Properties

Label 840.2.w.b.139.31
Level $840$
Weight $2$
Character 840.139
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(139,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.139"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.w (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.31
Character \(\chi\) \(=\) 840.139
Dual form 840.2.w.b.139.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.716255 - 1.21942i) q^{2} +1.00000 q^{3} +(-0.973958 - 1.74683i) q^{4} +(-0.151655 - 2.23092i) q^{5} +(0.716255 - 1.21942i) q^{6} +(2.00273 + 1.72889i) q^{7} +(-2.82771 - 0.0635119i) q^{8} +1.00000 q^{9} +(-2.82905 - 1.41298i) q^{10} +2.25539 q^{11} +(-0.973958 - 1.74683i) q^{12} -6.09170i q^{13} +(3.54271 - 1.20383i) q^{14} +(-0.151655 - 2.23092i) q^{15} +(-2.10281 + 3.40267i) q^{16} -2.64554 q^{17} +(0.716255 - 1.21942i) q^{18} +1.31443i q^{19} +(-3.74933 + 2.43774i) q^{20} +(2.00273 + 1.72889i) q^{21} +(1.61544 - 2.75027i) q^{22} +6.62596 q^{23} +(-2.82771 - 0.0635119i) q^{24} +(-4.95400 + 0.676659i) q^{25} +(-7.42832 - 4.36321i) q^{26} +1.00000 q^{27} +(1.06951 - 5.18229i) q^{28} -6.44459i q^{29} +(-2.82905 - 1.41298i) q^{30} -6.67664 q^{31} +(2.64313 + 5.00139i) q^{32} +2.25539 q^{33} +(-1.89488 + 3.22601i) q^{34} +(3.55330 - 4.73012i) q^{35} +(-0.973958 - 1.74683i) q^{36} -2.30302 q^{37} +(1.60284 + 0.941468i) q^{38} -6.09170i q^{39} +(0.287146 + 6.31803i) q^{40} +5.50180i q^{41} +(3.54271 - 1.20383i) q^{42} +1.26915i q^{43} +(-2.19666 - 3.93978i) q^{44} +(-0.151655 - 2.23092i) q^{45} +(4.74588 - 8.07981i) q^{46} +0.599848i q^{47} +(-2.10281 + 3.40267i) q^{48} +(1.02185 + 6.92501i) q^{49} +(-2.72320 + 6.52566i) q^{50} -2.64554 q^{51} +(-10.6411 + 5.93306i) q^{52} +10.4797 q^{53} +(0.716255 - 1.21942i) q^{54} +(-0.342041 - 5.03160i) q^{55} +(-5.55334 - 5.01602i) q^{56} +1.31443i q^{57} +(-7.85864 - 4.61597i) q^{58} +0.847197i q^{59} +(-3.74933 + 2.43774i) q^{60} -11.7641 q^{61} +(-4.78217 + 8.14161i) q^{62} +(2.00273 + 1.72889i) q^{63} +(7.99193 + 0.359187i) q^{64} +(-13.5901 + 0.923835i) q^{65} +(1.61544 - 2.75027i) q^{66} +14.2814i q^{67} +(2.57664 + 4.62129i) q^{68} +6.62596 q^{69} +(-3.22292 - 7.72093i) q^{70} -3.94508i q^{71} +(-2.82771 - 0.0635119i) q^{72} +8.34529 q^{73} +(-1.64955 + 2.80834i) q^{74} +(-4.95400 + 0.676659i) q^{75} +(2.29609 - 1.28020i) q^{76} +(4.51694 + 3.89934i) q^{77} +(-7.42832 - 4.36321i) q^{78} +0.674858i q^{79} +(7.90999 + 4.17517i) q^{80} +1.00000 q^{81} +(6.70899 + 3.94069i) q^{82} +7.23405 q^{83} +(1.06951 - 5.18229i) q^{84} +(0.401208 + 5.90198i) q^{85} +(1.54763 + 0.909036i) q^{86} -6.44459i q^{87} +(-6.37761 - 0.143244i) q^{88} -5.66275i q^{89} +(-2.82905 - 1.41298i) q^{90} +(10.5319 - 12.2000i) q^{91} +(-6.45341 - 11.5744i) q^{92} -6.67664 q^{93} +(0.731466 + 0.429644i) q^{94} +(2.93239 - 0.199340i) q^{95} +(2.64313 + 5.00139i) q^{96} +11.6458 q^{97} +(9.17639 + 3.71402i) q^{98} +2.25539 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{3} + 48 q^{9} + 8 q^{10} - 2 q^{14} + 8 q^{16} + 4 q^{20} + 48 q^{27} + 14 q^{28} + 8 q^{30} + 8 q^{35} - 12 q^{38} + 8 q^{40} - 2 q^{42} + 4 q^{44} - 8 q^{46} + 8 q^{48} - 12 q^{50} - 36 q^{52}+ \cdots + 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.716255 1.21942i 0.506469 0.862258i
\(3\) 1.00000 0.577350
\(4\) −0.973958 1.74683i −0.486979 0.873414i
\(5\) −0.151655 2.23092i −0.0678221 0.997697i
\(6\) 0.716255 1.21942i 0.292410 0.497825i
\(7\) 2.00273 + 1.72889i 0.756960 + 0.653461i
\(8\) −2.82771 0.0635119i −0.999748 0.0224549i
\(9\) 1.00000 0.333333
\(10\) −2.82905 1.41298i −0.894623 0.446822i
\(11\) 2.25539 0.680027 0.340013 0.940421i \(-0.389568\pi\)
0.340013 + 0.940421i \(0.389568\pi\)
\(12\) −0.973958 1.74683i −0.281157 0.504266i
\(13\) 6.09170i 1.68953i −0.535135 0.844766i \(-0.679739\pi\)
0.535135 0.844766i \(-0.320261\pi\)
\(14\) 3.54271 1.20383i 0.946829 0.321738i
\(15\) −0.151655 2.23092i −0.0391571 0.576021i
\(16\) −2.10281 + 3.40267i −0.525703 + 0.850668i
\(17\) −2.64554 −0.641637 −0.320818 0.947141i \(-0.603958\pi\)
−0.320818 + 0.947141i \(0.603958\pi\)
\(18\) 0.716255 1.21942i 0.168823 0.287419i
\(19\) 1.31443i 0.301551i 0.988568 + 0.150776i \(0.0481771\pi\)
−0.988568 + 0.150776i \(0.951823\pi\)
\(20\) −3.74933 + 2.43774i −0.838375 + 0.545094i
\(21\) 2.00273 + 1.72889i 0.437031 + 0.377276i
\(22\) 1.61544 2.75027i 0.344412 0.586359i
\(23\) 6.62596 1.38161 0.690804 0.723042i \(-0.257257\pi\)
0.690804 + 0.723042i \(0.257257\pi\)
\(24\) −2.82771 0.0635119i −0.577205 0.0129643i
\(25\) −4.95400 + 0.676659i −0.990800 + 0.135332i
\(26\) −7.42832 4.36321i −1.45681 0.855695i
\(27\) 1.00000 0.192450
\(28\) 1.06951 5.18229i 0.202118 0.979361i
\(29\) 6.44459i 1.19673i −0.801224 0.598365i \(-0.795817\pi\)
0.801224 0.598365i \(-0.204183\pi\)
\(30\) −2.82905 1.41298i −0.516511 0.257973i
\(31\) −6.67664 −1.19916 −0.599580 0.800315i \(-0.704666\pi\)
−0.599580 + 0.800315i \(0.704666\pi\)
\(32\) 2.64313 + 5.00139i 0.467244 + 0.884128i
\(33\) 2.25539 0.392614
\(34\) −1.89488 + 3.22601i −0.324969 + 0.553257i
\(35\) 3.55330 4.73012i 0.600617 0.799537i
\(36\) −0.973958 1.74683i −0.162326 0.291138i
\(37\) −2.30302 −0.378614 −0.189307 0.981918i \(-0.560624\pi\)
−0.189307 + 0.981918i \(0.560624\pi\)
\(38\) 1.60284 + 0.941468i 0.260015 + 0.152726i
\(39\) 6.09170i 0.975452i
\(40\) 0.287146 + 6.31803i 0.0454018 + 0.998969i
\(41\) 5.50180i 0.859236i 0.903011 + 0.429618i \(0.141352\pi\)
−0.903011 + 0.429618i \(0.858648\pi\)
\(42\) 3.54271 1.20383i 0.546652 0.185756i
\(43\) 1.26915i 0.193544i 0.995307 + 0.0967719i \(0.0308517\pi\)
−0.995307 + 0.0967719i \(0.969148\pi\)
\(44\) −2.19666 3.93978i −0.331159 0.593945i
\(45\) −0.151655 2.23092i −0.0226074 0.332566i
\(46\) 4.74588 8.07981i 0.699741 1.19130i
\(47\) 0.599848i 0.0874969i 0.999043 + 0.0437484i \(0.0139300\pi\)
−0.999043 + 0.0437484i \(0.986070\pi\)
\(48\) −2.10281 + 3.40267i −0.303515 + 0.491134i
\(49\) 1.02185 + 6.92501i 0.145978 + 0.989288i
\(50\) −2.72320 + 6.52566i −0.385118 + 0.922867i
\(51\) −2.64554 −0.370449
\(52\) −10.6411 + 5.93306i −1.47566 + 0.822767i
\(53\) 10.4797 1.43950 0.719750 0.694234i \(-0.244257\pi\)
0.719750 + 0.694234i \(0.244257\pi\)
\(54\) 0.716255 1.21942i 0.0974699 0.165942i
\(55\) −0.342041 5.03160i −0.0461208 0.678461i
\(56\) −5.55334 5.01602i −0.742096 0.670293i
\(57\) 1.31443i 0.174101i
\(58\) −7.85864 4.61597i −1.03189 0.606106i
\(59\) 0.847197i 0.110296i 0.998478 + 0.0551478i \(0.0175630\pi\)
−0.998478 + 0.0551478i \(0.982437\pi\)
\(60\) −3.74933 + 2.43774i −0.484036 + 0.314710i
\(61\) −11.7641 −1.50624 −0.753118 0.657886i \(-0.771451\pi\)
−0.753118 + 0.657886i \(0.771451\pi\)
\(62\) −4.78217 + 8.14161i −0.607337 + 1.03399i
\(63\) 2.00273 + 1.72889i 0.252320 + 0.217820i
\(64\) 7.99193 + 0.359187i 0.998992 + 0.0448984i
\(65\) −13.5901 + 0.923835i −1.68564 + 0.114588i
\(66\) 1.61544 2.75027i 0.198846 0.338534i
\(67\) 14.2814i 1.74475i 0.488840 + 0.872373i \(0.337420\pi\)
−0.488840 + 0.872373i \(0.662580\pi\)
\(68\) 2.57664 + 4.62129i 0.312464 + 0.560414i
\(69\) 6.62596 0.797672
\(70\) −3.22292 7.72093i −0.385213 0.922828i
\(71\) 3.94508i 0.468195i −0.972213 0.234097i \(-0.924787\pi\)
