Properties

Label 3360.2.z.c.1231.26
Level $3360$
Weight $2$
Character 3360.1231
Analytic conductor $26.830$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(1231,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.1231"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.z (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1231.26
Character \(\chi\) \(=\) 3360.1231
Dual form 3360.2.z.c.1231.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -1.00000 q^{5} +(-2.64060 - 0.165018i) q^{7} -1.00000 q^{9} -0.264307 q^{11} +6.07875 q^{13} -1.00000i q^{15} -1.85661i q^{17} -3.89210i q^{19} +(0.165018 - 2.64060i) q^{21} +2.09615i q^{23} +1.00000 q^{25} -1.00000i q^{27} +7.65773i q^{29} -7.19786 q^{31} -0.264307i q^{33} +(2.64060 + 0.165018i) q^{35} +8.95826i q^{37} +6.07875i q^{39} +2.28921i q^{41} +1.71132 q^{43} +1.00000 q^{45} -11.7259 q^{47} +(6.94554 + 0.871493i) q^{49} +1.85661 q^{51} -4.04788i q^{53} +0.264307 q^{55} +3.89210 q^{57} +4.59290i q^{59} -9.96739 q^{61} +(2.64060 + 0.165018i) q^{63} -6.07875 q^{65} -2.89202 q^{67} -2.09615 q^{69} +8.61213i q^{71} -4.16846i q^{73} +1.00000i q^{75} +(0.697928 + 0.0436153i) q^{77} -10.3007i q^{79} +1.00000 q^{81} -5.71691i q^{83} +1.85661i q^{85} -7.65773 q^{87} -13.3494i q^{89} +(-16.0515 - 1.00310i) q^{91} -7.19786i q^{93} +3.89210i q^{95} -11.1183i q^{97} +0.264307 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 28 q^{5} + 4 q^{7} - 28 q^{9} + 8 q^{13} + 28 q^{25} + 24 q^{31} - 4 q^{35} - 24 q^{43} + 28 q^{45} - 24 q^{47} + 28 q^{49} + 8 q^{57} + 16 q^{61} - 4 q^{63} - 8 q^{65} + 8 q^{67} + 24 q^{69} - 16 q^{77}+ \cdots - 48 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.64060 0.165018i −0.998053 0.0623709i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −0.264307 −0.0796915 −0.0398457 0.999206i \(-0.512687\pi\)
−0.0398457 + 0.999206i \(0.512687\pi\)
\(12\) 0 0
\(13\) 6.07875 1.68594 0.842971 0.537959i \(-0.180805\pi\)
0.842971 + 0.537959i \(0.180805\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 1.85661i 0.450294i −0.974325 0.225147i \(-0.927714\pi\)
0.974325 0.225147i \(-0.0722863\pi\)
\(18\) 0 0
\(19\) 3.89210i 0.892910i −0.894806 0.446455i \(-0.852686\pi\)
0.894806 0.446455i \(-0.147314\pi\)
\(20\) 0 0
\(21\) 0.165018 2.64060i 0.0360099 0.576226i
\(22\) 0 0
\(23\) 2.09615i 0.437078i 0.975828 + 0.218539i \(0.0701291\pi\)
−0.975828 + 0.218539i \(0.929871\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 7.65773i 1.42200i 0.703190 + 0.711002i \(0.251758\pi\)
−0.703190 + 0.711002i \(0.748242\pi\)
\(30\) 0 0
\(31\) −7.19786 −1.29277 −0.646387 0.763009i \(-0.723721\pi\)
−0.646387 + 0.763009i \(0.723721\pi\)
\(32\) 0 0
\(33\) 0.264307i 0.0460099i
\(34\) 0 0
\(35\) 2.64060 + 0.165018i 0.446343 + 0.0278931i
\(36\) 0 0
\(37\) 8.95826i 1.47273i 0.676585 + 0.736365i \(0.263459\pi\)
−0.676585 + 0.736365i \(0.736541\pi\)
\(38\) 0 0
\(39\) 6.07875i 0.973379i
\(40\) 0 0
\(41\) 2.28921i 0.357514i 0.983893 + 0.178757i \(0.0572076\pi\)
−0.983893 + 0.178757i \(0.942792\pi\)
\(42\) 0 0
\(43\) 1.71132 0.260974 0.130487 0.991450i \(-0.458346\pi\)
0.130487 + 0.991450i \(0.458346\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −11.7259 −1.71040 −0.855201 0.518297i \(-0.826566\pi\)
−0.855201 + 0.518297i \(0.826566\pi\)
\(48\) 0 0
\(49\) 6.94554 + 0.871493i 0.992220 + 0.124499i
\(50\) 0 0
\(51\) 1.85661 0.259977
\(52\) 0 0
\(53\) 4.04788i 0.556019i −0.960578 0.278009i \(-0.910325\pi\)
0.960578 0.278009i \(-0.0896746\pi\)
\(54\) 0 0
\(55\) 0.264307 0.0356391
\(56\) 0 0
\(57\) 3.89210 0.515522
\(58\) 0 0
\(59\) 4.59290i 0.597945i 0.954262 + 0.298973i \(0.0966439\pi\)
−0.954262 + 0.298973i \(0.903356\pi\)
\(60\) 0 0
\(61\) −9.96739 −1.27619 −0.638097 0.769956i \(-0.720278\pi\)
−0.638097 + 0.769956i \(0.720278\pi\)
\(62\) 0 0
\(63\) 2.64060 + 0.165018i 0.332684 + 0.0207903i
\(64\) 0 0
\(65\) −6.07875 −0.753976
\(66\) 0 0
\(67\) −2.89202 −0.353317 −0.176658 0.984272i \(-0.556529\pi\)
−0.176658 + 0.984272i \(0.556529\pi\)
\(68\) 0 0
\(69\) −2.09615 −0.252347
\(70\) 0 0
\(71\) 8.61213i 1.02207i 0.859559 + 0.511036i \(0.170738\pi\)
−0.859559 + 0.511036i \(0.829262\pi\)
\(72\) 0 0
\(73\) 4.16846i 0.487881i −0.969790 0.243940i \(-0.921560\pi\)
0.969790 0.243940i \(-0.0784401\pi\)
\(74\) 0 0
\(75\) 1.00000i 0.115470i
\(76\) 0 0
\(77\) 0.697928 + 0.0436153i 0.0795363 + 0.00497043i
\(78\) 0 0
\(79\) 10.3007i 1.15891i −0.815003 0.579457i \(-0.803265\pi\)
