Properties

Label 840.2.z.d.811.18
Level $840$
Weight $2$
Character 840.811
Analytic conductor $6.707$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(811,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.811"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.z (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,2,0,-2,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.18
Character \(\chi\) \(=\) 840.811
Dual form 840.2.z.d.811.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.531410 + 1.31057i) q^{2} +1.00000i q^{3} +(-1.43521 + 1.39290i) q^{4} +1.00000 q^{5} +(-1.31057 + 0.531410i) q^{6} +(-2.64060 + 0.165018i) q^{7} +(-2.58819 - 1.14074i) q^{8} -1.00000 q^{9} +(0.531410 + 1.31057i) q^{10} +0.264307 q^{11} +(-1.39290 - 1.43521i) q^{12} -6.07875 q^{13} +(-1.61951 - 3.37301i) q^{14} +1.00000i q^{15} +(0.119639 - 3.99821i) q^{16} +1.85661i q^{17} +(-0.531410 - 1.31057i) q^{18} -3.89210i q^{19} +(-1.43521 + 1.39290i) q^{20} +(-0.165018 - 2.64060i) q^{21} +(0.140455 + 0.346393i) q^{22} -2.09615i q^{23} +(1.14074 - 2.58819i) q^{24} +1.00000 q^{25} +(-3.23031 - 7.96665i) q^{26} -1.00000i q^{27} +(3.55995 - 3.91494i) q^{28} +7.65773i q^{29} +(-1.31057 + 0.531410i) q^{30} -7.19786 q^{31} +(5.30353 - 1.96789i) q^{32} +0.264307i q^{33} +(-2.43322 + 0.986621i) q^{34} +(-2.64060 + 0.165018i) q^{35} +(1.43521 - 1.39290i) q^{36} +8.95826i q^{37} +(5.10089 - 2.06830i) q^{38} -6.07875i q^{39} +(-2.58819 - 1.14074i) q^{40} -2.28921i q^{41} +(3.37301 - 1.61951i) q^{42} -1.71132 q^{43} +(-0.379335 + 0.368154i) q^{44} -1.00000 q^{45} +(2.74716 - 1.11392i) q^{46} -11.7259 q^{47} +(3.99821 + 0.119639i) q^{48} +(6.94554 - 0.871493i) q^{49} +(0.531410 + 1.31057i) q^{50} -1.85661 q^{51} +(8.72426 - 8.46711i) q^{52} -4.04788i q^{53} +(1.31057 - 0.531410i) q^{54} +0.264307 q^{55} +(7.02261 + 2.58515i) q^{56} +3.89210 q^{57} +(-10.0360 + 4.06939i) q^{58} +4.59290i q^{59} +(-1.39290 - 1.43521i) q^{60} +9.96739 q^{61} +(-3.82502 - 9.43333i) q^{62} +(2.64060 - 0.165018i) q^{63} +(5.39742 + 5.90491i) q^{64} -6.07875 q^{65} +(-0.346393 + 0.140455i) q^{66} +2.89202 q^{67} +(-2.58608 - 2.66462i) q^{68} +2.09615 q^{69} +(-1.61951 - 3.37301i) q^{70} -8.61213i q^{71} +(2.58819 + 1.14074i) q^{72} +4.16846i q^{73} +(-11.7405 + 4.76051i) q^{74} +1.00000i q^{75} +(5.42133 + 5.58597i) q^{76} +(-0.697928 + 0.0436153i) q^{77} +(7.96665 - 3.23031i) q^{78} +10.3007i q^{79} +(0.119639 - 3.99821i) q^{80} +1.00000 q^{81} +(3.00018 - 1.21651i) q^{82} -5.71691i q^{83} +(3.91494 + 3.55995i) q^{84} +1.85661i q^{85} +(-0.909415 - 2.24282i) q^{86} -7.65773 q^{87} +(-0.684075 - 0.301506i) q^{88} +13.3494i q^{89} +(-0.531410 - 1.31057i) q^{90} +(16.0515 - 1.00310i) q^{91} +(2.91974 + 3.00841i) q^{92} -7.19786i q^{93} +(-6.23127 - 15.3677i) q^{94} -3.89210i q^{95} +(1.96789 + 5.30353i) q^{96} +11.1183i q^{97} +(4.83308 + 8.63952i) q^{98} -0.264307 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{2} - 2 q^{4} + 28 q^{5} + 4 q^{6} + 4 q^{7} - 10 q^{8} - 28 q^{9} + 2 q^{10} - 8 q^{12} - 8 q^{13} + 2 q^{14} + 6 q^{16} - 2 q^{18} - 2 q^{20} - 4 q^{24} + 28 q^{25} + 16 q^{26} + 10 q^{28}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.531410 + 1.31057i 0.375764 + 0.926716i
\(3\) 1.00000i 0.577350i
\(4\) −1.43521 + 1.39290i −0.717604 + 0.696452i
\(5\) 1.00000 0.447214
\(6\) −1.31057 + 0.531410i −0.535039 + 0.216947i
\(7\) −2.64060 + 0.165018i −0.998053 + 0.0623709i
\(8\) −2.58819 1.14074i −0.915062 0.403313i
\(9\) −1.00000 −0.333333
\(10\) 0.531410 + 1.31057i 0.168047 + 0.414440i
\(11\) 0.264307 0.0796915 0.0398457 0.999206i \(-0.487313\pi\)
0.0398457 + 0.999206i \(0.487313\pi\)
\(12\) −1.39290 1.43521i −0.402097 0.414309i
\(13\) −6.07875 −1.68594 −0.842971 0.537959i \(-0.819195\pi\)
−0.842971 + 0.537959i \(0.819195\pi\)
\(14\) −1.61951 3.37301i −0.432832 0.901475i
\(15\) 1.00000i 0.258199i
\(16\) 0.119639 3.99821i 0.0299097 0.999553i
\(17\) 1.85661i 0.450294i 0.974325 + 0.225147i \(0.0722863\pi\)
−0.974325 + 0.225147i \(0.927714\pi\)
\(18\) −0.531410 1.31057i −0.125255 0.308905i
\(19\) 3.89210i 0.892910i −0.894806 0.446455i \(-0.852686\pi\)
0.894806 0.446455i \(-0.147314\pi\)
\(20\) −1.43521 + 1.39290i −0.320922 + 0.311463i
\(21\) −0.165018 2.64060i −0.0360099 0.576226i
\(22\) 0.140455 + 0.346393i 0.0299451 + 0.0738513i
\(23\) 2.09615i 0.437078i −0.975828 0.218539i \(-0.929871\pi\)
0.975828 0.218539i \(-0.0701291\pi\)
\(24\) 1.14074 2.58819i 0.232853 0.528311i
\(25\) 1.00000 0.200000
\(26\) −3.23031 7.96665i −0.633515 1.56239i
\(27\) 1.00000i 0.192450i
\(28\) 3.55995 3.91494i 0.672768 0.739853i
\(29\) 7.65773i 1.42200i 0.703190 + 0.711002i \(0.251758\pi\)
−0.703190 + 0.711002i \(0.748242\pi\)
\(30\) −1.31057 + 0.531410i −0.239277 + 0.0970217i
\(31\) −7.19786 −1.29277 −0.646387 0.763009i \(-0.723721\pi\)
−0.646387 + 0.763009i \(0.723721\pi\)
\(32\) 5.30353 1.96789i 0.937540 0.347878i
\(33\) 0.264307i 0.0460099i
\(34\) −2.43322 + 0.986621i −0.417295 + 0.169204i
\(35\) −2.64060 + 0.165018i −0.446343 + 0.0278931i
\(36\) 1.43521 1.39290i 0.239201 0.232151i
\(37\) 8.95826i 1.47273i 0.676585 + 0.736365i \(0.263459\pi\)
−0.676585 + 0.736365i \(0.736541\pi\)
\(38\) 5.10089 2.06830i 0.827473 0.335523i
\(39\) 6.07875i 0.973379i
\(40\) −2.58819 1.14074i −0.409228 0.180367i
\(41\) 2.28921i 0.357514i −0.983893 0.178757i \(-0.942792\pi\)
0.983893 0.178757i \(-0.0572076\pi\)
\(42\) 3.37301 1.61951i 0.520467 0.249896i
\(43\) −1.71132 −0.260974 −0.130487 0.991450i \(-0.541654\pi\)
−0.130487 + 0.991450i \(0.541654\pi\)
\(44\) −0.379335 + 0.368154i −0.0571869 + 0.0555013i
\(45\) −1.00000 −0.149071
\(46\) 2.74716 1.11392i 0.405047 0.164238i
\(47\) −11.7259 −1.71040 −0.855201 0.518297i \(-0.826566\pi\)
−0.855201 + 0.518297i \(0.826566\pi\)
\(48\) 3.99821 + 0.119639i 0.577092 + 0.0172684i
\(49\) 6.94554 0.871493i 0.992220 0.124499i
\(50\) 0.531410 + 1.31057i 0.0751527 + 0.185343i
\(51\) −1.85661 −0.259977
\(52\) 8.72426 8.46711i 1.20984 1.17418i
\(53\) 4.04788i 0.556019i −0.960578 0.278009i \(-0.910325\pi\)
0.960578 0.278009i \(-0.0896746\pi\)
\(54\) 1.31057 0.531410i 0.178346 0.0723157i
\(55\) 0.264307 0.0356391
\(56\) 7.02261 + 2.58515i 0.938435 + 0.345455i
\(57\) 3.89210 0.515522
\(58\) −10.0360 + 4.06939i −1.31779 + 0.534337i
\(59\) 4.59290i 0.597945i 0.954262 + 0.298973i \(0.0966439\pi\)
−0.954262 + 0.298973i \(0.903356\pi\)
\(60\) −1.39290 1.43521i −0.179823 0.185284i
\(61\) 9.96739 1.27619 0.638097 0.769956i \(-0.279722\pi\)
0.638097 + 0.769956i \(0.279722\pi\)
\(62\) −3.82502 9.43333i −0.485778 1.19803i
\(63\) 2.64060 0.165018i 0.332684 0.0207903i
\(64\) 5.39742 + 5.90491i 0.674677 + 0.738113i
\(65\) −6.07875 −0.753976
\(66\) −0.346393 + 0.140455i −0.0426381 + 0.0172888i
\(67\) 2.89202 0.353317 0.176658 0.984272i \(-0.443471\pi\)
0.176658 + 0.984272i \(0.443471\pi\)
\(68\) −2.58608 2.66462i −0.313608 0.323133i
