Properties

Label 840.2.z.d.811.19
Level $840$
Weight $2$
Character 840.811
Analytic conductor $6.707$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(811,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.811"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.z (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,2,0,-2,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.19
Character \(\chi\) \(=\) 840.811
Dual form 840.2.z.d.811.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.818985 - 1.15294i) q^{2} +1.00000i q^{3} +(-0.658528 - 1.88848i) q^{4} +1.00000 q^{5} +(1.15294 + 0.818985i) q^{6} +(-0.864047 - 2.50068i) q^{7} +(-2.71662 - 0.787391i) q^{8} -1.00000 q^{9} +(0.818985 - 1.15294i) q^{10} -5.95444 q^{11} +(1.88848 - 0.658528i) q^{12} -3.87212 q^{13} +(-3.59077 - 1.05183i) q^{14} +1.00000i q^{15} +(-3.13268 + 2.48723i) q^{16} +2.66013i q^{17} +(-0.818985 + 1.15294i) q^{18} -6.21337i q^{19} +(-0.658528 - 1.88848i) q^{20} +(2.50068 - 0.864047i) q^{21} +(-4.87660 + 6.86510i) q^{22} -4.60261i q^{23} +(0.787391 - 2.71662i) q^{24} +1.00000 q^{25} +(-3.17121 + 4.46431i) q^{26} -1.00000i q^{27} +(-4.15348 + 3.27850i) q^{28} +0.579589i q^{29} +(1.15294 + 0.818985i) q^{30} +5.65561 q^{31} +(0.302000 + 5.64879i) q^{32} -5.95444i q^{33} +(3.06696 + 2.17860i) q^{34} +(-0.864047 - 2.50068i) q^{35} +(0.658528 + 1.88848i) q^{36} -2.21144i q^{37} +(-7.16362 - 5.08865i) q^{38} -3.87212i q^{39} +(-2.71662 - 0.787391i) q^{40} +5.75803i q^{41} +(1.05183 - 3.59077i) q^{42} +5.16410 q^{43} +(3.92117 + 11.2448i) q^{44} -1.00000 q^{45} +(-5.30653 - 3.76947i) q^{46} +5.39666 q^{47} +(-2.48723 - 3.13268i) q^{48} +(-5.50685 + 4.32142i) q^{49} +(0.818985 - 1.15294i) q^{50} -2.66013 q^{51} +(2.54990 + 7.31241i) q^{52} -10.3132i q^{53} +(-1.15294 - 0.818985i) q^{54} -5.95444 q^{55} +(0.378268 + 7.47375i) q^{56} +6.21337 q^{57} +(0.668230 + 0.474675i) q^{58} -10.7610i q^{59} +(1.88848 - 0.658528i) q^{60} -10.9463 q^{61} +(4.63185 - 6.52056i) q^{62} +(0.864047 + 2.50068i) q^{63} +(6.76003 + 4.27808i) q^{64} -3.87212 q^{65} +(-6.86510 - 4.87660i) q^{66} -10.0435 q^{67} +(5.02358 - 1.75177i) q^{68} +4.60261 q^{69} +(-3.59077 - 1.05183i) q^{70} -0.496099i q^{71} +(2.71662 + 0.787391i) q^{72} +2.04057i q^{73} +(-2.54965 - 1.81114i) q^{74} +1.00000i q^{75} +(-11.7338 + 4.09168i) q^{76} +(5.14492 + 14.8902i) q^{77} +(-4.46431 - 3.17121i) q^{78} -10.6941i q^{79} +(-3.13268 + 2.48723i) q^{80} +1.00000 q^{81} +(6.63865 + 4.71574i) q^{82} +11.3326i q^{83} +(-3.27850 - 4.15348i) q^{84} +2.66013i q^{85} +(4.22932 - 5.95388i) q^{86} -0.579589 q^{87} +(16.1759 + 4.68848i) q^{88} +10.8922i q^{89} +(-0.818985 + 1.15294i) q^{90} +(3.34569 + 9.68295i) q^{91} +(-8.69193 + 3.03095i) q^{92} +5.65561i q^{93} +(4.41978 - 6.22201i) q^{94} -6.21337i q^{95} +(-5.64879 + 0.302000i) q^{96} -16.2633i q^{97} +(0.472300 + 9.88822i) q^{98} +5.95444 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{2} - 2 q^{4} + 28 q^{5} + 4 q^{6} + 4 q^{7} - 10 q^{8} - 28 q^{9} + 2 q^{10} - 8 q^{12} - 8 q^{13} + 2 q^{14} + 6 q^{16} - 2 q^{18} - 2 q^{20} - 4 q^{24} + 28 q^{25} + 16 q^{26} + 10 q^{28}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.818985 1.15294i 0.579110 0.815250i
\(3\) 1.00000i 0.577350i
\(4\) −0.658528 1.88848i −0.329264 0.944238i
\(5\) 1.00000 0.447214
\(6\) 1.15294 + 0.818985i 0.470685 + 0.334349i
\(7\) −0.864047 2.50068i −0.326579 0.945170i
\(8\) −2.71662 0.787391i −0.960470 0.278385i
\(9\) −1.00000 −0.333333
\(10\) 0.818985 1.15294i 0.258986 0.364591i
\(11\) −5.95444 −1.79533 −0.897666 0.440676i \(-0.854739\pi\)
−0.897666 + 0.440676i \(0.854739\pi\)
\(12\) 1.88848 0.658528i 0.545156 0.190101i
\(13\) −3.87212 −1.07393 −0.536967 0.843603i \(-0.680430\pi\)
−0.536967 + 0.843603i \(0.680430\pi\)
\(14\) −3.59077 1.05183i −0.959675 0.281114i
\(15\) 1.00000i 0.258199i
\(16\) −3.13268 + 2.48723i −0.783170 + 0.621807i
\(17\) 2.66013i 0.645175i 0.946540 + 0.322588i \(0.104553\pi\)
−0.946540 + 0.322588i \(0.895447\pi\)
\(18\) −0.818985 + 1.15294i −0.193037 + 0.271750i
\(19\) 6.21337i 1.42544i −0.701447 0.712722i \(-0.747462\pi\)
0.701447 0.712722i \(-0.252538\pi\)
\(20\) −0.658528 1.88848i −0.147251 0.422276i
\(21\) 2.50068 0.864047i 0.545694 0.188551i
\(22\) −4.87660 + 6.86510i −1.03969 + 1.46364i
\(23\) 4.60261i 0.959711i −0.877347 0.479856i \(-0.840689\pi\)
0.877347 0.479856i \(-0.159311\pi\)
\(24\) 0.787391 2.71662i 0.160726 0.554527i
\(25\) 1.00000 0.200000
\(26\) −3.17121 + 4.46431i −0.621925 + 0.875524i
\(27\) 1.00000i 0.192450i
\(28\) −4.15348 + 3.27850i −0.784934 + 0.619579i
\(29\) 0.579589i 0.107627i 0.998551 + 0.0538135i \(0.0171376\pi\)
−0.998551 + 0.0538135i \(0.982862\pi\)
\(30\) 1.15294 + 0.818985i 0.210497 + 0.149525i
\(31\) 5.65561 1.01578 0.507888 0.861423i \(-0.330426\pi\)
0.507888 + 0.861423i \(0.330426\pi\)
\(32\) 0.302000 + 5.64879i 0.0533865 + 0.998574i
\(33\) 5.95444i 1.03654i
\(34\) 3.06696 + 2.17860i 0.525979 + 0.373627i
\(35\) −0.864047 2.50068i −0.146051 0.422693i
\(36\) 0.658528 + 1.88848i 0.109755 + 0.314746i
\(37\) 2.21144i 0.363559i −0.983339 0.181779i \(-0.941814\pi\)
0.983339 0.181779i \(-0.0581857\pi\)
\(38\) −7.16362 5.08865i −1.16209 0.825488i
\(39\) 3.87212i 0.620036i
\(40\) −2.71662 0.787391i −0.429535 0.124498i
\(41\) 5.75803i 0.899253i 0.893217 + 0.449627i \(0.148443\pi\)
−0.893217 + 0.449627i \(0.851557\pi\)
\(42\) 1.05183 3.59077i 0.162301 0.554068i
\(43\) 5.16410 0.787518 0.393759 0.919214i \(-0.371175\pi\)
0.393759 + 0.919214i \(0.371175\pi\)
\(44\) 3.92117 + 11.2448i 0.591138 + 1.69522i
\(45\) −1.00000 −0.149071
\(46\) −5.30653 3.76947i −0.782404 0.555778i
\(47\) 5.39666 0.787184 0.393592 0.919285i \(-0.371232\pi\)
0.393592 + 0.919285i \(0.371232\pi\)
\(48\) −2.48723 3.13268i −0.359001 0.452164i
\(49\) −5.50685 + 4.32142i −0.786692 + 0.617345i
\(50\) 0.818985 1.15294i 0.115822 0.163050i
\(51\) −2.66013 −0.372492
\(52\) 2.54990 + 7.31241i 0.353608 + 1.01405i
\(53\) 10.3132i 1.41662i −0.705899 0.708312i \(-0.749457\pi\)
0.705899 0.708312i \(-0.250543\pi\)
\(54\) −1.15294 0.818985i −0.156895 0.111450i
\(55\) −5.95444 −0.802897
\(56\) 0.378268 + 7.47375i 0.0505482 + 0.998722i
\(57\) 6.21337 0.822980
\(58\) 0.668230 + 0.474675i 0.0877429 + 0.0623278i
\(59\) 10.7610i 1.40097i −0.713669 0.700483i \(-0.752968\pi\)
0.713669 0.700483i \(-0.247032\pi\)
\(60\) 1.88848 0.658528i 0.243801 0.0850156i
\(61\) −10.9463 −1.40153 −0.700763 0.713394i \(-0.747157\pi\)
−0.700763 + 0.713394i \(0.747157\pi\)
\(62\) 4.63185 6.52056i 0.588246 0.828112i
\(63\) 0.864047 + 2.50068i 0.108860 + 0.315057i
\(64\) 6.76003 + 4.27808i 0.845004 + 0.534760i
\(65\) −3.87212 −0.480278
\(66\) −6.86510 4.87660i −0.845035 0.600268i
\(67\) −10.0435 −1.22700 −0.613502 0.789693i \(-0.710240\pi\)
−0.613502 + 0.789693i \(0.710240\pi\)
\(68\) 5.02358 1.75177i 0.609199 0.212433i
