Properties

Label 840.4.a.i.1.2
Level $840$
Weight $4$
Character 840.1
Self dual yes
Analytic conductor $49.562$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,4,Mod(1,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,10,0,-14,0,18,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.5616044048\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 840.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +5.00000 q^{5} -7.00000 q^{7} +9.00000 q^{9} +47.1918 q^{11} -54.9898 q^{13} -15.0000 q^{15} -13.0102 q^{17} -121.171 q^{19} +21.0000 q^{21} +145.798 q^{23} +25.0000 q^{25} -27.0000 q^{27} +159.353 q^{29} -286.969 q^{31} -141.576 q^{33} -35.0000 q^{35} +59.7571 q^{37} +164.969 q^{39} -293.192 q^{41} +355.373 q^{43} +45.0000 q^{45} +498.606 q^{47} +49.0000 q^{49} +39.0306 q^{51} -424.706 q^{53} +235.959 q^{55} +363.514 q^{57} -161.212 q^{59} -720.929 q^{61} -63.0000 q^{63} -274.949 q^{65} +316.908 q^{67} -437.394 q^{69} -390.969 q^{71} -1045.70 q^{73} -75.0000 q^{75} -330.343 q^{77} -968.727 q^{79} +81.0000 q^{81} +454.624 q^{83} -65.0510 q^{85} -478.059 q^{87} -352.343 q^{89} +384.929 q^{91} +860.908 q^{93} -605.857 q^{95} +969.614 q^{97} +424.727 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 10 q^{5} - 14 q^{7} + 18 q^{9} + 16 q^{11} - 12 q^{13} - 30 q^{15} - 124 q^{17} + 32 q^{19} + 42 q^{21} + 272 q^{23} + 50 q^{25} - 54 q^{27} - 132 q^{29} - 280 q^{31} - 48 q^{33} - 70 q^{35}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 47.1918 1.29353 0.646767 0.762688i \(-0.276121\pi\)
0.646767 + 0.762688i \(0.276121\pi\)
\(12\) 0 0
\(13\) −54.9898 −1.17319 −0.586593 0.809882i \(-0.699531\pi\)
−0.586593 + 0.809882i \(0.699531\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) 0 0
\(17\) −13.0102 −0.185614 −0.0928070 0.995684i \(-0.529584\pi\)
−0.0928070 + 0.995684i \(0.529584\pi\)
\(18\) 0 0
\(19\) −121.171 −1.46309 −0.731543 0.681795i \(-0.761199\pi\)
−0.731543 + 0.681795i \(0.761199\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) 145.798 1.32178 0.660891 0.750482i \(-0.270179\pi\)
0.660891 + 0.750482i \(0.270179\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 159.353 1.02038 0.510192 0.860061i \(-0.329574\pi\)
0.510192 + 0.860061i \(0.329574\pi\)
\(30\) 0 0
\(31\) −286.969 −1.66262 −0.831310 0.555809i \(-0.812409\pi\)
−0.831310 + 0.555809i \(0.812409\pi\)
\(32\) 0 0
\(33\) −141.576 −0.746822
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) 59.7571 0.265514 0.132757 0.991149i \(-0.457617\pi\)
0.132757 + 0.991149i \(0.457617\pi\)
\(38\) 0 0
\(39\) 164.969 0.677340
\(40\) 0 0
\(41\) −293.192 −1.11680 −0.558401 0.829571i \(-0.688585\pi\)
−0.558401 + 0.829571i \(0.688585\pi\)
\(42\) 0 0
\(43\) 355.373 1.26032 0.630162 0.776464i \(-0.282988\pi\)
0.630162 + 0.776464i \(0.282988\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 0 0
\(47\) 498.606 1.54743 0.773715 0.633534i \(-0.218396\pi\)
0.773715 + 0.633534i \(0.218396\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 39.0306 0.107164
\(52\) 0 0
\(53\) −424.706 −1.10071 −0.550357 0.834929i \(-0.685508\pi\)
−0.550357 + 0.834929i \(0.685508\pi\)
\(54\) 0 0
\(55\) 235.959 0.578486
\(56\) 0 0
\(57\) 363.514 0.844713
\(58\) 0 0
\(59\) −161.212 −0.355730 −0.177865 0.984055i \(-0.556919\pi\)
−0.177865 + 0.984055i \(0.556919\pi\)
\(60\) 0 0
\(61\) −720.929 −1.51320 −0.756602 0.653876i \(-0.773142\pi\)
−0.756602 + 0.653876i \(0.773142\pi\)
\(62\) 0 0
\(63\) −63.0000 −0.125988
\(64\) 0 0
\(65\) −274.949 −0.524665
\(66\) 0 0
\(67\) 316.908 0.577858 0.288929 0.957351i \(-0.406701\pi\)
0.288929 + 0.957351i \(0.406701\pi\)
\(68\) 0 0
\(69\) −437.394 −0.763131
\(70\) 0 0
\(71\) −390.969 −0.653514 −0.326757 0.945108i \(-0.605956\pi\)
−0.326757 + 0.945108i \(0.605956\pi\)
\(72\) 0 0
\(73\) −1045.70 −1.67657 −0.838284 0.545234i \(-0.816441\pi\)
−0.838284 + 0.545234i \(0.816441\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) −330.343 −0.488910
\(78\) 0 0
\(79\) −968.727 −1.37962 −0.689812 0.723989i \(-0.742307\pi\)
−0.689812 + 0.723989i \(0.742307\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 454.624 0.601223 0.300612 0.953747i \(-0.402809\pi\)