\(69\) 2.09615 0.252347
\(70\) −1.61951 3.37301i −0.193568 0.403152i
\(71\) 8.61213i 1.02207i −0.859559 0.511036i \(-0.829262\pi\)
0.859559 0.511036i \(-0.170738\pi\)
\(72\) 2.58819 + 1.14074i 0.305021 + 0.134438i
\(73\) 4.16846i 0.487881i 0.969790 + 0.243940i \(0.0784401\pi\)
−0.969790 + 0.243940i \(0.921560\pi\)
\(74\) −11.7405 + 4.76051i −1.36480 + 0.553398i
\(75\) 1.00000i 0.115470i
\(76\) 5.42133 + 5.58597i 0.621869 + 0.640755i
\(77\) −0.697928 + 0.0436153i −0.0795363 + 0.00497043i
\(78\) 7.96665 3.23031i 0.902045 0.365760i
\(79\) 10.3007i 1.15891i 0.815003 + 0.579457i \(0.196735\pi\)
−0.815003 + 0.579457i \(0.803265\pi\)
\(80\) 0.119639 3.99821i 0.0133760 0.447014i
\(81\) 1.00000 0.111111
\(82\) 3.00018 1.21651i 0.331314 0.134341i
\(83\) 5.71691i 0.627512i −0.949504 0.313756i \(-0.898413\pi\)
0.949504 0.313756i \(-0.101587\pi\)
\(84\) 3.91494 + 3.55995i 0.427155 + 0.388423i
\(85\) 1.85661i 0.201378i
\(86\) −0.909415 2.24282i −0.0980647 0.241849i
\(87\) −7.65773 −0.820994
\(88\) −0.684075 0.301506i −0.0729226 0.0321406i
\(89\) 13.3494i 1.41503i 0.706696 + 0.707517i \(0.250185\pi\)
−0.706696 + 0.707517i \(0.749815\pi\)
\(90\) −0.531410 1.31057i −0.0560155 0.138147i
\(91\) 16.0515 1.00310i 1.68266 0.105154i
\(92\) 2.91974 + 3.00841i 0.304404 + 0.313649i
\(93\) 7.19786i 0.746384i
\(94\) −6.23127 15.3677i −0.642706 1.58506i
\(95\) 3.89210i 0.399321i
\(96\) 1.96789 + 5.30353i 0.200847 + 0.541289i
\(97\) 11.1183i 1.12889i 0.825470 + 0.564446i \(0.190910\pi\)
−0.825470 + 0.564446i \(0.809090\pi\)
\(98\) 4.83308 + 8.63952i 0.488215 + 0.872723i
\(99\) −0.264307 −0.0265638
\(100\) −1.43521 + 1.39290i −0.143521 + 0.139290i
\(101\) 4.37247 0.435077 0.217539 0.976052i \(-0.430197\pi\)
0.217539 + 0.976052i \(0.430197\pi\)
\(102\) −0.986621 2.43322i −0.0976900 0.240925i
\(103\) −4.82084 −0.475012 −0.237506 0.971386i \(-0.576330\pi\)
−0.237506 + 0.971386i \(0.576330\pi\)
\(104\) 15.7329 + 6.93429i 1.54274 + 0.679963i
\(105\) −0.165018 2.64060i −0.0161041 0.257696i
\(106\) 5.30504 2.15108i 0.515271 0.208932i
\(107\) −6.14307 −0.593873 −0.296937 0.954897i \(-0.595965\pi\)
−0.296937 + 0.954897i \(0.595965\pi\)
\(108\) 1.39290 + 1.43521i 0.134032 + 0.138103i
\(109\) 15.4612i 1.48091i −0.672105 0.740456i \(-0.734610\pi\)
0.672105 0.740456i \(-0.265390\pi\)
\(110\) 0.140455 + 0.346393i 0.0133919 + 0.0330273i
\(111\) −8.95826 −0.850281
\(112\) 0.343858 + 10.5774i 0.0324915 + 0.999472i
\(113\) −16.7857 −1.57907 −0.789534 0.613707i \(-0.789678\pi\)
−0.789534 + 0.613707i \(0.789678\pi\)
\(114\) 2.06830 + 5.10089i 0.193714 + 0.477742i
\(115\) 2.09615i 0.195467i
\(116\) −10.6665 10.9904i −0.990357 1.02044i
\(117\) 6.07875 0.561981
\(118\) −6.01934 + 2.44071i −0.554125 + 0.224686i
\(119\) −0.306374 4.90257i −0.0280853 0.449417i
\(120\) 1.14074 2.58819i 0.104135 0.236268i
\(121\) −10.9301 −0.993649
\(122\) 5.29677 + 13.0630i 0.479547 + 1.18267i
\(123\) 2.28921 0.206411
\(124\) 10.3304 10.0259i 0.927700 0.900355i
\(125\) 1.00000 0.0894427
\(126\) 1.61951 + 3.37301i 0.144277 + 0.300492i
\(127\) 17.0682i 1.51456i 0.653089 + 0.757281i \(0.273473\pi\)
−0.653089 + 0.757281i \(0.726527\pi\)
\(128\) −4.87057 + 10.2116i −0.430502 + 0.902590i
\(129\) 1.71132i 0.150674i
\(130\) −3.23031 7.96665i −0.283317 0.698721i
\(131\) 1.99977i 0.174721i −0.996177 0.0873605i \(-0.972157\pi\)
0.996177 0.0873605i \(-0.0278432\pi\)
\(132\) −0.368154 0.379335i −0.0320437 0.0330169i
\(133\) 0.642267 + 10.2775i 0.0556916 + 0.891171i
\(134\) 1.53685 + 3.79021i 0.132763 + 0.327424i
\(135\) 1.00000i 0.0860663i
\(136\) 2.11791 4.80525i 0.181610 0.412047i
\(137\) −16.9556 −1.44862 −0.724308 0.689476i \(-0.757841\pi\)
−0.724308 + 0.689476i \(0.757841\pi\)
\(138\) 1.11392 + 2.74716i 0.0948228 + 0.233854i
\(139\) 19.9469i 1.69188i 0.533280 + 0.845939i \(0.320959\pi\)
−0.533280 + 0.845939i \(0.679041\pi\)
\(140\) 3.55995 3.91494i 0.300871 0.330873i
\(141\) 11.7259i 0.987501i
\(142\) 11.2868 4.57657i 0.947169 0.384057i
\(143\) −1.60665 −0.134355
\(144\) −0.119639 + 3.99821i −0.00996990 + 0.333184i
\(145\) 7.65773i 0.635939i
\(146\) −5.46307 + 2.21516i −0.452127 + 0.183328i
\(147\) 0.871493 + 6.94554i 0.0718795 + 0.572858i
\(148\) −12.4780 12.8570i −1.02569 1.05684i
\(149\) 3.68761i 0.302101i 0.988526 + 0.151050i \(0.0482656\pi\)
−0.988526 + 0.151050i \(0.951734\pi\)
\(150\) −1.31057 + 0.531410i −0.107008 + 0.0433894i
\(151\) 14.4831i 1.17862i −0.807907 0.589309i \(-0.799400\pi\)
0.807907 0.589309i \(-0.200600\pi\)
\(152\) −4.43989 + 10.0735i −0.360122 + 0.817068i
\(153\) 1.85661i 0.150098i
\(154\) −0.428047 0.891509i −0.0344930 0.0718398i
\(155\) −7.19786 −0.578146
\(156\) 8.46711 + 8.72426i 0.677912 + 0.698500i
\(157\) 23.1101 1.84439 0.922193 0.386730i \(-0.126396\pi\)
0.922193 + 0.386730i \(0.126396\pi\)
\(158\) −13.4998 + 5.47387i −1.07398 + 0.435478i
\(159\) 4.04788 0.321018
\(160\) 5.30353 1.96789i 0.419281 0.155576i
\(161\) 0.345903 + 5.53510i 0.0272609 + 0.436227i
\(162\) 0.531410 + 1.31057i 0.0417515 + 0.102968i
\(163\) 13.9465 1.09238 0.546188 0.837663i \(-0.316078\pi\)
0.546188 + 0.837663i \(0.316078\pi\)
\(164\) 3.18865 + 3.28549i 0.248991 + 0.256553i
\(165\) 0.264307i 0.0205762i
\(166\) 7.49243 3.03802i 0.581525 0.235796i
\(167\) −5.00401 −0.387222 −0.193611 0.981078i \(-0.562020\pi\)
−0.193611 + 0.981078i \(0.562020\pi\)
\(168\) −2.58515 + 7.02261i −0.199448 + 0.541806i
\(169\) 23.9512 1.84240
\(170\) −2.43322 + 0.986621i −0.186620 + 0.0756704i
\(171\) 3.89210i 0.297637i
\(172\) 2.45610 2.38371i 0.187276 0.181756i
\(173\) −0.0398406 −0.00302903 −0.00151451 0.999999i \(-0.500482\pi\)
−0.00151451 + 0.999999i \(0.500482\pi\)
\(174\) −4.06939 10.0360i −0.308500 0.760828i
\(175\) −2.64060 + 0.165018i −0.199611 + 0.0124742i
\(176\) 0.0316213 1.05675i 0.00238355 0.0796558i
\(177\) −4.59290 −0.345224
\(178\) −17.4954 + 7.09401i −1.31133 + 0.531718i
\(179\) 0.662470 0.0495153 0.0247577 0.999693i \(-0.492119\pi\)
0.0247577 + 0.999693i \(0.492119\pi\)
\(180\) 1.43521 1.39290i 0.106974 0.103821i
\(181\) −8.47656 −0.630058 −0.315029 0.949082i \(-0.602014\pi\)
−0.315029 + 0.949082i \(0.602014\pi\)
\(182\) 9.84459 + 20.5037i 0.729730 + 1.51983i
\(183\) 9.96739i 0.736810i
\(184\) −2.39117 + 5.42523i −0.176279 + 0.399953i
\(185\) 8.95826i 0.658625i
\(186\) 9.43333 3.82502i 0.691685 0.280464i
\(187\) 0.490714i 0.0358846i
\(188\) 16.8291 16.3331i 1.22739 1.19121i
\(189\) 0.165018 + 2.64060i 0.0120033 + 0.192075i
\(190\) 5.10089 2.06830i 0.370057 0.150050i
\(191\) 11.6714i 0.844513i 0.906476 + 0.422257i \(0.138762\pi\)
−0.906476 + 0.422257i \(0.861238\pi\)
\(192\) −5.90491 + 5.39742i −0.426150 + 0.389525i
\(193\) 2.29670 0.165320 0.0826600 0.996578i \(-0.473658\pi\)
0.0826600 + 0.996578i \(0.473658\pi\)
\(194\) −14.5713 + 5.90837i −1.04616 + 0.424196i
\(195\) 6.07875i 0.435308i
\(196\) −8.75438 + 10.9252i −0.625313 + 0.780374i
