0.367910
\(532\) 0 0
\(533\) 38.9042 0.00316159
\(534\) 0 0
\(535\) 6104.07 0.493274
\(536\) 0 0
\(537\) 13125.3 1.05475
\(538\) 0 0
\(539\) 741.807 0.0592799
\(540\) 0 0
\(541\) 12145.4 0.965196 0.482598 0.875842i \(-0.339693\pi\)
0.482598 + 0.875842i \(0.339693\pi\)
\(542\) 0 0
\(543\) −2238.63 −0.176922
\(544\) 0 0
\(545\) −6054.72 −0.475882
\(546\) 0 0
\(547\) −6958.96 −0.543956 −0.271978 0.962304i \(-0.587678\pi\)
−0.271978 + 0.962304i \(0.587678\pi\)
\(548\) 0 0
\(549\) 1058.77 0.0823085
\(550\) 0 0
\(551\) −13212.5 −1.02154
\(552\) 0 0
\(553\) −4617.45 −0.355071
\(554\) 0 0
\(555\) −3108.18 −0.237721
\(556\) 0 0
\(557\) 5172.98 0.393512 0.196756 0.980452i \(-0.436959\pi\)
0.196756 + 0.980452i \(0.436959\pi\)
\(558\) 0 0
\(559\) −2695.62 −0.203958
\(560\) 0 0
\(561\) −4184.07 −0.314887
\(562\) 0 0
\(563\) −18219.8 −1.36390 −0.681948 0.731401i \(-0.738867\pi\)
−0.681948 + 0.731401i \(0.738867\pi\)
\(564\) 0 0
\(565\) 9850.41 0.733469
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) −824.973 −0.0607815 −0.0303907 0.999538i \(-0.509675\pi\)
−0.0303907 + 0.999538i \(0.509675\pi\)
\(570\) 0 0
\(571\) 16415.6 1.20310 0.601550 0.798836i \(-0.294550\pi\)
0.601550 + 0.798836i \(0.294550\pi\)
\(572\) 0 0
\(573\) 12470.7 0.909197
\(574\) 0 0
\(575\) 2410.10 0.174797
\(576\) 0 0
\(577\) −23308.7 −1.68172 −0.840862 0.541250i \(-0.817951\pi\)
−0.840862 + 0.541250i \(0.817951\pi\)
\(578\) 0 0
\(579\) −14117.0 −1.01327
\(580\) 0 0
\(581\) 8596.70 0.613858
\(582\) 0 0
\(583\) −4774.30 −0.339162
\(584\) 0 0
\(585\) 231.251 0.0163437
\(586\) 0 0
\(587\) 1713.37 0.120474 0.0602371 0.998184i \(-0.480814\pi\)
0.0602371 + 0.998184i \(0.480814\pi\)
\(588\) 0 0
\(589\) −17551.0 −1.22780
\(590\) 0 0
\(591\) 1514.85 0.105436
\(592\) 0 0
\(593\) −1729.08 −0.119738 −0.0598690 0.998206i \(-0.519068\pi\)
−0.0598690 + 0.998206i \(0.519068\pi\)
\(594\) 0 0
\(595\) 3224.42 0.222165
\(596\) 0 0
\(597\) −1005.61 −0.0689396
\(598\) 0 0
\(599\) 9767.25 0.666242 0.333121 0.942884i \(-0.391898\pi\)
0.333121 + 0.942884i \(0.391898\pi\)
\(600\) 0 0
\(601\) −17189.1 −1.16665 −0.583326 0.812238i \(-0.698249\pi\)
−0.583326 + 0.812238i \(0.698249\pi\)
\(602\) 0 0
\(603\) −7247.32 −0.489442
\(604\) 0 0
\(605\) 5509.07 0.370207
\(606\) 0 0
\(607\) −14897.9 −0.996193 −0.498096 0.867122i \(-0.665967\pi\)
−0.498096 + 0.867122i \(0.665967\pi\)
\(608\) 0 0
\(609\) 1853.83 0.123352