0.300612 + 0.953747i \(0.402809\pi\)
\(84\) 0 0
\(85\) −65.0510 −0.0830091
\(86\) 0 0
\(87\) −478.059 −0.589119
\(88\) 0 0
\(89\) −352.343 −0.419643 −0.209822 0.977740i \(-0.567288\pi\)
−0.209822 + 0.977740i \(0.567288\pi\)
\(90\) 0 0
\(91\) 384.929 0.443423
\(92\) 0 0
\(93\) 860.908 0.959914
\(94\) 0 0
\(95\) −605.857 −0.654312
\(96\) 0 0
\(97\) 969.614 1.01494 0.507471 0.861669i \(-0.330580\pi\)
0.507471 + 0.861669i \(0.330580\pi\)
\(98\) 0 0
\(99\) 424.727 0.431178
\(100\) 0 0
\(101\) −396.061 −0.390194 −0.195097 0.980784i \(-0.562502\pi\)
−0.195097 + 0.980784i \(0.562502\pi\)
\(102\) 0 0
\(103\) 870.220 0.832479 0.416240 0.909255i \(-0.363348\pi\)
0.416240 + 0.909255i \(0.363348\pi\)
\(104\) 0 0
\(105\) 105.000 0.0975900
\(106\) 0 0
\(107\) −179.010 −0.161734 −0.0808671 0.996725i \(-0.525769\pi\)
−0.0808671 + 0.996725i \(0.525769\pi\)
\(108\) 0 0
\(109\) −1972.26 −1.73310 −0.866552 0.499087i \(-0.833669\pi\)
−0.866552 + 0.499087i \(0.833669\pi\)
\(110\) 0 0
\(111\) −179.271 −0.153295
\(112\) 0 0
\(113\) −1574.85 −1.31106 −0.655528 0.755171i \(-0.727554\pi\)
−0.655528 + 0.755171i \(0.727554\pi\)
\(114\) 0 0
\(115\) 728.990 0.591119
\(116\) 0 0
\(117\) −494.908 −0.391062
\(118\) 0 0
\(119\) 91.0714 0.0701555
\(120\) 0 0
\(121\) 896.069 0.673230
\(122\) 0 0
\(123\) 879.576 0.644786
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −2684.36 −1.87558 −0.937789 0.347206i \(-0.887130\pi\)
−0.937789 + 0.347206i \(0.887130\pi\)
\(128\) 0 0
\(129\) −1066.12 −0.727649
\(130\) 0 0
\(131\) −1956.08 −1.30461 −0.652304 0.757957i \(-0.726197\pi\)
−0.652304 + 0.757957i \(0.726197\pi\)
\(132\) 0 0
\(133\) 848.200 0.552994
\(134\) 0 0
\(135\) −135.000 −0.0860663
\(136\) 0 0
\(137\) 296.624 0.184981 0.0924903 0.995714i \(-0.470517\pi\)
0.0924903 + 0.995714i \(0.470517\pi\)
\(138\) 0 0
\(139\) −1347.35 −0.822164 −0.411082 0.911598i \(-0.634849\pi\)
−0.411082 + 0.911598i \(0.634849\pi\)
\(140\) 0 0
\(141\) −1495.82 −0.893409
\(142\) 0 0
\(143\) −2595.07 −1.51756
\(144\) 0 0
\(145\) 796.765 0.456329
\(146\) 0 0
\(147\) −147.000 −0.0824786
\(148\) 0 0
\(149\) −448.447 −0.246565 −0.123283 0.992372i \(-0.539342\pi\)
−0.123283 + 0.992372i \(0.539342\pi\)
\(150\) 0 0
\(151\) 2846.54 1.53409 0.767046 0.641592i \(-0.221726\pi\)
0.767046 + 0.641592i \(0.221726\pi\)
\(152\) 0 0
\(153\) −117.092 −0.0618713
\(154\) 0 0
\(155\) −1434.85 −0.743546
\(156\) 0 0
\(157\) −1691.07 −0.859630 −0.429815 0.902917i \(-0.641421\pi\)
−0.429815 + 0.902917i \(0.641421\pi\)
\(158\) 0 0
\(159\) 1274.12 0.635498
\(160\) 0 0
\(161\) −1020.59 −0.499586
\(162\) 0 0
\(163\) −2468.50 −1.18618 −0.593092 0.805135i \(-0.702093\pi\)
−0.593092 + 0.805135i \(0.702093\pi\)
\(164\) 0 0
\(165\) −707.878 −0.333989
\(166\) 0 0
\(167\) 48.8265 0.0226246 0.0113123 0.999936i \(-0.496399\pi\)
0.0113123 + 0.999936i \(0.496399\pi\)
\(168\) 0 0
\(169\) 826.878 0.376367
\(170\) 0 0
\(171\) −1090.54 −0.487695
\(172\) 0 0
\(173\) −1075.62 −0.472703 −0.236351 0.971668i \(-0.575952\pi\)
−0.236351 + 0.971668i \(0.575952\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 483.637 0.205381
\(178\) 0 0
\(179\) 2098.34 0.876187 0.438094 0.898929i \(-0.355654\pi\)
0.438094 + 0.898929i \(0.355654\pi\)
\(180\) 0 0
\(181\) −4233.81 −1.73866 −0.869328 0.494236i \(-0.835448\pi\)
−0.869328 + 0.494236i \(0.835448\pi\)
\(182\) 0 0
\(183\) 2162.79 0.873649
\(184\) 0 0
\(185\) 298.786 0.118741
\(186\) 0 0
\(187\) −613.975 −0.240098
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 1199.53 0.454425 0.227212 0.973845i \(-0.427039\pi\)
0.227212 + 0.973845i \(0.427039\pi\)
\(192\) 0 0
\(193\) −2403.61 −0.896455 −0.448227 0.893920i \(-0.647945\pi\)
−0.448227 + 0.893920i \(0.647945\pi\)
\(194\) 0 0
\(195\) 824.847 0.302915
\(196\) 0 0
\(197\) −3547.57 −1.28301 −0.641507 0.767117i \(-0.721690\pi\)
−0.641507 + 0.767117i \(0.721690\pi\)
\(198\) 0 0
\(199\) 4727.32 1.68398 0.841988 0.539497i \(-0.181385\pi\)
0.841988 + 0.539497i \(0.181385\pi\)
\(200\) 0 0
\(201\) −950.724 −0.333627
\(202\) 0 0
\(203\) −1115.47 −0.385669