0.972213 0.234097i \(-0.0752134\pi\)
\(72\) −2.82771 0.0635119i −0.333249 0.00748495i
\(73\) 8.34529 0.976742 0.488371 0.872636i \(-0.337591\pi\)
0.488371 + 0.872636i \(0.337591\pi\)
\(74\) −1.64955 + 2.80834i −0.191756 + 0.326463i
\(75\) −4.95400 + 0.676659i −0.572039 + 0.0781339i
\(76\) 2.29609 1.28020i 0.263379 0.146849i
\(77\) 4.51694 + 3.89934i 0.514753 + 0.444371i
\(78\) −7.42832 4.36321i −0.841092 0.494036i
\(79\) 0.674858i 0.0759274i 0.999279 + 0.0379637i \(0.0120871\pi\)
−0.999279 + 0.0379637i \(0.987913\pi\)
\(80\) 7.90999 + 4.17517i 0.884364 + 0.466798i
\(81\) 1.00000 0.111111
\(82\) 6.70899 + 3.94069i 0.740884 + 0.435176i
\(83\) 7.23405 0.794040 0.397020 0.917810i \(-0.370044\pi\)
0.397020 + 0.917810i \(0.370044\pi\)
\(84\) 1.06951 5.18229i 0.116693 0.565434i
\(85\) 0.401208 + 5.90198i 0.0435171 + 0.640159i
\(86\) 1.54763 + 0.909036i 0.166885 + 0.0980239i
\(87\) 6.44459i 0.690932i
\(88\) −6.37761 0.143244i −0.679855 0.0152699i
\(89\) 5.66275i 0.600250i −0.953900 0.300125i \(-0.902972\pi\)
0.953900 0.300125i \(-0.0970284\pi\)
\(90\) −2.82905 1.41298i −0.298208 0.148941i
\(91\) 10.5319 12.2000i 1.10404 1.27891i
\(92\) −6.45341 11.5744i −0.672814 1.20672i
\(93\) −6.67664 −0.692335
\(94\) 0.731466 + 0.429644i 0.0754449 + 0.0443144i
\(95\) 2.93239 0.199340i 0.300857 0.0204518i
\(96\) 2.64313 + 5.00139i 0.269763 + 0.510452i
\(97\) 11.6458 1.18245 0.591226 0.806506i \(-0.298644\pi\)
0.591226 + 0.806506i \(0.298644\pi\)
\(98\) 9.17639 + 3.71402i 0.926955 + 0.375172i
\(99\) 2.25539 0.226676
\(100\) 6.00700 + 7.99475i 0.600700 + 0.799475i
\(101\) 16.9486 1.68645 0.843227 0.537558i \(-0.180653\pi\)
0.843227 + 0.537558i \(0.180653\pi\)
\(102\) −1.89488 + 3.22601i −0.187621 + 0.319423i
\(103\) 2.78168i 0.274088i −0.990565 0.137044i \(-0.956240\pi\)
0.990565 0.137044i \(-0.0437601\pi\)
\(104\) −0.386895 + 17.2256i −0.0379382 + 1.68911i
\(105\) 3.55330 4.73012i 0.346767 0.461613i
\(106\) 7.50614 12.7791i 0.729061 1.24122i
\(107\) 10.4887i 1.01399i −0.861950 0.506993i \(-0.830757\pi\)
0.861950 0.506993i \(-0.169243\pi\)
\(108\) −0.973958 1.74683i −0.0937192 0.168089i
\(109\) 12.0853i 1.15756i 0.815482 + 0.578782i \(0.196472\pi\)
−0.815482 + 0.578782i \(0.803528\pi\)
\(110\) −6.38061 3.18682i −0.608367 0.303851i
\(111\) −2.30302 −0.218593
\(112\) −10.0942 + 3.17909i −0.953815 + 0.300396i
\(113\) 5.80202i 0.545808i −0.962041 0.272904i \(-0.912016\pi\)
0.962041 0.272904i \(-0.0879842\pi\)
\(114\) 1.60284 + 0.941468i 0.150120 + 0.0881766i
\(115\) −1.00486 14.7820i −0.0937035 1.37843i
\(116\) −11.2576 + 6.27676i −1.04524 + 0.582782i
\(117\) 6.09170i 0.563178i
\(118\) 1.03309 + 0.606809i 0.0951033 + 0.0558613i
\(119\) −5.29829 4.57385i −0.485694 0.419284i
\(120\) 0.287146 + 6.31803i 0.0262127 + 0.576755i
\(121\) −5.91320 −0.537564
\(122\) −8.42607 + 14.3453i −0.762861 + 1.29876i
\(123\) 5.50180i 0.496080i
\(124\) 6.50276 + 11.6629i 0.583965 + 1.04736i
\(125\) 2.26087 + 10.9494i 0.202218 + 0.979340i
\(126\) 3.54271 1.20383i 0.315610 0.107246i
\(127\) 4.03740 0.358261 0.179131 0.983825i \(-0.442672\pi\)
0.179131 + 0.983825i \(0.442672\pi\)
\(128\) 6.16226 9.48823i 0.544672 0.838649i
\(129\) 1.26915i 0.111743i
\(130\) −8.60742 + 17.2337i −0.754921 + 1.51149i
\(131\) 1.91397i 0.167225i 0.996498 + 0.0836123i \(0.0266457\pi\)
−0.996498 + 0.0836123i \(0.973354\pi\)
\(132\) −2.19666 3.93978i −0.191195 0.342914i
\(133\) −2.27251 + 2.63245i −0.197052 + 0.228262i
\(134\) 17.4150 + 10.2291i 1.50442 + 0.883660i
\(135\) −0.151655 2.23092i −0.0130524 0.192007i
\(136\) 7.48082 + 0.168023i 0.641475 + 0.0144079i
\(137\) 21.9496i 1.87528i 0.347608 + 0.937640i \(0.386994\pi\)
−0.347608 + 0.937640i \(0.613006\pi\)
\(138\) 4.74588 8.07981i 0.403996 0.687799i
\(139\) 0.792123i 0.0671870i 0.999436 + 0.0335935i \(0.0106951\pi\)
−0.999436 + 0.0335935i \(0.989305\pi\)
\(140\) −11.7235 1.60006i −0.990814 0.135230i
\(141\) 0.599848i 0.0505163i
\(142\) −4.81070 2.82568i −0.403705 0.237126i
\(143\) 13.7392i 1.14893i
\(144\) −2.10281 + 3.40267i −0.175234 + 0.283556i
\(145\) −14.3774 + 0.977352i −1.19397 + 0.0811647i
\(146\) 5.97735 10.1764i 0.494689 0.842204i
\(147\) 1.02185 + 6.92501i 0.0842805 + 0.571166i
\(148\) 2.24304 + 4.02297i 0.184377 + 0.330686i
\(149\) 16.8637i 1.38153i 0.723078 + 0.690766i \(0.242726\pi\)
−0.723078 + 0.690766i \(0.757274\pi\)
\(150\) −2.72320 + 6.52566i −0.222348 + 0.532818i
\(151\) 18.8911i 1.53733i 0.639649 + 0.768667i \(0.279080\pi\)
−0.639649 + 0.768667i \(0.720920\pi\)
\(152\) 0.0834821 3.71684i 0.00677129 0.301475i
\(153\) −2.64554 −0.213879
\(154\) 7.99020 2.71512i 0.643869 0.218791i
\(155\) 1.01254 + 14.8950i 0.0813295 + 1.19640i
\(156\) −10.6411 + 5.93306i −0.851973 + 0.475025i
\(157\) 14.0522i 1.12148i −0.827991 0.560742i \(-0.810516\pi\)
0.827991 0.560742i \(-0.189484\pi\)
\(158\) 0.822933 + 0.483370i 0.0654691 + 0.0384549i
\(159\) 10.4797 0.831095
\(160\) 10.7568 6.65509i 0.850403 0.526131i
\(161\) 13.2700 + 11.4556i 1.04582 + 0.902827i
\(162\) 0.716255 1.21942i 0.0562743 0.0958065i
\(163\) 17.5803i 1.37699i −0.725239 0.688497i \(-0.758271\pi\)
0.725239 0.688497i \(-0.241729\pi\)
\(164\) 9.61069 5.35852i 0.750469 0.418430i
\(165\) −0.342041 5.03160i −0.0266279 0.391710i
\(166\) 5.18142 8.82132i 0.402156 0.684667i
\(167\) 8.61637i 0.666754i 0.942794 + 0.333377i \(0.108188\pi\)
−0.942794 + 0.333377i \(0.891812\pi\)
\(168\) −5.55334 5.01602i −0.428449 0.386994i
\(169\) −24.1088 −1.85452
\(170\) 7.48434 + 3.73808i 0.574023 + 0.286698i
\(171\) 1.31443i 0.100517i
\(172\) 2.21699 1.23610i 0.169044 0.0942518i
\(173\) 14.8810i 1.13138i 0.824618 + 0.565691i \(0.191390\pi\)
−0.824618 + 0.565691i \(0.808610\pi\)
\(174\) −7.85864 4.61597i −0.595762 0.349936i
\(175\) −11.0914 7.20978i −0.838431 0.545008i
\(176\) −4.74267 + 7.67437i −0.357492 + 0.578477i
\(177\) 0.847197i 0.0636792i
\(178\) −6.90526 4.05597i −0.517571 0.304008i
\(179\) 15.5132 1.15951 0.579756 0.814790i \(-0.303148\pi\)
0.579756 + 0.814790i \(0.303148\pi\)
\(180\) −3.74933 + 2.43774i −0.279458 + 0.181698i
\(181\) −11.1760 −0.830707 −0.415354 0.909660i \(-0.636342\pi\)
−0.415354 + 0.909660i \(0.636342\pi\)
\(182\) −7.33339 21.5811i −0.543587 1.59970i
\(183\) −11.7641 −0.869625
\(184\) −18.7363 0.420828i −1.38126 0.0310238i
\(185\) 0.349263 + 5.13784i 0.0256784 + 0.377742i
\(186\) −4.78217 + 8.14161i −0.350646 + 0.596972i
\(187\) −5.96672 −0.436330
\(188\) 1.04783 0.584227i 0.0764210 0.0426091i
\(189\) 2.00273 + 1.72889i 0.145677 + 0.125759i
\(190\) 1.85726 3.71859i 0.134740 0.269775i
\(191\) 1.30024i 0.0940821i 0.998893 + 0.0470410i \(0.0149792\pi\)
−0.998893 + 0.0470410i \(0.985021\pi\)
\(192\) 7.99193 + 0.359187i 0.576768 + 0.0259221i
\(193\) 10.2276i 0.736201i −0.929786 0.368101i \(-0.880008\pi\)
0.929786 0.368101i \(-0.119992\pi\)
\(194\) 8.34136 14.2011i 0.598875 1.01958i
\(195\) −13.5901 + 0.923835i −0.973206 + 0.0661572i
\(196\) 11.1016 8.52966i 0.792969 0.609262i
\(197\) 4.42625 0.315357 0.157678 0.987491i \(-0.449599\pi\)
0.157678 + 0.987491i \(0.449599\pi\)
\(198\) 1.61544 2.75027i 0.114804 0.195453i
\(199\) −9.94177 −0.704753 −0.352377 0.935858i \(-0.614626\pi\)