\(610\) 0 0
\(611\) 1493.79 0.0989072
\(612\) 0 0
\(613\) −24333.8 −1.60332 −0.801658 0.597783i \(-0.796048\pi\)
−0.801658 + 0.597783i \(0.796048\pi\)
\(614\) 0 0
\(615\) −113.557 −0.00744566
\(616\) 0 0
\(617\) −17445.0 −1.13827 −0.569133 0.822246i \(-0.692721\pi\)
−0.569133 + 0.822246i \(0.692721\pi\)
\(618\) 0 0
\(619\) 6733.87 0.437249 0.218625 0.975809i \(-0.429843\pi\)
0.218625 + 0.975809i \(0.429843\pi\)
\(620\) 0 0
\(621\) −2602.91 −0.168198
\(622\) 0 0
\(623\) −3158.83 −0.203140
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 6797.49 0.432959
\(628\) 0 0
\(629\) −19089.7 −1.21010
\(630\) 0 0
\(631\) 30296.3 1.91137 0.955685 0.294391i \(-0.0951167\pi\)
0.955685 + 0.294391i \(0.0951167\pi\)
\(632\) 0 0
\(633\) −1829.58 −0.114880
\(634\) 0 0
\(635\) 3336.21 0.208494
\(636\) 0 0
\(637\) −251.807 −0.0156624
\(638\) 0 0
\(639\) −4163.66 −0.257765
\(640\) 0 0
\(641\) −10264.4 −0.632480 −0.316240 0.948679i \(-0.602420\pi\)
−0.316240 + 0.948679i \(0.602420\pi\)
\(642\) 0 0
\(643\) 20436.5 1.25340 0.626702 0.779259i \(-0.284404\pi\)
0.626702 + 0.779259i \(0.284404\pi\)
\(644\) 0 0
\(645\) 7868.25 0.480329
\(646\) 0 0
\(647\) 29516.0 1.79350 0.896749 0.442539i \(-0.145922\pi\)
0.896749 + 0.442539i \(0.145922\pi\)
\(648\) 0 0
\(649\) −7572.45 −0.458004
\(650\) 0 0
\(651\) 2462.57 0.148257
\(652\) 0 0
\(653\) −14916.1 −0.893896 −0.446948 0.894560i \(-0.647489\pi\)
−0.446948 + 0.894560i \(0.647489\pi\)
\(654\) 0 0
\(655\) 1244.35 0.0742301
\(656\) 0 0
\(657\) 359.789 0.0213649
\(658\) 0 0
\(659\) 3984.71 0.235542 0.117771 0.993041i \(-0.462425\pi\)
0.117771 + 0.993041i \(0.462425\pi\)
\(660\) 0 0
\(661\) 7964.74 0.468672 0.234336 0.972156i \(-0.424708\pi\)
0.234336 + 0.972156i \(0.424708\pi\)
\(662\) 0 0
\(663\) 1420.29 0.0831966
\(664\) 0 0
\(665\) −5238.42 −0.305469
\(666\) 0 0
\(667\) 8510.34 0.494035
\(668\) 0 0
\(669\) 14262.8 0.824263
\(670\) 0 0
\(671\) 1780.97 0.102464
\(672\) 0 0
\(673\) 7417.72 0.424862 0.212431 0.977176i \(-0.431862\pi\)
0.212431 + 0.977176i \(0.431862\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) −29364.3 −1.66700 −0.833502 0.552517i \(-0.813667\pi\)
−0.833502 + 0.552517i \(0.813667\pi\)
\(678\) 0 0
\(679\) 7.33460 0.000414545 0
\(680\) 0 0
\(681\) 7871.57 0.442936
\(682\) 0 0
\(683\) −31390.9 −1.75862 −0.879311 0.476248i \(-0.841997\pi\)
−0.879311 + 0.476248i \(0.841997\pi\)
\(684\) 0 0
