Properties

Label 840.2.g.d.421.1
Level $840$
Weight $2$
Character 840.421
Analytic conductor $6.707$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(421,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.421"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 2 x^{13} + x^{12} - 8 x^{10} + 24 x^{9} - 32 x^{8} + 48 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 421.1
Root \(-0.0395670 + 1.41366i\) of defining polynomial
Character \(\chi\) \(=\) 840.421
Dual form 840.2.g.d.421.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41366 - 0.0395670i) q^{2} +1.00000i q^{3} +(1.99687 + 0.111869i) q^{4} -1.00000i q^{5} +(0.0395670 - 1.41366i) q^{6} -1.00000 q^{7} +(-2.81847 - 0.237154i) q^{8} -1.00000 q^{9} +(-0.0395670 + 1.41366i) q^{10} -2.80961i q^{11} +(-0.111869 + 1.99687i) q^{12} +3.47943i q^{13} +(1.41366 + 0.0395670i) q^{14} +1.00000 q^{15} +(3.97497 + 0.446774i) q^{16} +0.863547 q^{17} +(1.41366 + 0.0395670i) q^{18} -0.553442i q^{19} +(0.111869 - 1.99687i) q^{20} -1.00000i q^{21} +(-0.111168 + 3.97184i) q^{22} +7.12393 q^{23} +(0.237154 - 2.81847i) q^{24} -1.00000 q^{25} +(0.137670 - 4.91872i) q^{26} -1.00000i q^{27} +(-1.99687 - 0.111869i) q^{28} -7.52924i q^{29} +(-1.41366 - 0.0395670i) q^{30} +9.48607 q^{31} +(-5.60158 - 0.788864i) q^{32} +2.80961 q^{33} +(-1.22076 - 0.0341680i) q^{34} +1.00000i q^{35} +(-1.99687 - 0.111869i) q^{36} -1.31102i q^{37} +(-0.0218981 + 0.782379i) q^{38} -3.47943 q^{39} +(-0.237154 + 2.81847i) q^{40} -2.72185 q^{41} +(-0.0395670 + 1.41366i) q^{42} +7.80458i q^{43} +(0.314308 - 5.61043i) q^{44} +1.00000i q^{45} +(-10.0708 - 0.281873i) q^{46} +8.67645 q^{47} +(-0.446774 + 3.97497i) q^{48} +1.00000 q^{49} +(1.41366 + 0.0395670i) q^{50} +0.863547i q^{51} +(-0.389238 + 6.94796i) q^{52} -8.75346i q^{53} +(-0.0395670 + 1.41366i) q^{54} -2.80961 q^{55} +(2.81847 + 0.237154i) q^{56} +0.553442 q^{57} +(-0.297909 + 10.6438i) q^{58} +3.04890i q^{59} +(1.99687 + 0.111869i) q^{60} -7.97671i q^{61} +(-13.4101 - 0.375335i) q^{62} +1.00000 q^{63} +(7.88752 + 1.33682i) q^{64} +3.47943 q^{65} +(-3.97184 - 0.111168i) q^{66} -1.95461i q^{67} +(1.72439 + 0.0966037i) q^{68} +7.12393i q^{69} +(0.0395670 - 1.41366i) q^{70} +5.56767 q^{71} +(2.81847 + 0.237154i) q^{72} +3.39782 q^{73} +(-0.0518732 + 1.85334i) q^{74} -1.00000i q^{75} +(0.0619128 - 1.10515i) q^{76} +2.80961i q^{77} +(4.91872 + 0.137670i) q^{78} +12.8403 q^{79} +(0.446774 - 3.97497i) q^{80} +1.00000 q^{81} +(3.84777 + 0.107695i) q^{82} +15.0988i q^{83} +(0.111869 - 1.99687i) q^{84} -0.863547i q^{85} +(0.308804 - 11.0330i) q^{86} +7.52924 q^{87} +(-0.666312 + 7.91881i) q^{88} +6.06670 q^{89} +(0.0395670 - 1.41366i) q^{90} -3.47943i q^{91} +(14.2256 + 0.796944i) q^{92} +9.48607i q^{93} +(-12.2656 - 0.343301i) q^{94} -0.553442 q^{95} +(0.788864 - 5.60158i) q^{96} -0.563842 q^{97} +(-1.41366 - 0.0395670i) q^{98} +2.80961i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 2 q^{6} - 16 q^{7} - 2 q^{8} - 16 q^{9} + 2 q^{10} + 2 q^{14} + 16 q^{15} + 4 q^{16} + 2 q^{18} + 2 q^{24} - 16 q^{25} - 2 q^{30} - 2 q^{32} + 24 q^{34} - 28 q^{38} - 2 q^{40} + 2 q^{42}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41366 0.0395670i −0.999609 0.0279781i
\(3\) 1.00000i 0.577350i
\(4\) 1.99687 + 0.111869i 0.998434 + 0.0559343i
\(5\) 1.00000i 0.447214i
\(6\) 0.0395670 1.41366i 0.0161532 0.577124i
\(7\) −1.00000 −0.377964
\(8\) −2.81847 0.237154i −0.996479 0.0838467i
\(9\) −1.00000 −0.333333
\(10\) −0.0395670 + 1.41366i −0.0125122 + 0.447039i
\(11\) 2.80961i 0.847131i −0.905866 0.423565i \(-0.860778\pi\)
0.905866 0.423565i \(-0.139222\pi\)
\(12\) −0.111869 + 1.99687i −0.0322937 + 0.576446i
\(13\) 3.47943i 0.965019i 0.875891 + 0.482509i \(0.160275\pi\)
−0.875891 + 0.482509i \(0.839725\pi\)
\(14\) 1.41366 + 0.0395670i 0.377817 + 0.0105747i
\(15\) 1.00000 0.258199
\(16\) 3.97497 + 0.446774i 0.993743 + 0.111693i
\(17\) 0.863547 0.209441 0.104720 0.994502i \(-0.466605\pi\)
0.104720 + 0.994502i \(0.466605\pi\)
\(18\) 1.41366 + 0.0395670i 0.333203 + 0.00932603i
\(19\) 0.553442i 0.126968i −0.997983 0.0634842i \(-0.979779\pi\)
0.997983 0.0634842i \(-0.0202212\pi\)
\(20\) 0.111869 1.99687i 0.0250146 0.446513i
\(21\) 1.00000i 0.218218i
\(22\) −0.111168 + 3.97184i −0.0237011 + 0.846799i
\(23\) 7.12393 1.48544 0.742721 0.669601i \(-0.233535\pi\)
0.742721 + 0.669601i \(0.233535\pi\)
\(24\) 0.237154 2.81847i 0.0484089 0.575317i
\(25\) −1.00000 −0.200000
\(26\) 0.137670 4.91872i 0.0269994 0.964641i
\(27\) 1.00000i 0.192450i
\(28\) −1.99687 0.111869i −0.377373 0.0211412i
\(29\) 7.52924i 1.39814i −0.715051 0.699072i \(-0.753597\pi\)
0.715051 0.699072i \(-0.246403\pi\)
\(30\) −1.41366 0.0395670i −0.258098 0.00722391i
\(31\) 9.48607 1.70375 0.851874 0.523747i \(-0.175466\pi\)
0.851874 + 0.523747i \(0.175466\pi\)
\(32\) −5.60158 0.788864i −0.990229 0.139453i
\(33\) 2.80961 0.489091
\(34\) −1.22076 0.0341680i −0.209359 0.00585976i
\(35\) 1.00000i 0.169031i
\(36\) −1.99687 0.111869i −0.332811 0.0186448i
\(37\) 1.31102i 0.215531i −0.994176 0.107765i \(-0.965631\pi\)
0.994176 0.107765i \(-0.0343695\pi\)
\(38\) −0.0218981 + 0.782379i −0.00355233 + 0.126919i
\(39\) −3.47943 −0.557154
\(40\) −0.237154 + 2.81847i −0.0374974 + 0.445639i
\(41\) −2.72185 −0.425081 −0.212540 0.977152i \(-0.568174\pi\)
−0.212540 + 0.977152i \(0.568174\pi\)
\(42\) −0.0395670 + 1.41366i −0.00610532 + 0.218132i
\(43\) 7.80458i 1.19019i 0.803656 + 0.595094i \(0.202885\pi\)