\(69\) 4.60261 0.554090
\(70\) −3.59077 1.05183i −0.429179 0.125718i
\(71\) 0.496099i 0.0588761i −0.999567 0.0294381i \(-0.990628\pi\)
0.999567 0.0294381i \(-0.00937178\pi\)
\(72\) 2.71662 + 0.787391i 0.320157 + 0.0927950i
\(73\) 2.04057i 0.238831i 0.992844 + 0.119415i \(0.0381020\pi\)
−0.992844 + 0.119415i \(0.961898\pi\)
\(74\) −2.54965 1.81114i −0.296391 0.210540i
\(75\) 1.00000i 0.115470i
\(76\) −11.7338 + 4.09168i −1.34596 + 0.469347i
\(77\) 5.14492 + 14.8902i 0.586318 + 1.69689i
\(78\) −4.46431 3.17121i −0.505484 0.359069i
\(79\) 10.6941i 1.20318i −0.798805 0.601590i \(-0.794534\pi\)
0.798805 0.601590i \(-0.205466\pi\)
\(80\) −3.13268 + 2.48723i −0.350244 + 0.278081i
\(81\) 1.00000 0.111111
\(82\) 6.63865 + 4.71574i 0.733116 + 0.520766i
\(83\) 11.3326i 1.24392i 0.783051 + 0.621958i \(0.213662\pi\)
−0.783051 + 0.621958i \(0.786338\pi\)
\(84\) −3.27850 4.15348i −0.357714 0.453182i
\(85\) 2.66013i 0.288531i
\(86\) 4.22932 5.95388i 0.456059 0.642023i
\(87\) −0.579589 −0.0621385
\(88\) 16.1759 + 4.68848i 1.72436 + 0.499793i
\(89\) 10.8922i 1.15457i 0.816541 + 0.577287i \(0.195889\pi\)
−0.816541 + 0.577287i \(0.804111\pi\)
\(90\) −0.818985 + 1.15294i −0.0863286 + 0.121530i
\(91\) 3.34569 + 9.68295i 0.350724 + 1.01505i
\(92\) −8.69193 + 3.03095i −0.906196 + 0.315998i
\(93\) 5.65561i 0.586459i
\(94\) 4.41978 6.22201i 0.455866 0.641751i
\(95\) 6.21337i 0.637478i
\(96\) −5.64879 + 0.302000i −0.576527 + 0.0308227i
\(97\) 16.2633i 1.65129i −0.564189 0.825645i \(-0.690811\pi\)
0.564189 0.825645i \(-0.309189\pi\)
\(98\) 0.472300 + 9.88822i 0.0477095 + 0.998861i
\(99\) 5.95444 0.598444
\(100\) −0.658528 1.88848i −0.0658528 0.188848i
\(101\) −0.355906 −0.0354140 −0.0177070 0.999843i \(-0.505637\pi\)
−0.0177070 + 0.999843i \(0.505637\pi\)
\(102\) −2.17860 + 3.06696i −0.215714 + 0.303674i
\(103\) 0.542418 0.0534460 0.0267230 0.999643i \(-0.491493\pi\)
0.0267230 + 0.999643i \(0.491493\pi\)
\(104\) 10.5191 + 3.04888i 1.03148 + 0.298967i
\(105\) 2.50068 0.864047i 0.244042 0.0843223i
\(106\) −11.8905 8.44634i −1.15490 0.820381i
\(107\) 13.2688 1.28275 0.641373 0.767230i \(-0.278365\pi\)
0.641373 + 0.767230i \(0.278365\pi\)
\(108\) −1.88848 + 0.658528i −0.181719 + 0.0633669i
\(109\) 5.40596i 0.517797i −0.965904 0.258899i \(-0.916640\pi\)
0.965904 0.258899i \(-0.0833596\pi\)
\(110\) −4.87660 + 6.86510i −0.464965 + 0.654561i
\(111\) 2.21144 0.209901
\(112\) 8.92656 + 5.68477i 0.843480 + 0.537160i
\(113\) 2.78366 0.261865 0.130932 0.991391i \(-0.458203\pi\)
0.130932 + 0.991391i \(0.458203\pi\)
\(114\) 5.08865 7.16362i 0.476596 0.670934i
\(115\) 4.60261i 0.429196i
\(116\) 1.09454 0.381676i 0.101625 0.0354377i
\(117\) 3.87212 0.357978
\(118\) −12.4068 8.81311i −1.14214 0.811313i
\(119\) 6.65213 2.29847i 0.609800 0.210701i
\(120\) 0.787391 2.71662i 0.0718787 0.247992i
\(121\) 24.4554 2.22322
\(122\) −8.96482 + 12.6204i −0.811637 + 1.14259i
\(123\) −5.75803 −0.519184
\(124\) −3.72438 10.6805i −0.334459 0.959135i
\(125\) 1.00000 0.0894427
\(126\) 3.59077 + 1.05183i 0.319892 + 0.0937045i
\(127\) 13.3363i 1.18340i −0.806157 0.591701i \(-0.798457\pi\)
0.806157 0.591701i \(-0.201543\pi\)
\(128\) 10.4687 4.29020i 0.925313 0.379204i
\(129\) 5.16410i 0.454673i
\(130\) −3.17121 + 4.46431i −0.278133 + 0.391546i
\(131\) 7.81808i 0.683069i 0.939869 + 0.341534i \(0.110947\pi\)
−0.939869 + 0.341534i \(0.889053\pi\)
\(132\) −11.2448 + 3.92117i −0.978736 + 0.341294i
\(133\) −15.5377 + 5.36864i −1.34729 + 0.465520i
\(134\) −8.22544 + 11.5795i −0.710570 + 1.00031i
\(135\) 1.00000i 0.0860663i
\(136\) 2.09456 7.22654i 0.179607 0.619671i
\(137\) 14.6304 1.24996 0.624978 0.780643i \(-0.285108\pi\)
0.624978 + 0.780643i \(0.285108\pi\)
\(138\) 3.76947 5.30653i 0.320879 0.451721i
\(139\) 11.6895i 0.991493i 0.868467 + 0.495746i \(0.165105\pi\)
−0.868467 + 0.495746i \(0.834895\pi\)
\(140\) −4.15348 + 3.27850i −0.351033 + 0.277084i
\(141\) 5.39666i 0.454481i
\(142\) −0.571971 0.406298i −0.0479988 0.0340957i
\(143\) 23.0563 1.92807
\(144\) 3.13268 2.48723i 0.261057 0.207269i
\(145\) 0.579589i 0.0481323i
\(146\) 2.35265 + 1.67119i 0.194707 + 0.138309i
\(147\) −4.32142 5.50685i −0.356425 0.454197i
\(148\) −4.17625 + 1.45630i −0.343286 + 0.119707i
\(149\) 5.32066i 0.435885i 0.975962 + 0.217943i \(0.0699345\pi\)
−0.975962 + 0.217943i \(0.930065\pi\)
\(150\) 1.15294 + 0.818985i 0.0941369 + 0.0668698i
\(151\) 19.6499i 1.59908i −0.600611 0.799542i \(-0.705076\pi\)
0.600611 0.799542i \(-0.294924\pi\)
\(152\) −4.89235 + 16.8793i −0.396822 + 1.36910i
\(153\) 2.66013i 0.215058i
\(154\) 21.3811 + 6.26307i 1.72293 + 0.504692i
\(155\) 5.65561 0.454269
\(156\) −7.31241 + 2.54990i −0.585461 + 0.204155i
\(157\) 17.2576 1.37731 0.688655 0.725090i \(-0.258202\pi\)
0.688655 + 0.725090i \(0.258202\pi\)
\(158\) −12.3296 8.75830i −0.980892 0.696773i
\(159\) 10.3132 0.817889
\(160\) 0.302000 + 5.64879i 0.0238752 + 0.446576i
\(161\) −11.5097 + 3.97688i −0.907090 + 0.313422i
\(162\) 0.818985 1.15294i 0.0643455 0.0905833i
\(163\) 1.54126 0.120721 0.0603604 0.998177i \(-0.480775\pi\)
0.0603604 + 0.998177i \(0.480775\pi\)
\(164\) 10.8739 3.79183i 0.849109 0.296092i
\(165\) 5.95444i 0.463553i
\(166\) 13.0658 + 9.28124i 1.01410 + 0.720364i
\(167\) 14.2666 1.10398 0.551992 0.833849i \(-0.313868\pi\)
0.551992 + 0.833849i \(0.313868\pi\)
\(168\) −7.47375 + 0.378268i −0.576612 + 0.0291840i
\(169\) 1.99333 0.153333
\(170\) 3.06696 + 2.17860i 0.235225 + 0.167091i
\(171\) 6.21337i 0.475148i
\(172\) −3.40070 9.75227i −0.259301 0.743604i
\(173\) −15.8094 −1.20196 −0.600982 0.799262i \(-0.705224\pi\)
−0.600982 + 0.799262i \(0.705224\pi\)
\(174\) −0.474675 + 0.668230i −0.0359850 + 0.0506584i
\(175\) −0.864047 2.50068i −0.0653158 0.189034i
\(176\) 18.6534 14.8101i 1.40605 1.11635i
\(177\) 10.7610 0.808848
\(178\) 12.5581 + 8.92057i 0.941266 + 0.668625i
\(179\) −25.0087 −1.86924 −0.934619 0.355650i \(-0.884259\pi\)
−0.934619 + 0.355650i \(0.884259\pi\)
\(180\) 0.658528 + 1.88848i 0.0490838 + 0.140759i
\(181\) −7.61578 −0.566077 −0.283038 0.959109i \(-0.591342\pi\)
−0.283038 + 0.959109i \(0.591342\pi\)
\(182\) 13.9039 + 4.07282i 1.03063 + 0.301897i
\(183\) 10.9463i 0.809171i
\(184\) −3.62406 + 12.5035i −0.267169 + 0.921774i
\(185\) 2.21144i 0.162588i
\(186\) 6.52056 + 4.63185i 0.478111 + 0.339624i
\(187\) 15.8396i 1.15830i
\(188\) −3.55385 10.1915i −0.259191 0.743289i
\(189\) −2.50068 + 0.864047i −0.181898 + 0.0628502i
\(190\) −7.16362 5.08865i −0.519704 0.369170i
\(191\) 2.89329i 0.209351i 0.994506 + 0.104675i \(0.0333804\pi\)
−0.994506 + 0.104675i \(0.966620\pi\)
\(192\) −4.27808 + 6.76003i −0.308744 + 0.487863i
\(193\) 4.72265 0.339943 0.169972 0.985449i \(-0.445632\pi\)
0.169972 + 0.985449i \(0.445632\pi\)
\(194\) −18.7506 13.3194i −1.34621 0.956278i
\(195\) 3.87212i 0.277288i
\(196\) 11.7873 + 7.55377i 0.841950 + 0.539555i