0.815003 0.579457i \(-0.196735\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 5.71691i 0.627512i −0.949504 0.313756i \(-0.898413\pi\)
0.949504 0.313756i \(-0.101587\pi\)
\(84\) 0 0
\(85\) 1.85661i 0.201378i
\(86\) 0 0
\(87\) −7.65773 −0.820994
\(88\) 0 0
\(89\) 13.3494i 1.41503i −0.706696 0.707517i \(-0.749815\pi\)
0.706696 0.707517i \(-0.250185\pi\)
\(90\) 0 0
\(91\) −16.0515 1.00310i −1.68266 0.105154i
\(92\) 0 0
\(93\) 7.19786i 0.746384i
\(94\) 0 0
\(95\) 3.89210i 0.399321i
\(96\) 0 0
\(97\) 11.1183i 1.12889i −0.825470 0.564446i \(-0.809090\pi\)
0.825470 0.564446i \(-0.190910\pi\)
\(98\) 0 0
\(99\) 0.264307 0.0265638
\(100\) 0 0
\(101\) −4.37247 −0.435077 −0.217539 0.976052i \(-0.569803\pi\)
−0.217539 + 0.976052i \(0.569803\pi\)
\(102\) 0 0
\(103\) −4.82084 −0.475012 −0.237506 0.971386i \(-0.576330\pi\)
−0.237506 + 0.971386i \(0.576330\pi\)
\(104\) 0 0
\(105\) −0.165018 + 2.64060i −0.0161041 + 0.257696i
\(106\) 0 0
\(107\) 6.14307 0.593873 0.296937 0.954897i \(-0.404035\pi\)
0.296937 + 0.954897i \(0.404035\pi\)
\(108\) 0 0
\(109\) 15.4612i 1.48091i −0.672105 0.740456i \(-0.734610\pi\)
0.672105 0.740456i \(-0.265390\pi\)
\(110\) 0 0
\(111\) −8.95826 −0.850281
\(112\) 0 0
\(113\) −16.7857 −1.57907 −0.789534 0.613707i \(-0.789678\pi\)
−0.789534 + 0.613707i \(0.789678\pi\)
\(114\) 0 0
\(115\) 2.09615i 0.195467i
\(116\) 0 0
\(117\) −6.07875 −0.561981
\(118\) 0 0
\(119\) −0.306374 + 4.90257i −0.0280853 + 0.449417i
\(120\) 0 0
\(121\) −10.9301 −0.993649
\(122\) 0 0
\(123\) −2.28921 −0.206411
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 17.0682i 1.51456i −0.653089 0.757281i \(-0.726527\pi\)
0.653089 0.757281i \(-0.273473\pi\)
\(128\) 0 0
\(129\) 1.71132i 0.150674i
\(130\) 0 0
\(131\) 1.99977i 0.174721i −0.996177 0.0873605i \(-0.972157\pi\)
0.996177 0.0873605i \(-0.0278432\pi\)
\(132\) 0 0
\(133\) −0.642267 + 10.2775i −0.0556916 + 0.891171i
\(134\) 0 0
\(135\) 1.00000i 0.0860663i
\(136\) 0 0
\(137\) −16.9556 −1.44862 −0.724308 0.689476i \(-0.757841\pi\)
−0.724308 + 0.689476i \(0.757841\pi\)
\(138\) 0 0
\(139\) 19.9469i 1.69188i 0.533280 + 0.845939i \(0.320959\pi\)
−0.533280 + 0.845939i \(0.679041\pi\)
\(140\) 0 0
\(141\) 11.7259i 0.987501i
\(142\) 0 0
\(143\) −1.60665 −0.134355
\(144\) 0 0
\(145\) 7.65773i 0.635939i
\(146\) 0 0
\(147\) −0.871493 + 6.94554i −0.0718795 + 0.572858i
\(148\) 0 0
\(149\) 3.68761i 0.302101i 0.988526 + 0.151050i \(0.0482656\pi\)
−0.988526 + 0.151050i \(0.951734\pi\)
\(150\) 0 0
\(151\) 14.4831i 1.17862i 0.807907 + 0.589309i \(0.200600\pi\)
−0.807907 + 0.589309i \(0.799400\pi\)
\(152\) 0 0
\(153\) 1.85661i 0.150098i
\(154\) 0 0
\(155\) 7.19786 0.578146
\(156\) 0 0
\(157\) −23.1101 −1.84439 −0.922193 0.386730i \(-0.873604\pi\)
−0.922193 + 0.386730i \(0.873604\pi\)
\(158\) 0 0
\(159\) 4.04788 0.321018
\(160\) 0 0
\(161\) 0.345903 5.53510i 0.0272609 0.436227i
\(162\) 0 0
\(163\) −13.9465 −1.09238 −0.546188 0.837663i \(-0.683922\pi\)
−0.546188 + 0.837663i \(0.683922\pi\)
\(164\) 0 0
\(165\) 0.264307i 0.0205762i
\(166\) 0 0
\(167\) −5.00401 −0.387222 −0.193611 0.981078i \(-0.562020\pi\)
−0.193611 + 0.981078i \(0.562020\pi\)
\(168\) 0 0
\(169\) 23.9512 1.84240
\(170\) 0 0
\(171\) 3.89210i 0.297637i
\(172\) 0 0
\(173\) 0.0398406 0.00302903 0.00151451 0.999999i \(-0.499518\pi\)
0.00151451 + 0.999999i \(0.499518\pi\)
\(174\) 0 0
\(175\) −2.64060 0.165018i −0.199611 0.0124742i
\(176\) 0 0
\(177\) −4.59290 −0.345224
\(178\) 0 0
\(179\) −0.662470 −0.0495153 −0.0247577 0.999693i \(-0.507881\pi\)
−0.0247577 + 0.999693i \(0.507881\pi\)
\(180\) 0 0
\(181\) 8.47656 0.630058 0.315029 0.949082i \(-0.397986\pi\)
0.315029 + 0.949082i \(0.397986\pi\)
\(182\) 0 0
\(183\) 9.96739i 0.736810i
\(184\) 0 0
\(185\) 8.95826i 0.658625i
\(186\) 0 0
\(187\) 0.490714i 0.0358846i
\(188\) 0 0
\(189\) −0.165018 + 2.64060i −0.0120033 + 0.192075i
\(190\) 0 0
\(191\) 11.6714i 0.844513i −0.906476 0.422257i \(-0.861238\pi\)
0.906476 0.422257i \(-0.138762\pi\)
\(192\) 0 0
\(193\) 2.29670 0.165320 0.0826600 0.996578i \(-0.473658\pi\)
0.0826600 + 0.996578i \(0.473658\pi\)
\(194\) 0 0
\(195\) 6.07875i 0.435308i
\(196\) 0 0
\(197\) 23.3822i 1.66591i 0.553339 + 0.832956i \(0.313354\pi\)
−0.553339 + 0.832956i \(0.686646\pi\)
\(198\) 0 0
\(199\) −9.36275 −0.663708 −0.331854 0.943331i \(-0.607674\pi\)
−0.331854 + 0.943331i \(0.607674\pi\)
\(200\) 0 0
\(201\) 2.89202i 0.203987i
\(202\) 0 0