−0.803656 + 0.595094i \(0.797115\pi\)
\(44\) 0.314308 5.61043i 0.0473837 0.845804i
\(45\) 1.00000i 0.149071i
\(46\) −10.0708 0.281873i −1.48486 0.0415598i
\(47\) 8.67645 1.26559 0.632795 0.774319i \(-0.281907\pi\)
0.632795 + 0.774319i \(0.281907\pi\)
\(48\) −0.446774 + 3.97497i −0.0644862 + 0.573738i
\(49\) 1.00000 0.142857
\(50\) 1.41366 + 0.0395670i 0.199922 + 0.00559562i
\(51\) 0.863547i 0.120921i
\(52\) −0.389238 + 6.94796i −0.0539776 + 0.963508i
\(53\) 8.75346i 1.20238i −0.799106 0.601190i \(-0.794693\pi\)
0.799106 0.601190i \(-0.205307\pi\)
\(54\) −0.0395670 + 1.41366i −0.00538439 + 0.192375i
\(55\) −2.80961 −0.378848
\(56\) 2.81847 + 0.237154i 0.376634 + 0.0316911i
\(57\) 0.553442 0.0733052
\(58\) −0.297909 + 10.6438i −0.0391174 + 1.39760i
\(59\) 3.04890i 0.396933i 0.980108 + 0.198466i \(0.0635960\pi\)
−0.980108 + 0.198466i \(0.936404\pi\)
\(60\) 1.99687 + 0.111869i 0.257795 + 0.0144422i
\(61\) 7.97671i 1.02131i −0.859785 0.510657i \(-0.829402\pi\)
0.859785 0.510657i \(-0.170598\pi\)
\(62\) −13.4101 0.375335i −1.70308 0.0476676i
\(63\) 1.00000 0.125988
\(64\) 7.88752 + 1.33682i 0.985939 + 0.167103i
\(65\) 3.47943 0.431570
\(66\) −3.97184 0.111168i −0.488900 0.0136838i
\(67\) 1.95461i 0.238793i −0.992847 0.119397i \(-0.961904\pi\)
0.992847 0.119397i \(-0.0380960\pi\)
\(68\) 1.72439 + 0.0966037i 0.209113 + 0.0117149i
\(69\) 7.12393i 0.857620i
\(70\) 0.0395670 1.41366i 0.00472916 0.168965i
\(71\) 5.56767 0.660761 0.330381 0.943848i \(-0.392823\pi\)
0.330381 + 0.943848i \(0.392823\pi\)
\(72\) 2.81847 + 0.237154i 0.332160 + 0.0279489i
\(73\) 3.39782 0.397685 0.198842 0.980031i \(-0.436282\pi\)
0.198842 + 0.980031i \(0.436282\pi\)
\(74\) −0.0518732 + 1.85334i −0.00603013 + 0.215446i
\(75\) 1.00000i 0.115470i
\(76\) 0.0619128 1.10515i 0.00710189 0.126770i
\(77\) 2.80961i 0.320185i
\(78\) 4.91872 + 0.137670i 0.556936 + 0.0155881i
\(79\) 12.8403 1.44464 0.722321 0.691558i \(-0.243075\pi\)
0.722321 + 0.691558i \(0.243075\pi\)
\(80\) 0.446774 3.97497i 0.0499508 0.444415i
\(81\) 1.00000 0.111111
\(82\) 3.84777 + 0.107695i 0.424915 + 0.0118930i
\(83\) 15.0988i 1.65731i 0.559760 + 0.828655i \(0.310893\pi\)
−0.559760 + 0.828655i \(0.689107\pi\)
\(84\) 0.111869 1.99687i 0.0122059 0.217876i
\(85\) 0.863547i 0.0936648i
\(86\) 0.308804 11.0330i 0.0332992 1.18972i
\(87\) 7.52924 0.807219
\(88\) −0.666312 + 7.91881i −0.0710291 + 0.844148i
\(89\) 6.06670 0.643069 0.321535 0.946898i \(-0.395801\pi\)
0.321535 + 0.946898i \(0.395801\pi\)
\(90\) 0.0395670 1.41366i 0.00417073 0.149013i
\(91\) 3.47943i 0.364743i
\(92\) 14.2256 + 0.796944i 1.48312 + 0.0830871i
\(93\) 9.48607i 0.983660i
\(94\) −12.2656 0.343301i −1.26510 0.0354088i