\(197\) 6.98065i 0.497351i 0.968587 + 0.248675i \(0.0799952\pi\)
−0.968587 + 0.248675i \(0.920005\pi\)
\(198\) 4.87660 6.86510i 0.346565 0.487881i
\(199\) −26.9627 −1.91133 −0.955666 0.294452i \(-0.904863\pi\)
−0.955666 + 0.294452i \(0.904863\pi\)
\(200\) −2.71662 0.787391i −0.192094 0.0556770i
\(201\) 10.0435i 0.708411i
\(202\) −0.291482 + 0.410337i −0.0205086 + 0.0288712i
\(203\) 1.44937 0.500792i 0.101726 0.0351487i
\(204\) 1.75177 + 5.02358i 0.122648 + 0.351721i
\(205\) 5.75803i 0.402158i
\(206\) 0.444232 0.625373i 0.0309511 0.0435718i
\(207\) 4.60261i 0.319904i
\(208\) 12.1301 9.63085i 0.841073 0.667779i
\(209\) 36.9971i 2.55915i
\(210\) 1.05183 3.59077i 0.0725832 0.247787i
\(211\) −12.3556 −0.850591 −0.425296 0.905054i \(-0.639830\pi\)
−0.425296 + 0.905054i \(0.639830\pi\)
\(212\) −19.4762 + 6.79152i −1.33763 + 0.466444i
\(213\) 0.496099 0.0339922
\(214\) 10.8670 15.2981i 0.742850 1.04576i
\(215\) 5.16410 0.352189
\(216\) −0.787391 + 2.71662i −0.0535752 + 0.184842i
\(217\) −4.88671 14.1429i −0.331731 0.960082i
\(218\) −6.23274 4.42740i −0.422134 0.299862i
\(219\) −2.04057 −0.137889
\(220\) 3.92117 + 11.2448i 0.264365 + 0.758126i
\(221\) 10.3003i 0.692875i
\(222\) 1.81114 2.54965i 0.121556 0.171121i
\(223\) −21.6991 −1.45308 −0.726539 0.687125i \(-0.758872\pi\)
−0.726539 + 0.687125i \(0.758872\pi\)
\(224\) 13.8649 5.63602i 0.926387 0.376573i
\(225\) −1.00000 −0.0666667
\(226\) 2.27978 3.20939i 0.151649 0.213485i
\(227\) 2.80461i 0.186148i −0.995659 0.0930741i \(-0.970331\pi\)
0.995659 0.0930741i \(-0.0296694\pi\)
\(228\) −4.09168 11.7338i −0.270978 0.777089i
\(229\) 27.1243 1.79242 0.896211 0.443629i \(-0.146309\pi\)
0.896211 + 0.443629i \(0.146309\pi\)
\(230\) −5.30653 3.76947i −0.349902 0.248552i
\(231\) −14.8902 + 5.14492i −0.979702 + 0.338511i
\(232\) 0.456363 1.57452i 0.0299617 0.103372i
\(233\) 15.4554 1.01252 0.506260 0.862381i \(-0.331028\pi\)
0.506260 + 0.862381i \(0.331028\pi\)
\(234\) 3.17121 4.46431i 0.207308 0.291841i
\(235\) 5.39666 0.352039
\(236\) −20.3219 + 7.08644i −1.32285 + 0.461288i
\(237\) 10.6941 0.694656
\(238\) 2.79800 9.55191i 0.181367 0.619158i
\(239\) 13.4730i 0.871498i 0.900068 + 0.435749i \(0.143516\pi\)
−0.900068 + 0.435749i \(0.856484\pi\)
\(240\) −2.48723 3.13268i −0.160550 0.202214i
\(241\) 0.816750i 0.0526115i 0.999654 + 0.0263057i \(0.00837434\pi\)
−0.999654 + 0.0263057i \(0.991626\pi\)
\(242\) 20.0286 28.1955i 1.28749 1.81248i
\(243\) 1.00000i 0.0641500i
\(244\) 7.20842 + 20.6718i 0.461472 + 1.32337i
\(245\) −5.50685 + 4.32142i −0.351819 + 0.276085i
\(246\) −4.71574 + 6.63865i −0.300665 + 0.423265i
\(247\) 24.0589i 1.53083i
\(248\) −15.3641 4.45318i −0.975623 0.282777i
\(249\) −11.3326 −0.718175
\(250\) 0.818985 1.15294i 0.0517971 0.0729181i
\(251\) 20.6191i 1.30147i −0.759306 0.650733i \(-0.774462\pi\)
0.759306 0.650733i \(-0.225538\pi\)
\(252\) 4.15348 3.27850i 0.261645 0.206526i
\(253\) 27.4060i 1.72300i
\(254\) −15.3759 10.9222i −0.964768 0.685320i
\(255\) −2.66013 −0.166583
\(256\) 3.62739 15.5834i 0.226712 0.973962i
\(257\) 14.6010i 0.910785i −0.890291 0.455393i \(-0.849499\pi\)
0.890291 0.455393i \(-0.150501\pi\)
\(258\) 5.95388 + 4.22932i 0.370672 + 0.263306i
\(259\) −5.53012 + 1.91079i −0.343625 + 0.118731i
\(260\) 2.54990 + 7.31241i 0.158138 + 0.453496i
\(261\) 0.579589i 0.0358757i
\(262\) 9.01375 + 6.40289i 0.556872 + 0.395572i
\(263\) 13.6585i 0.842219i −0.907010 0.421109i \(-0.861641\pi\)
0.907010 0.421109i \(-0.138359\pi\)
\(264\) −4.68848 + 16.1759i −0.288556 + 0.995561i
\(265\) 10.3132i 0.633534i
\(266\) −6.53541 + 22.3108i −0.400712 + 1.36796i
\(267\) −10.8922 −0.666594
\(268\) 6.61390 + 18.9668i 0.404008 + 1.15858i
\(269\) −18.0418 −1.10003 −0.550013 0.835156i \(-0.685377\pi\)
−0.550013 + 0.835156i \(0.685377\pi\)
\(270\) −1.15294 0.818985i −0.0701655 0.0498418i
\(271\) −27.9012 −1.69488 −0.847438 0.530894i \(-0.821856\pi\)
−0.847438 + 0.530894i \(0.821856\pi\)
\(272\) −6.61634 8.33332i −0.401174 0.505282i
\(273\) −9.68295 + 3.34569i −0.586039 + 0.202491i
\(274\) 11.9820 16.8679i 0.723861 1.01903i
\(275\) −5.95444 −0.359066
\(276\) −3.03095 8.69193i −0.182442 0.523192i
\(277\) 4.22886i 0.254088i −0.991897 0.127044i \(-0.959451\pi\)
0.991897 0.127044i \(-0.0405489\pi\)
\(278\) 13.4773 + 9.57354i 0.808314 + 0.574183i
\(279\) −5.65561 −0.338592
\(280\) 0.378268 + 7.47375i 0.0226059 + 0.446642i
\(281\) −1.40338 −0.0837185 −0.0418592 0.999124i \(-0.513328\pi\)
−0.0418592 + 0.999124i \(0.513328\pi\)
\(282\) 6.22201 + 4.41978i 0.370515 + 0.263194i
\(283\) 0.0994881i 0.00591395i 0.999996 + 0.00295698i \(0.000941236\pi\)
−0.999996 + 0.00295698i \(0.999059\pi\)
\(284\) −0.936871 + 0.326695i −0.0555931 + 0.0193858i
\(285\) 6.21337 0.368048
\(286\) 18.8828 26.5825i 1.11656 1.57186i
\(287\) 14.3990 4.97521i 0.849947 0.293677i
\(288\) −0.302000 5.64879i −0.0177955 0.332858i
\(289\) 9.92373 0.583749
\(290\) 0.668230 + 0.474675i 0.0392398 + 0.0278739i
\(291\) 16.2633 0.953373
\(292\) 3.85357 1.34377i 0.225513 0.0786383i
\(293\) 28.3618 1.65691 0.828456 0.560055i \(-0.189220\pi\)
0.828456 + 0.560055i \(0.189220\pi\)
\(294\) −9.88822 + 0.472300i −0.576693 + 0.0275451i
\(295\) 10.7610i 0.626531i
\(296\) −1.74127 + 6.00764i −0.101209 + 0.349187i
\(297\) 5.95444i 0.345512i
\(298\) 6.13438 + 4.35754i 0.355355 + 0.252425i
\(299\) 17.8219i 1.03067i
\(300\) 1.88848 0.658528i 0.109031 0.0380201i
\(301\) −4.46202 12.9138i −0.257187 0.744338i
\(302\) −22.6551 16.0929i −1.30365 0.926044i
\(303\) 0.355906i 0.0204463i
\(304\) 15.4541 + 19.4645i 0.886351 + 1.11637i
\(305\) −10.9463 −0.626781
\(306\) −3.06696 2.17860i −0.175326 0.124542i
\(307\) 18.9155i 1.07956i −0.841805 0.539781i \(-0.818507\pi\)
0.841805 0.539781i \(-0.181493\pi\)
\(308\) 24.7317 19.5217i 1.40922 1.11235i
\(309\) 0.542418i 0.0308571i
\(310\) 4.63185 6.52056i 0.263072 0.370343i
\(311\) −8.04529 −0.456207 −0.228103 0.973637i \(-0.573252\pi\)
−0.228103 + 0.973637i \(0.573252\pi\)
\(312\) −3.04888 + 10.5191i −0.172609 + 0.595525i
\(313\) 13.7262i 0.775850i −0.921691 0.387925i \(-0.873192\pi\)
0.921691 0.387925i \(-0.126808\pi\)
\(314\) 14.1337 19.8970i 0.797613 1.12285i
\(315\) 0.864047 + 2.50068i 0.0486835 + 0.140898i
\(316\) −20.1955 + 7.04236i −1.13609 + 0.396164i
\(317\) 3.73683i 0.209881i −0.994478 0.104941i \(-0.966535\pi\)
0.994478 0.104941i \(-0.0334652\pi\)
\(318\) 8.44634 11.8905i 0.473647 0.666784i
\(319\) 3.45113i 0.193226i
\(320\) 6.76003 + 4.27808i 0.377897 + 0.239152i
\(321\) 13.2688i 0.740593i
\(322\) −4.84117 + 16.5269i −0.269788 + 0.921011i
\(323\) 16.5283 0.919661
\(324\) −0.658528 1.88848i −0.0365849 0.104915i
\(325\) −3.87212 −0.214787
\(326\) 1.26227 1.77698i 0.0699106 0.0984177i
\(327\) 5.40596 0.298951
\(328\) 4.53382 15.6424i 0.250339 0.863706i
\(329\) −4.66297 13.4953i −0.257078 0.744023i
\(330\) −6.86510 4.87660i −0.377911 0.268448i