−0.352377 + 0.935858i \(0.614626\pi\)
\(200\) 14.0515 1.59876i 0.993589 0.113049i
\(201\) 14.2814i 1.00733i
\(202\) 12.1395 20.6675i 0.854136 1.45416i
\(203\) 11.1420 12.9068i 0.782016 0.905877i
\(204\) 2.57664 + 4.62129i 0.180401 + 0.323555i
\(205\) 12.2741 0.834374i 0.857258 0.0582752i
\(206\) −3.39203 1.99239i −0.236334 0.138817i
\(207\) 6.62596 0.460536
\(208\) 20.7281 + 12.8097i 1.43723 + 0.888192i
\(209\) 2.96456i 0.205063i
\(210\) −3.22292 7.72093i −0.222403 0.532795i
\(211\) 1.91888 0.132101 0.0660506 0.997816i \(-0.478960\pi\)
0.0660506 + 0.997816i \(0.478960\pi\)
\(212\) −10.2068 18.3062i −0.701006 1.25728i
\(213\) 3.94508i 0.270312i
\(214\) −12.7902 7.51262i −0.874318 0.513552i
\(215\) 2.83138 0.192473i 0.193098 0.0131265i
\(216\) −2.82771 0.0635119i −0.192402 0.00432144i
\(217\) −13.3715 11.5432i −0.907716 0.783603i
\(218\) 14.7371 + 8.65617i 0.998120 + 0.586270i
\(219\) 8.34529 0.563922
\(220\) −8.45620 + 5.49806i −0.570117 + 0.370679i
\(221\) 16.1158i 1.08407i
\(222\) −1.64955 + 2.80834i −0.110710 + 0.188483i
\(223\) 4.14126i 0.277319i 0.990340 + 0.138660i \(0.0442794\pi\)
−0.990340 + 0.138660i \(0.955721\pi\)
\(224\) −3.35339 + 14.5861i −0.224058 + 0.974576i
\(225\) −4.95400 + 0.676659i −0.330267 + 0.0451106i
\(226\) −7.07509 4.15572i −0.470628 0.276435i
\(227\) 15.8502 1.05202 0.526008 0.850480i \(-0.323688\pi\)
0.526008 + 0.850480i \(0.323688\pi\)
\(228\) 2.29609 1.28020i 0.152062 0.0847834i
\(229\) 23.7976 1.57259 0.786294 0.617852i \(-0.211997\pi\)
0.786294 + 0.617852i \(0.211997\pi\)
\(230\) −18.7451 9.36232i −1.23602 0.617333i
\(231\) 4.51694 + 3.89934i 0.297193 + 0.256558i
\(232\) −0.409308 + 18.2234i −0.0268724 + 1.19643i
\(233\) 3.56877i 0.233798i −0.993144 0.116899i \(-0.962705\pi\)
0.993144 0.116899i \(-0.0372954\pi\)
\(234\) −7.42832 4.36321i −0.485605 0.285232i
\(235\) 1.33821 0.0909698i 0.0872954 0.00593422i
\(236\) 1.47991 0.825134i 0.0963337 0.0537117i
\(237\) 0.674858i 0.0438367i
\(238\) −9.37236 + 3.18479i −0.607520 + 0.206439i
\(239\) 25.3361i 1.63886i −0.573182 0.819428i \(-0.694291\pi\)
0.573182 0.819428i \(-0.305709\pi\)
\(240\) 7.90999 + 4.17517i 0.510588 + 0.269506i
\(241\) 16.0641i 1.03478i 0.855750 + 0.517390i \(0.173096\pi\)
−0.855750 + 0.517390i \(0.826904\pi\)
\(242\) −4.23536 + 7.21066i −0.272259 + 0.463519i
\(243\) 1.00000 0.0641500
\(244\) 11.4577 + 20.5498i 0.733505 + 1.31557i
\(245\) 15.2942 3.32987i 0.977109 0.212738i
\(246\) 6.70899 + 3.94069i 0.427749 + 0.251249i
\(247\) 8.00712 0.509481
\(248\) 18.8796 + 0.424046i 1.19886 + 0.0269269i
\(249\) 7.23405 0.458439
\(250\) 14.9712 + 5.08559i 0.946862 + 0.321641i
\(251\) 15.5779i 0.983268i 0.870802 + 0.491634i \(0.163600\pi\)
−0.870802 + 0.491634i \(0.836400\pi\)
\(252\) 1.06951 5.18229i 0.0673726 0.326454i
\(253\) 14.9441 0.939531
\(254\) 2.89180 4.92327i 0.181448 0.308914i
\(255\) 0.401208 + 5.90198i 0.0251246 + 0.369596i
\(256\) −7.15637 14.3104i −0.447273 0.894397i
\(257\) −18.8071 −1.17316 −0.586578 0.809893i \(-0.699525\pi\)
−0.586578 + 0.809893i \(0.699525\pi\)
\(258\) 1.54763 + 0.909036i 0.0963510 + 0.0565941i
\(259\) −4.61232 3.98167i −0.286596 0.247409i
\(260\) 14.8500 + 22.8398i 0.920955 + 1.41646i
\(261\) 6.44459i 0.398910i
\(262\) 2.33393 + 1.37089i 0.144191 + 0.0846940i
\(263\) −20.2464 −1.24844 −0.624222 0.781247i \(-0.714584\pi\)
−0.624222 + 0.781247i \(0.714584\pi\)
\(264\) −6.37761 0.143244i −0.392515 0.00881608i
\(265\) −1.58930 23.3794i −0.0976298 1.43618i
\(266\) 1.58236 + 4.65665i 0.0970206 + 0.285518i
\(267\) 5.66275i 0.346555i
\(268\) 24.9471 13.9095i 1.52389 0.849655i
\(269\) 9.68128 0.590278 0.295139 0.955454i \(-0.404634\pi\)
0.295139 + 0.955454i \(0.404634\pi\)
\(270\) −2.82905 1.41298i −0.172170 0.0859910i
\(271\) 2.16142 0.131297 0.0656484 0.997843i \(-0.479088\pi\)
0.0656484 + 0.997843i \(0.479088\pi\)
\(272\) 5.56306 9.00189i 0.337310 0.545820i
\(273\) 10.5319 12.2000i 0.637420 0.738379i
\(274\) 26.7657 + 15.7215i 1.61698 + 0.949770i
\(275\) −11.1732 + 1.52613i −0.673771 + 0.0920292i
\(276\) −6.45341 11.5744i −0.388449 0.696698i
\(277\) −29.7723 −1.78884 −0.894422 0.447223i \(-0.852413\pi\)
−0.894422 + 0.447223i \(0.852413\pi\)
\(278\) 0.965928 + 0.567362i 0.0579325 + 0.0340281i
\(279\) −6.67664 −0.399720
\(280\) −10.3481 + 13.1498i −0.618420 + 0.785848i
\(281\) −14.4325 −0.860973 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(282\) 0.731466 + 0.429644i 0.0435581 + 0.0255849i
\(283\) −8.68571 −0.516312 −0.258156 0.966103i \(-0.583115\pi\)
−0.258156 + 0.966103i \(0.583115\pi\)
\(284\) −6.89137 + 3.84234i −0.408927 + 0.228001i
\(285\) 2.93239 0.199340i 0.173700 0.0118079i
\(286\) −16.7538 9.84075i −0.990672 0.581896i
\(287\) −9.51203 + 11.0186i −0.561477 + 0.650408i
\(288\) 2.64313 + 5.00139i 0.155748 + 0.294709i
\(289\) −10.0011 −0.588302
\(290\) −9.10605 + 18.2320i −0.534726 + 1.07062i
\(291\) 11.6458 0.682689
\(292\) −8.12796 14.5778i −0.475653 0.853100i
\(293\) 0.507697i 0.0296600i 0.999890 + 0.0148300i \(0.00472071\pi\)
−0.999890 + 0.0148300i \(0.995279\pi\)
\(294\) 9.17639 + 3.71402i 0.535178 + 0.216606i
\(295\) 1.89003 0.128481i 0.110042 0.00748048i
\(296\) 6.51227 + 0.146269i 0.378518 + 0.00850171i
\(297\) 2.25539 0.130871
\(298\) 20.5639 + 12.0787i 1.19124 + 0.699702i
\(299\) 40.3633i 2.33427i
\(300\) 6.00700 + 7.99475i 0.346814 + 0.461577i
\(301\) −2.19423 + 2.54177i −0.126473 + 0.146505i
\(302\) 23.0361 + 13.5308i 1.32558 + 0.778612i
\(303\) 16.9486 0.973674
\(304\) −4.47258 2.76400i −0.256520 0.158526i
\(305\) 1.78408 + 26.2447i 0.102156 + 1.50277i
\(306\) −1.89488 + 3.22601i −0.108323 + 0.184419i
\(307\) 18.2227 1.04003 0.520013 0.854158i \(-0.325927\pi\)
0.520013 + 0.854158i \(0.325927\pi\)
\(308\) 2.41216 11.6881i 0.137445 0.665992i
\(309\) 2.78168i 0.158245i
\(310\) 18.8885 + 9.43393i 1.07280 + 0.535811i
\(311\) −13.5269 −0.767040 −0.383520 0.923533i \(-0.625288\pi\)
−0.383520 + 0.923533i \(0.625288\pi\)
\(312\) −0.386895 + 17.2256i −0.0219036 + 0.975206i
\(313\) 16.0061 0.904717 0.452359 0.891836i \(-0.350583\pi\)
0.452359 + 0.891836i \(0.350583\pi\)
\(314\) −17.1354 10.0649i −0.967009 0.567996i
\(315\) 3.55330 4.73012i 0.200206 0.266512i
\(316\) 1.17886 0.657283i 0.0663160 0.0369751i
\(317\) −34.8304 −1.95627 −0.978135 0.207973i \(-0.933313\pi\)
−0.978135 + 0.207973i \(0.933313\pi\)
\(318\) 7.50614 12.7791i 0.420924 0.716619i
\(319\) 14.5351i 0.813808i
\(320\) −0.410697 17.8838i −0.0229587 0.999736i
\(321\) 10.4887i 0.585425i
\(322\) 23.4738 7.97655i 1.30815 0.444516i
\(323\) 3.47738i 0.193486i
\(324\) −0.973958 1.74683i −0.0541088 0.0970460i
\(325\) 4.12200 + 30.1783i 0.228648 + 1.67399i
\(326\) −21.4377 12.5920i −1.18733 0.697405i
\(327\) 12.0853i 0.668320i
\(328\) 0.349430 15.5575i 0.0192940 0.859020i
\(329\) −1.03707 + 1.20133i −0.0571758 + 0.0662317i
\(330\) −6.38061 3.18682i −0.351241 0.175429i
\(331\) 8.65367 0.475649 0.237824 0.971308i \(-0.423566\pi\)
0.237824 + 0.971308i \(0.423566\pi\)
\(332\) −7.04566 12.6366i −0.386681 0.693525i
\(333\) −2.30302 −0.126205
\(334\) 10.5069 + 6.17151i 0.574915 + 0.337690i
\(335\) 31.8606 2.16584i 1.74073 0.118332i
\(336\) −10.0942 + 3.17909i −0.550685 + 0.173434i