\(197\) 23.3822i 1.66591i 0.553339 + 0.832956i \(0.313354\pi\)
−0.553339 + 0.832956i \(0.686646\pi\)
\(198\) −0.140455 0.346393i −0.00998171 0.0246171i
\(199\) −9.36275 −0.663708 −0.331854 0.943331i \(-0.607674\pi\)
−0.331854 + 0.943331i \(0.607674\pi\)
\(200\) −2.58819 1.14074i −0.183012 0.0806626i
\(201\) 2.89202i 0.203987i
\(202\) 2.32357 + 5.73045i 0.163486 + 0.403193i
\(203\) −1.26366 20.2210i −0.0886917 1.41924i
\(204\) 2.66462 2.58608i 0.186561 0.181062i
\(205\) 2.28921i 0.159885i
\(206\) −2.56184 6.31807i −0.178492 0.440201i
\(207\) 2.09615i 0.145693i
\(208\) −0.727255 + 24.3041i −0.0504260 + 1.68519i
\(209\) 1.02871i 0.0711573i
\(210\) 3.37301 1.61951i 0.232760 0.111757i
\(211\) −15.8913 −1.09400 −0.547002 0.837132i \(-0.684231\pi\)
−0.547002 + 0.837132i \(0.684231\pi\)
\(212\) 5.63830 + 5.80954i 0.387240 + 0.399001i
\(213\) 8.61213 0.590093
\(214\) −3.26449 8.05095i −0.223156 0.550352i
\(215\) −1.71132 −0.116711
\(216\) −1.14074 + 2.58819i −0.0776177 + 0.176104i
\(217\) 19.0067 1.18778i 1.29026 0.0806316i
\(218\) 20.2630 8.21622i 1.37238 0.556472i
\(219\) −4.16846 −0.281678
\(220\) −0.379335 + 0.368154i −0.0255747 + 0.0248209i
\(221\) 11.2859i 0.759170i
\(222\) −4.76051 11.7405i −0.319504 0.787968i
\(223\) −11.3286 −0.758619 −0.379309 0.925270i \(-0.623838\pi\)
−0.379309 + 0.925270i \(0.623838\pi\)
\(224\) −13.6798 + 6.07160i −0.914017 + 0.405676i
\(225\) −1.00000 −0.0666667
\(226\) −8.92010 21.9989i −0.593356 1.46335i
\(227\) 4.60858i 0.305882i −0.988235 0.152941i \(-0.951126\pi\)
0.988235 0.152941i \(-0.0488745\pi\)
\(228\) −5.58597 + 5.42133i −0.369940 + 0.359036i
\(229\) −1.54270 −0.101945 −0.0509723 0.998700i \(-0.516232\pi\)
−0.0509723 + 0.998700i \(0.516232\pi\)
\(230\) 2.74716 1.11392i 0.181142 0.0734494i
\(231\) −0.0436153 0.697928i −0.00286968 0.0459203i
\(232\) 8.73549 19.8196i 0.573513 1.30122i
\(233\) −3.72016 −0.243716 −0.121858 0.992548i \(-0.538885\pi\)
−0.121858 + 0.992548i \(0.538885\pi\)
\(234\) 3.23031 + 7.96665i 0.211172 + 0.520796i
\(235\) −11.7259 −0.764915
\(236\) −6.39747 6.59177i −0.416440 0.429088i
\(237\) −10.3007 −0.669100
\(238\) 6.26236 3.00680i 0.405929 0.194902i
\(239\) 28.0309i 1.81317i −0.422027 0.906583i \(-0.638681\pi\)
0.422027 0.906583i \(-0.361319\pi\)
\(240\) 3.99821 + 0.119639i 0.258083 + 0.00772265i
\(241\) 8.95756i 0.577007i −0.957479 0.288504i \(-0.906842\pi\)
0.957479 0.288504i \(-0.0931577\pi\)
\(242\) −5.80839 14.3248i −0.373377 0.920830i
\(243\) 1.00000i 0.0641500i
\(244\) −14.3053 + 13.8836i −0.915801 + 0.888807i
\(245\) 6.94554 0.871493i 0.443734 0.0556776i
\(246\) 1.21651 + 3.00018i 0.0775617 + 0.191284i
\(247\) 23.6591i 1.50539i
\(248\) 18.6294 + 8.21091i 1.18297 + 0.521393i
\(249\) 5.71691 0.362294
\(250\) 0.531410 + 1.31057i 0.0336093 + 0.0828880i
\(251\) 14.7968i 0.933965i 0.884266 + 0.466983i \(0.154659\pi\)
−0.884266 + 0.466983i \(0.845341\pi\)
\(252\) −3.55995 + 3.91494i −0.224256 + 0.246618i
\(253\) 0.554027i 0.0348314i
\(254\) −22.3692 + 9.07023i −1.40357 + 0.569117i
\(255\) −1.85661 −0.116265
\(256\) −15.9714 0.956682i −0.998211 0.0597927i
\(257\) 12.8851i 0.803754i −0.915694 0.401877i \(-0.868358\pi\)
0.915694 0.401877i \(-0.131642\pi\)
\(258\) 2.24282 0.909415i 0.139632 0.0566177i
\(259\) −1.47827 23.6552i −0.0918555 1.46986i
\(260\) 8.72426 8.46711i 0.541056 0.525108i
\(261\) 7.65773i 0.474001i
\(262\) 2.62085 1.06270i 0.161917 0.0656538i
\(263\) 7.26011i 0.447677i −0.974626 0.223839i \(-0.928141\pi\)
0.974626 0.223839i \(-0.0718589\pi\)
\(264\) 0.301506 0.684075i 0.0185564 0.0421019i
\(265\) 4.04788i 0.248659i
\(266\) −13.1281 + 6.30330i −0.804935 + 0.386480i
\(267\) −13.3494 −0.816971
\(268\) −4.15065 + 4.02831i −0.253541 + 0.246068i
\(269\) 12.0068 0.732067 0.366034 0.930602i \(-0.380715\pi\)
0.366034 + 0.930602i \(0.380715\pi\)
\(270\) 1.31057 0.531410i 0.0797590 0.0323406i
\(271\) 18.8132 1.14282 0.571411 0.820664i \(-0.306396\pi\)
0.571411 + 0.820664i \(0.306396\pi\)
\(272\) 7.42312 + 0.222123i 0.450093 + 0.0134682i
\(273\) 1.00310 + 16.0515i 0.0607105 + 0.971484i
\(274\) −9.01038 22.2216i −0.544337 1.34246i
\(275\) 0.264307 0.0159383
\(276\) −3.00841 + 2.91974i −0.181085 + 0.175748i
\(277\) 9.57593i 0.575362i −0.957726 0.287681i \(-0.907116\pi\)
0.957726 0.287681i \(-0.0928842\pi\)
\(278\) −26.1419 + 10.6000i −1.56789 + 0.635746i
\(279\) 7.19786 0.430925
\(280\) 7.02261 + 2.58515i 0.419681 + 0.154492i
\(281\) 6.08335 0.362902 0.181451 0.983400i \(-0.441921\pi\)
0.181451 + 0.983400i \(0.441921\pi\)
\(282\) 15.3677 6.23127i 0.915132 0.371067i
\(283\) 8.00209i 0.475675i 0.971305 + 0.237838i \(0.0764386\pi\)
−0.971305 + 0.237838i \(0.923561\pi\)
\(284\) 11.9959 + 12.3602i 0.711823 + 0.733442i
\(285\) 3.89210 0.230548
\(286\) −0.853792 2.10564i −0.0504858 0.124509i
\(287\) 0.377760 + 6.04488i 0.0222985 + 0.356818i
\(288\) −5.30353 + 1.96789i −0.312513 + 0.115959i
\(289\) 13.5530 0.797235
\(290\) −10.0360 + 4.06939i −0.589335 + 0.238963i
\(291\) −11.1183 −0.651766
\(292\) −5.80626 5.98260i −0.339785 0.350105i
\(293\) 14.1818 0.828509 0.414255 0.910161i \(-0.364042\pi\)
0.414255 + 0.910161i \(0.364042\pi\)
\(294\) −8.63952 + 4.83308i −0.503867 + 0.281871i
\(295\) 4.59290i 0.267409i
\(296\) 10.2191 23.1857i 0.593971 1.34764i
\(297\) 0.264307i 0.0153366i
\(298\) −4.83289 + 1.95963i −0.279962 + 0.113518i
\(299\) 12.7420i 0.736888i
\(300\) −1.39290 1.43521i −0.0804193 0.0828617i
\(301\) 4.51892 0.282399i 0.260466 0.0162772i
\(302\) 18.9812 7.69647i 1.09224 0.442882i
\(303\) 4.37247i 0.251192i
\(304\) −15.5614 0.465647i −0.892510 0.0267067i
\(305\) 9.96739 0.570731
\(306\) 2.43322 0.986621i 0.139098 0.0564014i
\(307\) 20.0654i 1.14519i −0.819837 0.572597i \(-0.805936\pi\)
0.819837 0.572597i \(-0.194064\pi\)
\(308\) 0.940919 1.03474i 0.0536139 0.0589600i
\(309\) 4.82084i 0.274248i
\(310\) −3.82502 9.43333i −0.217246 0.535777i
\(311\) −15.0389 −0.852777 −0.426389 0.904540i \(-0.640214\pi\)
−0.426389 + 0.904540i \(0.640214\pi\)
\(312\) −6.93429 + 15.7329i −0.392577 + 0.890702i
\(313\) 22.2502i 1.25766i 0.777545 + 0.628828i \(0.216465\pi\)
−0.777545 + 0.628828i \(0.783535\pi\)
\(314\) 12.2809 + 30.2875i 0.693053 + 1.70922i
\(315\) 2.64060 0.165018i 0.148781 0.00929771i
\(316\) −14.3478 14.7836i −0.807128 0.831641i
\(317\) 33.4862i 1.88077i 0.340112 + 0.940385i \(0.389535\pi\)
−0.340112 + 0.940385i \(0.610465\pi\)
\(318\) 2.15108 + 5.30504i 0.120627 + 0.297492i
\(319\) 2.02399i 0.113322i
\(320\) 5.39742 + 5.90491i 0.301725 + 0.330094i
\(321\) 6.14307i 0.342873i
\(322\) −7.07034 + 3.39474i −0.394015 + 0.189181i
\(323\) 7.22612 0.402072
\(324\) −1.43521 + 1.39290i −0.0797337 + 0.0773835i
\(325\) −6.07875 −0.337188
\(326\) 7.41132 + 18.2780i 0.410475 + 1.01232i
\(327\) 15.4612 0.855004
\(328\) −2.61140 + 5.92490i −0.144190 + 0.327148i
\(329\) 30.9635 1.93499i 1.70707 0.106679i
\(330\) −0.346393 + 0.140455i −0.0190683 + 0.00773180i