\(204\) 0 0
\(205\) −1465.96 −0.499449
\(206\) 0 0
\(207\) 1312.18 0.440594
\(208\) 0 0
\(209\) −5718.30 −1.89255
\(210\) 0 0
\(211\) −1961.86 −0.640094 −0.320047 0.947402i \(-0.603699\pi\)
−0.320047 + 0.947402i \(0.603699\pi\)
\(212\) 0 0
\(213\) 1172.91 0.377307
\(214\) 0 0
\(215\) 1776.87 0.563634
\(216\) 0 0
\(217\) 2008.79 0.628411
\(218\) 0 0
\(219\) 3137.09 0.967967
\(220\) 0 0
\(221\) 715.429 0.217760
\(222\) 0 0
\(223\) −1872.81 −0.562388 −0.281194 0.959651i \(-0.590730\pi\)
−0.281194 + 0.959651i \(0.590730\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) 6346.49 1.85565 0.927823 0.373021i \(-0.121678\pi\)
0.927823 + 0.373021i \(0.121678\pi\)
\(228\) 0 0
\(229\) 5470.66 1.57865 0.789327 0.613973i \(-0.210430\pi\)
0.789327 + 0.613973i \(0.210430\pi\)
\(230\) 0 0
\(231\) 991.029 0.282272
\(232\) 0 0
\(233\) −2202.27 −0.619209 −0.309605 0.950865i \(-0.600197\pi\)
−0.309605 + 0.950865i \(0.600197\pi\)
\(234\) 0 0
\(235\) 2493.03 0.692031
\(236\) 0 0
\(237\) 2906.18 0.796526
\(238\) 0 0
\(239\) −7195.97 −1.94757 −0.973784 0.227474i \(-0.926953\pi\)
−0.973784 + 0.227474i \(0.926953\pi\)
\(240\) 0 0
\(241\) 1073.99 0.287062 0.143531 0.989646i \(-0.454154\pi\)
0.143531 + 0.989646i \(0.454154\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) 6663.19 1.71647
\(248\) 0 0
\(249\) −1363.87 −0.347116
\(250\) 0 0
\(251\) 3019.36 0.759283 0.379641 0.925134i \(-0.376047\pi\)
0.379641 + 0.925134i \(0.376047\pi\)
\(252\) 0 0
\(253\) 6880.47 1.70977
\(254\) 0 0
\(255\) 195.153 0.0479253
\(256\) 0 0
\(257\) −789.137 −0.191537 −0.0957685 0.995404i \(-0.530531\pi\)
−0.0957685 + 0.995404i \(0.530531\pi\)
\(258\) 0 0
\(259\) −418.300 −0.100355
\(260\) 0 0
\(261\) 1434.18 0.340128
\(262\) 0 0
\(263\) −1695.81 −0.397597 −0.198799 0.980040i \(-0.563704\pi\)
−0.198799 + 0.980040i \(0.563704\pi\)
\(264\) 0 0
\(265\) −2123.53 −0.492255
\(266\) 0 0
\(267\) 1057.03 0.242281
\(268\) 0 0
\(269\) 4534.24 1.02772 0.513861 0.857873i \(-0.328215\pi\)
0.513861 + 0.857873i \(0.328215\pi\)
\(270\) 0 0
\(271\) 1613.68 0.361712 0.180856 0.983510i \(-0.442113\pi\)
0.180856 + 0.983510i \(0.442113\pi\)
\(272\) 0 0
\(273\) −1154.79 −0.256010
\(274\) 0 0
\(275\) 1179.80 0.258707
\(276\) 0 0
\(277\) 7146.50 1.55015 0.775075 0.631869i \(-0.217712\pi\)
0.775075 + 0.631869i \(0.217712\pi\)
\(278\) 0 0
\(279\) −2582.72 −0.554207
\(280\) 0 0
\(281\) −156.874 −0.0333035 −0.0166518 0.999861i \(-0.505301\pi\)
−0.0166518 + 0.999861i \(0.505301\pi\)
\(282\) 0 0
\(283\) −431.151 −0.0905628 −0.0452814 0.998974i \(-0.514418\pi\)
−0.0452814 + 0.998974i \(0.514418\pi\)
\(284\) 0 0
\(285\) 1817.57 0.377767
\(286\) 0 0
\(287\) 2052.34 0.422111
\(288\) 0 0
\(289\) −4743.73 −0.965547
\(290\) 0 0
\(291\) −2908.84 −0.585977
\(292\) 0 0
\(293\) 2891.45 0.576520 0.288260 0.957552i \(-0.406923\pi\)
0.288260 + 0.957552i \(0.406923\pi\)
\(294\) 0 0
\(295\) −806.061 −0.159087
\(296\) 0 0
\(297\) −1274.18 −0.248941
\(298\) 0 0
\(299\) −8017.40 −1.55070
\(300\) 0 0
\(301\) −2487.61 −0.476358
\(302\) 0 0
\(303\) 1188.18 0.225278
\(304\) 0 0
\(305\) −3604.64 −0.676725
\(306\) 0 0
\(307\) 6735.27 1.25212 0.626062 0.779773i \(-0.284666\pi\)
0.626062 + 0.779773i \(0.284666\pi\)
\(308\) 0 0
\(309\) −2610.66 −0.480632
\(310\) 0 0
\(311\) −7984.07 −1.45574 −0.727869 0.685716i \(-0.759489\pi\)
−0.727869 + 0.685716i \(0.759489\pi\)
\(312\) 0 0
\(313\) 195.994 0.0353937 0.0176968 0.999843i \(-0.494367\pi\)
0.0176968 + 0.999843i \(0.494367\pi\)
\(314\) 0 0
\(315\) −315.000 −0.0563436
\(316\) 0 0
\(317\) 7615.69 1.34934 0.674669 0.738121i \(-0.264286\pi\)
0.674669 + 0.738121i \(0.264286\pi\)
\(318\) 0 0
\(319\) 7520.16 1.31990
\(320\) 0 0
\(321\) 537.031 0.0933773
\(322\) 0 0
\(323\) 1576.47 0.271569
\(324\) 0 0
\(325\) −1374.74 −0.234637
\(326\) 0 0
\(327\) 5916.78 1.00061
\(328\) 0 0
\(329\) −3490.24 −0.584873
\(330\) 0 0
\(331\) −4143.51 −0.688061 −0.344030 0.938959i \(-0.611792\pi\)
−0.344030 + 0.938959i \(0.611792\pi\)
\(332\) 0 0
\(333\) 537.814 0.0885046
\(334\) 0 0
\(335\) 1584.54 0.258426
\(336\) 0 0