\(685\) 1862.66 0.103896
\(686\) 0 0
\(687\) 11381.5 0.632068
\(688\) 0 0
\(689\) 1620.64 0.0896102
\(690\) 0 0
\(691\) −30693.3 −1.68977 −0.844883 0.534952i \(-0.820330\pi\)
−0.844883 + 0.534952i \(0.820330\pi\)
\(692\) 0 0
\(693\) −953.752 −0.0522800
\(694\) 0 0
\(695\) 5347.89 0.291881
\(696\) 0 0
\(697\) −697.441 −0.0379017
\(698\) 0 0
\(699\) −12792.9 −0.692235
\(700\) 0 0
\(701\) −7091.40 −0.382081 −0.191040 0.981582i \(-0.561186\pi\)
−0.191040 + 0.981582i \(0.561186\pi\)
\(702\) 0 0
\(703\) 31013.2 1.66385
\(704\) 0 0
\(705\) −4360.23 −0.232930
\(706\) 0 0
\(707\) −2334.07 −0.124161
\(708\) 0 0
\(709\) −12330.8 −0.653163 −0.326581 0.945169i \(-0.605897\pi\)
−0.326581 + 0.945169i \(0.605897\pi\)
\(710\) 0 0
\(711\) 5936.73 0.313143
\(712\) 0 0
\(713\) 11304.8 0.593785
\(714\) 0 0
\(715\) 388.988 0.0203459
\(716\) 0 0
\(717\) −13673.6 −0.712204
\(718\) 0 0
\(719\) −3366.92 −0.174638 −0.0873192 0.996180i \(-0.527830\pi\)
−0.0873192 + 0.996180i \(0.527830\pi\)
\(720\) 0 0
\(721\) 13140.8 0.678762
\(722\) 0 0
\(723\) −13929.5 −0.716520
\(724\) 0 0
\(725\) 2206.95 0.113054
\(726\) 0 0
\(727\) 3628.17 0.185091 0.0925457 0.995708i \(-0.470500\pi\)
0.0925457 + 0.995708i \(0.470500\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 48324.8 2.44509
\(732\) 0 0
\(733\) −31645.3 −1.59461 −0.797303 0.603579i \(-0.793741\pi\)
−0.797303 + 0.603579i \(0.793741\pi\)
\(734\) 0 0
\(735\) 735.000 0.0368856
\(736\) 0 0
\(737\) −12190.7 −0.609296
\(738\) 0 0
\(739\) −25569.0 −1.27276 −0.636380 0.771375i \(-0.719569\pi\)
−0.636380 + 0.771375i \(0.719569\pi\)
\(740\) 0 0
\(741\) −2307.41 −0.114393
\(742\) 0 0
\(743\) −22094.7 −1.09095 −0.545475 0.838127i \(-0.683651\pi\)
−0.545475 + 0.838127i \(0.683651\pi\)
\(744\) 0 0
\(745\) −10421.1 −0.512483
\(746\) 0 0
\(747\) −11052.9 −0.541372
\(748\) 0 0
\(749\) 8545.69 0.416893
\(750\) 0 0
\(751\) 6666.48 0.323919 0.161960 0.986797i \(-0.448219\pi\)
0.161960 + 0.986797i \(0.448219\pi\)
\(752\) 0 0
\(753\) −7735.09 −0.374346
\(754\) 0 0
\(755\) −3853.71 −0.185763
\(756\) 0 0
\(757\) −29275.3 −1.40558 −0.702792 0.711395i \(-0.748064\pi\)
−0.702792 + 0.711395i \(0.748064\pi\)
\(758\) 0 0
\(759\) −4378.36 −0.209386
\(760\) 0 0
\(761\) −273.757 −0.0130403 −0.00652017 0.999979i \(-0.502075\pi\)
−0.00652017 + 0.999979i \(0.502075\pi\)
\(762\) 0 0
\(763\) −8476.61 −0.402194
\(764\) 0 0
\(765\) −4145.68 −0.195931