\(331\) −10.4741 −0.575708 −0.287854 0.957674i \(-0.592942\pi\)
−0.287854 + 0.957674i \(0.592942\pi\)
\(332\) 21.4014 7.46284i 1.17455 0.409577i
\(333\) 2.21144i 0.121186i
\(334\) 11.6841 16.4485i 0.639328 0.900023i
\(335\) −10.0435 −0.548733
\(336\) −5.68477 + 8.92656i −0.310129 + 0.486984i
\(337\) 6.62370 0.360816 0.180408 0.983592i \(-0.442258\pi\)
0.180408 + 0.983592i \(0.442258\pi\)
\(338\) 1.63250 2.29818i 0.0887965 0.125004i
\(339\) 2.78366i 0.151188i
\(340\) 5.02358 1.75177i 0.272442 0.0950029i
\(341\) −33.6760 −1.82366
\(342\) 7.16362 + 5.08865i 0.387364 + 0.275163i
\(343\) 15.5647 + 10.0370i 0.840413 + 0.541946i
\(344\) −14.0289 4.06617i −0.756387 0.219233i
\(345\) 4.60261 0.247796
\(346\) −12.9476 + 18.2272i −0.696069 + 0.979901i
\(347\) 8.44117 0.453146 0.226573 0.973994i \(-0.427248\pi\)
0.226573 + 0.973994i \(0.427248\pi\)
\(348\) 0.381676 + 1.09454i 0.0204600 + 0.0586735i
\(349\) −15.7699 −0.844144 −0.422072 0.906562i \(-0.638697\pi\)
−0.422072 + 0.906562i \(0.638697\pi\)
\(350\) −3.59077 1.05183i −0.191935 0.0562227i
\(351\) 3.87212i 0.206679i
\(352\) −1.79824 33.6354i −0.0958466 1.79277i
\(353\) 14.0292i 0.746698i 0.927691 + 0.373349i \(0.121791\pi\)
−0.927691 + 0.373349i \(0.878209\pi\)
\(354\) 8.81311 12.4068i 0.468412 0.659413i
\(355\) 0.496099i 0.0263302i
\(356\) 20.5697 7.17284i 1.09019 0.380160i
\(357\) 2.29847 + 6.65213i 0.121648 + 0.352068i
\(358\) −20.4817 + 28.8335i −1.08249 + 1.52390i
\(359\) 27.5646i 1.45480i 0.686213 + 0.727401i \(0.259272\pi\)
−0.686213 + 0.727401i \(0.740728\pi\)
\(360\) 2.71662 + 0.787391i 0.143178 + 0.0414992i
\(361\) −19.6059 −1.03189
\(362\) −6.23721 + 8.78052i −0.327820 + 0.461494i
\(363\) 24.4554i 1.28358i
\(364\) 16.0828 12.6948i 0.842967 0.665386i
\(365\) 2.04057i 0.106808i
\(366\) −12.6204 8.96482i −0.659677 0.468599i
\(367\) 2.31358 0.120768 0.0603839 0.998175i \(-0.480768\pi\)
0.0603839 + 0.998175i \(0.480768\pi\)
\(368\) 11.4478 + 14.4185i 0.596755 + 0.751618i
\(369\) 5.75803i 0.299751i
\(370\) −2.54965 1.81114i −0.132550 0.0941565i
\(371\) −25.7900 + 8.91108i −1.33895 + 0.462640i
\(372\) 10.6805 3.72438i 0.553757 0.193100i
\(373\) 1.92416i 0.0996291i 0.998758 + 0.0498145i \(0.0158630\pi\)
−0.998758 + 0.0498145i \(0.984137\pi\)
\(374\) −18.2620 12.9724i −0.944307 0.670785i
\(375\) 1.00000i 0.0516398i
\(376\) −14.6607 4.24928i −0.756066 0.219140i
\(377\) 2.24424i 0.115584i
\(378\) −1.05183 + 3.59077i −0.0541003 + 0.184689i
\(379\) 29.2829 1.50416 0.752082 0.659070i \(-0.229050\pi\)
0.752082 + 0.659070i \(0.229050\pi\)
\(380\) −11.7338 + 4.09168i −0.601931 + 0.209899i
\(381\) 13.3363 0.683238
\(382\) 3.33578 + 2.36956i 0.170673 + 0.121237i
\(383\) 1.37050 0.0700293 0.0350146 0.999387i \(-0.488852\pi\)
0.0350146 + 0.999387i \(0.488852\pi\)
\(384\) 4.29020 + 10.4687i 0.218934 + 0.534230i
\(385\) 5.14492 + 14.8902i 0.262209 + 0.758874i
\(386\) 3.86777 5.44491i 0.196865 0.277139i
\(387\) −5.16410 −0.262506
\(388\) −30.7129 + 10.7099i −1.55921 + 0.543711i
\(389\) 17.9104i 0.908094i 0.890978 + 0.454047i \(0.150020\pi\)
−0.890978 + 0.454047i \(0.849980\pi\)
\(390\) −4.46431 3.17121i −0.226059 0.160580i
\(391\) 12.2435 0.619182
\(392\) 18.3626 7.40360i 0.927454 0.373938i
\(393\) −7.81808 −0.394370
\(394\) 8.04825 + 5.71704i 0.405465 + 0.288021i
\(395\) 10.6941i 0.538078i
\(396\) −3.92117 11.2448i −0.197046 0.565074i
\(397\) 7.24462 0.363597 0.181799 0.983336i \(-0.441808\pi\)
0.181799 + 0.983336i \(0.441808\pi\)
\(398\) −22.0820 + 31.0863i −1.10687 + 1.55821i
\(399\) −5.36864 15.5377i −0.268768 0.777856i
\(400\) −3.13268 + 2.48723i −0.156634 + 0.124361i
\(401\) 19.6062 0.979089 0.489545 0.871978i \(-0.337163\pi\)
0.489545 + 0.871978i \(0.337163\pi\)
\(402\) −11.5795 8.22544i −0.577532 0.410248i
\(403\) −21.8992 −1.09088
\(404\) 0.234374 + 0.672120i 0.0116605 + 0.0334392i
\(405\) 1.00000 0.0496904
\(406\) 0.609630 2.08117i 0.0302554 0.103287i
\(407\) 13.1679i 0.652709i
\(408\) 7.22654 + 2.09456i 0.357767 + 0.103696i
\(409\) 10.0037i 0.494652i 0.968932 + 0.247326i \(0.0795518\pi\)
−0.968932 + 0.247326i \(0.920448\pi\)
\(410\) 6.63865 + 4.71574i 0.327859 + 0.232894i
\(411\) 14.6304i 0.721662i
\(412\) −0.357197 1.02434i −0.0175978 0.0504657i
\(413\) −26.9099 + 9.29803i −1.32415 + 0.457526i
\(414\) 5.30653 + 3.76947i 0.260801 + 0.185259i
\(415\) 11.3326i 0.556296i
\(416\) −1.16938 21.8728i −0.0573336 1.07240i
\(417\) −11.6895 −0.572439
\(418\) 42.6554 + 30.3001i 2.08634 + 1.48203i
\(419\) 16.1466i 0.788811i −0.918937 0.394405i \(-0.870951\pi\)
0.918937 0.394405i \(-0.129049\pi\)
\(420\) −3.27850 4.15348i −0.159975 0.202669i
\(421\) 15.7233i 0.766309i 0.923684 + 0.383155i \(0.125162\pi\)
−0.923684 + 0.383155i \(0.874838\pi\)
\(422\) −10.1190 + 14.2452i −0.492586 + 0.693444i
\(423\) −5.39666 −0.262395
\(424\) −8.12051 + 28.0170i −0.394367 + 1.36063i
\(425\) 2.66013i 0.129035i
\(426\) 0.406298 0.571971i 0.0196852 0.0277121i
\(427\) 9.45809 + 27.3732i 0.457709 + 1.32468i
\(428\) −8.73789 25.0578i −0.422362 1.21122i
\(429\) 23.0563i 1.11317i
\(430\) 4.22932 5.95388i 0.203956 0.287122i
\(431\) 26.5802i 1.28032i 0.768240 + 0.640162i \(0.221133\pi\)
−0.768240 + 0.640162i \(0.778867\pi\)
\(432\) 2.48723 + 3.13268i 0.119667 + 0.150721i
\(433\) 14.6714i 0.705062i −0.935800 0.352531i \(-0.885321\pi\)
0.935800 0.352531i \(-0.114679\pi\)
\(434\) −20.3080 5.94874i −0.974815 0.285549i
\(435\) −0.579589 −0.0277892
\(436\) −10.2090 + 3.55998i −0.488924 + 0.170492i
\(437\) −28.5977 −1.36801
\(438\) −1.67119 + 2.35265i −0.0798528 + 0.112414i
\(439\) 1.65415 0.0789484 0.0394742 0.999221i \(-0.487432\pi\)
0.0394742 + 0.999221i \(0.487432\pi\)
\(440\) 16.1759 + 4.68848i 0.771158 + 0.223514i
\(441\) 5.50685 4.32142i 0.262231 0.205782i
\(442\) −11.8756 8.43581i −0.564866 0.401251i
\(443\) −30.7651 −1.46169 −0.730846 0.682542i \(-0.760874\pi\)
−0.730846 + 0.682542i \(0.760874\pi\)
\(444\) −1.45630 4.17625i −0.0691128 0.198196i
\(445\) 10.8922i 0.516341i
\(446\) −17.7712 + 25.0177i −0.841492 + 1.18462i
\(447\) −5.32066 −0.251658
\(448\) 4.85715 20.6012i 0.229479 0.973314i
\(449\) −16.0095 −0.755536 −0.377768 0.925900i \(-0.623308\pi\)
−0.377768 + 0.925900i \(0.623308\pi\)
\(450\) −0.818985 + 1.15294i −0.0386073 + 0.0543500i
\(451\) 34.2859i 1.61446i
\(452\) −1.83312 5.25688i −0.0862227 0.247263i
\(453\) 19.6499 0.923231
\(454\) −3.23353 2.29693i −0.151757 0.107800i
\(455\) 3.34569 + 9.68295i 0.156849 + 0.453944i
\(456\) −16.8793 4.89235i −0.790448 0.229105i
\(457\) −22.1590 −1.03655 −0.518277 0.855213i \(-0.673426\pi\)
−0.518277 + 0.855213i \(0.673426\pi\)
\(458\) 22.2144 31.2726i 1.03801 1.46127i
\(459\) 2.66013 0.124164
\(460\) −8.69193 + 3.03095i −0.405263 + 0.141319i
\(461\) −5.74707 −0.267668 −0.133834 0.991004i \(-0.542729\pi\)
−0.133834 + 0.991004i \(0.542729\pi\)
\(462\) −6.26307 + 21.3811i −0.291384 + 0.994737i