\(337\) 13.8298i 0.753357i 0.926344 + 0.376679i \(0.122934\pi\)
−0.926344 + 0.376679i \(0.877066\pi\)
\(338\) −17.2680 + 29.3987i −0.939257 + 1.59908i
\(339\) 5.80202i 0.315122i
\(340\) 9.91898 6.44912i 0.537932 0.349753i
\(341\) −15.0584 −0.815460
\(342\) 1.60284 + 0.941468i 0.0866717 + 0.0509088i
\(343\) −9.92614 + 15.6356i −0.535961 + 0.844243i
\(344\) 0.0806063 3.58880i 0.00434600 0.193495i
\(345\) −1.00486 14.7820i −0.0540998 0.795835i
\(346\) 18.1461 + 10.6586i 0.975543 + 0.573009i
\(347\) 30.3641i 1.63003i −0.579439 0.815016i \(-0.696728\pi\)
0.579439 0.815016i \(-0.303272\pi\)
\(348\) −11.2576 + 6.27676i −0.603470 + 0.336470i
\(349\) −3.85761 −0.206493 −0.103247 0.994656i \(-0.532923\pi\)
−0.103247 + 0.994656i \(0.532923\pi\)
\(350\) −16.7360 + 8.36100i −0.894577 + 0.446914i
\(351\) 6.09170i 0.325151i
\(352\) 5.96130 + 11.2801i 0.317738 + 0.601231i
\(353\) −28.7836 −1.53200 −0.765999 0.642841i \(-0.777756\pi\)
−0.765999 + 0.642841i \(0.777756\pi\)
\(354\) 1.03309 + 0.606809i 0.0549079 + 0.0322515i
\(355\) −8.80115 + 0.598290i −0.467116 + 0.0317539i
\(356\) −9.89185 + 5.51528i −0.524267 + 0.292309i
\(357\) −5.29829 4.57385i −0.280415 0.242074i
\(358\) 11.1114 18.9171i 0.587257 0.999799i
\(359\) 11.4556i 0.604603i 0.953212 + 0.302302i \(0.0977550\pi\)
−0.953212 + 0.302302i \(0.902245\pi\)
\(360\) 0.287146 + 6.31803i 0.0151339 + 0.332990i
\(361\) 17.2723 0.909067
\(362\) −8.00488 + 13.6282i −0.420727 + 0.716284i
\(363\) −5.91320 −0.310363
\(364\) −31.5690 6.51511i −1.65466 0.341484i
\(365\) −1.26560 18.6177i −0.0662447 0.974493i
\(366\) −8.42607 + 14.3453i −0.440438 + 0.749842i
\(367\) 32.8933i 1.71702i 0.512798 + 0.858509i \(0.328609\pi\)
−0.512798 + 0.858509i \(0.671391\pi\)
\(368\) −13.9331 + 22.5460i −0.726315 + 1.17529i
\(369\) 5.50180i 0.286412i
\(370\) 6.51534 + 3.25411i 0.338716 + 0.169173i
\(371\) 20.9880 + 18.1183i 1.08964 + 0.940656i
\(372\) 6.50276 + 11.6629i 0.337153 + 0.604695i
\(373\) −30.8246 −1.59604 −0.798019 0.602632i \(-0.794119\pi\)
−0.798019 + 0.602632i \(0.794119\pi\)
\(374\) −4.27370 + 7.27593i −0.220988 + 0.376229i
\(375\) 2.26087 + 10.9494i 0.116751 + 0.565422i
\(376\) 0.0380975 1.69620i 0.00196473 0.0874748i
\(377\) −39.2585 −2.02191
\(378\) 3.54271 1.20383i 0.182217 0.0619185i
\(379\) −37.9641 −1.95009 −0.975043 0.222017i \(-0.928736\pi\)
−0.975043 + 0.222017i \(0.928736\pi\)
\(380\) −3.20424 4.92823i −0.164374 0.252813i
\(381\) 4.03740 0.206842
\(382\) 1.58554 + 0.931303i 0.0811230 + 0.0476496i
\(383\) 6.43538i 0.328833i −0.986391 0.164416i \(-0.947426\pi\)
0.986391 0.164416i \(-0.0525740\pi\)
\(384\) 6.16226 9.48823i 0.314466 0.484194i
\(385\) 8.01409 10.6683i 0.408436 0.543706i
\(386\) −12.4718 7.32559i −0.634796 0.372863i
\(387\) 1.26915i 0.0645146i
\(388\) −11.3425 20.3432i −0.575830 1.03277i
\(389\) 19.9377i 1.01088i −0.862861 0.505441i \(-0.831330\pi\)
0.862861 0.505441i \(-0.168670\pi\)
\(390\) −8.60742 + 17.2337i −0.435854 + 0.872662i
\(391\) −17.5292 −0.886491
\(392\) −2.44967 19.6469i −0.123727 0.992316i
\(393\) 1.91397i 0.0965472i
\(394\) 3.17032 5.39744i 0.159718 0.271919i
\(395\) 1.50555 0.102345i 0.0757526 0.00514955i
\(396\) −2.19666 3.93978i −0.110386 0.197982i
\(397\) 26.3753i 1.32374i −0.749618 0.661870i \(-0.769763\pi\)
0.749618 0.661870i \(-0.230237\pi\)
\(398\) −7.12084 + 12.1232i −0.356936 + 0.607680i
\(399\) −2.27251 + 2.63245i −0.113768 + 0.131787i
\(400\) 8.11488 18.2797i 0.405744 0.913987i
\(401\) 9.83846 0.491309 0.245655 0.969357i \(-0.420997\pi\)
0.245655 + 0.969357i \(0.420997\pi\)
\(402\) 17.4150 + 10.2291i 0.868579 + 0.510181i
\(403\) 40.6720i 2.02602i
\(404\) −16.5073 29.6064i −0.821267 1.47297i
\(405\) −0.151655 2.23092i −0.00753579 0.110855i
\(406\) −7.75821 22.8313i −0.385034 1.13310i
\(407\) −5.19421 −0.257467
\(408\) 7.48082 + 0.168023i 0.370356 + 0.00831838i
\(409\) 22.6333i 1.11915i −0.828781 0.559573i \(-0.810965\pi\)
0.828781 0.559573i \(-0.189035\pi\)
\(410\) 7.77391 15.5648i 0.383926 0.768692i
\(411\) 21.9496i 1.08269i
\(412\) −4.85912 + 2.70924i −0.239392 + 0.133475i
\(413\) −1.46471 + 1.69671i −0.0720739 + 0.0834894i
\(414\) 4.74588 8.07981i 0.233247 0.397101i
\(415\) −1.09708 16.1386i −0.0538534 0.792211i
\(416\) 30.4669 16.1012i 1.49376 0.789424i
\(417\) 0.792123i 0.0387904i
\(418\) 3.61504 + 2.12338i 0.176817 + 0.103858i
\(419\) 12.2039i 0.596202i 0.954534 + 0.298101i \(0.0963532\pi\)
−0.954534 + 0.298101i \(0.903647\pi\)
\(420\) −11.7235 1.60006i −0.572047 0.0780751i
\(421\) 9.85973i 0.480534i −0.970707 0.240267i \(-0.922765\pi\)
0.970707 0.240267i \(-0.0772350\pi\)
\(422\) 1.37441 2.33992i 0.0669051 0.113905i
\(423\) 0.599848i 0.0291656i
\(424\) −29.6336 0.665587i −1.43914 0.0323237i
\(425\) 13.1060 1.79013i 0.635734 0.0868339i
\(426\) −4.81070 2.82568i −0.233079 0.136905i
\(427\) −23.5602 20.3388i −1.14016 0.984265i
\(428\) −18.3220 + 10.2156i −0.885629 + 0.493790i
\(429\) 13.7392i 0.663334i
\(430\) 1.79328 3.59049i 0.0864797 0.173149i
\(431\) 4.64900i 0.223934i −0.993712 0.111967i \(-0.964285\pi\)
0.993712 0.111967i \(-0.0357152\pi\)
\(432\) −2.10281 + 3.40267i −0.101172 + 0.163711i
\(433\) 34.1792 1.64255 0.821273 0.570535i \(-0.193264\pi\)
0.821273 + 0.570535i \(0.193264\pi\)
\(434\) −23.6534 + 8.03756i −1.13540 + 0.385815i
\(435\) −14.3774 + 0.977352i −0.689341 + 0.0468605i
\(436\) 21.1110 11.7706i 1.01103 0.563710i
\(437\) 8.70938i 0.416626i
\(438\) 5.97735 10.1764i 0.285609 0.486247i
\(439\) −28.0687 −1.33965 −0.669823 0.742521i \(-0.733630\pi\)
−0.669823 + 0.742521i \(0.733630\pi\)
\(440\) 0.647628 + 14.2497i 0.0308744 + 0.679325i
\(441\) 1.02185 + 6.92501i 0.0486594 + 0.329763i
\(442\) 19.6519 + 11.5430i 0.934745 + 0.549046i
\(443\) 28.5409i 1.35602i −0.735052 0.678011i \(-0.762842\pi\)
0.735052 0.678011i \(-0.237158\pi\)
\(444\) 2.24304 + 4.02297i 0.106450 + 0.190922i
\(445\) −12.6331 + 0.858783i −0.598868 + 0.0407102i
\(446\) 5.04993 + 2.96620i 0.239121 + 0.140454i
\(447\) 16.8637i 0.797628i
\(448\) 15.3847 + 14.5366i 0.726858 + 0.686788i
\(449\) 0.0355608 0.00167822 0.000839109 1.00000i \(-0.499733\pi\)
0.000839109 1.00000i \(0.499733\pi\)
\(450\) −2.72320 + 6.52566i −0.128373 + 0.307622i
\(451\) 12.4087i 0.584304i
\(452\) −10.1351 + 5.65092i −0.476716 + 0.265797i
\(453\) 18.8911i 0.887581i
\(454\) 11.3528 19.3280i 0.532813 0.907110i
\(455\) −28.8145 21.6456i −1.35084 1.01476i
\(456\) 0.0834821 3.71684i 0.00390941 0.174057i
\(457\) 7.06267i 0.330378i 0.986262 + 0.165189i \(0.0528234\pi\)
−0.986262 + 0.165189i \(0.947177\pi\)
\(458\) 17.0451 29.0192i 0.796467 1.35598i
\(459\) −2.64554 −0.123483
\(460\) −24.8429 + 16.1523i −1.15831 + 0.753107i
\(461\) −28.2442 −1.31546 −0.657732 0.753252i \(-0.728484\pi\)
−0.657732 + 0.753252i \(0.728484\pi\)
\(462\) 7.99020 2.71512i 0.371738 0.126319i
\(463\) −30.3492 −1.41045 −0.705223 0.708986i \(-0.749153\pi\)
−0.705223 + 0.708986i \(0.749153\pi\)
\(464\) 21.9288 + 13.5518i 1.01802 + 0.629124i
\(465\) 1.01254 + 14.8950i 0.0469556 + 0.690741i
\(466\) −4.35183 2.55615i −0.201594 0.118411i
\(467\) 34.6180 1.60193 0.800965 0.598712i \(-0.204320\pi\)
0.800965 + 0.598712i \(0.204320\pi\)
\(468\) −10.6411 + 5.93306i −0.491887 + 0.274256i