\(203\) 1.26366 20.2210i 0.0886917 1.41924i
\(204\) 0 0
\(205\) 2.28921i 0.159885i
\(206\) 0 0
\(207\) 2.09615i 0.145693i
\(208\) 0 0
\(209\) 1.02871i 0.0711573i
\(210\) 0 0
\(211\) 15.8913 1.09400 0.547002 0.837132i \(-0.315769\pi\)
0.547002 + 0.837132i \(0.315769\pi\)
\(212\) 0 0
\(213\) −8.61213 −0.590093
\(214\) 0 0
\(215\) −1.71132 −0.116711
\(216\) 0 0
\(217\) 19.0067 + 1.18778i 1.29026 + 0.0806316i
\(218\) 0 0
\(219\) 4.16846 0.281678
\(220\) 0 0
\(221\) 11.2859i 0.759170i
\(222\) 0 0
\(223\) −11.3286 −0.758619 −0.379309 0.925270i \(-0.623838\pi\)
−0.379309 + 0.925270i \(0.623838\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 4.60858i 0.305882i −0.988235 0.152941i \(-0.951126\pi\)
0.988235 0.152941i \(-0.0488745\pi\)
\(228\) 0 0
\(229\) 1.54270 0.101945 0.0509723 0.998700i \(-0.483768\pi\)
0.0509723 + 0.998700i \(0.483768\pi\)
\(230\) 0 0
\(231\) −0.0436153 + 0.697928i −0.00286968 + 0.0459203i
\(232\) 0 0
\(233\) −3.72016 −0.243716 −0.121858 0.992548i \(-0.538885\pi\)
−0.121858 + 0.992548i \(0.538885\pi\)
\(234\) 0 0
\(235\) 11.7259 0.764915
\(236\) 0 0
\(237\) 10.3007 0.669100
\(238\) 0 0
\(239\) 28.0309i 1.81317i 0.422027 + 0.906583i \(0.361319\pi\)
−0.422027 + 0.906583i \(0.638681\pi\)
\(240\) 0 0
\(241\) 8.95756i 0.577007i 0.957479 + 0.288504i \(0.0931577\pi\)
−0.957479 + 0.288504i \(0.906842\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −6.94554 0.871493i −0.443734 0.0556776i
\(246\) 0 0
\(247\) 23.6591i 1.50539i
\(248\) 0 0
\(249\) 5.71691 0.362294
\(250\) 0 0
\(251\) 14.7968i 0.933965i 0.884266 + 0.466983i \(0.154659\pi\)
−0.884266 + 0.466983i \(0.845341\pi\)
\(252\) 0 0
\(253\) 0.554027i 0.0348314i
\(254\) 0 0
\(255\) −1.85661 −0.116265
\(256\) 0 0
\(257\) 12.8851i 0.803754i 0.915694 + 0.401877i \(0.131642\pi\)
−0.915694 + 0.401877i \(0.868358\pi\)
\(258\) 0 0
\(259\) 1.47827 23.6552i 0.0918555 1.46986i
\(260\) 0 0
\(261\) 7.65773i 0.474001i
\(262\) 0 0
\(263\) 7.26011i 0.447677i 0.974626 + 0.223839i \(0.0718589\pi\)
−0.974626 + 0.223839i \(0.928141\pi\)
\(264\) 0 0
\(265\) 4.04788i 0.248659i
\(266\) 0 0
\(267\) 13.3494 0.816971
\(268\) 0 0
\(269\) −12.0068 −0.732067 −0.366034 0.930602i \(-0.619285\pi\)
−0.366034 + 0.930602i \(0.619285\pi\)
\(270\) 0 0
\(271\) 18.8132 1.14282 0.571411 0.820664i \(-0.306396\pi\)
0.571411 + 0.820664i \(0.306396\pi\)
\(272\) 0 0
\(273\) 1.00310 16.0515i 0.0607105 0.971484i
\(274\) 0 0
\(275\) −0.264307 −0.0159383
\(276\) 0 0
\(277\) 9.57593i 0.575362i −0.957726 0.287681i \(-0.907116\pi\)
0.957726 0.287681i \(-0.0928842\pi\)
\(278\) 0 0
\(279\) 7.19786 0.430925
\(280\) 0 0
\(281\) 6.08335 0.362902 0.181451 0.983400i \(-0.441921\pi\)
0.181451 + 0.983400i \(0.441921\pi\)
\(282\) 0 0
\(283\) 8.00209i 0.475675i 0.971305 + 0.237838i \(0.0764386\pi\)
−0.971305 + 0.237838i \(0.923561\pi\)
\(284\) 0 0
\(285\) −3.89210 −0.230548
\(286\) 0 0
\(287\) 0.377760 6.04488i 0.0222985 0.356818i
\(288\) 0 0
\(289\) 13.5530 0.797235
\(290\) 0 0
\(291\) 11.1183 0.651766
\(292\) 0 0
\(293\) −14.1818 −0.828509 −0.414255 0.910161i \(-0.635958\pi\)
−0.414255 + 0.910161i \(0.635958\pi\)
\(294\) 0 0
\(295\) 4.59290i 0.267409i
\(296\) 0 0
\(297\) 0.264307i 0.0153366i
\(298\) 0 0
\(299\) 12.7420i 0.736888i
\(300\) 0 0
\(301\) −4.51892 0.282399i −0.260466 0.0162772i
\(302\) 0 0
\(303\) 4.37247i 0.251192i
\(304\) 0 0
\(305\) 9.96739 0.570731
\(306\) 0 0
\(307\) 20.0654i 1.14519i −0.819837 0.572597i \(-0.805936\pi\)
0.819837 0.572597i \(-0.194064\pi\)
\(308\) 0 0
\(309\) 4.82084i 0.274248i
\(310\) 0 0
\(311\) −15.0389 −0.852777 −0.426389 0.904540i \(-0.640214\pi\)
−0.426389 + 0.904540i \(0.640214\pi\)
\(312\) 0 0
\(313\) 22.2502i 1.25766i −0.777545 0.628828i \(-0.783535\pi\)
0.777545 0.628828i \(-0.216465\pi\)
\(314\) 0 0
\(315\) −2.64060 0.165018i −0.148781 0.00929771i
\(316\) 0 0
\(317\) 33.4862i 1.88077i 0.340112 + 0.940385i \(0.389535\pi\)
−0.340112 + 0.940385i \(0.610465\pi\)
\(318\) 0 0
\(319\) 2.02399i 0.113322i
\(320\) 0 0
\(321\) 6.14307i 0.342873i
\(322\) 0 0
\(323\) −7.22612 −0.402072
\(324\) 0 0
\(325\) 6.07875 0.337188
\(326\) 0 0
\(327\) 15.4612 0.855004
\(328\) 0 0
\(329\) 30.9635 + 1.93499i 1.70707 + 0.106679i
\(330\) 0 0
\(331\) −23.5161 −1.29256 −0.646280 0.763100i \(-0.723676\pi\)
−0.646280 + 0.763100i \(0.723676\pi\)
\(332\) 0 0
\(333\) 8.95826i 0.490910i
\(334\) 0 0
\(335\) 2.89202 0.158008
\(336\) 0 0
\(337\) −18.0622 −0.983911 −0.491955 0.870620i \(-0.663718\pi\)