\(337\) 497.963 0.0804920 0.0402460 0.999190i \(-0.487186\pi\)
0.0402460 + 0.999190i \(0.487186\pi\)
\(338\) 0 0
\(339\) 4724.55 0.756939
\(340\) 0 0
\(341\) −13542.6 −2.15066
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −2186.97 −0.341283
\(346\) 0 0
\(347\) 3285.68 0.508313 0.254156 0.967163i \(-0.418202\pi\)
0.254156 + 0.967163i \(0.418202\pi\)
\(348\) 0 0
\(349\) −406.377 −0.0623292 −0.0311646 0.999514i \(-0.509922\pi\)
−0.0311646 + 0.999514i \(0.509922\pi\)
\(350\) 0 0
\(351\) 1484.72 0.225780
\(352\) 0 0
\(353\) −4286.74 −0.646346 −0.323173 0.946340i \(-0.604749\pi\)
−0.323173 + 0.946340i \(0.604749\pi\)
\(354\) 0 0
\(355\) −1954.85 −0.292261
\(356\) 0 0
\(357\) −273.214 −0.0405043
\(358\) 0 0
\(359\) 4524.65 0.665187 0.332594 0.943070i \(-0.392076\pi\)
0.332594 + 0.943070i \(0.392076\pi\)
\(360\) 0 0
\(361\) 7823.51 1.14062
\(362\) 0 0
\(363\) −2688.21 −0.388690
\(364\) 0 0
\(365\) −5228.48 −0.749784
\(366\) 0 0
\(367\) −643.678 −0.0915523 −0.0457762 0.998952i \(-0.514576\pi\)
−0.0457762 + 0.998952i \(0.514576\pi\)
\(368\) 0 0
\(369\) −2638.73 −0.372267
\(370\) 0 0
\(371\) 2972.94 0.416031
\(372\) 0 0
\(373\) 5980.51 0.830185 0.415093 0.909779i \(-0.363749\pi\)
0.415093 + 0.909779i \(0.363749\pi\)
\(374\) 0 0
\(375\) −375.000 −0.0516398
\(376\) 0 0
\(377\) −8762.79 −1.19710
\(378\) 0 0
\(379\) 9531.01 1.29176 0.645878 0.763441i \(-0.276492\pi\)
0.645878 + 0.763441i \(0.276492\pi\)
\(380\) 0 0
\(381\) 8053.08 1.08287
\(382\) 0 0
\(383\) 5683.65 0.758279 0.379140 0.925339i \(-0.376220\pi\)
0.379140 + 0.925339i \(0.376220\pi\)
\(384\) 0 0
\(385\) −1651.71 −0.218647
\(386\) 0 0
\(387\) 3198.36 0.420108
\(388\) 0 0
\(389\) 12787.0 1.66665 0.833323 0.552787i \(-0.186436\pi\)
0.833323 + 0.552787i \(0.186436\pi\)
\(390\) 0 0
\(391\) −1896.86 −0.245341
\(392\) 0 0
\(393\) 5868.24 0.753216
\(394\) 0 0
\(395\) −4843.63 −0.616986
\(396\) 0 0
\(397\) −84.7735 −0.0107170 −0.00535852 0.999986i \(-0.501706\pi\)
−0.00535852 + 0.999986i \(0.501706\pi\)
\(398\) 0 0
\(399\) −2544.60 −0.319272
\(400\) 0 0
\(401\) −2166.77 −0.269834 −0.134917 0.990857i \(-0.543077\pi\)
−0.134917 + 0.990857i \(0.543077\pi\)
\(402\) 0 0
\(403\) 15780.4 1.95056
\(404\) 0 0
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) 2820.05 0.343451
\(408\) 0 0
\(409\) 14072.1 1.70127 0.850635 0.525757i \(-0.176218\pi\)
0.850635 + 0.525757i \(0.176218\pi\)
\(410\) 0 0
\(411\) −889.873 −0.106799
\(412\) 0 0
\(413\) 1128.49 0.134453
\(414\) 0 0
\(415\) 2273.12 0.268875
\(416\) 0 0
\(417\) 4042.05 0.474677
\(418\) 0 0
\(419\) 14548.4 1.69627 0.848133 0.529783i \(-0.177726\pi\)
0.848133 + 0.529783i \(0.177726\pi\)
\(420\) 0 0
\(421\) −11270.5 −1.30473 −0.652364 0.757905i \(-0.726223\pi\)
−0.652364 + 0.757905i \(0.726223\pi\)
\(422\) 0 0
\(423\) 4487.46 0.515810
\(424\) 0 0
\(425\) −325.255 −0.0371228
\(426\) 0 0
\(427\) 5046.50 0.571937
\(428\) 0 0
\(429\) 7785.21 0.876162
\(430\) 0 0
\(431\) −13711.3 −1.53236 −0.766182 0.642623i \(-0.777846\pi\)
−0.766182 + 0.642623i \(0.777846\pi\)
\(432\) 0 0
\(433\) −2459.18 −0.272935 −0.136467 0.990645i \(-0.543575\pi\)
−0.136467 + 0.990645i \(0.543575\pi\)
\(434\) 0 0
\(435\) −2390.30 −0.263462
\(436\) 0 0
\(437\) −17666.5 −1.93388
\(438\) 0 0
\(439\) −12562.0 −1.36572 −0.682860 0.730549i \(-0.739264\pi\)
−0.682860 + 0.730549i \(0.739264\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) −8985.09 −0.963644 −0.481822 0.876269i \(-0.660025\pi\)
−0.481822 + 0.876269i \(0.660025\pi\)
\(444\) 0 0
\(445\) −1761.71 −0.187670
\(446\) 0 0
\(447\) 1345.34 0.142354
\(448\) 0 0
\(449\) −7814.36 −0.821341 −0.410671 0.911784i \(-0.634705\pi\)
−0.410671 + 0.911784i \(0.634705\pi\)
\(450\) 0 0
\(451\) −13836.3 −1.44462
\(452\) 0 0
\(453\) −8539.62 −0.885709
\(454\) 0 0
\(455\) 1924.64 0.198305
\(456\) 0 0
\(457\) 5783.38 0.591980 0.295990 0.955191i \(-0.404350\pi\)
0.295990 + 0.955191i \(0.404350\pi\)
\(458\) 0 0
\(459\) 351.276 0.0357214
\(460\) 0 0
\(461\) −3169.08 −0.320171 −0.160086 0.987103i \(-0.551177\pi\)
−0.160086 + 0.987103i \(0.551177\pi\)
\(462\) 0 0
\(463\) −19069.3 −1.91409 −0.957045 0.289941i \(-0.906364\pi\)