\(331\) 23.5161 1.29256 0.646280 0.763100i \(-0.276324\pi\)
0.646280 + 0.763100i \(0.276324\pi\)
\(332\) 7.96310 + 8.20495i 0.437032 + 0.450305i
\(333\) 8.95826i 0.490910i
\(334\) −2.65918 6.55812i −0.145504 0.358844i
\(335\) 2.89202 0.158008
\(336\) −10.5774 + 0.343858i −0.577045 + 0.0187590i
\(337\) −18.0622 −0.983911 −0.491955 0.870620i \(-0.663718\pi\)
−0.491955 + 0.870620i \(0.663718\pi\)
\(338\) 12.7279 + 31.3898i 0.692307 + 1.70738i
\(339\) 16.7857i 0.911675i
\(340\) −2.58608 2.66462i −0.140250 0.144509i
\(341\) −1.90244 −0.103023
\(342\) −5.10089 + 2.06830i −0.275824 + 0.111841i
\(343\) −18.1966 + 3.44740i −0.982523 + 0.186142i
\(344\) 4.42923 + 1.95218i 0.238808 + 0.105254i
\(345\) 2.09615 0.112853
\(346\) −0.0211717 0.0522141i −0.00113820 0.00280705i
\(347\) 14.1722 0.760803 0.380401 0.924822i \(-0.375786\pi\)
0.380401 + 0.924822i \(0.375786\pi\)
\(348\) 10.9904 10.6665i 0.589148 0.571783i
\(349\) 29.8810 1.59949 0.799746 0.600339i \(-0.204968\pi\)
0.799746 + 0.600339i \(0.204968\pi\)
\(350\) −1.61951 3.37301i −0.0865664 0.180295i
\(351\) 6.07875i 0.324460i
\(352\) 1.40176 0.520127i 0.0747139 0.0277229i
\(353\) 17.7999i 0.947392i −0.880688 0.473696i \(-0.842920\pi\)
0.880688 0.473696i \(-0.157080\pi\)
\(354\) −2.44071 6.01934i −0.129722 0.319924i
\(355\) 8.61213i 0.457084i
\(356\) −18.5944 19.1592i −0.985504 1.01543i
\(357\) 4.90257 0.306374i 0.259471 0.0162150i
\(358\) 0.352043 + 0.868215i 0.0186060 + 0.0458866i
\(359\) 16.1540i 0.852576i −0.904588 0.426288i \(-0.859821\pi\)
0.904588 0.426288i \(-0.140179\pi\)
\(360\) 2.58819 + 1.14074i 0.136409 + 0.0601224i
\(361\) 3.85153 0.202712
\(362\) −4.50453 11.1092i −0.236753 0.583885i
\(363\) 10.9301i 0.573684i
\(364\) −21.6401 + 23.7979i −1.13425 + 1.24735i
\(365\) 4.16846i 0.218187i
\(366\) −13.0630 + 5.29677i −0.682814 + 0.276866i
\(367\) 33.5356 1.75054 0.875272 0.483631i \(-0.160682\pi\)
0.875272 + 0.483631i \(0.160682\pi\)
\(368\) −8.38085 0.250781i −0.436882 0.0130729i
\(369\) 2.28921i 0.119171i
\(370\) −11.7405 + 4.76051i −0.610358 + 0.247487i
\(371\) 0.667973 + 10.6888i 0.0346794 + 0.554936i
\(372\) 10.0259 + 10.3304i 0.519820 + 0.535608i
\(373\) 20.3929i 1.05590i −0.849275 0.527951i \(-0.822960\pi\)
0.849275 0.527951i \(-0.177040\pi\)
\(374\) −0.643117 + 0.260770i −0.0332548 + 0.0134841i
\(375\) 1.00000i 0.0516398i
\(376\) 30.3489 + 13.3763i 1.56512 + 0.689827i
\(377\) 46.5494i 2.39742i
\(378\) −3.37301 + 1.61951i −0.173489 + 0.0832986i
\(379\) −11.2350 −0.577101 −0.288550 0.957465i \(-0.593173\pi\)
−0.288550 + 0.957465i \(0.593173\pi\)
\(380\) 5.42133 + 5.58597i 0.278108 + 0.286554i
\(381\) −17.0682 −0.874433
\(382\) −15.2962 + 6.20230i −0.782623 + 0.317337i
\(383\) 8.65284 0.442140 0.221070 0.975258i \(-0.429045\pi\)
0.221070 + 0.975258i \(0.429045\pi\)
\(384\) −10.2116 4.87057i −0.521110 0.248550i
\(385\) −0.697928 + 0.0436153i −0.0355697 + 0.00222284i
\(386\) 1.22049 + 3.00999i 0.0621212 + 0.153205i
\(387\) 1.71132 0.0869915
\(388\) −15.4867 15.9571i −0.786219 0.810097i
\(389\) 5.18569i 0.262925i 0.991321 + 0.131462i \(0.0419673\pi\)
−0.991321 + 0.131462i \(0.958033\pi\)
\(390\) 7.96665 3.23031i 0.403407 0.163573i
\(391\) 3.89174 0.196814
\(392\) −18.9705 5.66748i −0.958155 0.286251i
\(393\) 1.99977 0.100875
\(394\) −30.6441 + 12.4255i −1.54383 + 0.625989i
\(395\) 10.3007i 0.518282i
\(396\) 0.379335 0.368154i 0.0190623 0.0185004i
\(397\) −6.42434 −0.322428 −0.161214 0.986919i \(-0.551541\pi\)
−0.161214 + 0.986919i \(0.551541\pi\)
\(398\) −4.97546 12.2706i −0.249397 0.615068i
\(399\) −10.2775 + 0.642267i −0.514518 + 0.0321536i
\(400\) 0.119639 3.99821i 0.00598194 0.199911i
\(401\) −36.9183 −1.84361 −0.921806 0.387651i \(-0.873286\pi\)
−0.921806 + 0.387651i \(0.873286\pi\)
\(402\) −3.79021 + 1.53685i −0.189038 + 0.0766510i
\(403\) 43.7540 2.17954
\(404\) −6.27540 + 6.09043i −0.312213 + 0.303010i
\(405\) 1.00000 0.0496904
\(406\) 25.8296 12.4018i 1.28190 0.615489i
\(407\) 2.36773i 0.117364i
\(408\) 4.80525 + 2.11791i 0.237895 + 0.104852i
\(409\) 31.5872i 1.56189i −0.624602 0.780943i \(-0.714739\pi\)
0.624602 0.780943i \(-0.285261\pi\)
\(410\) 3.00018 1.21651i 0.148168 0.0600790i
\(411\) 16.9556i 0.836359i
\(412\) 6.91891 6.71497i 0.340870 0.330823i
\(413\) −0.757912 12.1280i −0.0372944 0.596781i
\(414\) −2.74716 + 1.11392i −0.135016 + 0.0547460i
\(415\) 5.71691i 0.280632i
\(416\) −32.2388 + 11.9623i −1.58064 + 0.586501i
\(417\) −19.9469 −0.976806
\(418\) 1.34820 0.546666i 0.0659426 0.0267383i
\(419\) 25.7821i 1.25954i −0.776782 0.629770i \(-0.783149\pi\)
0.776782 0.629770i \(-0.216851\pi\)
\(420\) 3.91494 + 3.55995i 0.191029 + 0.173708i
\(421\) 1.53513i 0.0748174i 0.999300 + 0.0374087i \(0.0119103\pi\)
−0.999300 + 0.0374087i \(0.988090\pi\)
\(422\) −8.44480 20.8267i −0.411086 1.01383i
\(423\) 11.7259 0.570134
\(424\) −4.61758 + 10.4767i −0.224250 + 0.508792i
\(425\) 1.85661i 0.0900588i
\(426\) 4.57657 + 11.2868i 0.221735 + 0.546849i
\(427\) −26.3199 + 1.64480i −1.27371 + 0.0795973i
\(428\) 8.81658 8.55671i 0.426166 0.413604i
\(429\) 1.60665i 0.0775700i
\(430\) −0.909415 2.24282i −0.0438559 0.108158i
\(431\) 31.2356i 1.50457i −0.658840 0.752283i \(-0.728953\pi\)
0.658840 0.752283i \(-0.271047\pi\)
\(432\) −3.99821 0.119639i −0.192364 0.00575613i
\(433\) 6.85246i 0.329308i 0.986351 + 0.164654i \(0.0526508\pi\)
−0.986351 + 0.164654i \(0.947349\pi\)
\(434\) 11.6570 + 24.2785i 0.559554 + 1.16540i
\(435\) −7.65773 −0.367160
\(436\) 21.5359 + 22.1900i 1.03138 + 1.06271i
\(437\) −8.15844 −0.390271
\(438\) −2.21516 5.46307i −0.105844 0.261035i
\(439\) 0.157801 0.00753144 0.00376572 0.999993i \(-0.498801\pi\)
0.00376572 + 0.999993i \(0.498801\pi\)
\(440\) −0.684075 0.301506i −0.0326120 0.0143737i
\(441\) −6.94554 + 0.871493i −0.330740 + 0.0414997i
\(442\) 14.7910 5.99742i 0.703534 0.285268i
\(443\) 39.7323 1.88774 0.943868 0.330323i \(-0.107158\pi\)
0.943868 + 0.330323i \(0.107158\pi\)
\(444\) 12.8570 12.4780i 0.610164 0.592180i
\(445\) 13.3494i 0.632823i
\(446\) −6.02012 14.8470i −0.285061 0.703024i
\(447\) −3.68761 −0.174418
\(448\) −15.2268 14.7018i −0.719400 0.694596i
\(449\) −9.45801 −0.446351 −0.223176 0.974778i \(-0.571642\pi\)
−0.223176 + 0.974778i \(0.571642\pi\)
\(450\) −0.531410 1.31057i −0.0250509 0.0617810i
\(451\) 0.605053i 0.0284908i
\(452\) 24.0910 23.3809i 1.13314 1.09974i
\(453\) 14.4831 0.680476
\(454\) 6.03988 2.44904i 0.283466 0.114939i
\(455\) 16.0515 1.00310i 0.752508 0.0470262i
\(456\) −10.0735 4.43989i −0.471734 0.207917i
\(457\) −25.6849 −1.20149 −0.600745 0.799441i \(-0.705129\pi\)
−0.600745 + 0.799441i \(0.705129\pi\)
\(458\) −0.819806 2.02182i −0.0383070 0.0944736i
\(459\) 1.85661 0.0866591
\(460\) 2.91974 + 3.00841i 0.136133 + 0.140268i
\(461\) 27.4268 1.27739 0.638697 0.769459i \(-0.279474\pi\)
0.638697 + 0.769459i \(0.279474\pi\)
\(462\) 0.891509 0.428047i 0.0414767 0.0199146i