−0.491955 + 0.870620i \(0.663718\pi\)
\(338\) 0 0
\(339\) 16.7857i 0.911675i
\(340\) 0 0
\(341\) 1.90244 0.103023
\(342\) 0 0
\(343\) −18.1966 3.44740i −0.982523 0.186142i
\(344\) 0 0
\(345\) 2.09615 0.112853
\(346\) 0 0
\(347\) −14.1722 −0.760803 −0.380401 0.924822i \(-0.624214\pi\)
−0.380401 + 0.924822i \(0.624214\pi\)
\(348\) 0 0
\(349\) −29.8810 −1.59949 −0.799746 0.600339i \(-0.795032\pi\)
−0.799746 + 0.600339i \(0.795032\pi\)
\(350\) 0 0
\(351\) 6.07875i 0.324460i
\(352\) 0 0
\(353\) 17.7999i 0.947392i 0.880688 + 0.473696i \(0.157080\pi\)
−0.880688 + 0.473696i \(0.842920\pi\)
\(354\) 0 0
\(355\) 8.61213i 0.457084i
\(356\) 0 0
\(357\) −4.90257 0.306374i −0.259471 0.0162150i
\(358\) 0 0
\(359\) 16.1540i 0.852576i 0.904588 + 0.426288i \(0.140179\pi\)
−0.904588 + 0.426288i \(0.859821\pi\)
\(360\) 0 0
\(361\) 3.85153 0.202712
\(362\) 0 0
\(363\) 10.9301i 0.573684i
\(364\) 0 0
\(365\) 4.16846i 0.218187i
\(366\) 0 0
\(367\) 33.5356 1.75054 0.875272 0.483631i \(-0.160682\pi\)
0.875272 + 0.483631i \(0.160682\pi\)
\(368\) 0 0
\(369\) 2.28921i 0.119171i
\(370\) 0 0
\(371\) −0.667973 + 10.6888i −0.0346794 + 0.554936i
\(372\) 0 0
\(373\) 20.3929i 1.05590i −0.849275 0.527951i \(-0.822960\pi\)
0.849275 0.527951i \(-0.177040\pi\)
\(374\) 0 0
\(375\) 1.00000i 0.0516398i
\(376\) 0 0
\(377\) 46.5494i 2.39742i
\(378\) 0 0
\(379\) 11.2350 0.577101 0.288550 0.957465i \(-0.406827\pi\)
0.288550 + 0.957465i \(0.406827\pi\)
\(380\) 0 0
\(381\) 17.0682 0.874433
\(382\) 0 0
\(383\) 8.65284 0.442140 0.221070 0.975258i \(-0.429045\pi\)
0.221070 + 0.975258i \(0.429045\pi\)
\(384\) 0 0
\(385\) −0.697928 0.0436153i −0.0355697 0.00222284i
\(386\) 0 0
\(387\) −1.71132 −0.0869915
\(388\) 0 0
\(389\) 5.18569i 0.262925i 0.991321 + 0.131462i \(0.0419673\pi\)
−0.991321 + 0.131462i \(0.958033\pi\)
\(390\) 0 0
\(391\) 3.89174 0.196814
\(392\) 0 0
\(393\) 1.99977 0.100875
\(394\) 0 0
\(395\) 10.3007i 0.518282i
\(396\) 0 0
\(397\) 6.42434 0.322428 0.161214 0.986919i \(-0.448459\pi\)
0.161214 + 0.986919i \(0.448459\pi\)
\(398\) 0 0
\(399\) −10.2775 0.642267i −0.514518 0.0321536i
\(400\) 0 0
\(401\) −36.9183 −1.84361 −0.921806 0.387651i \(-0.873286\pi\)
−0.921806 + 0.387651i \(0.873286\pi\)
\(402\) 0 0
\(403\) −43.7540 −2.17954
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 2.36773i 0.117364i
\(408\) 0 0
\(409\) 31.5872i 1.56189i 0.624602 + 0.780943i \(0.285261\pi\)
−0.624602 + 0.780943i \(0.714739\pi\)
\(410\) 0 0
\(411\) 16.9556i 0.836359i
\(412\) 0 0
\(413\) 0.757912 12.1280i 0.0372944 0.596781i
\(414\) 0 0
\(415\) 5.71691i 0.280632i
\(416\) 0 0
\(417\) −19.9469 −0.976806
\(418\) 0 0
\(419\) 25.7821i 1.25954i −0.776782 0.629770i \(-0.783149\pi\)
0.776782 0.629770i \(-0.216851\pi\)
\(420\) 0 0
\(421\) 1.53513i 0.0748174i 0.999300 + 0.0374087i \(0.0119103\pi\)
−0.999300 + 0.0374087i \(0.988090\pi\)
\(422\) 0 0
\(423\) 11.7259 0.570134
\(424\) 0 0
\(425\) 1.85661i 0.0900588i
\(426\) 0 0
\(427\) 26.3199 + 1.64480i 1.27371 + 0.0795973i
\(428\) 0 0
\(429\) 1.60665i 0.0775700i
\(430\) 0 0
\(431\) 31.2356i 1.50457i 0.658840 + 0.752283i \(0.271047\pi\)
−0.658840 + 0.752283i \(0.728953\pi\)
\(432\) 0 0
\(433\) 6.85246i 0.329308i −0.986351 0.164654i \(-0.947349\pi\)
0.986351 0.164654i \(-0.0526508\pi\)
\(434\) 0 0
\(435\) 7.65773 0.367160
\(436\) 0 0
\(437\) 8.15844 0.390271
\(438\) 0 0
\(439\) 0.157801 0.00753144 0.00376572 0.999993i \(-0.498801\pi\)
0.00376572 + 0.999993i \(0.498801\pi\)
\(440\) 0 0
\(441\) −6.94554 0.871493i −0.330740 0.0414997i
\(442\) 0 0
\(443\) −39.7323 −1.88774 −0.943868 0.330323i \(-0.892842\pi\)
−0.943868 + 0.330323i \(0.892842\pi\)
\(444\) 0 0
\(445\) 13.3494i 0.632823i
\(446\) 0 0
\(447\) −3.68761 −0.174418
\(448\) 0 0
\(449\) −9.45801 −0.446351 −0.223176 0.974778i \(-0.571642\pi\)
−0.223176 + 0.974778i \(0.571642\pi\)
\(450\) 0 0
\(451\) 0.605053i 0.0284908i
\(452\) 0 0
\(453\) −14.4831 −0.680476
\(454\) 0 0
\(455\) 16.0515 + 1.00310i 0.752508 + 0.0470262i
\(456\) 0 0
\(457\) −25.6849 −1.20149 −0.600745 0.799441i \(-0.705129\pi\)
−0.600745 + 0.799441i \(0.705129\pi\)
\(458\) 0 0
\(459\) −1.85661 −0.0866591
\(460\) 0 0
\(461\) −27.4268 −1.27739 −0.638697 0.769459i \(-0.720526\pi\)
−0.638697 + 0.769459i \(0.720526\pi\)
\(462\) 0 0
\(463\) 16.9982i 0.789972i −0.918687 0.394986i \(-0.870749\pi\)
0.918687 0.394986i \(-0.129251\pi\)
\(464\) 0 0
\(465\) 7.19786i 0.333793i
\(466\) 0 0
