L(s) = 1 | + (0.818 − 1.15i)2-s + i·3-s + (−0.658 − 1.88i)4-s + 5-s + (1.15 + 0.818i)6-s + (−0.864 − 2.50i)7-s + (−2.71 − 0.787i)8-s − 9-s + (0.818 − 1.15i)10-s − 5.95·11-s + (1.88 − 0.658i)12-s − 3.87·13-s + (−3.59 − 1.05i)14-s + i·15-s + (−3.13 + 2.48i)16-s + 2.66i·17-s + ⋯ |
L(s) = 1 | + (0.579 − 0.815i)2-s + 0.577i·3-s + (−0.329 − 0.944i)4-s + 0.447·5-s + (0.470 + 0.334i)6-s + (−0.326 − 0.945i)7-s + (−0.960 − 0.278i)8-s − 0.333·9-s + (0.258 − 0.364i)10-s − 1.79·11-s + (0.545 − 0.190i)12-s − 1.07·13-s + (−0.959 − 0.281i)14-s + 0.258i·15-s + (−0.783 + 0.621i)16-s + 0.645i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0505i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0505i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0249888 - 0.988081i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0249888 - 0.988081i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.818 + 1.15i)T \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + (0.864 + 2.50i)T \) |
good | 11 | \( 1 + 5.95T + 11T^{2} \) |
| 13 | \( 1 + 3.87T + 13T^{2} \) |
| 17 | \( 1 - 2.66iT - 17T^{2} \) |
| 19 | \( 1 + 6.21iT - 19T^{2} \) |
| 23 | \( 1 + 4.60iT - 23T^{2} \) |
| 29 | \( 1 - 0.579iT - 29T^{2} \) |
| 31 | \( 1 - 5.65T + 31T^{2} \) |
| 37 | \( 1 + 2.21iT - 37T^{2} \) |
| 41 | \( 1 - 5.75iT - 41T^{2} \) |
| 43 | \( 1 - 5.16T + 43T^{2} \) |
| 47 | \( 1 - 5.39T + 47T^{2} \) |
| 53 | \( 1 + 10.3iT - 53T^{2} \) |
| 59 | \( 1 + 10.7iT - 59T^{2} \) |
| 61 | \( 1 + 10.9T + 61T^{2} \) |
| 67 | \( 1 + 10.0T + 67T^{2} \) |
| 71 | \( 1 + 0.496iT - 71T^{2} \) |
| 73 | \( 1 - 2.04iT - 73T^{2} \) |
| 79 | \( 1 + 10.6iT - 79T^{2} \) |
| 83 | \( 1 - 11.3iT - 83T^{2} \) |
| 89 | \( 1 - 10.8iT - 89T^{2} \) |
| 97 | \( 1 + 16.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07263710606150090631661996249, −9.377739592813401274224461887477, −8.224458224618475285070716910327, −7.07741520056293009151466943630, −6.02328401790740826934224728240, −4.92298858679093232332036340716, −4.51627340710931781198339151302, −3.09882701288990139336143594953, −2.37725608078563351635355586658, −0.36225839333860030260676655071,
2.36151848523816621624255892089, 3.03086084713619132152502138328, 4.71810752666641852955293763051, 5.61775777324179982139030930323, 5.98384197483625242059179900829, 7.34551861878859882681827706413, 7.73177715800347237764063501031, 8.722888377124153038105097885286, 9.611131567938361612960480443454, 10.51169489472078774873218145731