\(469\) −24.6910 + 28.6017i −1.14012 + 1.32070i
\(470\) 0.847571 1.69700i 0.0390956 0.0782767i
\(471\) 14.0522i 0.647489i
\(472\) 0.0538071 2.39563i 0.00247667 0.110268i
\(473\) 2.86244i 0.131615i
\(474\) 0.822933 + 0.483370i 0.0377986 + 0.0222019i
\(475\) −0.889422 6.51170i −0.0408095 0.298777i
\(476\) −2.82942 + 13.7099i −0.129686 + 0.628394i
\(477\) 10.4797 0.479833
\(478\) −30.8953 18.1471i −1.41312 0.830029i
\(479\) 4.10045 0.187354 0.0936772 0.995603i \(-0.470138\pi\)
0.0936772 + 0.995603i \(0.470138\pi\)
\(480\) 10.7568 6.65509i 0.490981 0.303762i
\(481\) 14.0293i 0.639680i
\(482\) 19.5888 + 11.5060i 0.892247 + 0.524083i
\(483\) 13.2700 + 11.4556i 0.603806 + 0.521247i
\(484\) 5.75921 + 10.3293i 0.261782 + 0.469515i
\(485\) −1.76614 25.9809i −0.0801964 1.17973i
\(486\) 0.716255 1.21942i 0.0324900 0.0553139i
\(487\) 40.3511 1.82848 0.914241 0.405171i \(-0.132788\pi\)
0.914241 + 0.405171i \(0.132788\pi\)
\(488\) 33.2654 + 0.747159i 1.50586 + 0.0338223i
\(489\) 17.5803i 0.795008i
\(490\) 6.89403 21.0350i 0.311440 0.950266i
\(491\) −13.3376 −0.601917 −0.300958 0.953637i \(-0.597307\pi\)
−0.300958 + 0.953637i \(0.597307\pi\)
\(492\) 9.61069 5.35852i 0.433283 0.241581i
\(493\) 17.0494i 0.767866i
\(494\) 5.73514 9.76403i 0.258036 0.439304i
\(495\) −0.342041 5.03160i −0.0153736 0.226154i
\(496\) 14.0397 22.7184i 0.630401 1.02009i
\(497\) 6.82062 7.90092i 0.305947 0.354405i
\(498\) 5.18142 8.82132i 0.232185 0.395293i
\(499\) −21.3838 −0.957270 −0.478635 0.878014i \(-0.658868\pi\)
−0.478635 + 0.878014i \(0.658868\pi\)
\(500\) 16.9246 14.6136i 0.756893 0.653539i
\(501\) 8.61637i 0.384951i
\(502\) 18.9960 + 11.1577i 0.847831 + 0.497995i
\(503\) 26.6346i 1.18758i −0.804621 0.593788i \(-0.797632\pi\)
0.804621 0.593788i \(-0.202368\pi\)
\(504\) −5.55334 5.01602i −0.247365 0.223431i
\(505\) −2.57034 37.8111i −0.114379 1.68257i
\(506\) 10.7038 18.2232i 0.475843 0.810118i
\(507\) −24.1088 −1.07071
\(508\) −3.93226 7.05263i −0.174466 0.312910i
\(509\) −14.1420 −0.626835 −0.313417 0.949615i \(-0.601474\pi\)
−0.313417 + 0.949615i \(0.601474\pi\)
\(510\) 7.48434 + 3.73808i 0.331412 + 0.165525i
\(511\) 16.7133 + 14.4281i 0.739355 + 0.638263i
\(512\) −22.5761 1.52326i −0.997731 0.0673193i
\(513\) 1.31443i 0.0580336i
\(514\) −13.4707 + 22.9337i −0.594167 + 1.01156i
\(515\) −6.20571 + 0.421856i −0.273456 + 0.0185892i
\(516\) 2.21699 1.23610i 0.0975975 0.0544163i
\(517\) 1.35289i 0.0595002i
\(518\) −8.15892 + 2.77245i −0.358482 + 0.121814i
\(519\) 14.8810i 0.653203i
\(520\) 38.4875 1.74921i 1.68779 0.0767078i
\(521\) 4.69309i 0.205608i 0.994702 + 0.102804i \(0.0327815\pi\)
−0.994702 + 0.102804i \(0.967219\pi\)
\(522\) −7.85864 4.61597i −0.343963 0.202035i
\(523\) −16.2038 −0.708541 −0.354270 0.935143i \(-0.615271\pi\)
−0.354270 + 0.935143i \(0.615271\pi\)
\(524\) 3.34338 1.86413i 0.146056 0.0814349i
\(525\) −11.0914 7.20978i −0.484068 0.314661i
\(526\) −14.5016 + 24.6888i −0.632298 + 1.07648i
\(527\) 17.6633 0.769425
\(528\) −4.74267 + 7.67437i −0.206398 + 0.333984i
\(529\) 20.9033 0.908841
\(530\) −29.6476 14.8076i −1.28781 0.643200i
\(531\) 0.847197i 0.0367652i
\(532\) 6.81177 + 1.40579i 0.295328 + 0.0609489i
\(533\) 33.5153 1.45171
\(534\) −6.90526 4.05597i −0.298820 0.175519i
\(535\) −23.3996 + 1.59067i −1.01165 + 0.0687706i
\(536\) 0.907037 40.3836i 0.0391780 1.74431i
\(537\) 15.5132 0.669445
\(538\) 6.93426 11.8055i 0.298957 0.508972i
\(539\) 2.30467 + 15.6186i 0.0992691 + 0.672742i
\(540\) −3.74933 + 2.43774i −0.161345 + 0.104903i
\(541\) 2.77873i 0.119467i 0.998214 + 0.0597335i \(0.0190251\pi\)
−0.998214 + 0.0597335i \(0.980975\pi\)
\(542\) 1.54813 2.63567i 0.0664978 0.113212i
\(543\) −11.1760 −0.479609
\(544\) −6.99250 13.2313i −0.299801 0.567289i
\(545\) 26.9614 1.83280i 1.15490 0.0785084i
\(546\) −7.33339 21.5811i −0.313840 0.923586i
\(547\) 21.8861i 0.935783i 0.883786 + 0.467891i \(0.154986\pi\)
−0.883786 + 0.467891i \(0.845014\pi\)
\(548\) 38.3421 21.3780i 1.63789 0.913222i
\(549\) −11.7641 −0.502078
\(550\) −6.14188 + 14.7179i −0.261891 + 0.627574i
\(551\) 8.47097 0.360876
\(552\) −18.7363 0.420828i −0.797471 0.0179116i
\(553\) −1.16676 + 1.35156i −0.0496156 + 0.0574741i
\(554\) −21.3246 + 36.3049i −0.905994 + 1.54245i
\(555\) 0.349263 + 5.13784i 0.0148254 + 0.218089i
\(556\) 1.38370 0.771494i 0.0586820 0.0327186i
\(557\) −12.8730 −0.545447 −0.272723 0.962093i \(-0.587924\pi\)
−0.272723 + 0.962093i \(0.587924\pi\)
\(558\) −4.78217 + 8.14161i −0.202446 + 0.344662i
\(559\) 7.73129 0.326999
\(560\) 8.62314 + 22.0373i 0.364394 + 0.931245i
\(561\) −5.96672 −0.251915
\(562\) −10.3374 + 17.5993i −0.436056 + 0.742381i
\(563\) −22.8118 −0.961402 −0.480701 0.876885i \(-0.659618\pi\)
−0.480701 + 0.876885i \(0.659618\pi\)
\(564\) 1.04783 0.584227i 0.0441217 0.0246004i
\(565\) −12.9438 + 0.879904i −0.544551 + 0.0370178i
\(566\) −6.22118 + 10.5915i −0.261496 + 0.445194i
\(567\) 2.00273 + 1.72889i 0.0841067 + 0.0726067i
\(568\) −0.250559 + 11.1555i −0.0105132 + 0.468076i
\(569\) 6.15721 0.258124 0.129062 0.991637i \(-0.458803\pi\)
0.129062 + 0.991637i \(0.458803\pi\)
\(570\) 1.85726 3.71859i 0.0777921 0.155755i
\(571\) 35.8831 1.50166 0.750831 0.660495i \(-0.229653\pi\)
0.750831 + 0.660495i \(0.229653\pi\)
\(572\) −24.0000 + 13.3814i −1.00349 + 0.559504i
\(573\) 1.30024i 0.0543183i
\(574\) 6.62325 + 19.4913i 0.276449 + 0.813550i
\(575\) −32.8250 + 4.48352i −1.36890 + 0.186976i
\(576\) 7.99193 + 0.359187i 0.332997 + 0.0149661i
\(577\) −10.5632 −0.439751 −0.219875 0.975528i \(-0.570565\pi\)
−0.219875 + 0.975528i \(0.570565\pi\)
\(578\) −7.16336 + 12.1956i −0.297957 + 0.507269i
\(579\) 10.2276i 0.425046i
\(580\) 15.7102 + 24.1629i 0.652331 + 1.00331i
\(581\) 14.4878 + 12.5069i 0.601057 + 0.518874i
\(582\) 8.34136 14.2011i 0.345761 0.588655i
\(583\) 23.6359 0.978898
\(584\) −23.5981 0.530025i −0.976496 0.0219326i
\(585\) −13.5901 + 0.923835i −0.561881 + 0.0381959i
\(586\) 0.619095 + 0.363641i 0.0255746 + 0.0150219i
\(587\) −33.0773 −1.36525 −0.682624 0.730770i \(-0.739161\pi\)
−0.682624 + 0.730770i \(0.739161\pi\)
\(588\) 11.1016 8.52966i 0.457821 0.351757i
\(589\) 8.77598i 0.361608i
\(590\) 1.19707 2.39676i 0.0492825 0.0986730i
\(591\) 4.42625 0.182071
\(592\) 4.84281 7.83641i 0.199038 0.322075i
\(593\) −5.05822 −0.207716 −0.103858 0.994592i \(-0.533119\pi\)
−0.103858 + 0.994592i \(0.533119\pi\)
\(594\) 1.61544 2.75027i 0.0662822 0.112845i
\(595\) −9.40039 + 12.5137i −0.385378 + 0.513012i
\(596\) 29.4580 16.4246i 1.20665 0.672777i
\(597\) −9.94177 −0.406890
\(598\) −49.2198 28.9104i −2.01275 1.18224i
\(599\) 32.6303i 1.33324i 0.745398 + 0.666620i \(0.232259\pi\)
−0.745398 + 0.666620i \(0.767741\pi\)
\(600\) 14.0515 1.59876i 0.573649 0.0652691i
\(601\) 9.09684i 0.371068i −0.982638 0.185534i \(-0.940599\pi\)
0.982638 0.185534i \(-0.0594015\pi\)
\(602\) 1.52785 + 4.49624i 0.0622704 + 0.183253i
\(603\) 14.2814i 0.581582i
\(604\) 32.9995 18.3991i 1.34273 0.748650i
\(605\) 0.896765 + 13.1919i 0.0364587 + 0.536326i
\(606\) 12.1395 20.6675i 0.493135 0.839559i
\(607\) 22.9677i 0.932229i −0.884724 0.466115i \(-0.845653\pi\)
0.884724 0.466115i \(-0.154347\pi\)