\(463\) 9.66858i 0.449337i 0.974435 + 0.224669i \(0.0721299\pi\)
−0.974435 + 0.224669i \(0.927870\pi\)
\(464\) −1.44157 1.81567i −0.0669232 0.0842903i
\(465\) 5.65561i 0.262272i
\(466\) 12.6578 17.8192i 0.586360 0.825457i
\(467\) 29.3178i 1.35667i −0.734754 0.678333i \(-0.762703\pi\)
0.734754 0.678333i \(-0.237297\pi\)
\(468\) −2.54990 7.31241i −0.117869 0.338016i
\(469\) 8.67802 + 25.1155i 0.400714 + 1.15973i
\(470\) 4.41978 6.22201i 0.203869 0.287000i
\(471\) 17.2576i 0.795190i
\(472\) −8.47314 + 29.2336i −0.390008 + 1.34559i
\(473\) −30.7493 −1.41386
\(474\) 8.75830 12.3296i 0.402282 0.566318i
\(475\) 6.21337i 0.285089i
\(476\) −8.72123 11.0488i −0.399737 0.506420i
\(477\) 10.3132i 0.472208i
\(478\) 15.5336 + 11.0342i 0.710488 + 0.504693i
\(479\) −10.9088 −0.498435 −0.249218 0.968447i \(-0.580173\pi\)
−0.249218 + 0.968447i \(0.580173\pi\)
\(480\) −5.64879 + 0.302000i −0.257831 + 0.0137843i
\(481\) 8.56297i 0.390438i
\(482\) 0.941661 + 0.668905i 0.0428915 + 0.0304678i
\(483\) −3.97688 11.5097i −0.180954 0.523709i
\(484\) −16.1046 46.1834i −0.732026 2.09925i
\(485\) 16.2633i 0.738480i
\(486\) 1.15294 + 0.818985i 0.0522983 + 0.0371499i
\(487\) 10.3951i 0.471049i −0.971868 0.235525i \(-0.924319\pi\)
0.971868 0.235525i \(-0.0756808\pi\)
\(488\) 29.7368 + 8.61899i 1.34612 + 0.390164i
\(489\) 1.54126i 0.0696982i
\(490\) 0.472300 + 9.88822i 0.0213363 + 0.446704i
\(491\) 27.5158 1.24177 0.620886 0.783901i \(-0.286773\pi\)
0.620886 + 0.783901i \(0.286773\pi\)
\(492\) 3.79183 + 10.8739i 0.170949 + 0.490233i
\(493\) −1.54178 −0.0694383
\(494\) 27.7384 + 19.7039i 1.24801 + 0.886519i
\(495\) 5.95444 0.267632
\(496\) −17.7172 + 14.0668i −0.795526 + 0.631617i
\(497\) −1.24059 + 0.428653i −0.0556480 + 0.0192277i
\(498\) −9.28124 + 13.0658i −0.415902 + 0.585492i
\(499\) −42.4025 −1.89820 −0.949099 0.314977i \(-0.898003\pi\)
−0.949099 + 0.314977i \(0.898003\pi\)
\(500\) −0.658528 1.88848i −0.0294503 0.0844552i
\(501\) 14.2666i 0.637386i
\(502\) −23.7725 16.8867i −1.06102 0.753692i
\(503\) 14.1835 0.632409 0.316204 0.948691i \(-0.397591\pi\)
0.316204 + 0.948691i \(0.397591\pi\)
\(504\) −0.378268 7.47375i −0.0168494 0.332907i
\(505\) −0.355906 −0.0158376
\(506\) 31.5974 + 22.4451i 1.40468 + 0.997806i
\(507\) 1.99333i 0.0885267i
\(508\) −25.1852 + 8.78231i −1.11741 + 0.389652i
\(509\) 22.8265 1.01177 0.505884 0.862601i \(-0.331166\pi\)
0.505884 + 0.862601i \(0.331166\pi\)
\(510\) −2.17860 + 3.06696i −0.0964701 + 0.135807i
\(511\) 5.10282 1.76315i 0.225735 0.0779970i
\(512\) −14.9959 16.9447i −0.662731 0.748857i
\(513\) −6.21337 −0.274327
\(514\) −16.8340 11.9580i −0.742517 0.527445i
\(515\) 0.542418 0.0239018
\(516\) 9.75227 3.40070i 0.429320 0.149708i
\(517\) −32.1341 −1.41326
\(518\) −2.32606 + 7.94078i −0.102201 + 0.348898i
\(519\) 15.8094i 0.693955i
\(520\) 10.5191 + 3.04888i 0.461292 + 0.133702i
\(521\) 33.5925i 1.47172i −0.677136 0.735858i \(-0.736779\pi\)
0.677136 0.735858i \(-0.263221\pi\)
\(522\) −0.668230 0.474675i −0.0292476 0.0207759i
\(523\) 42.5343i 1.85990i 0.367691 + 0.929948i \(0.380149\pi\)
−0.367691 + 0.929948i \(0.619851\pi\)
\(524\) 14.7643 5.14842i 0.644979 0.224910i
\(525\) 2.50068 0.864047i 0.109139 0.0377101i
\(526\) −15.7474 11.1861i −0.686618 0.487737i
\(527\) 15.0446i 0.655354i
\(528\) 14.8101 + 18.6534i 0.644525 + 0.811784i
\(529\) 1.81594 0.0789539
\(530\) −11.8905 8.44634i −0.516488 0.366886i
\(531\) 10.7610i 0.466989i
\(532\) 20.3705 + 25.8071i 0.883175 + 1.11888i
\(533\) 22.2958i 0.965738i
\(534\) −8.92057 + 12.5581i −0.386031 + 0.543440i
\(535\) 13.2688 0.573661
\(536\) 27.2842 + 7.90813i 1.17850 + 0.341579i
\(537\) 25.0087i 1.07921i
\(538\) −14.7759 + 20.8010i −0.637035 + 0.896795i
\(539\) 32.7902 25.7316i 1.41237 1.10834i
\(540\) −1.88848 + 0.658528i −0.0812671 + 0.0283385i
\(541\) 26.5075i 1.13965i −0.821767 0.569824i \(-0.807011\pi\)
0.821767 0.569824i \(-0.192989\pi\)
\(542\) −22.8506 + 32.1683i −0.981519 + 1.38175i
\(543\) 7.61578i 0.326825i
\(544\) −15.0265 + 0.803358i −0.644255 + 0.0344437i
\(545\) 5.40596i 0.231566i
\(546\) −4.07282 + 13.9039i −0.174300 + 0.595032i
\(547\) 46.2467 1.97737 0.988684 0.150012i \(-0.0479314\pi\)
0.988684 + 0.150012i \(0.0479314\pi\)
\(548\) −9.63450 27.6291i −0.411565 1.18026i
\(549\) 10.9463 0.467175
\(550\) −4.87660 + 6.86510i −0.207939 + 0.292729i
\(551\) 3.60120 0.153416
\(552\) −12.5035 3.62406i −0.532186 0.154250i
\(553\) −26.7426 + 9.24020i −1.13721 + 0.392933i
\(554\) −4.87561 3.46337i −0.207145 0.147145i
\(555\) 2.21144 0.0938704
\(556\) 22.0754 7.69788i 0.936205 0.326463i
\(557\) 22.8146i 0.966686i −0.875431 0.483343i \(-0.839422\pi\)
0.875431 0.483343i \(-0.160578\pi\)
\(558\) −4.63185 + 6.52056i −0.196082 + 0.276037i
\(559\) −19.9960 −0.845741
\(560\) 8.92656 + 5.68477i 0.377216 + 0.240225i
\(561\) 15.8396 0.668747
\(562\) −1.14934 + 1.61801i −0.0484822 + 0.0682514i
\(563\) 26.9029i 1.13382i 0.823779 + 0.566911i \(0.191862\pi\)
−0.823779 + 0.566911i \(0.808138\pi\)
\(564\) 10.1915 3.55385i 0.429138 0.149644i
\(565\) 2.78366 0.117110
\(566\) 0.114704 + 0.0814792i 0.00482135 + 0.00342483i
\(567\) −0.864047 2.50068i −0.0362866 0.105019i
\(568\) −0.390624 + 1.34771i −0.0163902 + 0.0565488i
\(569\) −6.63935 −0.278336 −0.139168 0.990269i \(-0.544443\pi\)
−0.139168 + 0.990269i \(0.544443\pi\)
\(570\) 5.08865 7.16362i 0.213140 0.300051i
\(571\) −15.3607 −0.642827 −0.321413 0.946939i \(-0.604158\pi\)
−0.321413 + 0.946939i \(0.604158\pi\)
\(572\) −15.1832 43.5413i −0.634843 1.82055i
\(573\) −2.89329 −0.120869
\(574\) 6.05647 20.6758i 0.252792 0.862991i
\(575\) 4.60261i 0.191942i
\(576\) −6.76003 4.27808i −0.281668 0.178253i
\(577\) 9.64106i 0.401362i −0.979657 0.200681i \(-0.935684\pi\)
0.979657 0.200681i \(-0.0643155\pi\)
\(578\) 8.12739 11.4414i 0.338055 0.475901i
\(579\) 4.72265i 0.196266i
\(580\) 1.09454 0.381676i 0.0454483 0.0158482i
\(581\) 28.3393 9.79191i 1.17571 0.406237i
\(582\) 13.3194 18.7506i 0.552108 0.777237i
\(583\) 61.4093i 2.54331i
\(584\) 1.60673 5.54345i 0.0664868 0.229389i
\(585\) 3.87212 0.160093
\(586\) 23.2278 32.6993i 0.959533 1.35080i
\(587\) 36.4253i 1.50343i −0.659487 0.751716i \(-0.729227\pi\)
0.659487 0.751716i \(-0.270773\pi\)
\(588\) −7.55377 + 11.7873i −0.311512 + 0.486100i
\(589\) 35.1403i 1.44793i
\(590\) −12.4068 8.81311i −0.510779 0.362830i
\(591\) −6.98065 −0.287146
\(592\) 5.50036 + 6.92774i 0.226063 + 0.284728i
\(593\) 3.22129i 0.132282i −0.997810 0.0661412i \(-0.978931\pi\)
0.997810 0.0661412i \(-0.0210688\pi\)
\(594\) 6.86510 + 4.87660i 0.281678 + 0.200089i
\(595\) 6.65213 2.29847i 0.272711 0.0942282i
\(596\) 10.0479 3.50380i 0.411579 0.143521i
\(597\) 26.9627i 1.10351i
\(598\) 20.5475 + 14.5959i 0.840250 + 0.596869i
\(599\) 37.8832i 1.54787i −0.633267 0.773933i \(-0.718286\pi\)
0.633267 0.773933i \(-0.281714\pi\)
\(600\) 0.787391 2.71662i 0.0321451 0.110905i