\(463\) 16.9982i 0.789972i 0.918687 + 0.394986i \(0.129251\pi\)
−0.918687 + 0.394986i \(0.870749\pi\)
\(464\) 30.6172 + 0.916161i 1.42137 + 0.0425317i
\(465\) 7.19786i 0.333793i
\(466\) −1.97693 4.87555i −0.0915796 0.225855i
\(467\) 8.95474i 0.414376i −0.978301 0.207188i \(-0.933569\pi\)
0.978301 0.207188i \(-0.0664312\pi\)
\(468\) −8.72426 + 8.46711i −0.403279 + 0.391392i
\(469\) −7.63667 + 0.477235i −0.352629 + 0.0220367i
\(470\) −6.23127 15.3677i −0.287427 0.708858i
\(471\) 23.1101i 1.06486i
\(472\) 5.23932 11.8873i 0.241159 0.547157i
\(473\) −0.452314 −0.0207974
\(474\) −5.47387 13.4998i −0.251423 0.620065i
\(475\) 3.89210i 0.178582i
\(476\) 7.26851 + 6.60945i 0.333152 + 0.302944i
\(477\) 4.04788i 0.185340i
\(478\) 36.7365 14.8959i 1.68029 0.681322i
\(479\) 4.76512 0.217724 0.108862 0.994057i \(-0.465279\pi\)
0.108862 + 0.994057i \(0.465279\pi\)
\(480\) 1.96789 + 5.30353i 0.0898216 + 0.242072i
\(481\) 54.4550i 2.48294i
\(482\) 11.7395 4.76014i 0.534722 0.216818i
\(483\) −5.53510 + 0.345903i −0.251856 + 0.0157391i
\(484\) 15.6870 15.2246i 0.713046 0.692029i
\(485\) 11.1183i 0.504856i
\(486\) −1.31057 + 0.531410i −0.0594488 + 0.0241052i
\(487\) 22.2240i 1.00707i 0.863975 + 0.503534i \(0.167967\pi\)
−0.863975 + 0.503534i \(0.832033\pi\)
\(488\) −25.7975 11.3702i −1.16780 0.514705i
\(489\) 13.9465i 0.630684i
\(490\) 4.83308 + 8.63952i 0.218336 + 0.390294i
\(491\) −29.6305 −1.33721 −0.668604 0.743619i \(-0.733108\pi\)
−0.668604 + 0.743619i \(0.733108\pi\)
\(492\) −3.28549 + 3.18865i −0.148121 + 0.143755i
\(493\) −14.2174 −0.640320
\(494\) −31.0070 + 12.5727i −1.39507 + 0.565672i
\(495\) −0.264307 −0.0118797
\(496\) −0.861144 + 28.7786i −0.0386665 + 1.29220i
\(497\) 1.42116 + 22.7412i 0.0637475 + 1.02008i
\(498\) 3.03802 + 7.49243i 0.136137 + 0.335744i
\(499\) −17.4850 −0.782738 −0.391369 0.920234i \(-0.627998\pi\)
−0.391369 + 0.920234i \(0.627998\pi\)
\(500\) −1.43521 + 1.39290i −0.0641844 + 0.0622925i
\(501\) 5.00401i 0.223562i
\(502\) −19.3923 + 7.86316i −0.865520 + 0.350950i
\(503\) 26.5951 1.18582 0.592908 0.805270i \(-0.297980\pi\)
0.592908 + 0.805270i \(0.297980\pi\)
\(504\) −7.02261 2.58515i −0.312812 0.115152i
\(505\) 4.37247 0.194572
\(506\) 0.726093 0.294415i 0.0322788 0.0130884i
\(507\) 23.9512i 1.06371i
\(508\) −23.7744 24.4965i −1.05482 1.08685i
\(509\) −41.2008 −1.82620 −0.913098 0.407741i \(-0.866317\pi\)
−0.913098 + 0.407741i \(0.866317\pi\)
\(510\) −0.986621 2.43322i −0.0436883 0.107745i
\(511\) −0.687870 11.0072i −0.0304296 0.486931i
\(512\) −7.23354 21.4401i −0.319680 0.947525i
\(513\) −3.89210 −0.171841
\(514\) 16.8869 6.84730i 0.744851 0.302021i
\(515\) −4.82084 −0.212432
\(516\) 2.38371 + 2.45610i 0.104937 + 0.108124i
\(517\) −3.09924 −0.136304
\(518\) 30.2163 14.5080i 1.32763 0.637444i
\(519\) 0.0398406i 0.00174881i
\(520\) 15.7329 + 6.93429i 0.689935 + 0.304089i
\(521\) 4.12574i 0.180752i 0.995908 + 0.0903761i \(0.0288069\pi\)
−0.995908 + 0.0903761i \(0.971193\pi\)
\(522\) 10.0360 4.06939i 0.439264 0.178112i
\(523\) 14.9470i 0.653586i −0.945096 0.326793i \(-0.894032\pi\)
0.945096 0.326793i \(-0.105968\pi\)
\(524\) 2.78549 + 2.87009i 0.121685 + 0.125380i
\(525\) −0.165018 2.64060i −0.00720197 0.115245i
\(526\) 9.51490 3.85809i 0.414870 0.168221i
\(527\) 13.3636i 0.582129i
\(528\) 1.05675 + 0.0316213i 0.0459893 + 0.00137614i
\(529\) 18.6061 0.808963
\(530\) 5.30504 2.15108i 0.230436 0.0934370i
\(531\) 4.59290i 0.199315i
\(532\) −15.2373 13.8557i −0.660622 0.600721i
\(533\) 13.9155i 0.602748i
\(534\) −7.09401 17.4954i −0.306988 0.757099i
\(535\) −6.14307 −0.265588
\(536\) −7.48509 3.29905i −0.323307 0.142497i
\(537\) 0.662470i 0.0285877i
\(538\) 6.38053 + 15.7358i 0.275084 + 0.678418i
\(539\) 1.83575 0.230341i 0.0790714 0.00992151i
\(540\) 1.39290 + 1.43521i 0.0599410 + 0.0617615i
\(541\) 8.25685i 0.354990i 0.984122 + 0.177495i \(0.0567993\pi\)
−0.984122 + 0.177495i \(0.943201\pi\)
\(542\) 9.99754 + 24.6561i 0.429431 + 1.05907i
\(543\) 8.47656i 0.363764i
\(544\) 3.65361 + 9.84658i 0.156647 + 0.422169i
\(545\) 15.4612i 0.662284i
\(546\) −20.5037 + 9.84459i −0.877476 + 0.421310i
\(547\) −23.1912 −0.991586 −0.495793 0.868441i \(-0.665123\pi\)
−0.495793 + 0.868441i \(0.665123\pi\)
\(548\) 24.3348 23.6175i 1.03953 1.00889i
\(549\) −9.96739 −0.425398
\(550\) 0.140455 + 0.346393i 0.00598903 + 0.0147703i
\(551\) 29.8047 1.26972
\(552\) −5.42523 2.39117i −0.230913 0.101775i
\(553\) −1.69979 27.1999i −0.0722826 1.15666i
\(554\) 12.5500 5.08874i 0.533197 0.216200i
\(555\) −8.95826 −0.380257
\(556\) −27.7842 28.6280i −1.17831 1.21410i
\(557\) 24.5841i 1.04166i −0.853660 0.520830i \(-0.825622\pi\)
0.853660 0.520830i \(-0.174378\pi\)
\(558\) 3.82502 + 9.43333i 0.161926 + 0.399345i
\(559\) 10.4027 0.439988
\(560\) 0.343858 + 10.5774i 0.0145307 + 0.446977i
\(561\) −0.490714 −0.0207180
\(562\) 3.23275 + 7.97268i 0.136366 + 0.336307i
\(563\) 11.9197i 0.502354i −0.967941 0.251177i \(-0.919182\pi\)
0.967941 0.251177i \(-0.0808175\pi\)
\(564\) 16.3331 + 16.8291i 0.687747 + 0.708634i
\(565\) −16.7857 −0.706180
\(566\) −10.4873 + 4.25239i −0.440816 + 0.178741i
\(567\) −2.64060 + 0.165018i −0.110895 + 0.00693010i
\(568\) −9.82421 + 22.2898i −0.412215 + 0.935259i
\(569\) 17.2754 0.724221 0.362111 0.932135i \(-0.382056\pi\)
0.362111 + 0.932135i \(0.382056\pi\)
\(570\) 2.06830 + 5.10089i 0.0866316 + 0.213653i
\(571\) −15.3607 −0.642823 −0.321412 0.946940i \(-0.604157\pi\)
−0.321412 + 0.946940i \(0.604157\pi\)
\(572\) 2.30588 2.23791i 0.0964137 0.0935719i
\(573\) −11.6714 −0.487580
\(574\) −7.72152 + 3.70739i −0.322290 + 0.154744i
\(575\) 2.09615i 0.0874156i
\(576\) −5.39742 5.90491i −0.224892 0.246038i
\(577\) 18.5279i 0.771326i 0.922640 + 0.385663i \(0.126027\pi\)
−0.922640 + 0.385663i \(0.873973\pi\)
\(578\) 7.20220 + 17.7622i 0.299572 + 0.738810i
\(579\) 2.29670i 0.0954475i
\(580\) −10.6665 10.9904i −0.442901 0.456352i
\(581\) 0.943392 + 15.0961i 0.0391385 + 0.626290i
\(582\) −5.90837 14.5713i −0.244910 0.604002i
\(583\) 1.06988i 0.0443099i
\(584\) 4.75513 10.7887i 0.196769 0.446441i
\(585\) 6.07875 0.251325
\(586\) 7.53635 + 18.5863i 0.311324 + 0.767792i
\(587\) 20.7809i 0.857720i 0.903371 + 0.428860i \(0.141085\pi\)
−0.903371 + 0.428860i \(0.858915\pi\)
\(588\) −10.9252 8.75438i −0.450549 0.361025i
\(589\) 28.0148i 1.15433i
\(590\) −6.01934 + 2.44071i −0.247812 + 0.100483i
\(591\) −23.3822 −0.961815
\(592\) 35.8170 + 1.07176i 1.47207 + 0.0440489i
\(593\) 1.59413i 0.0654632i −0.999464 0.0327316i \(-0.989579\pi\)
0.999464 0.0327316i \(-0.0104206\pi\)
\(594\) 0.346393 0.140455i 0.0142127 0.00576295i
\(595\) −0.306374 4.90257i −0.0125601 0.200986i
\(596\) −5.13649 5.29248i −0.210399 0.216789i
\(597\) 9.36275i 0.383192i
\(598\) −16.6993 + 6.77121i −0.682885 + 0.276896i
\(599\) 23.8540i 0.974650i −0.873221 0.487325i \(-0.837973\pi\)
0.873221 0.487325i \(-0.162027\pi\)
\(600\) 1.14074 2.58819i 0.0465706 0.105662i