\(467\) 8.95474i 0.414376i −0.978301 0.207188i \(-0.933569\pi\)
0.978301 0.207188i \(-0.0664312\pi\)
\(468\) 0 0
\(469\) 7.63667 + 0.477235i 0.352629 + 0.0220367i
\(470\) 0 0
\(471\) 23.1101i 1.06486i
\(472\) 0 0
\(473\) −0.452314 −0.0207974
\(474\) 0 0
\(475\) 3.89210i 0.178582i
\(476\) 0 0
\(477\) 4.04788i 0.185340i
\(478\) 0 0
\(479\) 4.76512 0.217724 0.108862 0.994057i \(-0.465279\pi\)
0.108862 + 0.994057i \(0.465279\pi\)
\(480\) 0 0
\(481\) 54.4550i 2.48294i
\(482\) 0 0
\(483\) 5.53510 + 0.345903i 0.251856 + 0.0157391i
\(484\) 0 0
\(485\) 11.1183i 0.504856i
\(486\) 0 0
\(487\) 22.2240i 1.00707i −0.863975 0.503534i \(-0.832033\pi\)
0.863975 0.503534i \(-0.167967\pi\)
\(488\) 0 0
\(489\) 13.9465i 0.630684i
\(490\) 0 0
\(491\) 29.6305 1.33721 0.668604 0.743619i \(-0.266892\pi\)
0.668604 + 0.743619i \(0.266892\pi\)
\(492\) 0 0
\(493\) 14.2174 0.640320
\(494\) 0 0
\(495\) −0.264307 −0.0118797
\(496\) 0 0
\(497\) 1.42116 22.7412i 0.0637475 1.02008i
\(498\) 0 0
\(499\) 17.4850 0.782738 0.391369 0.920234i \(-0.372002\pi\)
0.391369 + 0.920234i \(0.372002\pi\)
\(500\) 0 0
\(501\) 5.00401i 0.223562i
\(502\) 0 0
\(503\) 26.5951 1.18582 0.592908 0.805270i \(-0.297980\pi\)
0.592908 + 0.805270i \(0.297980\pi\)
\(504\) 0 0
\(505\) 4.37247 0.194572
\(506\) 0 0
\(507\) 23.9512i 1.06371i
\(508\) 0 0
\(509\) 41.2008 1.82620 0.913098 0.407741i \(-0.133683\pi\)
0.913098 + 0.407741i \(0.133683\pi\)
\(510\) 0 0
\(511\) −0.687870 + 11.0072i −0.0304296 + 0.486931i
\(512\) 0 0
\(513\) −3.89210 −0.171841
\(514\) 0 0
\(515\) 4.82084 0.212432
\(516\) 0 0
\(517\) 3.09924 0.136304
\(518\) 0 0
\(519\) 0.0398406i 0.00174881i
\(520\) 0 0
\(521\) 4.12574i 0.180752i −0.995908 0.0903761i \(-0.971193\pi\)
0.995908 0.0903761i \(-0.0288069\pi\)
\(522\) 0 0
\(523\) 14.9470i 0.653586i −0.945096 0.326793i \(-0.894032\pi\)
0.945096 0.326793i \(-0.105968\pi\)
\(524\) 0 0
\(525\) 0.165018 2.64060i 0.00720197 0.115245i
\(526\) 0 0
\(527\) 13.3636i 0.582129i
\(528\) 0 0
\(529\) 18.6061 0.808963
\(530\) 0 0
\(531\) 4.59290i 0.199315i
\(532\) 0 0
\(533\) 13.9155i 0.602748i
\(534\) 0 0
\(535\) −6.14307 −0.265588
\(536\) 0 0
\(537\) 0.662470i 0.0285877i
\(538\) 0 0
\(539\) −1.83575 0.230341i −0.0790714 0.00992151i
\(540\) 0 0
\(541\) 8.25685i 0.354990i 0.984122 + 0.177495i \(0.0567993\pi\)
−0.984122 + 0.177495i \(0.943201\pi\)
\(542\) 0 0
\(543\) 8.47656i 0.363764i
\(544\) 0 0
\(545\) 15.4612i 0.662284i
\(546\) 0 0
\(547\) 23.1912 0.991586 0.495793 0.868441i \(-0.334877\pi\)
0.495793 + 0.868441i \(0.334877\pi\)
\(548\) 0 0
\(549\) 9.96739 0.425398
\(550\) 0 0
\(551\) 29.8047 1.26972
\(552\) 0 0
\(553\) −1.69979 + 27.1999i −0.0722826 + 1.15666i
\(554\) 0 0
\(555\) 8.95826 0.380257
\(556\) 0 0
\(557\) 24.5841i 1.04166i −0.853660 0.520830i \(-0.825622\pi\)
0.853660 0.520830i \(-0.174378\pi\)
\(558\) 0 0
\(559\) 10.4027 0.439988
\(560\) 0 0
\(561\) −0.490714 −0.0207180
\(562\) 0 0
\(563\) 11.9197i 0.502354i −0.967941 0.251177i \(-0.919182\pi\)
0.967941 0.251177i \(-0.0808175\pi\)
\(564\) 0 0
\(565\) 16.7857 0.706180
\(566\) 0 0
\(567\) −2.64060 0.165018i −0.110895 0.00693010i
\(568\) 0 0
\(569\) 17.2754 0.724221 0.362111 0.932135i \(-0.382056\pi\)
0.362111 + 0.932135i \(0.382056\pi\)
\(570\) 0 0
\(571\) 15.3607 0.642823 0.321412 0.946940i \(-0.395843\pi\)
0.321412 + 0.946940i \(0.395843\pi\)
\(572\) 0 0
\(573\) 11.6714 0.487580
\(574\) 0 0
\(575\) 2.09615i 0.0874156i
\(576\) 0 0
\(577\) 18.5279i 0.771326i −0.922640 0.385663i \(-0.873973\pi\)
0.922640 0.385663i \(-0.126027\pi\)
\(578\) 0 0
\(579\) 2.29670i 0.0954475i
\(580\) 0 0
\(581\) −0.943392 + 15.0961i −0.0391385 + 0.626290i
\(582\) 0 0
\(583\) 1.06988i 0.0443099i
\(584\) 0 0
\(585\) 6.07875 0.251325
\(586\) 0 0
\(587\) 20.7809i 0.857720i 0.903371 + 0.428860i \(0.141085\pi\)
−0.903371 + 0.428860i \(0.858915\pi\)
\(588\) 0 0
\(589\) 28.0148i 1.15433i
\(590\) 0 0
\(591\) −23.3822 −0.961815
\(592\) 0 0
\(593\) 1.59413i 0.0654632i 0.999464 + 0.0327316i \(0.0104206\pi\)
−0.999464 + 0.0327316i \(0.989579\pi\)
\(594\) 0 0
\(595\) 0.306374 4.90257i 0.0125601 0.200986i
\(596\) 0 0
\(597\) 9.36275i 0.383192i
\(598\) 0 0
\(599\) 23.8540i 0.974650i 0.873221 + 0.487325i \(0.162027\pi\)
−0.873221 + 0.487325i \(0.837973\pi\)
\(600\) 0 0
\(601\) 28.1413i 1.14791i −0.818887 0.573954i \(-0.805409\pi\)
0.818887 0.573954i \(-0.194591\pi\)
\(602\) 0 0
\(603\) 2.89202 0.117772
\(604\) 0 0
\(605\) 10.9301 0.444373
\(606\) 0 0