\(601\) 16.4056i 0.669197i −0.942361 0.334598i \(-0.891399\pi\)
0.942361 0.334598i \(-0.108601\pi\)
\(602\) −18.5431 5.43176i −0.755761 0.221382i
\(603\) 10.0435 0.409001
\(604\) −37.1083 + 12.9400i −1.50991 + 0.526521i
\(605\) 24.4554 0.994253
\(606\) −0.410337 0.291482i −0.0166688 0.0118406i
\(607\) −5.05358 −0.205119 −0.102559 0.994727i \(-0.532703\pi\)
−0.102559 + 0.994727i \(0.532703\pi\)
\(608\) 35.0980 1.87644i 1.42341 0.0760995i
\(609\) 0.500792 + 1.44937i 0.0202931 + 0.0587314i
\(610\) −8.96482 + 12.6204i −0.362975 + 0.510983i
\(611\) −20.8965 −0.845383
\(612\) −5.02358 + 1.75177i −0.203066 + 0.0708110i
\(613\) 29.9222i 1.20855i −0.796777 0.604273i \(-0.793464\pi\)
0.796777 0.604273i \(-0.206536\pi\)
\(614\) −21.8083 15.4915i −0.880113 0.625185i
\(615\) −5.75803 −0.232186
\(616\) −2.25238 44.5020i −0.0907509 1.79304i
\(617\) 4.59051 0.184807 0.0924034 0.995722i \(-0.470545\pi\)
0.0924034 + 0.995722i \(0.470545\pi\)
\(618\) 0.625373 + 0.444232i 0.0251562 + 0.0178696i
\(619\) 19.6151i 0.788396i −0.919026 0.394198i \(-0.871022\pi\)
0.919026 0.394198i \(-0.128978\pi\)
\(620\) −3.72438 10.6805i −0.149575 0.428938i
\(621\) −4.60261 −0.184697
\(622\) −6.58897 + 9.27572i −0.264194 + 0.371922i
\(623\) 27.2380 9.41140i 1.09127 0.377060i
\(624\) 9.63085 + 12.1301i 0.385543 + 0.485594i
\(625\) 1.00000 0.0400000
\(626\) −15.8254 11.2415i −0.632511 0.449302i
\(627\) −36.9971 −1.47752
\(628\) −11.3646 32.5906i −0.453498 1.30051i
\(629\) 5.88271 0.234559
\(630\) 3.59077 + 1.05183i 0.143060 + 0.0419059i
\(631\) 18.1499i 0.722537i −0.932462 0.361268i \(-0.882344\pi\)
0.932462 0.361268i \(-0.117656\pi\)
\(632\) −8.42044 + 29.0518i −0.334947 + 1.15562i
\(633\) 12.3556i 0.491089i
\(634\) −4.30833 3.06041i −0.171106 0.121544i
\(635\) 13.3363i 0.529234i
\(636\) −6.79152 19.4762i −0.269301 0.772282i
\(637\) 21.3232 16.7331i 0.844855 0.662988i
\(638\) −3.97894 2.82642i −0.157528 0.111899i
\(639\) 0.496099i 0.0196254i
\(640\) 10.4687 4.29020i 0.413813 0.169585i
\(641\) −47.0253 −1.85739 −0.928694 0.370847i \(-0.879068\pi\)
−0.928694 + 0.370847i \(0.879068\pi\)
\(642\) 15.2981 + 10.8670i 0.603768 + 0.428885i
\(643\) 50.0444i 1.97356i 0.162073 + 0.986779i \(0.448182\pi\)
−0.162073 + 0.986779i \(0.551818\pi\)
\(644\) 15.0897 + 19.1169i 0.594617 + 0.753311i
\(645\) 5.16410i 0.203336i
\(646\) 13.5364 19.0561i 0.532584 0.749753i
\(647\) −12.3404 −0.485150 −0.242575 0.970133i \(-0.577992\pi\)
−0.242575 + 0.970133i \(0.577992\pi\)
\(648\) −2.71662 0.787391i −0.106719 0.0309317i
\(649\) 64.0759i 2.51520i
\(650\) −3.17121 + 4.46431i −0.124385 + 0.175105i
\(651\) 14.1429 4.88671i 0.554303 0.191525i
\(652\) −1.01496 2.91063i −0.0397490 0.113989i
\(653\) 8.28124i 0.324070i −0.986785 0.162035i \(-0.948194\pi\)
0.986785 0.162035i \(-0.0518058\pi\)
\(654\) 4.42740 6.23274i 0.173125 0.243719i
\(655\) 7.81808i 0.305478i
\(656\) −14.3215 18.0381i −0.559162 0.704269i
\(657\) 2.04057i 0.0796102i
\(658\) −19.3782 5.67637i −0.755440 0.221288i
\(659\) 44.4516 1.73159 0.865795 0.500399i \(-0.166813\pi\)
0.865795 + 0.500399i \(0.166813\pi\)
\(660\) −11.2448 + 3.92117i −0.437704 + 0.152631i
\(661\) 30.2441 1.17636 0.588180 0.808730i \(-0.299845\pi\)
0.588180 + 0.808730i \(0.299845\pi\)
\(662\) −8.57812 + 12.0760i −0.333398 + 0.469346i
\(663\) 10.3003 0.400032
\(664\) 8.92320 30.7864i 0.346287 1.19474i
\(665\) −15.5377 + 5.36864i −0.602525 + 0.208187i
\(666\) 2.54965 + 1.81114i 0.0987970 + 0.0701801i
\(667\) 2.66763 0.103291
\(668\) −9.39497 26.9422i −0.363502 1.04242i
\(669\) 21.6991i 0.838935i
\(670\) −8.22544 + 11.5795i −0.317776 + 0.447354i
\(671\) 65.1789 2.51620
\(672\) 5.63602 + 13.8649i 0.217414 + 0.534850i
\(673\) 12.7940 0.493173 0.246587 0.969121i \(-0.420691\pi\)
0.246587 + 0.969121i \(0.420691\pi\)
\(674\) 5.42471 7.63671i 0.208952 0.294155i
\(675\) 1.00000i 0.0384900i
\(676\) −1.31266 3.76435i −0.0504870 0.144783i
\(677\) −33.9939 −1.30649 −0.653246 0.757145i \(-0.726593\pi\)
−0.653246 + 0.757145i \(0.726593\pi\)
\(678\) 3.20939 + 2.27978i 0.123256 + 0.0875543i
\(679\) −40.6695 + 14.0523i −1.56075 + 0.539277i
\(680\) 2.09456 7.22654i 0.0803227 0.277125i
\(681\) 2.80461 0.107473
\(682\) −27.5801 + 38.8263i −1.05610 + 1.48674i
\(683\) 26.2962 1.00619 0.503097 0.864230i \(-0.332194\pi\)
0.503097 + 0.864230i \(0.332194\pi\)
\(684\) 11.7338 4.09168i 0.448653 0.156449i
\(685\) 14.6304 0.558997
\(686\) 24.3192 9.72496i 0.928513 0.371301i
\(687\) 27.1243i 1.03485i
\(688\) −16.1775 + 12.8443i −0.616760 + 0.489684i
\(689\) 39.9339i 1.52136i
\(690\) 3.76947 5.30653i 0.143501 0.202016i
\(691\) 21.2358i 0.807846i 0.914793 + 0.403923i \(0.132354\pi\)
−0.914793 + 0.403923i \(0.867646\pi\)
\(692\) 10.4109 + 29.8556i 0.395764 + 1.13494i
\(693\) −5.14492 14.8902i −0.195439 0.565631i
\(694\) 6.91319 9.73214i 0.262421 0.369427i
\(695\) 11.6895i 0.443409i
\(696\) 1.57452 + 0.456363i 0.0596821 + 0.0172984i
\(697\) −15.3171 −0.580176
\(698\) −12.9153 + 18.1817i −0.488852 + 0.688188i
\(699\) 15.4554i 0.584579i
\(700\) −4.15348 + 3.27850i −0.156987 + 0.123916i
\(701\) 5.53950i 0.209224i 0.994513 + 0.104612i \(0.0333601\pi\)
−0.994513 + 0.104612i \(0.966640\pi\)
\(702\) 4.46431 + 3.17121i 0.168495 + 0.119690i
\(703\) −13.7405 −0.518232
\(704\) −40.2522 25.4736i −1.51706 0.960073i
\(705\) 5.39666i 0.203250i
\(706\) 16.1748 + 11.4897i 0.608745 + 0.432420i
\(707\) 0.307519 + 0.890008i 0.0115655 + 0.0334722i
\(708\) −7.08644 20.3219i −0.266325 0.763745i
\(709\) 34.3240i 1.28906i −0.764577 0.644532i \(-0.777052\pi\)
0.764577 0.644532i \(-0.222948\pi\)
\(710\) −0.571971 0.406298i −0.0214657 0.0152481i
\(711\) 10.6941i 0.401060i
\(712\) 8.57645 29.5900i 0.321416 1.10893i
\(713\) 26.0306i 0.974853i
\(714\) 9.55191 + 2.79800i 0.357471 + 0.104713i
\(715\) 23.0563 0.862258
\(716\) 16.4689 + 47.2283i 0.615473 + 1.76501i
\(717\) −13.4730 −0.503159
\(718\) 31.7802 + 22.5750i 1.18603 + 0.842490i
\(719\) −18.8344 −0.702406 −0.351203 0.936299i \(-0.614227\pi\)
−0.351203 + 0.936299i \(0.614227\pi\)
\(720\) 3.13268 2.48723i 0.116748 0.0926935i
\(721\) −0.468674 1.35642i −0.0174543 0.0505155i
\(722\) −16.0569 + 22.6044i −0.597577 + 0.841248i
\(723\) −0.816750 −0.0303752
\(724\) 5.01521 + 14.3822i 0.186389 + 0.534511i
\(725\) 0.579589i 0.0215254i
\(726\) 28.1955 + 20.0286i 1.04643 + 0.743331i
\(727\) 25.9405 0.962081 0.481040 0.876698i \(-0.340259\pi\)
0.481040 + 0.876698i \(0.340259\pi\)
\(728\) −1.46470 28.9393i −0.0542854 1.07256i
\(729\) −1.00000 −0.0370370
\(730\) 2.35265 + 1.67119i 0.0870754 + 0.0618537i
\(731\) 13.7371i 0.508087i
\(732\) −20.6718 + 7.20842i −0.764050 + 0.266431i
\(733\) −35.4734 −1.31024 −0.655120 0.755525i \(-0.727382\pi\)
−0.655120 + 0.755525i \(0.727382\pi\)
\(734\) 1.89478 2.66741i 0.0699378 0.0984559i
\(735\) −4.32142 5.50685i −0.159398 0.203123i
\(736\) 25.9992 1.38999i 0.958343 0.0512357i