\(601\) 28.1413i 1.14791i 0.818887 + 0.573954i \(0.194591\pi\)
−0.818887 + 0.573954i \(0.805409\pi\)
\(602\) 2.77151 + 5.77231i 0.112958 + 0.235262i
\(603\) −2.89202 −0.117772
\(604\) 20.1736 + 20.7863i 0.820851 + 0.845781i
\(605\) −10.9301 −0.444373
\(606\) −5.73045 + 2.32357i −0.232783 + 0.0943888i
\(607\) −9.91696 −0.402517 −0.201258 0.979538i \(-0.564503\pi\)
−0.201258 + 0.979538i \(0.564503\pi\)
\(608\) −7.65924 20.6419i −0.310623 0.837139i
\(609\) 20.2210 1.26366i 0.819396 0.0512062i
\(610\) 5.29677 + 13.0630i 0.214460 + 0.528905i
\(611\) 71.2789 2.88364
\(612\) 2.58608 + 2.66462i 0.104536 + 0.107711i
\(613\) 36.6198i 1.47906i −0.673123 0.739531i \(-0.735047\pi\)
0.673123 0.739531i \(-0.264953\pi\)
\(614\) 26.2972 10.6630i 1.06127 0.430322i
\(615\) 2.28921 0.0923098
\(616\) 1.85612 + 0.683271i 0.0747853 + 0.0275298i
\(617\) −21.8103 −0.878050 −0.439025 0.898475i \(-0.644676\pi\)
−0.439025 + 0.898475i \(0.644676\pi\)
\(618\) 6.31807 2.56184i 0.254150 0.103052i
\(619\) 31.3205i 1.25888i 0.777050 + 0.629439i \(0.216715\pi\)
−0.777050 + 0.629439i \(0.783285\pi\)
\(620\) 10.3304 10.0259i 0.414880 0.402651i
\(621\) −2.09615 −0.0841157
\(622\) −7.99181 19.7096i −0.320443 0.790282i
\(623\) −2.20289 35.2505i −0.0882570 1.41228i
\(624\) −24.3041 0.727255i −0.972943 0.0291135i
\(625\) 1.00000 0.0400000
\(626\) −29.1605 + 11.8240i −1.16549 + 0.472581i
\(627\) 1.02871 0.0410827
\(628\) −33.1678 + 32.1901i −1.32354 + 1.28453i
\(629\) −16.6320 −0.663161
\(630\) 1.61951 + 3.37301i 0.0645228 + 0.134384i
\(631\) 28.9853i 1.15389i 0.816785 + 0.576943i \(0.195754\pi\)
−0.816785 + 0.576943i \(0.804246\pi\)
\(632\) 11.7504 26.6600i 0.467406 1.06048i
\(633\) 15.8913i 0.631623i
\(634\) −43.8861 + 17.7949i −1.74294 + 0.706725i
\(635\) 17.0682i 0.677333i
\(636\) −5.80954 + 5.63830i −0.230363 + 0.223573i
\(637\) −42.2202 + 5.29759i −1.67282 + 0.209898i
\(638\) −2.65259 + 1.07557i −0.105017 + 0.0425821i
\(639\) 8.61213i 0.340690i
\(640\) −4.87057 + 10.2116i −0.192526 + 0.403650i
\(641\) −5.84700 −0.230943 −0.115471 0.993311i \(-0.536838\pi\)
−0.115471 + 0.993311i \(0.536838\pi\)
\(642\) 8.05095 3.26449i 0.317746 0.128839i
\(643\) 47.7829i 1.88437i 0.335087 + 0.942187i \(0.391234\pi\)
−0.335087 + 0.942187i \(0.608766\pi\)
\(644\) −8.20630 7.46220i −0.323374 0.294052i
\(645\) 1.71132i 0.0673833i
\(646\) 3.84003 + 9.47036i 0.151084 + 0.372606i
\(647\) −1.20494 −0.0473713 −0.0236856 0.999719i \(-0.507540\pi\)
−0.0236856 + 0.999719i \(0.507540\pi\)
\(648\) −2.58819 1.14074i −0.101674 0.0448126i
\(649\) 1.21393i 0.0476511i
\(650\) −3.23031 7.96665i −0.126703 0.312478i
\(651\) 1.18778 + 19.0067i 0.0465526 + 0.744931i
\(652\) −20.0162 + 19.4262i −0.783893 + 0.760787i
\(653\) 2.29865i 0.0899531i −0.998988 0.0449765i \(-0.985679\pi\)
0.998988 0.0449765i \(-0.0143213\pi\)
\(654\) 8.21622 + 20.2630i 0.321279 + 0.792346i
\(655\) 1.99977i 0.0781376i
\(656\) −9.15273 0.273878i −0.357354 0.0106931i
\(657\) 4.16846i 0.162627i
\(658\) 18.9902 + 39.5516i 0.740316 + 1.54188i
\(659\) −31.7367 −1.23629 −0.618143 0.786066i \(-0.712115\pi\)
−0.618143 + 0.786066i \(0.712115\pi\)
\(660\) −0.368154 0.379335i −0.0143304 0.0147656i
\(661\) 29.3254 1.14063 0.570313 0.821427i \(-0.306822\pi\)
0.570313 + 0.821427i \(0.306822\pi\)
\(662\) 12.4967 + 30.8195i 0.485697 + 1.19784i
\(663\) 11.2859 0.438307
\(664\) −6.52152 + 14.7964i −0.253084 + 0.574212i
\(665\) 0.642267 + 10.2775i 0.0249060 + 0.398544i
\(666\) 11.7405 4.76051i 0.454934 0.184466i
\(667\) 16.0518 0.621526
\(668\) 7.18178 6.97010i 0.277872 0.269681i
\(669\) 11.3286i 0.437989i
\(670\) 1.53685 + 3.79021i 0.0593736 + 0.146428i
\(671\) 2.63445 0.101702
\(672\) −6.07160 13.6798i −0.234217 0.527708i
\(673\) −5.35156 −0.206287 −0.103144 0.994666i \(-0.532890\pi\)
−0.103144 + 0.994666i \(0.532890\pi\)
\(674\) −9.59843 23.6718i −0.369718 0.911806i
\(675\) 1.00000i 0.0384900i
\(676\) −34.3749 + 33.3617i −1.32211 + 1.28314i
\(677\) −38.3482 −1.47384 −0.736921 0.675979i \(-0.763721\pi\)
−0.736921 + 0.675979i \(0.763721\pi\)
\(678\) 21.9989 8.92010i 0.844863 0.342574i
\(679\) −1.83472 29.3590i −0.0704100 1.12669i
\(680\) 2.11791 4.80525i 0.0812183 0.184273i
\(681\) 4.60858 0.176601
\(682\) −1.01098 2.49329i −0.0387123 0.0954731i
\(683\) 40.9876 1.56835 0.784174 0.620541i \(-0.213087\pi\)
0.784174 + 0.620541i \(0.213087\pi\)
\(684\) −5.42133 5.58597i −0.207290 0.213585i
\(685\) −16.9556 −0.647841
\(686\) −14.1879 22.0160i −0.541697 0.840574i
\(687\) 1.54270i 0.0588577i
\(688\) −0.204741 + 6.84223i −0.00780567 + 0.260858i
\(689\) 24.6060i 0.937415i
\(690\) 1.11392 + 2.74716i 0.0424060 + 0.104583i
\(691\) 12.3363i 0.469297i −0.972080 0.234648i \(-0.924606\pi\)
0.972080 0.234648i \(-0.0753938\pi\)
\(692\) 0.0571795 0.0554941i 0.00217364 0.00210957i
\(693\) 0.697928 0.0436153i 0.0265121 0.00165681i
\(694\) 7.53124 + 18.5737i 0.285882 + 0.705048i
\(695\) 19.9469i 0.756631i
\(696\) 19.8196 + 8.73549i 0.751261 + 0.331118i
\(697\) 4.25017 0.160987
\(698\) 15.8790 + 39.1612i 0.601030 + 1.48227i
\(699\) 3.72016i 0.140710i
\(700\) 3.55995 3.91494i 0.134554 0.147971i
\(701\) 30.1199i 1.13761i 0.822472 + 0.568806i \(0.192594\pi\)
−0.822472 + 0.568806i \(0.807406\pi\)
\(702\) −7.96665 + 3.23031i −0.300682 + 0.121920i
\(703\) 34.8665 1.31501
\(704\) 1.42657 + 1.56071i 0.0537660 + 0.0588213i
\(705\) 11.7259i 0.441624i
\(706\) 23.3280 9.45903i 0.877963 0.355995i
\(707\) −11.5459 + 0.721536i −0.434230 + 0.0271362i
\(708\) 6.59177 6.39747i 0.247734 0.240432i
\(709\) 1.69009i 0.0634728i −0.999496 0.0317364i \(-0.989896\pi\)
0.999496 0.0317364i \(-0.0101037\pi\)
\(710\) 11.2868 4.57657i 0.423587 0.171756i
\(711\) 10.3007i 0.386305i
\(712\) 15.2282 34.5508i 0.570702 1.29484i
\(713\) 15.0878i 0.565043i
\(714\) 3.00680 + 6.26236i 0.112527 + 0.234363i
\(715\) −1.60665 −0.0600855
\(716\) −0.950781 + 0.922756i −0.0355324 + 0.0344850i
\(717\) 28.0309 1.04683
\(718\) 21.1710 8.58440i 0.790095 0.320367i
\(719\) −43.0068 −1.60388 −0.801942 0.597402i \(-0.796200\pi\)
−0.801942 + 0.597402i \(0.796200\pi\)
\(720\) −0.119639 + 3.99821i −0.00445868 + 0.149005i
\(721\) 12.7299 0.795526i 0.474087 0.0296269i
\(722\) 2.04674 + 5.04771i 0.0761718 + 0.187856i
\(723\) 8.95756 0.333135
\(724\) 12.1656 11.8070i 0.452132 0.438805i
\(725\) 7.65773i 0.284401i
\(726\) 14.3248 5.80839i 0.531642 0.215569i
\(727\) 13.9472 0.517273 0.258636 0.965975i \(-0.416727\pi\)
0.258636 + 0.965975i \(0.416727\pi\)
\(728\) −42.6887 15.7145i −1.58215 0.582417i
\(729\) −1.00000 −0.0370370
\(730\) −5.46307 + 2.21516i −0.202197 + 0.0819867i
\(731\) 3.17726i 0.117515i
\(732\) −13.8836 14.3053i −0.513153 0.528738i
\(733\) −13.6799 −0.505280 −0.252640 0.967560i \(-0.581299\pi\)
−0.252640 + 0.967560i \(0.581299\pi\)
\(734\) 17.8211 + 43.9509i 0.657791 + 1.62226i
\(735\) 0.871493 + 6.94554i 0.0321455 + 0.256190i
\(736\) −4.12500 11.1170i −0.152050 0.409778i