−0.957045 + 0.289941i \(0.906364\pi\)
\(464\) 0 0
\(465\) 4304.54 0.429287
\(466\) 0 0
\(467\) 19764.9 1.95848 0.979239 0.202707i \(-0.0649739\pi\)
0.979239 + 0.202707i \(0.0649739\pi\)
\(468\) 0 0
\(469\) −2218.36 −0.218410
\(470\) 0 0
\(471\) 5073.20 0.496307
\(472\) 0 0
\(473\) 16770.7 1.63027
\(474\) 0 0
\(475\) −3029.29 −0.292617
\(476\) 0 0
\(477\) −3822.36 −0.366905
\(478\) 0 0
\(479\) 5303.50 0.505894 0.252947 0.967480i \(-0.418600\pi\)
0.252947 + 0.967480i \(0.418600\pi\)
\(480\) 0 0
\(481\) −3286.03 −0.311497
\(482\) 0 0
\(483\) 3061.76 0.288436
\(484\) 0 0
\(485\) 4848.07 0.453896
\(486\) 0 0
\(487\) −11565.7 −1.07616 −0.538081 0.842893i \(-0.680851\pi\)
−0.538081 + 0.842893i \(0.680851\pi\)
\(488\) 0 0
\(489\) 7405.50 0.684843
\(490\) 0 0
\(491\) 11837.5 1.08803 0.544013 0.839077i \(-0.316904\pi\)
0.544013 + 0.839077i \(0.316904\pi\)
\(492\) 0 0
\(493\) −2073.22 −0.189397
\(494\) 0 0
\(495\) 2123.63 0.192829
\(496\) 0 0
\(497\) 2736.79 0.247005
\(498\) 0 0
\(499\) 14408.7 1.29263 0.646314 0.763071i \(-0.276309\pi\)
0.646314 + 0.763071i \(0.276309\pi\)
\(500\) 0 0
\(501\) −146.480 −0.0130623
\(502\) 0 0
\(503\) −3333.20 −0.295467 −0.147734 0.989027i \(-0.547198\pi\)
−0.147734 + 0.989027i \(0.547198\pi\)
\(504\) 0 0
\(505\) −1980.31 −0.174500
\(506\) 0 0
\(507\) −2480.63 −0.217295
\(508\) 0 0
\(509\) −15270.2 −1.32974 −0.664871 0.746958i \(-0.731514\pi\)
−0.664871 + 0.746958i \(0.731514\pi\)
\(510\) 0 0
\(511\) 7319.87 0.633683
\(512\) 0 0
\(513\) 3271.63 0.281571
\(514\) 0 0
\(515\) 4351.10 0.372296
\(516\) 0 0
\(517\) 23530.1 2.00165
\(518\) 0 0
\(519\) 3226.85 0.272915
\(520\) 0 0
\(521\) −10683.9 −0.898410 −0.449205 0.893429i \(-0.648293\pi\)
−0.449205 + 0.893429i \(0.648293\pi\)
\(522\) 0 0
\(523\) −2376.98 −0.198735 −0.0993673 0.995051i \(-0.531682\pi\)
−0.0993673 + 0.995051i \(0.531682\pi\)
\(524\) 0 0
\(525\) 525.000 0.0436436
\(526\) 0 0
\(527\) 3733.53 0.308606
\(528\) 0 0
\(529\) 9090.04 0.747107
\(530\) 0 0
\(531\) −1450.91 −0.118577
\(532\) 0 0
\(533\) 16122.6 1.31022
\(534\) 0 0
\(535\) −895.051 −0.0723298
\(536\) 0 0
\(537\) −6295.03 −0.505867
\(538\) 0 0
\(539\) 2312.40 0.184791
\(540\) 0 0
\(541\) 14797.6 1.17597 0.587986 0.808871i \(-0.299921\pi\)
0.587986 + 0.808871i \(0.299921\pi\)
\(542\) 0 0
\(543\) 12701.4 1.00381
\(544\) 0 0
\(545\) −9861.31 −0.775068
\(546\) 0 0
\(547\) 11757.1 0.919006 0.459503 0.888176i \(-0.348028\pi\)
0.459503 + 0.888176i \(0.348028\pi\)
\(548\) 0 0
\(549\) −6488.36 −0.504401
\(550\) 0 0
\(551\) −19309.0 −1.49291
\(552\) 0 0
\(553\) 6781.09 0.521449
\(554\) 0 0
\(555\) −896.357 −0.0685554
\(556\) 0 0
\(557\) −18075.4 −1.37501 −0.687505 0.726179i \(-0.741294\pi\)
−0.687505 + 0.726179i \(0.741294\pi\)
\(558\) 0 0
\(559\) −19541.9 −1.47860
\(560\) 0 0
\(561\) 1841.93 0.138621
\(562\) 0 0
\(563\) 8061.61 0.603475 0.301737 0.953391i \(-0.402433\pi\)
0.301737 + 0.953391i \(0.402433\pi\)
\(564\) 0 0
\(565\) −7874.24 −0.586322
\(566\) 0 0
\(567\) −567.000 −0.0419961
\(568\) 0 0
\(569\) −330.559 −0.0243546 −0.0121773 0.999926i \(-0.503876\pi\)
−0.0121773 + 0.999926i \(0.503876\pi\)
\(570\) 0 0
\(571\) 9981.68 0.731559 0.365780 0.930701i \(-0.380802\pi\)
0.365780 + 0.930701i \(0.380802\pi\)
\(572\) 0 0
\(573\) −3598.60 −0.262362
\(574\) 0 0
\(575\) 3644.95 0.264356
\(576\) 0 0
\(577\) 24960.4 1.80090 0.900448 0.434964i \(-0.143239\pi\)
0.900448 + 0.434964i \(0.143239\pi\)
\(578\) 0 0
\(579\) 7210.84 0.517568
\(580\) 0 0
\(581\) −3182.37 −0.227241
\(582\) 0 0
\(583\) −20042.7 −1.42381
\(584\) 0 0
\(585\) −2474.54 −0.174888
\(586\) 0 0
\(587\) −24359.7 −1.71283 −0.856415 0.516288i \(-0.827313\pi\)
−0.856415 + 0.516288i \(0.827313\pi\)
\(588\) 0 0
\(589\) 34772.5 2.43256
\(590\) 0 0
\(591\) 10642.7 0.740748
\(592\) 0 0
\(593\) −1046.62 −0.0724780 −0.0362390 0.999343i \(-0.511538\pi\)
−0.0362390 + 0.999343i \(0.511538\pi\)
\(594\) 0 0
\(595\) 455.357 0.0313745
\(596\) 0 0
\(597\) −14182.0 −0.972244
\(598\) 0 0
\(599\) −13879.2 −0.946727 −0.473364 0.880867i \(-0.656960\pi\)
−0.473364 + 0.880867i \(0.656960\pi\)