\(766\) 0 0
\(767\) 2570.47 0.121010
\(768\) 0 0
\(769\) −2086.13 −0.0978256 −0.0489128 0.998803i \(-0.515576\pi\)
−0.0489128 + 0.998803i \(0.515576\pi\)
\(770\) 0 0
\(771\) 10018.3 0.467965
\(772\) 0 0
\(773\) −14578.1 −0.678317 −0.339159 0.940729i \(-0.610142\pi\)
−0.339159 + 0.940729i \(0.610142\pi\)
\(774\) 0 0
\(775\) 2931.63 0.135880
\(776\) 0 0
\(777\) −4351.45 −0.200911
\(778\) 0 0
\(779\) 1133.07 0.0521135
\(780\) 0 0
\(781\) −7003.70 −0.320886
\(782\) 0 0
\(783\) −2383.50 −0.108786
\(784\) 0 0
\(785\) 8194.29 0.372569
\(786\) 0 0
\(787\) 15742.9 0.713054 0.356527 0.934285i \(-0.383961\pi\)
0.356527 + 0.934285i \(0.383961\pi\)
\(788\) 0 0
\(789\) −20844.9 −0.940553
\(790\) 0 0
\(791\) 13790.6 0.619894
\(792\) 0 0
\(793\) −604.550 −0.0270722
\(794\) 0 0
\(795\) −4730.49 −0.211035
\(796\) 0 0
\(797\) 20245.1 0.899771 0.449886 0.893086i \(-0.351465\pi\)
0.449886 + 0.893086i \(0.351465\pi\)
\(798\) 0 0
\(799\) −26779.4 −1.18572
\(800\) 0 0
\(801\) 4061.36 0.179152
\(802\) 0 0
\(803\) 605.202 0.0265967
\(804\) 0 0
\(805\) 3374.14 0.147730
\(806\) 0 0
\(807\) −385.128 −0.0167994
\(808\) 0 0
\(809\) −11670.4 −0.507179 −0.253590 0.967312i \(-0.581611\pi\)
−0.253590 + 0.967312i \(0.581611\pi\)
\(810\) 0 0
\(811\) −30477.0 −1.31959 −0.659797 0.751444i \(-0.729358\pi\)
−0.659797 + 0.751444i \(0.729358\pi\)
\(812\) 0 0
\(813\) −12009.6 −0.518077
\(814\) 0 0
\(815\) −1936.68 −0.0832382
\(816\) 0 0
\(817\) −78509.0 −3.36191
\(818\) 0 0
\(819\) 323.752 0.0138130
\(820\) 0 0
\(821\) 26161.8 1.11212 0.556061 0.831141i \(-0.312312\pi\)
0.556061 + 0.831141i \(0.312312\pi\)
\(822\) 0 0
\(823\) 29339.3 1.24265 0.621327 0.783551i \(-0.286594\pi\)
0.621327 + 0.783551i \(0.286594\pi\)
\(824\) 0 0
\(825\) −1135.42 −0.0479154
\(826\) 0 0
\(827\) −43018.7 −1.80884 −0.904418 0.426648i \(-0.859694\pi\)
−0.904418 + 0.426648i \(0.859694\pi\)
\(828\) 0 0
\(829\) −9244.41 −0.387300 −0.193650 0.981071i \(-0.562033\pi\)
−0.193650 + 0.981071i \(0.562033\pi\)
\(830\) 0 0
\(831\) 8774.60 0.366290
\(832\) 0 0
\(833\) 4514.18 0.187764
\(834\) 0 0
\(835\) 16783.5 0.695590
\(836\) 0 0
\(837\) −3166.16 −0.130751
\(838\) 0 0
\(839\) −24042.0 −0.989299 −0.494649 0.869093i \(-0.664704\pi\)
−0.494649 + 0.869093i \(0.664704\pi\)
\(840\) 0 0
\(841\) −16596.0 −0.680472
\(842\) 0 0
\(843\) −5513.53 −0.225262
\(844\) 0 0
\(845\) 10853.0 0.441838
\(846\) 0 0