\(737\) 0.764380 0.0281563
\(738\) −3.00018 + 1.21651i −0.110438 + 0.0447803i
\(739\) −7.98250 −0.293641 −0.146820 0.989163i \(-0.546904\pi\)
−0.146820 + 0.989163i \(0.546904\pi\)
\(740\) −12.4780 12.8570i −0.458700 0.472631i
\(741\) −23.6591 −0.869140
\(742\) −13.6535 + 6.55558i −0.501237 + 0.240663i
\(743\) 16.4647i 0.604030i −0.953303 0.302015i \(-0.902341\pi\)
0.953303 0.302015i \(-0.0976593\pi\)
\(744\) −8.21091 + 18.6294i −0.301026 + 0.682987i
\(745\) 3.68761i 0.135104i
\(746\) 26.7263 10.8370i 0.978521 0.396769i
\(747\) 5.71691i 0.209171i
\(748\) −0.683518 0.704277i −0.0249919 0.0257509i
\(749\) 16.2214 1.01372i 0.592717 0.0370404i
\(750\) −1.31057 + 0.531410i −0.0478554 + 0.0194043i
\(751\) 25.8761i 0.944234i 0.881536 + 0.472117i \(0.156510\pi\)
−0.881536 + 0.472117i \(0.843490\pi\)
\(752\) −1.40288 + 46.8827i −0.0511576 + 1.70964i
\(753\) −14.7968 −0.539225
\(754\) 61.0064 24.7368i 2.22172 0.900861i
\(755\) 14.4831i 0.527094i
\(756\) −3.91494 3.55995i −0.142385 0.129474i
\(757\) 0.192056i 0.00698040i −0.999994 0.00349020i \(-0.998889\pi\)
0.999994 0.00349020i \(-0.00111097\pi\)
\(758\) −5.97037 14.7242i −0.216853 0.534808i
\(759\) 0.554027 0.0201099
\(760\) −4.43989 + 10.0735i −0.161052 + 0.365404i
\(761\) 50.4508i 1.82884i 0.404766 + 0.914420i \(0.367353\pi\)
−0.404766 + 0.914420i \(0.632647\pi\)
\(762\) −9.07023 22.3692i −0.328580 0.810350i
\(763\) 2.55137 + 40.8268i 0.0923658 + 1.47803i
\(764\) −16.2571 16.7509i −0.588163 0.606026i
\(765\) 1.85661i 0.0671259i
\(766\) 4.59821 + 11.3402i 0.166140 + 0.409738i
\(767\) 27.9191i 1.00810i
\(768\) 0.956682 15.9714i 0.0345213 0.576317i
\(769\) 26.3495i 0.950186i 0.879936 + 0.475093i \(0.157586\pi\)
−0.879936 + 0.475093i \(0.842414\pi\)
\(770\) −0.428047 0.891509i −0.0154257 0.0321277i
\(771\) 12.8851 0.464047
\(772\) −3.29624 + 3.19908i −0.118634 + 0.115137i
\(773\) −45.1896 −1.62536 −0.812678 0.582712i \(-0.801991\pi\)
−0.812678 + 0.582712i \(0.801991\pi\)
\(774\) 0.909415 + 2.24282i 0.0326882 + 0.0806164i
\(775\) −7.19786 −0.258555
\(776\) 12.6831 28.7762i 0.455297 1.03301i
\(777\) 23.6552 1.47827i 0.848625 0.0530328i
\(778\) −6.79623 + 2.75573i −0.243657 + 0.0987976i
\(779\) −8.90983 −0.319228
\(780\) 8.46711 + 8.72426i 0.303171 + 0.312379i
\(781\) 2.27624i 0.0814504i
\(782\) 2.06811 + 5.10041i 0.0739554 + 0.182390i
\(783\) 7.65773 0.273665
\(784\) −2.65346 27.8740i −0.0947663 0.995500i
\(785\) 23.1101 0.824834
\(786\) 1.06270 + 2.62085i 0.0379052 + 0.0934826i
\(787\) 19.9506i 0.711161i 0.934646 + 0.355580i \(0.115717\pi\)
−0.934646 + 0.355580i \(0.884283\pi\)
\(788\) −32.5692 33.5583i −1.16023 1.19546i
\(789\) 7.26011 0.258467
\(790\) −13.4998 + 5.47387i −0.480300 + 0.194752i
\(791\) 44.3244 2.76994i 1.57599 0.0984879i
\(792\) 0.684075 + 0.301506i 0.0243075 + 0.0107135i
\(793\) −60.5892 −2.15159
\(794\) −3.41396 8.41957i −0.121157 0.298799i
\(795\) 4.04788 0.143563
\(796\) 13.4375 13.0414i 0.476279 0.462240i
\(797\) −18.4653 −0.654075 −0.327037 0.945011i \(-0.606050\pi\)
−0.327037 + 0.945011i \(0.606050\pi\)
\(798\) −6.30330 13.1281i −0.223134 0.464730i
\(799\) 21.7705i 0.770184i
\(800\) 5.30353 1.96789i 0.187508 0.0695755i
\(801\) 13.3494i 0.471678i
\(802\) −19.6188 48.3842i −0.692762 1.70850i
\(803\) 1.10175i 0.0388799i
\(804\) −4.02831 4.15065i −0.142067 0.146382i
\(805\) 0.345903 + 5.53510i 0.0121915 + 0.195087i
\(806\) 23.2513 + 57.3429i 0.818993 + 2.01982i
\(807\) 12.0068i 0.422659i
\(808\) −11.3168 4.98786i −0.398123 0.175472i
\(809\) 38.2137 1.34352 0.671762 0.740767i \(-0.265538\pi\)
0.671762 + 0.740767i \(0.265538\pi\)
\(810\) 0.531410 + 1.31057i 0.0186718 + 0.0460489i
\(811\) 2.49948i 0.0877686i 0.999037 + 0.0438843i \(0.0139733\pi\)
−0.999037 + 0.0438843i \(0.986027\pi\)
\(812\) 29.9795 + 27.2611i 1.05207 + 0.956679i
\(813\) 18.8132i 0.659809i
\(814\) −3.10308 + 1.25823i −0.108763 + 0.0441011i
\(815\) 13.9465 0.488525
\(816\) −0.222123 + 7.42312i −0.00777585 + 0.259861i
\(817\) 6.66065i 0.233027i
\(818\) 41.3974 16.7858i 1.44742 0.586900i
\(819\) −16.0515 + 1.00310i −0.560886 + 0.0350513i
\(820\) 3.18865 + 3.28549i 0.111352 + 0.114734i
\(821\) 45.2255i 1.57838i −0.614149 0.789190i \(-0.710501\pi\)
0.614149 0.789190i \(-0.289499\pi\)
\(822\) 22.2216 9.01038i 0.775067 0.314273i
\(823\) 29.9944i 1.04554i 0.852474 + 0.522770i \(0.175101\pi\)
−0.852474 + 0.522770i \(0.824899\pi\)
\(824\) 12.4772 + 5.49934i 0.434665 + 0.191579i
\(825\) 0.264307i 0.00920198i
\(826\) 15.4919 7.43825i 0.539032 0.258810i
\(827\) −12.7955 −0.444944 −0.222472 0.974939i \(-0.571413\pi\)
−0.222472 + 0.974939i \(0.571413\pi\)
\(828\) −2.91974 3.00841i −0.101468 0.104550i
\(829\) 15.8675 0.551103 0.275551 0.961286i \(-0.411140\pi\)
0.275551 + 0.961286i \(0.411140\pi\)
\(830\) 7.49243 3.03802i 0.260066 0.105451i
\(831\) 9.57593 0.332185
\(832\) −32.8095 35.8944i −1.13747 1.24442i
\(833\) 1.61802 + 12.8952i 0.0560612 + 0.446791i
\(834\) −10.6000 26.1419i −0.367048 0.905222i
\(835\) −5.00401 −0.173171
\(836\) 1.43289 + 1.47641i 0.0495576 + 0.0510627i
\(837\) 7.19786i 0.248795i
\(838\) 33.7894 13.7009i 1.16723 0.473289i
\(839\) 7.71085 0.266208 0.133104 0.991102i \(-0.457506\pi\)
0.133104 + 0.991102i \(0.457506\pi\)
\(840\) −2.58515 + 7.02261i −0.0891960 + 0.242303i
\(841\) −29.6408 −1.02210
\(842\) −2.01189 + 0.815781i −0.0693345 + 0.0281137i
\(843\) 6.08335i 0.209522i
\(844\) 22.8073 22.1351i 0.785060 0.761920i
\(845\) 23.9512 0.823946
\(846\) 6.23127 + 15.3677i 0.214235 + 0.528352i
\(847\) 28.8621 1.80367i 0.991715 0.0619748i
\(848\) −16.1843 0.484283i −0.555770 0.0166304i
\(849\) −8.00209 −0.274631
\(850\) −2.43322 + 0.986621i −0.0834589 + 0.0338408i
\(851\) 18.7779 0.643697
\(852\) −12.3602 + 11.9959i −0.423453 + 0.410971i
\(853\) −3.27559 −0.112154 −0.0560771 0.998426i \(-0.517859\pi\)
−0.0560771 + 0.998426i \(0.517859\pi\)
\(854\) −16.1423 33.6201i −0.552377 1.15046i
\(855\) 3.89210i 0.133107i
\(856\) 15.8994 + 7.00766i 0.543431 + 0.239517i
\(857\) 14.2127i 0.485497i −0.970089 0.242749i \(-0.921951\pi\)
0.970089 0.242749i \(-0.0780490\pi\)
\(858\) 2.10564 0.853792i 0.0718853 0.0291480i
\(859\) 48.8464i 1.66662i 0.552807 + 0.833309i \(0.313557\pi\)
−0.552807 + 0.833309i \(0.686443\pi\)
\(860\) 2.45610 2.38371i 0.0837525 0.0812838i
\(861\) −6.04488 + 0.377760i −0.206009 + 0.0128740i
\(862\) 40.9365 16.5989i 1.39430 0.565361i
\(863\) 46.2121i 1.57308i 0.617540 + 0.786539i \(0.288129\pi\)
−0.617540 + 0.786539i \(0.711871\pi\)
\(864\) −1.96789 5.30353i −0.0669491 0.180430i
\(865\) −0.0398406 −0.00135462
\(866\) −8.98065 + 3.64146i −0.305175 + 0.123742i
\(867\) 13.5530i 0.460284i
\(868\) −25.6241 + 28.1792i −0.869737 + 0.956464i
\(869\) 2.72253i 0.0923556i
\(870\) −4.06939 10.0360i −0.137965 0.340253i
\(871\) −17.5799 −0.595671
\(872\) −17.6372 + 40.0164i −0.597271 + 1.35513i
\(873\) 11.1183i 0.376297i
\(874\) −4.33547 10.6922i −0.146650 0.361670i