\(600\) 0 0
\(601\) −433.702 −0.0294361 −0.0147180 0.999892i \(-0.504685\pi\)
−0.0147180 + 0.999892i \(0.504685\pi\)
\(602\) 0 0
\(603\) 2852.17 0.192619
\(604\) 0 0
\(605\) 4480.35 0.301078
\(606\) 0 0
\(607\) −22916.0 −1.53234 −0.766169 0.642639i \(-0.777840\pi\)
−0.766169 + 0.642639i \(0.777840\pi\)
\(608\) 0 0
\(609\) 3346.41 0.222666
\(610\) 0 0
\(611\) −27418.2 −1.81542
\(612\) 0 0
\(613\) −742.986 −0.0489542 −0.0244771 0.999700i \(-0.507792\pi\)
−0.0244771 + 0.999700i \(0.507792\pi\)
\(614\) 0 0
\(615\) 4397.88 0.288357
\(616\) 0 0
\(617\) −18919.9 −1.23450 −0.617252 0.786766i \(-0.711754\pi\)
−0.617252 + 0.786766i \(0.711754\pi\)
\(618\) 0 0
\(619\) −10500.0 −0.681791 −0.340896 0.940101i \(-0.610730\pi\)
−0.340896 + 0.940101i \(0.610730\pi\)
\(620\) 0 0
\(621\) −3936.54 −0.254377
\(622\) 0 0
\(623\) 2466.40 0.158610
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 17154.9 1.09267
\(628\) 0 0
\(629\) −777.453 −0.0492831
\(630\) 0 0
\(631\) −8462.27 −0.533879 −0.266940 0.963713i \(-0.586012\pi\)
−0.266940 + 0.963713i \(0.586012\pi\)
\(632\) 0 0
\(633\) 5885.57 0.369558
\(634\) 0 0
\(635\) −13421.8 −0.838784
\(636\) 0 0
\(637\) −2694.50 −0.167598
\(638\) 0 0
\(639\) −3518.72 −0.217838
\(640\) 0 0
\(641\) −1454.86 −0.0896468 −0.0448234 0.998995i \(-0.514273\pi\)
−0.0448234 + 0.998995i \(0.514273\pi\)
\(642\) 0 0
\(643\) −6402.64 −0.392683 −0.196342 0.980536i \(-0.562906\pi\)
−0.196342 + 0.980536i \(0.562906\pi\)
\(644\) 0 0
\(645\) −5330.60 −0.325414
\(646\) 0 0
\(647\) 22610.4 1.37389 0.686946 0.726708i \(-0.258951\pi\)
0.686946 + 0.726708i \(0.258951\pi\)
\(648\) 0 0
\(649\) −7607.90 −0.460148
\(650\) 0 0
\(651\) −6026.36 −0.362813
\(652\) 0 0
\(653\) 19767.7 1.18464 0.592319 0.805704i \(-0.298213\pi\)
0.592319 + 0.805704i \(0.298213\pi\)
\(654\) 0 0
\(655\) −9780.41 −0.583438
\(656\) 0 0
\(657\) −9411.26 −0.558856
\(658\) 0 0
\(659\) −10127.1 −0.598630 −0.299315 0.954154i \(-0.596758\pi\)
−0.299315 + 0.954154i \(0.596758\pi\)
\(660\) 0 0
\(661\) 10454.7 0.615192 0.307596 0.951517i \(-0.400476\pi\)
0.307596 + 0.951517i \(0.400476\pi\)
\(662\) 0 0
\(663\) −2146.29 −0.125724
\(664\) 0 0
\(665\) 4241.00 0.247307
\(666\) 0 0
\(667\) 23233.4 1.34872
\(668\) 0 0
\(669\) 5618.42 0.324695
\(670\) 0 0
\(671\) −34021.9 −1.95738
\(672\) 0 0
\(673\) −6038.29 −0.345853 −0.172927 0.984935i \(-0.555322\pi\)
−0.172927 + 0.984935i \(0.555322\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) 8055.89 0.457331 0.228666 0.973505i \(-0.426564\pi\)
0.228666 + 0.973505i \(0.426564\pi\)
\(678\) 0 0
\(679\) −6787.30 −0.383612
\(680\) 0 0
\(681\) −19039.5 −1.07136
\(682\) 0 0
\(683\) 23195.9 1.29951 0.649757 0.760142i \(-0.274871\pi\)
0.649757 + 0.760142i \(0.274871\pi\)
\(684\) 0 0
\(685\) 1483.12 0.0827258
\(686\) 0 0
\(687\) −16412.0 −0.911436
\(688\) 0 0
\(689\) 23354.5 1.29134
\(690\) 0 0
\(691\) −9896.53 −0.544836 −0.272418 0.962179i \(-0.587823\pi\)
−0.272418 + 0.962179i \(0.587823\pi\)
\(692\) 0 0
\(693\) −2973.09 −0.162970
\(694\) 0 0
\(695\) −6736.75 −0.367683
\(696\) 0 0
\(697\) 3814.49 0.207294
\(698\) 0 0
\(699\) 6606.82 0.357501
\(700\) 0 0
\(701\) −20459.5 −1.10234 −0.551172 0.834391i \(-0.685819\pi\)
−0.551172 + 0.834391i \(0.685819\pi\)
\(702\) 0 0
\(703\) −7240.86 −0.388470
\(704\) 0 0
\(705\) −7479.09 −0.399545
\(706\) 0 0
\(707\) 2772.43 0.147479
\(708\) 0 0
\(709\) −26221.8 −1.38897 −0.694485 0.719507i \(-0.744368\pi\)
−0.694485 + 0.719507i \(0.744368\pi\)
\(710\) 0 0
\(711\) −8718.54 −0.459874
\(712\) 0 0
\(713\) −41839.6 −2.19762
\(714\) 0 0
\(715\) −12975.3 −0.678672
\(716\) 0 0
\(717\) 21587.9 1.12443
\(718\) 0 0
\(719\) 6875.76 0.356638 0.178319 0.983973i \(-0.442934\pi\)
0.178319 + 0.983973i \(0.442934\pi\)
\(720\) 0 0
\(721\) −6091.54 −0.314648
\(722\) 0 0
\(723\) −3221.98 −0.165735
\(724\) 0 0
\(725\) 3983.83 0.204077
\(726\) 0 0
\(727\) 30650.8 1.56365 0.781825 0.623497i \(-0.214289\pi\)
0.781825 + 0.623497i \(0.214289\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −4623.48 −0.233934
\(732\) 0 0
\(733\) −17526.1 −0.883138 −0.441569 0.897227i \(-0.645578\pi\)