\(737\) 59.8032 2.20288
\(738\) −6.63865 4.71574i −0.244372 0.173589i
\(739\) −15.5323 −0.571364 −0.285682 0.958324i \(-0.592220\pi\)
−0.285682 + 0.958324i \(0.592220\pi\)
\(740\) −4.17625 + 1.45630i −0.153522 + 0.0535345i
\(741\) −24.0589 −0.883826
\(742\) −10.8477 + 37.0323i −0.398232 + 1.35950i
\(743\) 19.8936i 0.729824i 0.931042 + 0.364912i \(0.118901\pi\)
−0.931042 + 0.364912i \(0.881099\pi\)
\(744\) 4.45318 15.3641i 0.163261 0.563276i
\(745\) 5.32066i 0.194934i
\(746\) 2.21843 + 1.57585i 0.0812226 + 0.0576961i
\(747\) 11.3326i 0.414639i
\(748\) −29.9126 + 10.4308i −1.09371 + 0.381388i
\(749\) −11.4649 33.1811i −0.418918 1.21241i
\(750\) 1.15294 + 0.818985i 0.0420993 + 0.0299051i
\(751\) 0.113991i 0.00415958i 0.999998 + 0.00207979i \(0.000662018\pi\)
−0.999998 + 0.00207979i \(0.999338\pi\)
\(752\) −16.9060 + 13.4227i −0.616499 + 0.489477i
\(753\) 20.6191 0.751402
\(754\) −2.58747 1.83800i −0.0942300 0.0669359i
\(755\) 19.6499i 0.715132i
\(756\) 3.27850 + 4.15348i 0.119238 + 0.151061i
\(757\) 7.67670i 0.279014i −0.990221 0.139507i \(-0.955448\pi\)
0.990221 0.139507i \(-0.0445518\pi\)
\(758\) 23.9823 33.7614i 0.871076 1.22627i
\(759\) −27.4060 −0.994775
\(760\) −4.89235 + 16.8793i −0.177464 + 0.612278i
\(761\) 4.87002i 0.176538i −0.996097 0.0882690i \(-0.971866\pi\)
0.996097 0.0882690i \(-0.0281335\pi\)
\(762\) 10.9222 15.3759i 0.395670 0.557009i
\(763\) −13.5186 + 4.67101i −0.489407 + 0.169102i
\(764\) 5.46390 1.90531i 0.197677 0.0689317i
\(765\) 2.66013i 0.0961770i
\(766\) 1.12242 1.58010i 0.0405546 0.0570914i
\(767\) 41.6680i 1.50454i
\(768\) 15.5834 + 3.62739i 0.562317 + 0.130892i
\(769\) 16.1971i 0.584081i 0.956406 + 0.292041i \(0.0943342\pi\)
−0.956406 + 0.292041i \(0.905666\pi\)
\(770\) 21.3811 + 6.26307i 0.770520 + 0.225705i
\(771\) 14.6010 0.525842
\(772\) −3.10999 8.91860i −0.111931 0.320987i
\(773\) −45.1867 −1.62525 −0.812626 0.582786i \(-0.801963\pi\)
−0.812626 + 0.582786i \(0.801963\pi\)
\(774\) −4.22932 + 5.95388i −0.152020 + 0.214008i
\(775\) 5.65561 0.203155
\(776\) −12.8056 + 44.1813i −0.459694 + 1.58601i
\(777\) −1.91079 5.53012i −0.0685492 0.198392i
\(778\) 20.6496 + 14.6683i 0.740323 + 0.525886i
\(779\) 35.7768 1.28184
\(780\) −7.31241 + 2.54990i −0.261826 + 0.0913011i
\(781\) 2.95399i 0.105702i
\(782\) 10.0273 14.1160i 0.358574 0.504788i
\(783\) 0.579589 0.0207128
\(784\) 6.50284 27.2344i 0.232244 0.972657i
\(785\) 17.2576 0.615951
\(786\) −6.40289 + 9.01375i −0.228383 + 0.321510i
\(787\) 12.9184i 0.460492i 0.973132 + 0.230246i \(0.0739531\pi\)
−0.973132 + 0.230246i \(0.926047\pi\)
\(788\) 13.1828 4.59695i 0.469617 0.163760i
\(789\) 13.6585 0.486255
\(790\) −12.3296 8.75830i −0.438668 0.311606i
\(791\) −2.40522 6.96106i −0.0855196 0.247507i
\(792\) −16.1759 4.68848i −0.574787 0.166598i
\(793\) 42.3853 1.50515
\(794\) 5.93323 8.35259i 0.210563 0.296422i
\(795\) 10.3132 0.365771
\(796\) 17.7557 + 50.9183i 0.629333 + 1.80475i
\(797\) 24.8008 0.878490 0.439245 0.898367i \(-0.355246\pi\)
0.439245 + 0.898367i \(0.355246\pi\)
\(798\) −22.3108 6.53541i −0.789793 0.231351i
\(799\) 14.3558i 0.507871i
\(800\) 0.302000 + 5.64879i 0.0106773 + 0.199715i
\(801\) 10.8922i 0.384858i
\(802\) 16.0572 22.6048i 0.567000 0.798202i
\(803\) 12.1505i 0.428780i
\(804\) −18.9668 + 6.61390i −0.668908 + 0.233254i
\(805\) −11.5097 + 3.97688i −0.405663 + 0.140166i
\(806\) −17.9351 + 25.2484i −0.631737 + 0.889337i
\(807\) 18.0418i 0.635100i
\(808\) 0.966861 + 0.280237i 0.0340140 + 0.00985871i
\(809\) 1.17852 0.0414346 0.0207173 0.999785i \(-0.493405\pi\)
0.0207173 + 0.999785i \(0.493405\pi\)
\(810\) 0.818985 1.15294i 0.0287762 0.0405101i
\(811\) 36.4343i 1.27938i 0.768633 + 0.639690i \(0.220937\pi\)
−0.768633 + 0.639690i \(0.779063\pi\)
\(812\) −1.90018 2.40731i −0.0666834 0.0844801i
\(813\) 27.9012i 0.978537i
\(814\) 15.1818 + 10.7843i 0.532120 + 0.377990i
\(815\) 1.54126 0.0539880
\(816\) 8.33332 6.61634i 0.291725 0.231618i
\(817\) 32.0864i 1.12256i
\(818\) 11.5337 + 8.19289i 0.403265 + 0.286458i
\(819\) −3.34569 9.68295i −0.116908 0.338350i
\(820\) 10.8739 3.79183i 0.379733 0.132416i
\(821\) 22.0140i 0.768293i −0.923272 0.384147i \(-0.874496\pi\)
0.923272 0.384147i \(-0.125504\pi\)
\(822\) 16.8679 + 11.9820i 0.588335 + 0.417921i
\(823\) 29.5887i 1.03140i −0.856771 0.515698i \(-0.827533\pi\)
0.856771 0.515698i \(-0.172467\pi\)
\(824\) −1.47354 0.427095i −0.0513332 0.0148786i
\(825\) 5.95444i 0.207307i
\(826\) −11.3188 + 38.6404i −0.393830 + 1.34447i
\(827\) 43.2966 1.50557 0.752786 0.658265i \(-0.228710\pi\)
0.752786 + 0.658265i \(0.228710\pi\)
\(828\) 8.69193 3.03095i 0.302065 0.105333i
\(829\) 52.6765 1.82953 0.914766 0.403985i \(-0.132375\pi\)
0.914766 + 0.403985i \(0.132375\pi\)
\(830\) 13.0658 + 9.28124i 0.453520 + 0.322156i
\(831\) 4.22886 0.146698
\(832\) −26.1757 16.5653i −0.907478 0.574297i
\(833\) −11.4955 14.6489i −0.398296 0.507554i
\(834\) −9.57354 + 13.4773i −0.331505 + 0.466680i
\(835\) 14.2666 0.493717
\(836\) 69.8682 24.3636i 2.41644 0.842634i
\(837\) 5.65561i 0.195486i
\(838\) −18.6160 13.2238i −0.643078 0.456808i
\(839\) −30.8293 −1.06435 −0.532173 0.846635i \(-0.678625\pi\)
−0.532173 + 0.846635i \(0.678625\pi\)
\(840\) −7.47375 + 0.378268i −0.257869 + 0.0130515i
\(841\) 28.6641 0.988416
\(842\) 18.1280 + 12.8772i 0.624733 + 0.443777i
\(843\) 1.40338i 0.0483349i
\(844\) 8.13648 + 23.3332i 0.280069 + 0.803161i
\(845\) 1.99333 0.0685725
\(846\) −4.41978 + 6.22201i −0.151955 + 0.213917i
\(847\) −21.1306 61.1552i −0.726056 2.10132i
\(848\) 25.6513 + 32.3079i 0.880868 + 1.10946i
\(849\) −0.0994881 −0.00341442
\(850\) 3.06696 + 2.17860i 0.105196 + 0.0747254i
\(851\) −10.1784 −0.348911
\(852\) −0.326695 0.936871i −0.0111924 0.0320967i
\(853\) 29.9493 1.02544 0.512722 0.858555i \(-0.328637\pi\)
0.512722 + 0.858555i \(0.328637\pi\)
\(854\) 39.3056 + 11.5136i 1.34501 + 0.393988i
\(855\) 6.21337i 0.212493i
\(856\) −36.0463 10.4478i −1.23204 0.357097i
\(857\) 50.9319i 1.73980i 0.493229 + 0.869899i \(0.335816\pi\)
−0.493229 + 0.869899i \(0.664184\pi\)
\(858\) 26.5825 + 18.8828i 0.907511 + 0.644648i
\(859\) 7.15532i 0.244136i 0.992522 + 0.122068i \(0.0389527\pi\)
−0.992522 + 0.122068i \(0.961047\pi\)
\(860\) −3.40070 9.75227i −0.115963 0.332550i
\(861\) 4.97521 + 14.3990i 0.169555 + 0.490717i
\(862\) 30.6453 + 21.7688i 1.04378 + 0.741448i
\(863\) 10.0924i 0.343548i −0.985136 0.171774i \(-0.945050\pi\)
0.985136 0.171774i \(-0.0549498\pi\)
\(864\) 5.64879 0.302000i 0.192176 0.0102742i
\(865\) −15.8094 −0.537535
\(866\) −16.9152 12.0156i −0.574801 0.408308i
\(867\) 9.92373i 0.337028i
\(868\) −23.4905 + 18.5419i −0.797318 + 0.629354i
\(869\) 63.6774i 2.16011i
\(870\) −0.474675 + 0.668230i −0.0160930 + 0.0226551i
\(871\) 38.8895 1.31772
\(872\) −4.25661 + 14.6859i −0.144147 + 0.497329i
\(873\) 16.2633i 0.550430i
\(874\) −23.4211 + 32.9714i −0.792231 + 1.11527i