\(875\) −2.64060 + 0.165018i −0.0892686 + 0.00557863i
\(876\) 5.98260 5.80626i 0.202133 0.196175i
\(877\) 19.3145i 0.652205i −0.945334 0.326103i \(-0.894265\pi\)
0.945334 0.326103i \(-0.105735\pi\)
\(878\) 0.0838571 + 0.206810i 0.00283004 + 0.00697950i
\(879\) 14.1818i 0.478340i
\(880\) 0.0316213 1.05675i 0.00106596 0.0356232i
\(881\) 5.01092i 0.168822i 0.996431 + 0.0844110i \(0.0269009\pi\)
−0.996431 + 0.0844110i \(0.973099\pi\)
\(882\) −4.83308 8.63952i −0.162738 0.290908i
\(883\) −46.2754 −1.55729 −0.778646 0.627463i \(-0.784093\pi\)
−0.778646 + 0.627463i \(0.784093\pi\)
\(884\) 15.7201 + 16.1976i 0.528725 + 0.544783i
\(885\) −4.59290 −0.154389
\(886\) 21.1141 + 52.0720i 0.709342 + 1.74939i
\(887\) −29.4098 −0.987484 −0.493742 0.869608i \(-0.664371\pi\)
−0.493742 + 0.869608i \(0.664371\pi\)
\(888\) 23.1857 + 10.2191i 0.778060 + 0.342929i
\(889\) −2.81657 45.0704i −0.0944646 1.51161i
\(890\) −17.4954 + 7.09401i −0.586447 + 0.237792i
\(891\) 0.264307 0.00885461
\(892\) 16.2589 15.7796i 0.544387 0.528341i
\(893\) 45.6385i 1.52723i
\(894\) −1.95963 4.83289i −0.0655399 0.161636i
\(895\) 0.662470 0.0221439
\(896\) 11.1761 27.7686i 0.373368 0.927683i
\(897\) −12.7420 −0.425442
\(898\) −5.02608 12.3954i −0.167723 0.413641i
\(899\) 55.1193i 1.83833i
\(900\) 1.43521 1.39290i 0.0478402 0.0464301i
\(901\) 7.51533 0.250372
\(902\) 0.792966 0.321531i 0.0264029 0.0107058i
\(903\) 0.282399 + 4.51892i 0.00939766 + 0.150380i
\(904\) 43.4446 + 19.1482i 1.44494 + 0.636859i
\(905\) −8.47656 −0.281770
\(906\) 7.69647 + 18.9812i 0.255698 + 0.630608i
\(907\) 12.0290 0.399417 0.199709 0.979855i \(-0.436000\pi\)
0.199709 + 0.979855i \(0.436000\pi\)
\(908\) 6.41931 + 6.61427i 0.213032 + 0.219502i
\(909\) −4.37247 −0.145026
\(910\) 9.84459 + 20.5037i 0.326345 + 0.679690i
\(911\) 57.5846i 1.90786i 0.300023 + 0.953932i \(0.403006\pi\)
−0.300023 + 0.953932i \(0.596994\pi\)
\(912\) 0.465647 15.5614i 0.0154191 0.515291i
\(913\) 1.51102i 0.0500073i
\(914\) −13.6492 33.6620i −0.451476 1.11344i
\(915\) 9.96739i 0.329512i
\(916\) 2.21409 2.14883i 0.0731558 0.0709994i
\(917\) 0.329998 + 5.28060i 0.0108975 + 0.174381i
\(918\) 0.986621 + 2.43322i 0.0325633 + 0.0803084i
\(919\) 21.4808i 0.708585i −0.935135 0.354293i \(-0.884722\pi\)
0.935135 0.354293i \(-0.115278\pi\)
\(920\) −2.39117 + 5.42523i −0.0788345 + 0.178865i
\(921\) 20.0654 0.661178
\(922\) 14.5749 + 35.9448i 0.479998 + 1.18378i
\(923\) 52.3510i 1.72315i
\(924\) 1.03474 + 0.940919i 0.0340406 + 0.0309540i
\(925\) 8.95826i 0.294546i
\(926\) −22.2773 + 9.03299i −0.732079 + 0.296843i
\(927\) 4.82084 0.158337
\(928\) 15.0696 + 40.6130i 0.494683 + 1.33319i
\(929\) 11.2995i 0.370723i −0.982670 0.185362i \(-0.940654\pi\)
0.982670 0.185362i \(-0.0593457\pi\)
\(930\) 9.43333 3.82502i 0.309331 0.125427i
\(931\) −3.39194 27.0328i −0.111166 0.885963i
\(932\) 5.33921 5.18183i 0.174892 0.169736i
\(933\) 15.0389i 0.492351i
\(934\) 11.7358 4.75864i 0.384009 0.155707i
\(935\) 0.490714i 0.0160481i
\(936\) −15.7329 6.93429i −0.514247 0.226654i
\(937\) 24.5392i 0.801660i 0.916152 + 0.400830i \(0.131278\pi\)
−0.916152 + 0.400830i \(0.868722\pi\)
\(938\) −4.68365 9.75481i −0.152927 0.318506i
\(939\) −22.2502 −0.726108
\(940\) 16.8291 16.3331i 0.548906 0.532726i
\(941\) −51.5447 −1.68031 −0.840154 0.542348i \(-0.817536\pi\)
−0.840154 + 0.542348i \(0.817536\pi\)
\(942\) −30.2875 + 12.2809i −0.986819 + 0.400134i
\(943\) −4.79853 −0.156262
\(944\) 18.3634 + 0.549490i 0.597678 + 0.0178844i
\(945\) 0.165018 + 2.64060i 0.00536803 + 0.0858987i
\(946\) −0.240364 0.592791i −0.00781492 0.0192733i
\(947\) 16.0492 0.521530 0.260765 0.965402i \(-0.416025\pi\)
0.260765 + 0.965402i \(0.416025\pi\)
\(948\) 14.7836 14.3478i 0.480148 0.465996i
\(949\) 25.3390i 0.822539i
\(950\) 5.10089 2.06830i 0.165495 0.0671046i
\(951\) −33.4862 −1.08586
\(952\) −4.79961 + 13.0382i −0.155556 + 0.422572i
\(953\) 14.3868 0.466035 0.233018 0.972472i \(-0.425140\pi\)
0.233018 + 0.972472i \(0.425140\pi\)
\(954\) −5.30504 + 2.15108i −0.171757 + 0.0696439i
\(955\) 11.6714i 0.377678i
\(956\) 39.0443 + 40.2301i 1.26278 + 1.30114i
\(957\) −2.02399 −0.0654262
\(958\) 2.53223 + 6.24505i 0.0818128 + 0.201768i
\(959\) 44.7730 2.79798i 1.44580 0.0903515i
\(960\) −5.90491 + 5.39742i −0.190580 + 0.174201i
\(961\) 20.8093 0.671266
\(962\) 71.3673 28.9379i 2.30098 0.932997i
\(963\) 6.14307 0.197958
\(964\) 12.4770 + 12.8560i 0.401858 + 0.414062i
\(965\) 2.29670 0.0739333
\(966\) −3.39474 7.07034i −0.109224 0.227484i
\(967\) 37.2171i 1.19682i −0.801189 0.598411i \(-0.795799\pi\)
0.801189 0.598411i \(-0.204201\pi\)
\(968\) 28.2892 + 12.4685i 0.909251 + 0.400752i
\(969\) 7.22612i 0.232136i
\(970\) −14.5713 + 5.90837i −0.467858 + 0.189706i
\(971\) 43.0613i 1.38190i 0.722902 + 0.690951i \(0.242808\pi\)
−0.722902 + 0.690951i \(0.757192\pi\)
\(972\) −1.39290 1.43521i −0.0446774 0.0460343i
\(973\) −3.29160 52.6719i −0.105524 1.68858i
\(974\) −29.1263 + 11.8101i −0.933265 + 0.378419i
\(975\) 6.07875i 0.194676i
\(976\) 1.19249 39.8517i 0.0381706 1.27562i
\(977\) −5.91287 −0.189169 −0.0945847 0.995517i \(-0.530152\pi\)
−0.0945847 + 0.995517i \(0.530152\pi\)
\(978\) −18.2780 + 7.41132i −0.584464 + 0.236988i
\(979\) 3.52834i 0.112766i
\(980\) −8.75438 + 10.9252i −0.279648 + 0.348994i
\(981\) 15.4612i 0.493637i
\(982\) −15.7460 38.8330i −0.502474 1.23921i
\(983\) −1.42530 −0.0454599 −0.0227300 0.999742i \(-0.507236\pi\)
−0.0227300 + 0.999742i \(0.507236\pi\)
\(984\) −5.92490 2.61140i −0.188879 0.0832482i
\(985\) 23.3822i 0.745019i
\(986\) −7.55527 18.6330i −0.240609 0.593395i
\(987\) 1.93499 + 30.9635i 0.0615913 + 0.985578i
\(988\) −32.9549 33.9557i −1.04843 1.08028i
\(989\) 3.58719i 0.114066i
\(990\) −0.140455 0.346393i −0.00446396 0.0110091i
\(991\) 25.8732i 0.821889i 0.911660 + 0.410945i \(0.134801\pi\)
−0.911660 + 0.410945i \(0.865199\pi\)
\(992\) −38.1741 + 14.1646i −1.21203 + 0.449727i
\(993\) 23.5161i 0.746260i
\(994\) −29.0488 + 13.9474i −0.921371 + 0.442385i
\(995\) −9.36275 −0.296819
\(996\) −8.20495 + 7.96310i −0.259984 + 0.252320i
\(997\) 24.4403 0.774031 0.387015 0.922073i \(-0.373506\pi\)
0.387015 + 0.922073i \(0.373506\pi\)
\(998\) −9.29173 22.9154i −0.294125 0.725376i
\(999\) 8.95826 0.283427
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.z.d.811.18 yes 28
4.3 odd 2 3360.2.z.d.1231.3 28
7.6 odd 2 840.2.z.c.811.18 yes 28
8.3 odd 2 840.2.z.c.811.17 28
8.5 even 2 3360.2.z.c.1231.25 28
28.27 even 2 3360.2.z.c.1231.26 28
56.13 odd 2 3360.2.z.d.1231.4 28
56.27 even 2 inner 840.2.z.d.811.17 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.z.c.811.17 28 8.3 odd 2
840.2.z.c.811.18 yes 28 7.6 odd 2
840.2.z.d.811.17 yes 28 56.27 even 2 inner
840.2.z.d.811.18 yes 28 1.1 even 1 trivial
3360.2.z.c.1231.25 28 8.5 even 2
3360.2.z.c.1231.26 28 28.27 even 2
3360.2.z.d.1231.3 28 4.3 odd 2
3360.2.z.d.1231.4 28 56.13 odd 2