−0.441569 + 0.897227i \(0.645578\pi\)
\(734\) 0 0
\(735\) −735.000 −0.0368856
\(736\) 0 0
\(737\) 14955.5 0.747479
\(738\) 0 0
\(739\) 2894.14 0.144063 0.0720316 0.997402i \(-0.477052\pi\)
0.0720316 + 0.997402i \(0.477052\pi\)
\(740\) 0 0
\(741\) −19989.6 −0.991006
\(742\) 0 0
\(743\) −37962.8 −1.87445 −0.937227 0.348720i \(-0.886616\pi\)
−0.937227 + 0.348720i \(0.886616\pi\)
\(744\) 0 0
\(745\) −2242.23 −0.110267
\(746\) 0 0
\(747\) 4091.62 0.200408
\(748\) 0 0
\(749\) 1253.07 0.0611298
\(750\) 0 0
\(751\) −7549.90 −0.366844 −0.183422 0.983034i \(-0.558717\pi\)
−0.183422 + 0.983034i \(0.558717\pi\)
\(752\) 0 0
\(753\) −9058.07 −0.438372
\(754\) 0 0
\(755\) 14232.7 0.686067
\(756\) 0 0
\(757\) 9984.20 0.479369 0.239684 0.970851i \(-0.422956\pi\)
0.239684 + 0.970851i \(0.422956\pi\)
\(758\) 0 0
\(759\) −20641.4 −0.987136
\(760\) 0 0
\(761\) 5804.62 0.276501 0.138251 0.990397i \(-0.455852\pi\)
0.138251 + 0.990397i \(0.455852\pi\)
\(762\) 0 0
\(763\) 13805.8 0.655052
\(764\) 0 0
\(765\) −585.459 −0.0276697
\(766\) 0 0
\(767\) 8865.03 0.417337
\(768\) 0 0
\(769\) 20782.5 0.974560 0.487280 0.873246i \(-0.337989\pi\)
0.487280 + 0.873246i \(0.337989\pi\)
\(770\) 0 0
\(771\) 2367.41 0.110584
\(772\) 0 0
\(773\) 40998.7 1.90766 0.953829 0.300349i \(-0.0971033\pi\)
0.953829 + 0.300349i \(0.0971033\pi\)
\(774\) 0 0
\(775\) −7174.23 −0.332524
\(776\) 0 0
\(777\) 1254.90 0.0579399
\(778\) 0 0
\(779\) 35526.5 1.63398
\(780\) 0 0
\(781\) −18450.6 −0.845343
\(782\) 0 0
\(783\) −4302.53 −0.196373
\(784\) 0 0
\(785\) −8455.34 −0.384438
\(786\) 0 0
\(787\) −33578.0 −1.52087 −0.760436 0.649413i \(-0.775015\pi\)
−0.760436 + 0.649413i \(0.775015\pi\)
\(788\) 0 0
\(789\) 5087.43 0.229553
\(790\) 0 0
\(791\) 11023.9 0.495533
\(792\) 0 0
\(793\) 39643.7 1.77527
\(794\) 0 0
\(795\) 6370.59 0.284203
\(796\) 0 0
\(797\) 12041.7 0.535181 0.267591 0.963533i \(-0.413773\pi\)
0.267591 + 0.963533i \(0.413773\pi\)
\(798\) 0 0
\(799\) −6486.97 −0.287225
\(800\) 0 0
\(801\) −3171.09 −0.139881
\(802\) 0 0
\(803\) −49348.3 −2.16870
\(804\) 0 0
\(805\) −5102.93 −0.223422
\(806\) 0 0
\(807\) −13602.7 −0.593356
\(808\) 0 0
\(809\) 14146.8 0.614801 0.307401 0.951580i \(-0.400541\pi\)
0.307401 + 0.951580i \(0.400541\pi\)
\(810\) 0 0
\(811\) −18899.6 −0.818318 −0.409159 0.912463i \(-0.634178\pi\)
−0.409159 + 0.912463i \(0.634178\pi\)
\(812\) 0 0
\(813\) −4841.04 −0.208835
\(814\) 0 0
\(815\) −12342.5 −0.530477
\(816\) 0 0
\(817\) −43061.1 −1.84396
\(818\) 0 0
\(819\) 3464.36 0.147808
\(820\) 0 0
\(821\) 11865.1 0.504378 0.252189 0.967678i \(-0.418850\pi\)
0.252189 + 0.967678i \(0.418850\pi\)
\(822\) 0 0
\(823\) −21936.6 −0.929116 −0.464558 0.885543i \(-0.653787\pi\)
−0.464558 + 0.885543i \(0.653787\pi\)
\(824\) 0 0
\(825\) −3539.39 −0.149364
\(826\) 0 0
\(827\) −16012.5 −0.673290 −0.336645 0.941632i \(-0.609292\pi\)
−0.336645 + 0.941632i \(0.609292\pi\)
\(828\) 0 0
\(829\) 29366.5 1.23033 0.615164 0.788399i \(-0.289090\pi\)
0.615164 + 0.788399i \(0.289090\pi\)
\(830\) 0 0
\(831\) −21439.5 −0.894980
\(832\) 0 0
\(833\) −637.500 −0.0265163
\(834\) 0 0
\(835\) 244.133 0.0101180
\(836\) 0 0
\(837\) 7748.17 0.319971
\(838\) 0 0
\(839\) 39833.0 1.63908 0.819540 0.573022i \(-0.194229\pi\)
0.819540 + 0.573022i \(0.194229\pi\)
\(840\) 0 0
\(841\) 1004.40 0.0411824
\(842\) 0 0
\(843\) 470.621 0.0192278
\(844\) 0 0
\(845\) 4134.39 0.168316
\(846\) 0 0
\(847\) −6272.49 −0.254457
\(848\) 0 0
\(849\) 1293.45 0.0522864
\(850\) 0 0
\(851\) 8712.47 0.350951
\(852\) 0 0
\(853\) −13635.3 −0.547321 −0.273660 0.961826i \(-0.588234\pi\)
−0.273660 + 0.961826i \(0.588234\pi\)
\(854\) 0 0
\(855\) −5452.71 −0.218104
\(856\) 0 0
\(857\) 41890.0 1.66970 0.834851 0.550476i \(-0.185554\pi\)
0.834851 + 0.550476i \(0.185554\pi\)
\(858\) 0 0
\(859\) −42883.1 −1.70332 −0.851661 0.524093i \(-0.824405\pi\)
−0.851661 + 0.524093i \(0.824405\pi\)
\(860\) 0 0
\(861\) −6157.03 −0.243706
\(862\) 0 0
\(863\) 33971.3 1.33997 0.669987 0.742373i \(-0.266300\pi\)
0.669987 + 0.742373i \(0.266300\pi\)
\(864\) 0 0
\(865\) −5378.08 −0.211399
\(866\) 0 0