\(875\) −0.864047 2.50068i −0.0292101 0.0845386i
\(876\) 1.34377 + 3.85357i 0.0454018 + 0.130200i
\(877\) 32.0740i 1.08306i 0.840681 + 0.541531i \(0.182155\pi\)
−0.840681 + 0.541531i \(0.817845\pi\)
\(878\) 1.35473 1.90713i 0.0457198 0.0643627i
\(879\) 28.3618i 0.956618i
\(880\) 18.6534 14.8101i 0.628805 0.499247i
\(881\) 21.1025i 0.710963i 0.934683 + 0.355481i \(0.115683\pi\)
−0.934683 + 0.355481i \(0.884317\pi\)
\(882\) −0.472300 9.88822i −0.0159032 0.332954i
\(883\) −34.2127 −1.15135 −0.575674 0.817680i \(-0.695260\pi\)
−0.575674 + 0.817680i \(0.695260\pi\)
\(884\) −19.4519 + 6.78306i −0.654239 + 0.228139i
\(885\) 10.7610 0.361728
\(886\) −25.1961 + 35.4702i −0.846480 + 1.19164i
\(887\) 5.07770 0.170492 0.0852462 0.996360i \(-0.472832\pi\)
0.0852462 + 0.996360i \(0.472832\pi\)
\(888\) −6.00764 1.74127i −0.201603 0.0584332i
\(889\) −33.3498 + 11.5232i −1.11852 + 0.386474i
\(890\) 12.5581 + 8.92057i 0.420947 + 0.299018i
\(891\) −5.95444 −0.199481
\(892\) 14.2895 + 40.9782i 0.478446 + 1.37205i
\(893\) 33.5314i 1.12209i
\(894\) −4.35754 + 6.13438i −0.145738 + 0.205164i
\(895\) −25.0087 −0.835949
\(896\) −19.7739 22.4720i −0.660600 0.750738i
\(897\) −17.8219 −0.595055
\(898\) −13.1116 + 18.4580i −0.437538 + 0.615950i
\(899\) 3.27793i 0.109325i
\(900\) 0.658528 + 1.88848i 0.0219509 + 0.0629492i
\(901\) 27.4344 0.913971
\(902\) −39.5295 28.0796i −1.31619 0.934949i
\(903\) 12.9138 4.46202i 0.429744 0.148487i
\(904\) −7.56215 2.19183i −0.251513 0.0728992i
\(905\) −7.61578 −0.253157
\(906\) 16.0929 22.6551i 0.534652 0.752664i
\(907\) 4.81567 0.159902 0.0799509 0.996799i \(-0.474524\pi\)
0.0799509 + 0.996799i \(0.474524\pi\)
\(908\) −5.29643 + 1.84691i −0.175768 + 0.0612919i
\(909\) 0.355906 0.0118047
\(910\) 13.9039 + 4.07282i 0.460910 + 0.135013i
\(911\) 54.1431i 1.79384i −0.442191 0.896921i \(-0.645799\pi\)
0.442191 0.896921i \(-0.354201\pi\)
\(912\) −19.4645 + 15.4541i −0.644534 + 0.511735i
\(913\) 67.4794i 2.23324i
\(914\) −18.1479 + 25.5479i −0.600279 + 0.845051i
\(915\) 10.9463i 0.361872i
\(916\) −17.8621 51.2235i −0.590180 1.69247i
\(917\) 19.5505 6.75519i 0.645616 0.223076i
\(918\) 2.17860 3.06696i 0.0719046 0.101225i
\(919\) 16.6473i 0.549144i −0.961566 0.274572i \(-0.911464\pi\)
0.961566 0.274572i \(-0.0885362\pi\)
\(920\) −3.62406 + 12.5035i −0.119482 + 0.412230i
\(921\) 18.9155 0.623286
\(922\) −4.70676 + 6.62601i −0.155009 + 0.218216i
\(923\) 1.92096i 0.0632291i
\(924\) 19.5217 + 24.7317i 0.642215 + 0.813612i
\(925\) 2.21144i 0.0727117i
\(926\) 11.1473 + 7.91842i 0.366322 + 0.260215i
\(927\) −0.542418 −0.0178153
\(928\) −3.27398 + 0.175036i −0.107474 + 0.00574583i
\(929\) 6.95181i 0.228081i 0.993476 + 0.114041i \(0.0363794\pi\)
−0.993476 + 0.114041i \(0.963621\pi\)
\(930\) 6.52056 + 4.63185i 0.213818 + 0.151885i
\(931\) 26.8505 + 34.2160i 0.879991 + 1.12139i
\(932\) −10.1778 29.1872i −0.333386 0.956060i
\(933\) 8.04529i 0.263391i
\(934\) −33.8016 24.0108i −1.10602 0.785659i
\(935\) 15.8396i 0.518009i
\(936\) −10.5191 3.04888i −0.343827 0.0996556i
\(937\) 15.5643i 0.508464i −0.967143 0.254232i \(-0.918177\pi\)
0.967143 0.254232i \(-0.0818227\pi\)
\(938\) 36.0638 + 10.5640i 1.17752 + 0.344927i
\(939\) 13.7262 0.447937
\(940\) −3.55385 10.1915i −0.115914 0.332409i
\(941\) −31.5509 −1.02853 −0.514264 0.857632i \(-0.671935\pi\)
−0.514264 + 0.857632i \(0.671935\pi\)
\(942\) 19.8970 + 14.1337i 0.648278 + 0.460502i
\(943\) 26.5020 0.863024
\(944\) 26.7651 + 33.7109i 0.871131 + 1.09720i
\(945\) −2.50068 + 0.864047i −0.0813473 + 0.0281074i
\(946\) −25.1832 + 35.4520i −0.818777 + 1.15265i
\(947\) −22.1282 −0.719071 −0.359535 0.933131i \(-0.617065\pi\)
−0.359535 + 0.933131i \(0.617065\pi\)
\(948\) −7.04236 20.1955i −0.228725 0.655921i
\(949\) 7.90133i 0.256488i
\(950\) −7.16362 5.08865i −0.232419 0.165098i
\(951\) 3.73683 0.121175
\(952\) −19.8811 + 1.00624i −0.644350 + 0.0326125i
\(953\) 10.8508 0.351493 0.175747 0.984435i \(-0.443766\pi\)
0.175747 + 0.984435i \(0.443766\pi\)
\(954\) 11.8905 + 8.44634i 0.384968 + 0.273460i
\(955\) 2.89329i 0.0936245i
\(956\) 25.4435 8.87237i 0.822901 0.286953i
\(957\) 3.45113 0.111559
\(958\) −8.93413 + 12.5771i −0.288649 + 0.406349i
\(959\) −12.6413 36.5859i −0.408209 1.18142i
\(960\) −4.27808 + 6.76003i −0.138075 + 0.218179i
\(961\) 0.985880 0.0318026
\(962\) 9.87256 + 7.01294i 0.318304 + 0.226106i
\(963\) −13.2688 −0.427582
\(964\) 1.54241 0.537852i 0.0496777 0.0173231i
\(965\) 4.72265 0.152027
\(966\) −16.5269 4.84117i −0.531746 0.155762i
\(967\) 8.51382i 0.273786i 0.990586 + 0.136893i \(0.0437116\pi\)
−0.990586 + 0.136893i \(0.956288\pi\)
\(968\) −66.4360 19.2560i −2.13533 0.618910i
\(969\) 16.5283i 0.530966i
\(970\) −18.7506 13.3194i −0.602045 0.427661i
\(971\) 8.02546i 0.257549i −0.991674 0.128775i \(-0.958896\pi\)
0.991674 0.128775i \(-0.0411044\pi\)
\(972\) 1.88848 0.658528i 0.0605729 0.0211223i
\(973\) 29.2318 10.1003i 0.937129 0.323801i
\(974\) −11.9849 8.51347i −0.384023 0.272789i
\(975\) 3.87212i 0.124007i
\(976\) 34.2912 27.2259i 1.09763 0.871479i
\(977\) 34.4370 1.10174 0.550868 0.834592i \(-0.314297\pi\)
0.550868 + 0.834592i \(0.314297\pi\)
\(978\) 1.77698 + 1.26227i 0.0568215 + 0.0403629i
\(979\) 64.8572i 2.07284i
\(980\) 11.7873 + 7.55377i 0.376532 + 0.241296i
\(981\) 5.40596i 0.172599i
\(982\) 22.5350 31.7240i 0.719122 1.01235i
\(983\) −35.2731 −1.12504 −0.562518 0.826785i \(-0.690167\pi\)
−0.562518 + 0.826785i \(0.690167\pi\)
\(984\) 15.6424 + 4.53382i 0.498661 + 0.144533i
\(985\) 6.98065i 0.222422i
\(986\) −1.26269 + 1.77757i −0.0402124 + 0.0566095i
\(987\) 13.4953 4.66297i 0.429562 0.148424i
\(988\) 45.4347 15.8435i 1.44547 0.504048i
\(989\) 23.7684i 0.755790i
\(990\) 4.87660 6.86510i 0.154988 0.218187i
\(991\) 56.1436i 1.78346i 0.452569 + 0.891729i \(0.350508\pi\)
−0.452569 + 0.891729i \(0.649492\pi\)
\(992\) 1.70799 + 31.9473i 0.0542288 + 1.01433i
\(993\) 10.4741i 0.332385i
\(994\) −0.521812 + 1.78138i −0.0165509 + 0.0565019i
\(995\) −26.9627 −0.854774
\(996\) 7.46284 + 21.4014i 0.236469 + 0.678128i
\(997\) 3.80753 0.120586 0.0602928 0.998181i \(-0.480797\pi\)
0.0602928 + 0.998181i \(0.480797\pi\)
\(998\) −34.7270 + 48.8875i −1.09927 + 1.54751i
\(999\) −2.21144 −0.0699669
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.z.d.811.19 yes 28
4.3 odd 2 3360.2.z.d.1231.19 28
7.6 odd 2 840.2.z.c.811.19 28
8.3 odd 2 840.2.z.c.811.20 yes 28
8.5 even 2 3360.2.z.c.1231.9 28
28.27 even 2 3360.2.z.c.1231.10 28
56.13 odd 2 3360.2.z.d.1231.20 28
56.27 even 2 inner 840.2.z.d.811.20 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.z.c.811.19 28 7.6 odd 2
840.2.z.c.811.20 yes 28 8.3 odd 2
840.2.z.d.811.19 yes 28 1.1 even 1 trivial
840.2.z.d.811.20 yes 28 56.27 even 2 inner
3360.2.z.c.1231.9 28 8.5 even 2
3360.2.z.c.1231.10 28 28.27 even 2
3360.2.z.d.1231.19 28 4.3 odd 2
3360.2.z.d.1231.20 28 56.13 odd 2