\(847\) 7712.69 0.312882
\(848\) 0 0
\(849\) −17594.5 −0.711237
\(850\) 0 0
\(851\) −19976.1 −0.804666
\(852\) 0 0
\(853\) −8523.38 −0.342128 −0.171064 0.985260i \(-0.554720\pi\)
−0.171064 + 0.985260i \(0.554720\pi\)
\(854\) 0 0
\(855\) 6735.11 0.269399
\(856\) 0 0
\(857\) −9207.05 −0.366986 −0.183493 0.983021i \(-0.558740\pi\)
−0.183493 + 0.983021i \(0.558740\pi\)
\(858\) 0 0
\(859\) −38938.2 −1.54663 −0.773315 0.634022i \(-0.781403\pi\)
−0.773315 + 0.634022i \(0.781403\pi\)
\(860\) 0 0
\(861\) −158.980 −0.00629273
\(862\) 0 0
\(863\) 44665.8 1.76181 0.880906 0.473292i \(-0.156934\pi\)
0.880906 + 0.473292i \(0.156934\pi\)
\(864\) 0 0
\(865\) −816.543 −0.0320963
\(866\) 0 0
\(867\) −10722.7 −0.420025
\(868\) 0 0
\(869\) 9986.18 0.389825
\(870\) 0 0
\(871\) 4138.15 0.160983
\(872\) 0 0
\(873\) −9.43020 −0.000365594 0
\(874\) 0 0
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) 7517.99 0.289469 0.144735 0.989471i \(-0.453767\pi\)
0.144735 + 0.989471i \(0.453767\pi\)
\(878\) 0 0
\(879\) −4659.23 −0.178785
\(880\) 0 0
\(881\) 36609.0 1.39999 0.699993 0.714149i \(-0.253186\pi\)
0.699993 + 0.714149i \(0.253186\pi\)
\(882\) 0 0
\(883\) 12894.3 0.491426 0.245713 0.969343i \(-0.420978\pi\)
0.245713 + 0.969343i \(0.420978\pi\)
\(884\) 0 0
\(885\) −7502.96 −0.284982
\(886\) 0 0
\(887\) 22287.0 0.843656 0.421828 0.906676i \(-0.361389\pi\)
0.421828 + 0.906676i \(0.361389\pi\)
\(888\) 0 0
\(889\) 4670.69 0.176209
\(890\) 0 0
\(891\) 1226.25 0.0461066
\(892\) 0 0
\(893\) 43506.1 1.63032
\(894\) 0 0
\(895\) 21875.5 0.817003
\(896\) 0 0
\(897\) 1486.24 0.0553222
\(898\) 0 0
\(899\) 10351.9 0.384044
\(900\) 0 0
\(901\) −29053.4 −1.07426
\(902\) 0 0
\(903\) 11015.6 0.405952
\(904\) 0 0
\(905\) −3731.05 −0.137043
\(906\) 0 0
\(907\) 41841.2 1.53177 0.765884 0.642979i \(-0.222302\pi\)
0.765884 + 0.642979i \(0.222302\pi\)
\(908\) 0 0
\(909\) 3000.95 0.109500
\(910\) 0 0
\(911\) −45265.4 −1.64622 −0.823112 0.567879i \(-0.807764\pi\)
−0.823112 + 0.567879i \(0.807764\pi\)
\(912\) 0 0
\(913\) −18592.1 −0.673942
\(914\) 0 0
\(915\) 1764.62 0.0637559
\(916\) 0 0
\(917\) 1742.09 0.0627359
\(918\) 0 0
\(919\) 18890.5 0.678063 0.339031 0.940775i \(-0.389901\pi\)
0.339031 + 0.940775i \(0.389901\pi\)
\(920\) 0 0
\(921\) 27264.9 0.975470
\(922\) 0 0
\(923\) 2377.41 0.0847817
\(924\) 0 0
\(925\) −5180.30 −0.184138
\(926\) 0 0
\(927\) −16895.3 −0.598612
\(928\) 0 0