\(867\) 14231.2 0.557459
\(868\) 0 0
\(869\) −45716.0 −1.78459
\(870\) 0 0
\(871\) −17426.7 −0.677935
\(872\) 0 0
\(873\) 8726.53 0.338314
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) −19300.5 −0.743138 −0.371569 0.928405i \(-0.621180\pi\)
−0.371569 + 0.928405i \(0.621180\pi\)
\(878\) 0 0
\(879\) −8674.35 −0.332854
\(880\) 0 0
\(881\) 13031.2 0.498332 0.249166 0.968461i \(-0.419843\pi\)
0.249166 + 0.968461i \(0.419843\pi\)
\(882\) 0 0
\(883\) −13752.4 −0.524127 −0.262063 0.965051i \(-0.584403\pi\)
−0.262063 + 0.965051i \(0.584403\pi\)
\(884\) 0 0
\(885\) 2418.18 0.0918490
\(886\) 0 0
\(887\) −30659.5 −1.16059 −0.580296 0.814406i \(-0.697063\pi\)
−0.580296 + 0.814406i \(0.697063\pi\)
\(888\) 0 0
\(889\) 18790.5 0.708902
\(890\) 0 0
\(891\) 3822.54 0.143726
\(892\) 0 0
\(893\) −60416.8 −2.26402
\(894\) 0 0
\(895\) 10491.7 0.391843
\(896\) 0 0
\(897\) 24052.2 0.895295
\(898\) 0 0
\(899\) −45729.4 −1.69651
\(900\) 0 0
\(901\) 5525.51 0.204308
\(902\) 0 0
\(903\) 7462.84 0.275025
\(904\) 0 0
\(905\) −21169.1 −0.777550
\(906\) 0 0
\(907\) 11692.5 0.428051 0.214026 0.976828i \(-0.431342\pi\)
0.214026 + 0.976828i \(0.431342\pi\)
\(908\) 0 0
\(909\) −3564.55 −0.130065
\(910\) 0 0
\(911\) −38683.3 −1.40685 −0.703423 0.710772i \(-0.748346\pi\)
−0.703423 + 0.710772i \(0.748346\pi\)
\(912\) 0 0
\(913\) 21454.6 0.777703
\(914\) 0 0
\(915\) 10813.9 0.390708
\(916\) 0 0
\(917\) 13692.6 0.493095
\(918\) 0 0
\(919\) −29118.2 −1.04518 −0.522590 0.852584i \(-0.675034\pi\)
−0.522590 + 0.852584i \(0.675034\pi\)
\(920\) 0 0
\(921\) −20205.8 −0.722914
\(922\) 0 0
\(923\) 21499.3 0.766694
\(924\) 0 0
\(925\) 1493.93 0.0531028
\(926\) 0 0
\(927\) 7831.98 0.277493
\(928\) 0 0
\(929\) 16538.1 0.584065 0.292032 0.956408i \(-0.405668\pi\)
0.292032 + 0.956408i \(0.405668\pi\)
\(930\) 0 0
\(931\) −5937.40 −0.209012
\(932\) 0 0
\(933\) 23952.2 0.840471
\(934\) 0 0
\(935\) −3069.88 −0.107375
\(936\) 0 0
\(937\) −18629.9 −0.649534 −0.324767 0.945794i \(-0.605286\pi\)
−0.324767 + 0.945794i \(0.605286\pi\)
\(938\) 0 0
\(939\) −587.981 −0.0204346
\(940\) 0 0
\(941\) −24466.7 −0.847598 −0.423799 0.905756i \(-0.639304\pi\)
−0.423799 + 0.905756i \(0.639304\pi\)
\(942\) 0 0
\(943\) −42746.8 −1.47617
\(944\) 0 0
\(945\) 945.000 0.0325300
\(946\) 0 0
\(947\) 14940.6 0.512676 0.256338 0.966587i \(-0.417484\pi\)
0.256338 + 0.966587i \(0.417484\pi\)
\(948\) 0 0
\(949\) 57502.6 1.96693
\(950\) 0 0
\(951\) −22847.1 −0.779040
\(952\) 0 0
\(953\) 17893.4 0.608211 0.304106 0.952638i \(-0.401642\pi\)
0.304106 + 0.952638i \(0.401642\pi\)
\(954\) 0 0
\(955\) 5997.66 0.203225
\(956\) 0 0
\(957\) −22560.5 −0.762045
\(958\) 0 0
\(959\) −2076.37 −0.0699161
\(960\) 0 0
\(961\) 52560.4 1.76431
\(962\) 0 0
\(963\) −1611.09 −0.0539114
\(964\) 0 0
\(965\) −12018.1 −0.400907
\(966\) 0 0
\(967\) 27889.3 0.927466 0.463733 0.885975i \(-0.346510\pi\)
0.463733 + 0.885975i \(0.346510\pi\)
\(968\) 0 0
\(969\) −4729.40 −0.156791
\(970\) 0 0
\(971\) 35825.1 1.18402 0.592009 0.805931i \(-0.298335\pi\)
0.592009 + 0.805931i \(0.298335\pi\)
\(972\) 0 0
\(973\) 9431.46 0.310749
\(974\) 0 0
\(975\) 4124.23 0.135468
\(976\) 0 0
\(977\) −15539.0 −0.508841 −0.254420 0.967094i \(-0.581885\pi\)
−0.254420 + 0.967094i \(0.581885\pi\)
\(978\) 0 0
\(979\) −16627.7 −0.542823
\(980\) 0 0
\(981\) −17750.4 −0.577701
\(982\) 0 0
\(983\) 12668.3 0.411043 0.205521 0.978653i \(-0.434111\pi\)
0.205521 + 0.978653i \(0.434111\pi\)
\(984\) 0 0
\(985\) −17737.8 −0.573781
\(986\) 0 0
\(987\) 10470.7 0.337677
\(988\) 0 0
\(989\) 51812.7 1.66587
\(990\) 0 0
\(991\) −42239.4 −1.35396 −0.676982 0.736000i \(-0.736712\pi\)
−0.676982 + 0.736000i \(0.736712\pi\)
\(992\) 0 0
\(993\) 12430.5 0.397252
\(994\) 0 0
\(995\) 23636.6 0.753097
\(996\) 0 0
\(997\) −28615.7 −0.908996 −0.454498 0.890748i \(-0.650181\pi\)
−0.454498 + 0.890748i \(0.650181\pi\)
\(998\) 0 0
\(999\) −1613.44 −0.0510982
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.4.a.i.1.2 2
4.3 odd 2 1680.4.a.bn.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.4.a.i.1.2 2 1.1 even 1 trivial
1680.4.a.bn.1.1 2 4.3 odd 2