\(608\) −6.57398 + 3.47422i −0.266610 + 0.140898i
\(609\) 11.1420 12.9068i 0.451497 0.523008i
\(610\) 33.2811 + 16.6224i 1.34751 + 0.673019i
\(611\) 3.65409 0.147829
\(612\) 2.57664 + 4.62129i 0.104155 + 0.186805i
\(613\) 19.0237 0.768361 0.384181 0.923258i \(-0.374484\pi\)
0.384181 + 0.923258i \(0.374484\pi\)
\(614\) 13.0521 22.2211i 0.526740 0.896771i
\(615\) 12.2741 0.834374i 0.494938 0.0336452i
\(616\) −12.5250 11.3131i −0.504645 0.455817i
\(617\) 5.41496i 0.217998i −0.994042 0.108999i \(-0.965235\pi\)
0.994042 0.108999i \(-0.0347645\pi\)
\(618\) −3.39203 1.99239i −0.136448 0.0801459i
\(619\) 34.2500i 1.37663i 0.725414 + 0.688313i \(0.241648\pi\)
−0.725414 + 0.688313i \(0.758352\pi\)
\(620\) 25.0329 16.2759i 1.00534 0.653655i
\(621\) 6.62596 0.265891
\(622\) −9.68871 + 16.4949i −0.388482 + 0.661387i
\(623\) 9.79030 11.3410i 0.392240 0.454366i
\(624\) 20.7281 + 12.8097i 0.829786 + 0.512798i
\(625\) 24.0843 6.70434i 0.963371 0.268174i
\(626\) 11.4644 19.5181i 0.458211 0.780100i
\(627\) 2.96456i 0.118393i
\(628\) −24.5467 + 13.6862i −0.979519 + 0.546139i
\(629\) 6.09271 0.242932
\(630\) −3.22292 7.72093i −0.128404 0.307609i
\(631\) 10.6858i 0.425396i −0.977118 0.212698i \(-0.931775\pi\)
0.977118 0.212698i \(-0.0682251\pi\)
\(632\) 0.0428615 1.90830i 0.00170494 0.0759083i
\(633\) 1.91888 0.0762687
\(634\) −24.9474 + 42.4728i −0.990789 + 1.68681i
\(635\) −0.612290 9.00711i −0.0242980 0.357436i
\(636\) −10.2068 18.3062i −0.404726 0.725890i
\(637\) 42.1851 6.22478i 1.67143 0.246635i
\(638\) −17.7243 10.4108i −0.701713 0.412168i
\(639\) 3.94508i 0.156065i
\(640\) −22.1020 12.3086i −0.873659 0.486539i
\(641\) 14.9830 0.591793 0.295896 0.955220i \(-0.404382\pi\)
0.295896 + 0.955220i \(0.404382\pi\)
\(642\) −12.7902 7.51262i −0.504787 0.296499i
\(643\) −1.83462 −0.0723504 −0.0361752 0.999345i \(-0.511517\pi\)
−0.0361752 + 0.999345i \(0.511517\pi\)
\(644\) 7.08650 34.3377i 0.279247 1.35309i
\(645\) 2.83138 0.192473i 0.111485 0.00757861i
\(646\) −4.24038 2.49069i −0.166835 0.0979948i
\(647\) 0.627991i 0.0246889i −0.999924 0.0123444i \(-0.996071\pi\)
0.999924 0.0123444i \(-0.00392946\pi\)
\(648\) −2.82771 0.0635119i −0.111083 0.00249498i
\(649\) 1.91076i 0.0750040i
\(650\) 39.7523 + 16.5889i 1.55921 + 0.650670i
\(651\) −13.3715 11.5432i −0.524070 0.452414i
\(652\) −30.7097 + 17.1225i −1.20269 + 0.670567i
\(653\) 8.04969 0.315009 0.157504 0.987518i \(-0.449655\pi\)
0.157504 + 0.987518i \(0.449655\pi\)
\(654\) 14.7371 + 8.65617i 0.576265 + 0.338483i
\(655\) 4.26992 0.290263i 0.166840 0.0113415i
\(656\) −18.7208 11.5692i −0.730925 0.451703i
\(657\) 8.34529 0.325581
\(658\) 0.722118 + 2.12509i 0.0281511 + 0.0828445i
\(659\) −36.0309 −1.40357 −0.701783 0.712391i \(-0.747612\pi\)
−0.701783 + 0.712391i \(0.747612\pi\)
\(660\) −8.45620 + 5.49806i −0.329157 + 0.214012i
\(661\) −6.25833 −0.243421 −0.121710 0.992566i \(-0.538838\pi\)
−0.121710 + 0.992566i \(0.538838\pi\)
\(662\) 6.19823 10.5524i 0.240901 0.410132i
\(663\) 16.1158i 0.625886i
\(664\) −20.4558 0.459448i −0.793839 0.0178300i
\(665\) 6.21742 + 4.67057i 0.241101 + 0.181117i
\(666\) −1.64955 + 2.80834i −0.0639186 + 0.108821i
\(667\) 42.7016i 1.65341i
\(668\) 15.0513 8.39198i 0.582352 0.324695i
\(669\) 4.14126i 0.160110i
\(670\) 20.1792 40.4026i 0.779592 1.56089i
\(671\) −26.5326 −1.02428
\(672\) −3.35339 + 14.5861i −0.129360 + 0.562672i
\(673\) 22.7479i 0.876866i −0.898764 0.438433i \(-0.855534\pi\)
0.898764 0.438433i \(-0.144466\pi\)
\(674\) 16.8643 + 9.90566i 0.649589 + 0.381552i
\(675\) −4.95400 + 0.676659i −0.190680 + 0.0260446i
\(676\) 23.4809 + 42.1139i 0.903113 + 1.61976i
\(677\) 41.9971i 1.61408i −0.590497 0.807040i \(-0.701068\pi\)
0.590497 0.807040i \(-0.298932\pi\)
\(678\) −7.07509 4.15572i −0.271717 0.159600i
\(679\) 23.3234 + 20.1344i 0.895070 + 0.772686i
\(680\) −0.759656 16.7146i −0.0291315 0.640975i
\(681\) 15.8502 0.607382
\(682\) −10.7857 + 18.3625i −0.413005 + 0.703137i
\(683\) 7.05862i 0.270091i −0.990839 0.135045i \(-0.956882\pi\)
0.990839 0.135045i \(-0.0431180\pi\)
\(684\) 2.29609 1.28020i 0.0877930 0.0489497i
\(685\) 48.9678 3.32876i 1.87096 0.127185i
\(686\) 11.9567 + 23.3032i 0.456508 + 0.889719i
\(687\) 23.7976 0.907935
\(688\) −4.31851 2.66879i −0.164642 0.101747i
\(689\) 63.8392i 2.43208i
\(690\) −18.7451 9.36232i −0.713615 0.356418i
\(691\) 12.3825i 0.471054i 0.971868 + 0.235527i \(0.0756816\pi\)
−0.971868 + 0.235527i \(0.924318\pi\)
\(692\) 25.9945 14.4935i 0.988164 0.550959i
\(693\) 4.51694 + 3.89934i 0.171584 + 0.148124i
\(694\) −37.0266 21.7485i −1.40551 0.825560i
\(695\) 1.76716 0.120129i 0.0670323 0.00455676i
\(696\) −0.409308 + 18.2234i −0.0155148 + 0.690758i
\(697\) 14.5552i 0.551318i
\(698\) −2.76303 + 4.70404i −0.104582 + 0.178050i
\(699\) 3.56877i 0.134983i
\(700\) −1.79169 + 26.3968i −0.0677195 + 0.997704i
\(701\) 2.78452i 0.105170i 0.998616 + 0.0525850i \(0.0167461\pi\)
−0.998616 + 0.0525850i \(0.983254\pi\)
\(702\) −7.42832 4.36321i −0.280364 0.164679i
\(703\) 3.02716i 0.114171i
\(704\) 18.0250 + 0.810108i 0.679341 + 0.0305321i
\(705\) 1.33821 0.0909698i 0.0504000 0.00342612i
\(706\) −20.6164 + 35.0993i −0.775909 + 1.32098i
\(707\) 33.9435 + 29.3024i 1.27658 + 1.10203i
\(708\) 1.47991 0.825134i 0.0556183 0.0310104i
\(709\) 16.1923i 0.608115i −0.952654 0.304058i \(-0.901658\pi\)
0.952654 0.304058i \(-0.0983416\pi\)
\(710\) −5.57430 + 11.1608i −0.209200 + 0.418857i
\(711\) 0.674858i 0.0253091i
\(712\) −0.359652 + 16.0126i −0.0134785 + 0.600099i
\(713\) −44.2391 −1.65677
\(714\) −9.37236 + 3.18479i −0.350752 + 0.119188i
\(715\) −30.6510 + 2.08361i −1.14628 + 0.0779226i
\(716\) −15.1092 27.0989i −0.564658 1.01273i
\(717\) 25.3361i 0.946194i
\(718\) 13.9692 + 8.20513i 0.521324 + 0.306213i
\(719\) 38.4252 1.43302 0.716509 0.697577i \(-0.245739\pi\)
0.716509 + 0.697577i \(0.245739\pi\)
\(720\) 7.90999 + 4.17517i 0.294788 + 0.155599i
\(721\) 4.80924 5.57096i 0.179105 0.207473i
\(722\) 12.3713 21.0621i 0.460414 0.783850i
\(723\) 16.0641i 0.597430i
\(724\) 10.8850 + 19.5226i 0.404537 + 0.725551i
\(725\) 4.36079 + 31.9265i 0.161956 + 1.18572i
\(726\) −4.23536 + 7.21066i −0.157189 + 0.267613i
\(727\) 36.2701i 1.34518i 0.740013 + 0.672592i \(0.234819\pi\)
−0.740013 + 0.672592i \(0.765181\pi\)
\(728\) −30.5561 + 33.8293i −1.13248 + 1.25380i
\(729\) 1.00000 0.0370370
\(730\) −23.6092 11.7917i −0.873816 0.436430i
\(731\) 3.35759i 0.124185i
\(732\) 11.4577 + 20.5498i 0.423489 + 0.759543i
\(733\) 0.292182i 0.0107920i −0.999985 0.00539599i \(-0.998282\pi\)
0.999985 0.00539599i \(-0.00171761\pi\)
\(734\) 40.1107 + 23.5600i 1.48051 + 0.869616i
\(735\) 15.2942 3.32987i 0.564134 0.122824i
\(736\) 17.5133 + 33.1390i 0.645548 + 1.22152i
\(737\) 32.2101i 1.18647i
\(738\) 6.70899 + 3.94069i 0.246961 + 0.145059i
\(739\) −17.1153 −0.629598 −0.314799 0.949158i \(-0.601937\pi\)
−0.314799 + 0.949158i \(0.601937\pi\)
\(740\) 8.63476 5.61415i 0.317420 0.206380i
\(741\) 8.00712 0.294149
\(742\) 37.1266 12.6158i 1.36296 0.463142i
\(743\) −20.6194 −0.756453 −0.378227 0.925713i \(-0.623466\pi\)
−0.378227 + 0.925713i \(0.623466\pi\)
\(744\) 18.8796 + 0.424046i 0.692160 + 0.0155463i