\(607\) −9.91696 −0.402517 −0.201258 0.979538i \(-0.564503\pi\)
−0.201258 + 0.979538i \(0.564503\pi\)
\(608\) 0 0
\(609\) 20.2210 + 1.26366i 0.819396 + 0.0512062i
\(610\) 0 0
\(611\) −71.2789 −2.88364
\(612\) 0 0
\(613\) 36.6198i 1.47906i −0.673123 0.739531i \(-0.735047\pi\)
0.673123 0.739531i \(-0.264953\pi\)
\(614\) 0 0
\(615\) 2.28921 0.0923098
\(616\) 0 0
\(617\) −21.8103 −0.878050 −0.439025 0.898475i \(-0.644676\pi\)
−0.439025 + 0.898475i \(0.644676\pi\)
\(618\) 0 0
\(619\) 31.3205i 1.25888i 0.777050 + 0.629439i \(0.216715\pi\)
−0.777050 + 0.629439i \(0.783285\pi\)
\(620\) 0 0
\(621\) 2.09615 0.0841157
\(622\) 0 0
\(623\) −2.20289 + 35.2505i −0.0882570 + 1.41228i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −1.02871 −0.0410827
\(628\) 0 0
\(629\) 16.6320 0.663161
\(630\) 0 0
\(631\) 28.9853i 1.15389i −0.816785 0.576943i \(-0.804246\pi\)
0.816785 0.576943i \(-0.195754\pi\)
\(632\) 0 0
\(633\) 15.8913i 0.631623i
\(634\) 0 0
\(635\) 17.0682i 0.677333i
\(636\) 0 0
\(637\) 42.2202 + 5.29759i 1.67282 + 0.209898i
\(638\) 0 0
\(639\) 8.61213i 0.340690i
\(640\) 0 0
\(641\) −5.84700 −0.230943 −0.115471 0.993311i \(-0.536838\pi\)
−0.115471 + 0.993311i \(0.536838\pi\)
\(642\) 0 0
\(643\) 47.7829i 1.88437i 0.335087 + 0.942187i \(0.391234\pi\)
−0.335087 + 0.942187i \(0.608766\pi\)
\(644\) 0 0
\(645\) 1.71132i 0.0673833i
\(646\) 0 0
\(647\) −1.20494 −0.0473713 −0.0236856 0.999719i \(-0.507540\pi\)
−0.0236856 + 0.999719i \(0.507540\pi\)
\(648\) 0 0
\(649\) 1.21393i 0.0476511i
\(650\) 0 0
\(651\) −1.18778 + 19.0067i −0.0465526 + 0.744931i
\(652\) 0 0
\(653\) 2.29865i 0.0899531i −0.998988 0.0449765i \(-0.985679\pi\)
0.998988 0.0449765i \(-0.0143213\pi\)
\(654\) 0 0
\(655\) 1.99977i 0.0781376i
\(656\) 0 0
\(657\) 4.16846i 0.162627i
\(658\) 0 0
\(659\) 31.7367 1.23629 0.618143 0.786066i \(-0.287885\pi\)
0.618143 + 0.786066i \(0.287885\pi\)
\(660\) 0 0
\(661\) −29.3254 −1.14063 −0.570313 0.821427i \(-0.693178\pi\)
−0.570313 + 0.821427i \(0.693178\pi\)
\(662\) 0 0
\(663\) 11.2859 0.438307
\(664\) 0 0
\(665\) 0.642267 10.2775i 0.0249060 0.398544i
\(666\) 0 0
\(667\) −16.0518 −0.621526
\(668\) 0 0
\(669\) 11.3286i 0.437989i
\(670\) 0 0
\(671\) 2.63445 0.101702
\(672\) 0 0
\(673\) −5.35156 −0.206287 −0.103144 0.994666i \(-0.532890\pi\)
−0.103144 + 0.994666i \(0.532890\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) 38.3482 1.47384 0.736921 0.675979i \(-0.236279\pi\)
0.736921 + 0.675979i \(0.236279\pi\)
\(678\) 0 0
\(679\) −1.83472 + 29.3590i −0.0704100 + 1.12669i
\(680\) 0 0
\(681\) 4.60858 0.176601
\(682\) 0 0
\(683\) −40.9876 −1.56835 −0.784174 0.620541i \(-0.786913\pi\)
−0.784174 + 0.620541i \(0.786913\pi\)
\(684\) 0 0
\(685\) 16.9556 0.647841
\(686\) 0 0
\(687\) 1.54270i 0.0588577i
\(688\) 0 0
\(689\) 24.6060i 0.937415i
\(690\) 0 0
\(691\) 12.3363i 0.469297i −0.972080 0.234648i \(-0.924606\pi\)
0.972080 0.234648i \(-0.0753938\pi\)
\(692\) 0 0
\(693\) −0.697928 0.0436153i −0.0265121 0.00165681i
\(694\) 0 0
\(695\) 19.9469i 0.756631i
\(696\) 0 0
\(697\) 4.25017 0.160987
\(698\) 0 0
\(699\) 3.72016i 0.140710i
\(700\) 0 0
\(701\) 30.1199i 1.13761i 0.822472 + 0.568806i \(0.192594\pi\)
−0.822472 + 0.568806i \(0.807406\pi\)
\(702\) 0 0
\(703\) 34.8665 1.31501
\(704\) 0 0
\(705\) 11.7259i 0.441624i
\(706\) 0 0
\(707\) 11.5459 + 0.721536i 0.434230 + 0.0271362i
\(708\) 0 0
\(709\) 1.69009i 0.0634728i −0.999496 0.0317364i \(-0.989896\pi\)
0.999496 0.0317364i \(-0.0101037\pi\)
\(710\) 0 0
\(711\) 10.3007i 0.386305i
\(712\) 0 0
\(713\) 15.0878i 0.565043i
\(714\) 0 0
\(715\) 1.60665 0.0600855
\(716\) 0 0
\(717\) −28.0309 −1.04683
\(718\) 0 0
\(719\) −43.0068 −1.60388 −0.801942 0.597402i \(-0.796200\pi\)
−0.801942 + 0.597402i \(0.796200\pi\)
\(720\) 0 0
\(721\) 12.7299 + 0.795526i 0.474087 + 0.0296269i
\(722\) 0 0
\(723\) −8.95756 −0.333135
\(724\) 0 0
\(725\) 7.65773i 0.284401i
\(726\) 0 0
\(727\) 13.9472 0.517273 0.258636 0.965975i \(-0.416727\pi\)
0.258636 + 0.965975i \(0.416727\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 3.17726i 0.117515i
\(732\) 0 0
\(733\) 13.6799 0.505280 0.252640 0.967560i \(-0.418701\pi\)
0.252640 + 0.967560i \(0.418701\pi\)
\(734\) 0 0
\(735\) 0.871493 6.94554i 0.0321455 0.256190i
\(736\) 0 0
\(737\) 0.764380 0.0281563
\(738\) 0 0
\(739\) 7.98250 0.293641 0.146820 0.989163i \(-0.453096\pi\)
0.146820 + 0.989163i \(0.453096\pi\)
\(740\) 0 0
\(741\) 23.6591 0.869140
\(742\) 0 0