\(929\) −29185.3 −1.03072 −0.515360 0.856974i \(-0.672342\pi\)
−0.515360 + 0.856974i \(0.672342\pi\)
\(930\) 0 0
\(931\) −7333.79 −0.258169
\(932\) 0 0
\(933\) −1823.49 −0.0639853
\(934\) 0 0
\(935\) −6973.45 −0.243911
\(936\) 0 0
\(937\) −46388.2 −1.61733 −0.808663 0.588272i \(-0.799809\pi\)
−0.808663 + 0.588272i \(0.799809\pi\)
\(938\) 0 0
\(939\) 13423.2 0.466506
\(940\) 0 0
\(941\) −25332.0 −0.877578 −0.438789 0.898590i \(-0.644592\pi\)
−0.438789 + 0.898590i \(0.644592\pi\)
\(942\) 0 0
\(943\) −729.826 −0.0252030
\(944\) 0 0
\(945\) −945.000 −0.0325300
\(946\) 0 0
\(947\) −19350.3 −0.663992 −0.331996 0.943281i \(-0.607722\pi\)
−0.331996 + 0.943281i \(0.607722\pi\)
\(948\) 0 0
\(949\) −205.436 −0.00702713
\(950\) 0 0
\(951\) 13826.6 0.471460
\(952\) 0 0
\(953\) −31814.6 −1.08140 −0.540701 0.841215i \(-0.681841\pi\)
−0.540701 + 0.841215i \(0.681841\pi\)
\(954\) 0 0
\(955\) 20784.5 0.704261
\(956\) 0 0
\(957\) −4009.29 −0.135425
\(958\) 0 0
\(959\) 2607.73 0.0878080
\(960\) 0 0
\(961\) −16039.9 −0.538414
\(962\) 0 0
\(963\) −10987.3 −0.367665
\(964\) 0 0
\(965\) −23528.4 −0.784876
\(966\) 0 0
\(967\) −14698.2 −0.488793 −0.244396 0.969675i \(-0.578590\pi\)
−0.244396 + 0.969675i \(0.578590\pi\)
\(968\) 0 0
\(969\) 41365.3 1.37136
\(970\) 0 0
\(971\) 30064.1 0.993617 0.496809 0.867860i \(-0.334505\pi\)
0.496809 + 0.867860i \(0.334505\pi\)
\(972\) 0 0
\(973\) 7487.05 0.246684
\(974\) 0 0
\(975\) 385.419 0.0126598
\(976\) 0 0
\(977\) −10575.9 −0.346319 −0.173159 0.984894i \(-0.555398\pi\)
−0.173159 + 0.984894i \(0.555398\pi\)
\(978\) 0 0
\(979\) 6831.62 0.223023
\(980\) 0 0
\(981\) 10898.5 0.354702
\(982\) 0 0
\(983\) 21051.3 0.683044 0.341522 0.939874i \(-0.389058\pi\)
0.341522 + 0.939874i \(0.389058\pi\)
\(984\) 0 0
\(985\) 2524.74 0.0816700
\(986\) 0 0
\(987\) −6104.32 −0.196862
\(988\) 0 0
\(989\) 50568.8 1.62588
\(990\) 0 0
\(991\) 8846.57 0.283573 0.141786 0.989897i \(-0.454715\pi\)
0.141786 + 0.989897i \(0.454715\pi\)
\(992\) 0 0
\(993\) 520.175 0.0166236
\(994\) 0 0
\(995\) −1676.02 −0.0534003
\(996\) 0 0
\(997\) 30958.8 0.983424 0.491712 0.870758i \(-0.336371\pi\)
0.491712 + 0.870758i \(0.336371\pi\)
\(998\) 0 0
\(999\) 5594.73 0.177186
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.4.a.p.1.2 3
4.3 odd 2 1680.4.a.bs.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.4.a.p.1.2 3 1.1 even 1 trivial
1680.4.a.bs.1.2 3 4.3 odd 2