Properties

Label 840.4.a.i
Level $840$
Weight $4$
Character orbit 840.a
Self dual yes
Analytic conductor $49.562$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,4,Mod(1,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,10,0,-14,0,18,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.5616044048\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + 5 q^{5} - 7 q^{7} + 9 q^{9} + (4 \beta + 8) q^{11} + ( - 5 \beta - 6) q^{13} - 15 q^{15} + (5 \beta - 62) q^{17} + ( - 14 \beta + 16) q^{19} + 21 q^{21} + (\beta + 136) q^{23} + 25 q^{25}+ \cdots + (36 \beta + 72) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 10 q^{5} - 14 q^{7} + 18 q^{9} + 16 q^{11} - 12 q^{13} - 30 q^{15} - 124 q^{17} + 32 q^{19} + 42 q^{21} + 272 q^{23} + 50 q^{25} - 54 q^{27} - 132 q^{29} - 280 q^{31} - 48 q^{33} - 70 q^{35}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.44949
2.44949
0 −3.00000 0 5.00000 0 −7.00000 0 9.00000 0
1.2 0 −3.00000 0 5.00000 0 −7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 840.4.a.i 2
4.b odd 2 1 1680.4.a.bn 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
840.4.a.i 2 1.a even 1 1 trivial
1680.4.a.bn 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{2} - 16T_{11} - 1472 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(840))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 16T - 1472 \) Copy content Toggle raw display
$13$ \( T^{2} + 12T - 2364 \) Copy content Toggle raw display
$17$ \( T^{2} + 124T + 1444 \) Copy content Toggle raw display
$19$ \( T^{2} - 32T - 18560 \) Copy content Toggle raw display
$23$ \( T^{2} - 272T + 18400 \) Copy content Toggle raw display
$29$ \( T^{2} + 132T - 46428 \) Copy content Toggle raw display
$31$ \( T^{2} + 280T - 2000 \) Copy content Toggle raw display
$37$ \( T^{2} + 292T - 21020 \) Copy content Toggle raw display
$41$ \( T^{2} + 508T + 62980 \) Copy content Toggle raw display
$43$ \( T^{2} - 456T + 35760 \) Copy content Toggle raw display
$47$ \( T^{2} - 1056 T + 277920 \) Copy content Toggle raw display
$53$ \( T^{2} - 52T - 202460 \) Copy content Toggle raw display
$59$ \( T^{2} + 440T + 44944 \) Copy content Toggle raw display
$61$ \( T^{2} + 756T + 25284 \) Copy content Toggle raw display
$67$ \( T^{2} + 248T - 179024 \) Copy content Toggle raw display
$71$ \( T^{2} + 488T + 37936 \) Copy content Toggle raw display
$73$ \( T^{2} + 1092T + 48420 \) Copy content Toggle raw display
$79$ \( T^{2} + 1232 T + 255040 \) Copy content Toggle raw display
$83$ \( T^{2} + 776T - 559472 \) Copy content Toggle raw display
$89$ \( T^{2} + 156T - 69180 \) Copy content Toggle raw display
$97$ \( T^{2} - 156T - 788892 \) Copy content Toggle raw display
show more
show less