\(743\) 16.4647i 0.604030i 0.953303 + 0.302015i \(0.0976593\pi\)
−0.953303 + 0.302015i \(0.902341\pi\)
\(744\) 0 0
\(745\) 3.68761i 0.135104i
\(746\) 0 0
\(747\) 5.71691i 0.209171i
\(748\) 0 0
\(749\) −16.2214 1.01372i −0.592717 0.0370404i
\(750\) 0 0
\(751\) 25.8761i 0.944234i −0.881536 0.472117i \(-0.843490\pi\)
0.881536 0.472117i \(-0.156510\pi\)
\(752\) 0 0
\(753\) −14.7968 −0.539225
\(754\) 0 0
\(755\) 14.4831i 0.527094i
\(756\) 0 0
\(757\) 0.192056i 0.00698040i −0.999994 0.00349020i \(-0.998889\pi\)
0.999994 0.00349020i \(-0.00111097\pi\)
\(758\) 0 0
\(759\) 0.554027 0.0201099
\(760\) 0 0
\(761\) 50.4508i 1.82884i −0.404766 0.914420i \(-0.632647\pi\)
0.404766 0.914420i \(-0.367353\pi\)
\(762\) 0 0
\(763\) −2.55137 + 40.8268i −0.0923658 + 1.47803i
\(764\) 0 0
\(765\) 1.85661i 0.0671259i
\(766\) 0 0
\(767\) 27.9191i 1.00810i
\(768\) 0 0
\(769\) 26.3495i 0.950186i −0.879936 0.475093i \(-0.842414\pi\)
0.879936 0.475093i \(-0.157586\pi\)
\(770\) 0 0
\(771\) −12.8851 −0.464047
\(772\) 0 0
\(773\) 45.1896 1.62536 0.812678 0.582712i \(-0.198009\pi\)
0.812678 + 0.582712i \(0.198009\pi\)
\(774\) 0 0
\(775\) −7.19786 −0.258555
\(776\) 0 0
\(777\) 23.6552 + 1.47827i 0.848625 + 0.0530328i
\(778\) 0 0
\(779\) 8.90983 0.319228
\(780\) 0 0
\(781\) 2.27624i 0.0814504i
\(782\) 0 0
\(783\) 7.65773 0.273665
\(784\) 0 0
\(785\) 23.1101 0.824834
\(786\) 0 0
\(787\) 19.9506i 0.711161i 0.934646 + 0.355580i \(0.115717\pi\)
−0.934646 + 0.355580i \(0.884283\pi\)
\(788\) 0 0
\(789\) −7.26011 −0.258467
\(790\) 0 0
\(791\) 44.3244 + 2.76994i 1.57599 + 0.0984879i
\(792\) 0 0
\(793\) −60.5892 −2.15159
\(794\) 0 0
\(795\) −4.04788 −0.143563
\(796\) 0 0
\(797\) 18.4653 0.654075 0.327037 0.945011i \(-0.393950\pi\)
0.327037 + 0.945011i \(0.393950\pi\)
\(798\) 0 0
\(799\) 21.7705i 0.770184i
\(800\) 0 0
\(801\) 13.3494i 0.471678i
\(802\) 0 0
\(803\) 1.10175i 0.0388799i
\(804\) 0 0
\(805\) −0.345903 + 5.53510i −0.0121915 + 0.195087i
\(806\) 0 0
\(807\) 12.0068i 0.422659i
\(808\) 0 0
\(809\) 38.2137 1.34352 0.671762 0.740767i \(-0.265538\pi\)
0.671762 + 0.740767i \(0.265538\pi\)
\(810\) 0 0
\(811\) 2.49948i 0.0877686i 0.999037 + 0.0438843i \(0.0139733\pi\)
−0.999037 + 0.0438843i \(0.986027\pi\)
\(812\) 0 0
\(813\) 18.8132i 0.659809i
\(814\) 0 0
\(815\) 13.9465 0.488525
\(816\) 0 0
\(817\) 6.66065i 0.233027i
\(818\) 0 0
\(819\) 16.0515 + 1.00310i 0.560886 + 0.0350513i
\(820\) 0 0
\(821\) 45.2255i 1.57838i −0.614149 0.789190i \(-0.710501\pi\)
0.614149 0.789190i \(-0.289499\pi\)
\(822\) 0 0
\(823\) 29.9944i 1.04554i −0.852474 0.522770i \(-0.824899\pi\)
0.852474 0.522770i \(-0.175101\pi\)
\(824\) 0 0
\(825\) 0.264307i 0.00920198i
\(826\) 0 0
\(827\) 12.7955 0.444944 0.222472 0.974939i \(-0.428587\pi\)
0.222472 + 0.974939i \(0.428587\pi\)
\(828\) 0 0
\(829\) −15.8675 −0.551103 −0.275551 0.961286i \(-0.588860\pi\)
−0.275551 + 0.961286i \(0.588860\pi\)
\(830\) 0 0
\(831\) 9.57593 0.332185
\(832\) 0 0
\(833\) 1.61802 12.8952i 0.0560612 0.446791i
\(834\) 0 0
\(835\) 5.00401 0.173171
\(836\) 0 0
\(837\) 7.19786i 0.248795i
\(838\) 0 0
\(839\) 7.71085 0.266208 0.133104 0.991102i \(-0.457506\pi\)
0.133104 + 0.991102i \(0.457506\pi\)
\(840\) 0 0
\(841\) −29.6408 −1.02210
\(842\) 0 0
\(843\) 6.08335i 0.209522i
\(844\) 0 0
\(845\) −23.9512 −0.823946
\(846\) 0 0
\(847\) 28.8621 + 1.80367i 0.991715 + 0.0619748i
\(848\) 0 0
\(849\) −8.00209 −0.274631
\(850\) 0 0
\(851\) −18.7779 −0.643697
\(852\) 0 0
\(853\) 3.27559 0.112154 0.0560771 0.998426i \(-0.482141\pi\)
0.0560771 + 0.998426i \(0.482141\pi\)
\(854\) 0 0
\(855\) 3.89210i 0.133107i
\(856\) 0 0
\(857\) 14.2127i 0.485497i 0.970089 + 0.242749i \(0.0780490\pi\)
−0.970089 + 0.242749i \(0.921951\pi\)
\(858\) 0 0
\(859\) 48.8464i 1.66662i 0.552807 + 0.833309i \(0.313557\pi\)
−0.552807 + 0.833309i \(0.686443\pi\)
\(860\) 0 0
\(861\) 6.04488 + 0.377760i 0.206009 + 0.0128740i
\(862\) 0 0
\(863\) 46.2121i 1.57308i −0.617540 0.786539i \(-0.711871\pi\)
0.617540 0.786539i \(-0.288129\pi\)
\(864\) 0 0
\(865\) −0.0398406 −0.00135462
\(866\) 0 0
\(867\) 13.5530i 0.460284i
\(868\) 0 0
\(869\) 2.72253i 0.0923556i
\(870\) 0 0
\(871\) −17.5799 −0.595671
\(872\) 0 0
\(873\) 11.1183i 0.376297i
\(874\) 0 0
\(875\) 2.64060 + 0.165018i 0.0892686 + 0.00557863i
\(876\) 0 0
\(877\) 19.3145i 0.652205i −0.945334 0.326103i \(-0.894265\pi\)
0.945334 0.326103i \(-0.105735\pi\)
\(878\) 0 0
\(879\) 14.1818i 0.478340i
\(880\) 0 0