\(745\) 37.6217 2.55747i 1.37835 0.0936983i
\(746\) −22.0783 + 37.5881i −0.808343 + 1.37620i
\(747\) 7.23405 0.264680
\(748\) 5.81134 + 10.4228i 0.212484 + 0.381097i
\(749\) 18.1339 21.0061i 0.662600 0.767547i
\(750\) 14.9712 + 5.08559i 0.546671 + 0.185699i
\(751\) 36.0405i 1.31514i 0.753395 + 0.657568i \(0.228415\pi\)
−0.753395 + 0.657568i \(0.771585\pi\)
\(752\) −2.04109 1.26137i −0.0744308 0.0459973i
\(753\) 15.5779i 0.567690i
\(754\) −28.1191 + 47.8725i −1.02404 + 1.74341i
\(755\) 42.1445 2.86492i 1.53379 0.104265i
\(756\) 1.06951 5.18229i 0.0388976 0.188478i
\(757\) −9.02856 −0.328149 −0.164074 0.986448i \(-0.552464\pi\)
−0.164074 + 0.986448i \(0.552464\pi\)
\(758\) −27.1920 + 46.2941i −0.987657 + 1.68148i
\(759\) 14.9441 0.542438
\(760\) −8.30463 + 0.377434i −0.301240 + 0.0136910i
\(761\) 49.6369i 1.79934i −0.436575 0.899668i \(-0.643809\pi\)
0.436575 0.899668i \(-0.356191\pi\)
\(762\) 2.89180 4.92327i 0.104759 0.178351i
\(763\) −20.8943 + 24.2036i −0.756423 + 0.876230i
\(764\) 2.27129 1.26638i 0.0821726 0.0458160i
\(765\) 0.401208 + 5.90198i 0.0145057 + 0.213386i
\(766\) −7.84742 4.60937i −0.283539 0.166543i
\(767\) 5.16087 0.186348
\(768\) −7.15637 14.3104i −0.258233 0.516381i
\(769\) 25.0729i 0.904151i 0.891980 + 0.452075i \(0.149316\pi\)
−0.891980 + 0.452075i \(0.850684\pi\)
\(770\) −7.26896 17.4137i −0.261955 0.627547i
\(771\) −18.8071 −0.677322
\(772\) −17.8659 + 9.96129i −0.643008 + 0.358515i
\(773\) 38.7317i 1.39308i −0.717516 0.696542i \(-0.754721\pi\)
0.717516 0.696542i \(-0.245279\pi\)
\(774\) 1.54763 + 0.909036i 0.0556283 + 0.0326746i
\(775\) 33.0761 4.51781i 1.18813 0.162284i
\(776\) −32.9310 0.739648i −1.18215 0.0265518i
\(777\) −4.61232 3.98167i −0.165466 0.142842i
\(778\) −24.3124 14.2805i −0.871641 0.511980i
\(779\) −7.23174 −0.259104
\(780\) 14.8500 + 22.8398i 0.531714 + 0.817794i
\(781\) 8.89770i 0.318385i
\(782\) −12.5554 + 21.3754i −0.448980 + 0.764384i
\(783\) 6.44459i 0.230311i
\(784\) −25.7123 11.0850i −0.918297 0.395892i
\(785\) −31.3492 + 2.13108i −1.11890 + 0.0760614i
\(786\) 2.33393 + 1.37089i 0.0832486 + 0.0488981i
\(787\) 53.0239 1.89010 0.945049 0.326928i \(-0.106013\pi\)
0.945049 + 0.326928i \(0.106013\pi\)
\(788\) −4.31098 7.73189i −0.153572 0.275437i
\(789\) −20.2464 −0.720790
\(790\) 0.953558 1.90920i 0.0339261 0.0679264i
\(791\) 10.0311 11.6199i 0.356664 0.413155i
\(792\) −6.37761 0.143244i −0.226618 0.00508997i
\(793\) 71.6632i 2.54483i
\(794\) −32.1626 18.8915i −1.14141 0.670433i
\(795\) −1.58930 23.3794i −0.0563666 0.829182i
\(796\) 9.68287 + 17.3666i 0.343200 + 0.615541i
\(797\) 13.5559i 0.480175i −0.970751 0.240088i \(-0.922824\pi\)
0.970751 0.240088i \(-0.0771761\pi\)
\(798\) 1.58236 + 4.65665i 0.0560149 + 0.164844i
\(799\) 1.58692i 0.0561412i
\(800\) −16.4783 22.9884i −0.582596 0.812762i
\(801\) 5.66275i 0.200083i
\(802\) 7.04685 11.9972i 0.248833 0.423636i
\(803\) 18.8219 0.664211
\(804\) 24.9471 13.9095i 0.879816 0.490549i
\(805\) 23.5440 31.3416i 0.829818 1.10465i
\(806\) 49.5962 + 29.1315i 1.74695 + 1.02611i
\(807\) 9.68128 0.340797
\(808\) −47.9259 1.07644i −1.68603 0.0378691i
\(809\) 23.6664 0.832066 0.416033 0.909350i \(-0.363420\pi\)
0.416033 + 0.909350i \(0.363420\pi\)
\(810\) −2.82905 1.41298i −0.0994025 0.0496469i
\(811\) 0.303856i 0.0106698i −0.999986 0.00533491i \(-0.998302\pi\)
0.999986 0.00533491i \(-0.00169816\pi\)
\(812\) −33.3977 6.89253i −1.17203 0.241880i
\(813\) 2.16142 0.0758043
\(814\) −3.72038 + 6.33391i −0.130399 + 0.222003i
\(815\) −39.2202 + 2.66613i −1.37382 + 0.0933906i
\(816\) 5.56306 9.00189i 0.194746 0.315129i
\(817\) −1.66821 −0.0583634
\(818\) −27.5995 16.2112i −0.964993 0.566813i
\(819\) 10.5319 12.2000i 0.368014 0.426303i
\(820\) −13.4119 20.6280i −0.468365 0.720362i
\(821\) 17.5436i 0.612275i −0.951987 0.306138i \(-0.900963\pi\)
0.951987 0.306138i \(-0.0990368\pi\)
\(822\) 26.7657 + 15.7215i 0.933561 + 0.548350i
\(823\) 23.7171 0.826726 0.413363 0.910566i \(-0.364354\pi\)
0.413363 + 0.910566i \(0.364354\pi\)
\(824\) −0.176670 + 7.86581i −0.00615460 + 0.274018i
\(825\) −11.1732 + 1.52613i −0.389002 + 0.0531331i
\(826\) 1.01988 + 3.00137i 0.0354863 + 0.104431i
\(827\) 23.2251i 0.807614i −0.914844 0.403807i \(-0.867687\pi\)
0.914844 0.403807i \(-0.132313\pi\)
\(828\) −6.45341 11.5744i −0.224271 0.402238i
\(829\) −10.5085 −0.364975 −0.182488 0.983208i \(-0.558415\pi\)
−0.182488 + 0.983208i \(0.558415\pi\)
\(830\) −20.4654 10.2215i −0.710366 0.354795i
\(831\) −29.7723 −1.03279
\(832\) 2.18806 48.6844i 0.0758573 1.68783i
\(833\) −2.70333 18.3204i −0.0936650 0.634763i
\(834\) 0.965928 + 0.567362i 0.0334474 + 0.0196461i
\(835\) 19.2224 1.30671i 0.665219 0.0452207i
\(836\) 5.17858 2.88736i 0.179105 0.0998614i
\(837\) −6.67664 −0.230778
\(838\) 14.8817 + 8.74113i 0.514080 + 0.301957i
\(839\) 30.2907 1.04575 0.522875 0.852409i \(-0.324860\pi\)
0.522875 + 0.852409i \(0.324860\pi\)
\(840\) −10.3481 + 13.1498i −0.357045 + 0.453710i
\(841\) −12.5327 −0.432162
\(842\) −12.0231 7.06208i −0.414344 0.243375i
\(843\) −14.4325 −0.497083
\(844\) −1.86891 3.35195i −0.0643305 0.115379i
\(845\) 3.65621 + 53.7847i 0.125777 + 1.85025i
\(846\) 0.731466 + 0.429644i 0.0251483 + 0.0147715i
\(847\) −11.8425 10.2233i −0.406914 0.351277i
\(848\) −22.0369 + 35.6590i −0.756749 + 1.22454i
\(849\) −8.68571 −0.298093
\(850\) 7.20432 17.2639i 0.247106 0.592145i
\(851\) −15.2597 −0.523096
\(852\) −6.89137 + 3.84234i −0.236094 + 0.131636i
\(853\) 1.54149i 0.0527798i −0.999652 0.0263899i \(-0.991599\pi\)
0.999652 0.0263899i \(-0.00840114\pi\)
\(854\) −41.6767 + 14.1620i −1.42615 + 0.484613i
\(855\) 2.93239 0.199340i 0.100286 0.00681728i
\(856\) −0.666161 + 29.6592i −0.0227689 + 1.01373i
\(857\) 27.6511 0.944544 0.472272 0.881453i \(-0.343434\pi\)
0.472272 + 0.881453i \(0.343434\pi\)
\(858\) −16.7538 9.84075i −0.571965 0.335958i
\(859\) 41.1094i 1.40264i 0.712848 + 0.701318i \(0.247405\pi\)
−0.712848 + 0.701318i \(0.752595\pi\)
\(860\) −3.09386 4.75846i −0.105500 0.162262i
\(861\) −9.51203 + 11.0186i −0.324169 + 0.375513i
\(862\) −5.66907 3.32987i −0.193089 0.113416i
\(863\) 32.7261 1.11401 0.557005 0.830509i \(-0.311951\pi\)
0.557005 + 0.830509i \(0.311951\pi\)
\(864\) 2.64313 + 5.00139i 0.0899211 + 0.170151i
\(865\) 33.1983 2.25677i 1.12878 0.0767326i
\(866\) 24.4810 41.6787i 0.831898 1.41630i
\(867\) −10.0011 −0.339656
\(868\) −7.14070 + 34.6003i −0.242371 + 1.17441i
\(869\) 1.52207i 0.0516327i
\(870\) −9.10605 + 18.2320i −0.308724 + 0.618124i
\(871\) 86.9978 2.94781
\(872\) 0.767562 34.1738i 0.0259929 1.15727i
\(873\) 11.6458 0.394151
\(874\) 10.6204 + 6.23813i 0.359239 + 0.211008i
\(875\) −14.4024 + 25.8374i −0.486889 + 0.873464i
\(876\) −8.12796 14.5778i −0.274618 0.492537i
\(877\) −41.3462 −1.39616 −0.698081 0.716019i \(-0.745962\pi\)
−0.698081 + 0.716019i \(0.745962\pi\)
\(878\) −20.1043 + 34.2274i −0.678488 + 1.15512i
\(879\) 0.507697i 0.0171242i
\(880\) 17.8401 + 9.41665i 0.601391 + 0.317435i
\(881\) 48.5383i 1.63530i 0.575717 + 0.817649i \(0.304723\pi\)
−0.575717 + 0.817649i \(0.695277\pi\)
\(882\) 9.17639 + 3.71402i 0.308985 + 0.125057i
\(883\) 34.7724i 1.17018i 0.810967 + 0.585092i \(0.198941\pi\)
−0.810967 + 0.585092i \(0.801059\pi\)
\(884\) 28.1515 15.6961i 0.946838 0.527918i
\(885\) 1.89003 0.128481i 0.0635326 0.00431886i
\(886\) −34.8033 20.4426i −1.16924 0.686782i
\(887\) 10.4851i 0.352055i −0.984385 0.176027i \(-0.943675\pi\)
0.984385 0.176027i \(-0.0563247\pi\)
\(888\) 6.51227 + 0.146269i 0.218538 + 0.00490847i
\(889\) 8.08581 + 6.98023i 0.271189 + 0.234110i
\(890\) −8.00133 + 16.0202i −0.268205 + 0.536998i
\(891\) 2.25539 0.0755585
\(892\) 7.23407 4.03342i 0.242215 0.135049i
\(893\) −0.788460 −0.0263848
\(894\) 20.5639 + 12.0787i 0.687761 + 0.403973i
\(895\) −2.35265 34.6087i −0.0786405 1.15684i
\(896\) 28.7455 8.34846i 0.960319 0.278903i
\(897\) 40.3633i 1.34769i
\(898\) 0.0254706 0.0433634i 0.000849964 0.00144706i
\(899\) 43.0282i 1.43507i
\(900\) 6.00700 + 7.99475i 0.200233 + 0.266492i
\(901\) −27.7245 −0.923635
\(902\) 15.1314 + 8.88780i 0.503821 + 0.295932i
\(903\) −2.19423 + 2.54177i −0.0730194 + 0.0845847i
\(904\) −0.368497 + 16.4065i −0.0122560 + 0.545671i
\(905\) 1.69490 + 24.9328i 0.0563403 + 0.828795i
\(906\) 23.0361 + 13.5308i 0.765324 + 0.449532i
\(907\) 29.5291i 0.980497i −0.871583 0.490248i \(-0.836906\pi\)
0.871583 0.490248i \(-0.163094\pi\)
\(908\) −15.4374 27.6876i −0.512310 0.918845i
\(909\) 16.9486 0.562151
\(910\) −47.0336 + 19.6331i −1.55915 + 0.650830i
\(911\) 40.5949i 1.34497i 0.740111 + 0.672484i \(0.234773\pi\)
−0.740111 + 0.672484i \(0.765227\pi\)
\(912\) −4.47258 2.76400i −0.148102 0.0915253i
\(913\) 16.3156 0.539968
\(914\) 8.61234 + 5.05867i 0.284871 + 0.167326i
\(915\) 1.78408 + 26.2447i 0.0589798 + 0.867623i
\(916\) −23.1779 41.5703i −0.765818 1.37352i
\(917\) −3.30906 + 3.83317i −0.109275 + 0.126582i
\(918\) −1.89488 + 3.22601i −0.0625403 + 0.106474i
\(919\) 28.8509i 0.951704i −0.879525 0.475852i \(-0.842140\pi\)
0.879525 0.475852i \(-0.157860\pi\)
\(920\) 1.90262 + 41.8630i 0.0627275 + 1.38018i
\(921\) 18.2227 0.600459
\(922\) −20.2300 + 34.4415i −0.666241 + 1.13427i
\(923\) −24.0322 −0.791030
\(924\) 2.41216 11.6881i 0.0793541 0.384511i
\(925\) 11.4091 1.55836i 0.375130 0.0512385i
\(926\) −21.7377 + 37.0083i −0.714346 + 1.21617i
\(927\) 2.78168i 0.0913625i
\(928\) 32.2319 17.0339i 1.05806 0.559165i
\(929\) 9.41194i 0.308796i 0.988009 + 0.154398i \(0.0493438\pi\)
−0.988009 + 0.154398i \(0.950656\pi\)
\(930\) 18.8885 + 9.43393i 0.619379 + 0.309351i
\(931\) −9.10246 + 1.34315i −0.298321 + 0.0440199i
\(932\) −6.23403 + 3.47584i −0.204203 + 0.113855i
\(933\) −13.5269 −0.442851
\(934\) 24.7953 42.2138i 0.811327 1.38128i
\(935\) 0.904882 + 13.3113i 0.0295928 + 0.435325i
\(936\) −0.386895 + 17.2256i −0.0126461 + 0.563036i
\(937\) −33.2172 −1.08516 −0.542580 0.840004i \(-0.682552\pi\)
−0.542580 + 0.840004i \(0.682552\pi\)
\(938\) 17.1924 + 50.5947i 0.561352 + 1.65198i
\(939\) 16.0061 0.522339
\(940\) −1.46227 2.24903i −0.0476941 0.0733552i
\(941\) 21.5599 0.702832 0.351416 0.936219i \(-0.385700\pi\)
0.351416 + 0.936219i \(0.385700\pi\)
\(942\) −17.1354 10.0649i −0.558303 0.327933i
\(943\) 36.4547i 1.18713i
\(944\) −2.88273 1.78150i −0.0938250 0.0579827i
\(945\) 3.55330 4.73012i 0.115589 0.153871i
\(946\) 3.49051 + 2.05023i 0.113486 + 0.0666589i
\(947\) 1.89362i 0.0615345i 0.999527 + 0.0307673i \(0.00979507\pi\)
−0.999527 + 0.0307673i \(0.990205\pi\)
\(948\) 1.17886 0.657283i 0.0382876 0.0213476i
\(949\) 50.8370i 1.65024i
\(950\) −8.57753 3.57946i −0.278292 0.116133i
\(951\) −34.8304 −1.12945
\(952\) 14.6916 + 13.2701i 0.476156 + 0.430085i
\(953\) 25.7345i 0.833624i 0.908993 + 0.416812i \(0.136853\pi\)
−0.908993 + 0.416812i \(0.863147\pi\)
\(954\) 7.50614 12.7791i 0.243020 0.413740i
\(955\) 2.90073 0.197188i 0.0938654 0.00638084i
\(956\) −44.2578 + 24.6763i −1.43140 + 0.798089i
\(957\) 14.5351i 0.469852i
\(958\) 2.93697 5.00016i 0.0948891 0.161548i
\(959\) −37.9485 + 43.9591i −1.22542 + 1.41951i
\(960\) −0.410697 17.8838i −0.0132552 0.577198i
\(961\) 13.5775 0.437983
\(962\) 17.1075 + 10.0485i 0.551570 + 0.323978i
\(963\) 10.4887i 0.337995i
\(964\) 28.0612 15.6458i 0.903790 0.503916i
\(965\) −22.8170 + 1.55107i −0.734506 + 0.0499307i
\(966\) 23.4738 7.97655i 0.755259 0.256641i
\(967\) −28.1142 −0.904091 −0.452046 0.891995i \(-0.649306\pi\)
−0.452046 + 0.891995i \(0.649306\pi\)
\(968\) 16.7208 + 0.375559i 0.537428 + 0.0120709i
\(969\) 3.47738i 0.111709i
\(970\) −32.9465 16.4552i −1.05785 0.528346i
\(971\) 19.6014i 0.629039i 0.949251 + 0.314520i \(0.101843\pi\)
−0.949251 + 0.314520i \(0.898157\pi\)
\(972\) −0.973958 1.74683i −0.0312397 0.0560295i
\(973\) −1.36950 + 1.58641i −0.0439040 + 0.0508579i
\(974\) 28.9017 49.2048i 0.926069 1.57662i
\(975\) 4.12200 + 30.1783i 0.132010 + 0.966478i
\(976\) 24.7376 40.0293i 0.791832 1.28131i
\(977\) 45.0903i 1.44257i 0.692641 + 0.721283i \(0.256447\pi\)
−0.692641 + 0.721283i \(0.743553\pi\)
\(978\) −21.4377 12.5920i −0.685502 0.402647i
\(979\) 12.7717i 0.408186i
\(980\) −20.7126 23.4731i −0.661640 0.749822i
\(981\) 12.0853i 0.385855i
\(982\) −9.55311 + 16.2641i −0.304852 + 0.519008i
\(983\) 44.6188i 1.42312i −0.702625 0.711560i \(-0.747989\pi\)
0.702625 0.711560i \(-0.252011\pi\)
\(984\) 0.349430 15.5575i 0.0111394 0.495955i
\(985\) −0.671261 9.87460i −0.0213882 0.314631i
\(986\) 20.7903 + 12.2117i 0.662099 + 0.388900i
\(987\) −1.03707 + 1.20133i −0.0330104 + 0.0382389i
\(988\) −7.79860 13.9871i −0.248107 0.444988i
\(989\) 8.40935i 0.267402i
\(990\) −6.38061 3.18682i −0.202789 0.101284i
\(991\) 30.3906i 0.965390i 0.875788 + 0.482695i \(0.160342\pi\)
−0.875788 + 0.482695i \(0.839658\pi\)
\(992\) −17.6472 33.3924i −0.560300 1.06021i
\(993\) 8.65367 0.274616
\(994\) −4.74922 13.9763i −0.150636 0.443300i
\(995\) 1.50772 + 22.1793i 0.0477978 + 0.703131i
\(996\) −7.04566 12.6366i −0.223250 0.400407i
\(997\) 5.15017i 0.163107i 0.996669 + 0.0815537i \(0.0259882\pi\)
−0.996669 + 0.0815537i \(0.974012\pi\)
\(998\) −15.3162 + 26.0758i −0.484827 + 0.825414i
\(999\) −2.30302 −0.0728642
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.w.b.139.31 yes 48
4.3 odd 2 3360.2.w.a.559.23 48
5.4 even 2 840.2.w.a.139.18 yes 48
7.6 odd 2 840.2.w.a.139.31 yes 48
8.3 odd 2 inner 840.2.w.b.139.17 yes 48
8.5 even 2 3360.2.w.a.559.26 48
20.19 odd 2 3360.2.w.b.559.24 48
28.27 even 2 3360.2.w.b.559.26 48
35.34 odd 2 inner 840.2.w.b.139.18 yes 48
40.19 odd 2 840.2.w.a.139.32 yes 48
40.29 even 2 3360.2.w.b.559.25 48
56.13 odd 2 3360.2.w.b.559.23 48
56.27 even 2 840.2.w.a.139.17 48
140.139 even 2 3360.2.w.a.559.25 48
280.69 odd 2 3360.2.w.a.559.24 48
280.139 even 2 inner 840.2.w.b.139.32 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.w.a.139.17 48 56.27 even 2
840.2.w.a.139.18 yes 48 5.4 even 2
840.2.w.a.139.31 yes 48 7.6 odd 2
840.2.w.a.139.32 yes 48 40.19 odd 2
840.2.w.b.139.17 yes 48 8.3 odd 2 inner
840.2.w.b.139.18 yes 48 35.34 odd 2 inner
840.2.w.b.139.31 yes 48 1.1 even 1 trivial
840.2.w.b.139.32 yes 48 280.139 even 2 inner
3360.2.w.a.559.23 48 4.3 odd 2
3360.2.w.a.559.24 48 280.69 odd 2
3360.2.w.a.559.25 48 140.139 even 2
3360.2.w.a.559.26 48 8.5 even 2
3360.2.w.b.559.23 48 56.13 odd 2
3360.2.w.b.559.24 48 20.19 odd 2
3360.2.w.b.559.25 48 40.29 even 2
3360.2.w.b.559.26 48 28.27 even 2