\(881\) 5.01092i 0.168822i −0.996431 0.0844110i \(-0.973099\pi\)
0.996431 0.0844110i \(-0.0269009\pi\)
\(882\) 0 0
\(883\) 46.2754 1.55729 0.778646 0.627463i \(-0.215907\pi\)
0.778646 + 0.627463i \(0.215907\pi\)
\(884\) 0 0
\(885\) 4.59290 0.154389
\(886\) 0 0
\(887\) −29.4098 −0.987484 −0.493742 0.869608i \(-0.664371\pi\)
−0.493742 + 0.869608i \(0.664371\pi\)
\(888\) 0 0
\(889\) −2.81657 + 45.0704i −0.0944646 + 1.51161i
\(890\) 0 0
\(891\) −0.264307 −0.00885461
\(892\) 0 0
\(893\) 45.6385i 1.52723i
\(894\) 0 0
\(895\) 0.662470 0.0221439
\(896\) 0 0
\(897\) −12.7420 −0.425442
\(898\) 0 0
\(899\) 55.1193i 1.83833i
\(900\) 0 0
\(901\) −7.51533 −0.250372
\(902\) 0 0
\(903\) 0.282399 4.51892i 0.00939766 0.150380i
\(904\) 0 0
\(905\) −8.47656 −0.281770
\(906\) 0 0
\(907\) −12.0290 −0.399417 −0.199709 0.979855i \(-0.564000\pi\)
−0.199709 + 0.979855i \(0.564000\pi\)
\(908\) 0 0
\(909\) 4.37247 0.145026
\(910\) 0 0
\(911\) 57.5846i 1.90786i −0.300023 0.953932i \(-0.596994\pi\)
0.300023 0.953932i \(-0.403006\pi\)
\(912\) 0 0
\(913\) 1.51102i 0.0500073i
\(914\) 0 0
\(915\) 9.96739i 0.329512i
\(916\) 0 0
\(917\) −0.329998 + 5.28060i −0.0108975 + 0.174381i
\(918\) 0 0
\(919\) 21.4808i 0.708585i 0.935135 + 0.354293i \(0.115278\pi\)
−0.935135 + 0.354293i \(0.884722\pi\)
\(920\) 0 0
\(921\) 20.0654 0.661178
\(922\) 0 0
\(923\) 52.3510i 1.72315i
\(924\) 0 0
\(925\) 8.95826i 0.294546i
\(926\) 0 0
\(927\) 4.82084 0.158337
\(928\) 0 0
\(929\) 11.2995i 0.370723i 0.982670 + 0.185362i \(0.0593457\pi\)
−0.982670 + 0.185362i \(0.940654\pi\)
\(930\) 0 0
\(931\) 3.39194 27.0328i 0.111166 0.885963i
\(932\) 0 0
\(933\) 15.0389i 0.492351i
\(934\) 0 0
\(935\) 0.490714i 0.0160481i
\(936\) 0 0
\(937\) 24.5392i 0.801660i −0.916152 0.400830i \(-0.868722\pi\)
0.916152 0.400830i \(-0.131278\pi\)
\(938\) 0 0
\(939\) 22.2502 0.726108
\(940\) 0 0
\(941\) 51.5447 1.68031 0.840154 0.542348i \(-0.182464\pi\)
0.840154 + 0.542348i \(0.182464\pi\)
\(942\) 0 0
\(943\) −4.79853 −0.156262
\(944\) 0 0
\(945\) 0.165018 2.64060i 0.00536803 0.0858987i
\(946\) 0 0
\(947\) −16.0492 −0.521530 −0.260765 0.965402i \(-0.583975\pi\)
−0.260765 + 0.965402i \(0.583975\pi\)
\(948\) 0 0
\(949\) 25.3390i 0.822539i
\(950\) 0 0
\(951\) −33.4862 −1.08586
\(952\) 0 0
\(953\) 14.3868 0.466035 0.233018 0.972472i \(-0.425140\pi\)
0.233018 + 0.972472i \(0.425140\pi\)
\(954\) 0 0
\(955\) 11.6714i 0.377678i
\(956\) 0 0
\(957\) 2.02399 0.0654262
\(958\) 0 0
\(959\) 44.7730 + 2.79798i 1.44580 + 0.0903515i
\(960\) 0 0
\(961\) 20.8093 0.671266
\(962\) 0 0
\(963\) −6.14307 −0.197958
\(964\) 0 0
\(965\) −2.29670 −0.0739333
\(966\) 0 0
\(967\) 37.2171i 1.19682i 0.801189 + 0.598411i \(0.204201\pi\)
−0.801189 + 0.598411i \(0.795799\pi\)
\(968\) 0 0
\(969\) 7.22612i 0.232136i
\(970\) 0 0
\(971\) 43.0613i 1.38190i 0.722902 + 0.690951i \(0.242808\pi\)
−0.722902 + 0.690951i \(0.757192\pi\)
\(972\) 0 0
\(973\) 3.29160 52.6719i 0.105524 1.68858i
\(974\) 0 0
\(975\) 6.07875i 0.194676i
\(976\) 0 0
\(977\) −5.91287 −0.189169 −0.0945847 0.995517i \(-0.530152\pi\)
−0.0945847 + 0.995517i \(0.530152\pi\)
\(978\) 0 0
\(979\) 3.52834i 0.112766i
\(980\) 0 0
\(981\) 15.4612i 0.493637i
\(982\) 0 0
\(983\) −1.42530 −0.0454599 −0.0227300 0.999742i \(-0.507236\pi\)
−0.0227300 + 0.999742i \(0.507236\pi\)
\(984\) 0 0
\(985\) 23.3822i 0.745019i
\(986\) 0 0
\(987\) −1.93499 + 30.9635i −0.0615913 + 0.985578i
\(988\) 0 0
\(989\) 3.58719i 0.114066i
\(990\) 0 0
\(991\) 25.8732i 0.821889i −0.911660 0.410945i \(-0.865199\pi\)
0.911660 0.410945i \(-0.134801\pi\)
\(992\) 0 0
\(993\) 23.5161i 0.746260i
\(994\) 0 0
\(995\) 9.36275 0.296819
\(996\) 0 0
\(997\) −24.4403 −0.774031 −0.387015 0.922073i \(-0.626494\pi\)
−0.387015 + 0.922073i \(0.626494\pi\)
\(998\) 0 0
\(999\) 8.95826 0.283427
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.z.c.1231.26 28
4.3 odd 2 840.2.z.c.811.18 yes 28
7.6 odd 2 3360.2.z.d.1231.3 28
8.3 odd 2 3360.2.z.d.1231.4 28
8.5 even 2 840.2.z.d.811.17 yes 28
28.27 even 2 840.2.z.d.811.18 yes 28
56.13 odd 2 840.2.z.c.811.17 28
56.27 even 2 inner 3360.2.z.c.1231.25 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.z.c.811.17 28 56.13 odd 2
840.2.z.c.811.18 yes 28 4.3 odd 2
840.2.z.d.811.17 yes 28 8.5 even 2
840.2.z.d.811.18 yes 28 28.27 even 2
3360.2.z.c.1231.25 28 56.27 even 2 inner
3360.2.z.c.1231.26 28 1.1 even 1 trivial
3360.2.z.d.1231.3 28 7.6 odd 2
3360.2.z.d.1231.4 28 8.3 odd 2