\(95\) −0.553442 −0.0567820
\(96\) 0.788864 5.60158i 0.0805131 0.571709i
\(97\) −0.563842 −0.0572495 −0.0286247 0.999590i \(-0.509113\pi\)
−0.0286247 + 0.999590i \(0.509113\pi\)
\(98\) −1.41366 0.0395670i −0.142801 0.00399687i
\(99\) 2.80961i 0.282377i
\(100\) −1.99687 0.111869i −0.199687 0.0111869i
\(101\) 14.0321i 1.39625i −0.715978 0.698123i \(-0.754019\pi\)
0.715978 0.698123i \(-0.245981\pi\)
\(102\) 0.0341680 1.22076i 0.00338313 0.120873i
\(103\) 14.2681 1.40588 0.702940 0.711249i \(-0.251870\pi\)
0.702940 + 0.711249i \(0.251870\pi\)
\(104\) 0.825160 9.80665i 0.0809136 0.961621i
\(105\) −1.00000 −0.0975900
\(106\) −0.346348 + 12.3744i −0.0336403 + 1.20191i
\(107\) 11.9082i 1.15121i −0.817728 0.575605i \(-0.804767\pi\)
0.817728 0.575605i \(-0.195233\pi\)
\(108\) 0.111869 1.99687i 0.0107646 0.192149i
\(109\) 15.7813i 1.51157i 0.654818 + 0.755787i \(0.272745\pi\)
−0.654818 + 0.755787i \(0.727255\pi\)
\(110\) 3.97184 + 0.111168i 0.378700 + 0.0105995i
\(111\) 1.31102 0.124437
\(112\) −3.97497 0.446774i −0.375599 0.0422162i
\(113\) −5.91888 −0.556801 −0.278401 0.960465i \(-0.589804\pi\)
−0.278401 + 0.960465i \(0.589804\pi\)
\(114\) −0.782379 0.0218981i −0.0732765 0.00205094i
\(115\) 7.12393i 0.664310i
\(116\) 0.842285 15.0349i 0.0782042 1.39596i
\(117\) 3.47943i 0.321673i
\(118\) 0.120636 4.31010i 0.0111054 0.396777i
\(119\) −0.863547 −0.0791612
\(120\) −2.81847 0.237154i −0.257290 0.0216491i
\(121\) 3.10607 0.282370
\(122\) −0.315615 + 11.2764i −0.0285744 + 1.02091i
\(123\) 2.72185i 0.245421i
\(124\) 18.9424 + 1.06119i 1.70108 + 0.0952979i
\(125\) 1.00000i 0.0894427i
\(126\) −1.41366 0.0395670i −0.125939 0.00352491i
\(127\) −1.00101 −0.0888256 −0.0444128 0.999013i \(-0.514142\pi\)
−0.0444128 + 0.999013i \(0.514142\pi\)
\(128\) −11.0974 2.20190i −0.980878 0.194622i
\(129\) −7.80458 −0.687155
\(130\) −4.91872 0.137670i −0.431401 0.0120745i
\(131\) 4.36825i 0.381655i 0.981624 + 0.190828i \(0.0611172\pi\)
−0.981624 + 0.190828i \(0.938883\pi\)
\(132\) 5.61043 + 0.314308i 0.488325 + 0.0273570i
\(133\) 0.553442i 0.0479895i
\(134\) −0.0773380 + 2.76315i −0.00668098 + 0.238700i
\(135\) −1.00000 −0.0860663
\(136\) −2.43388 0.204794i −0.208703 0.0175609i
\(137\) −12.1165 −1.03518 −0.517592 0.855628i \(-0.673171\pi\)
−0.517592 + 0.855628i \(0.673171\pi\)
\(138\) 0.281873 10.0708i 0.0239946 0.857285i
\(139\) 9.43649i 0.800392i −0.916429 0.400196i \(-0.868942\pi\)
0.916429 0.400196i \(-0.131058\pi\)
\(140\) −0.111869 + 1.99687i −0.00945462 + 0.168766i
\(141\) 8.67645i 0.730689i
\(142\) −7.87080 0.220296i −0.660503 0.0184868i
\(143\) 9.77584 0.817497
\(144\) −3.97497 0.446774i −0.331248 0.0372311i
\(145\) −7.52924 −0.625269
\(146\) −4.80336 0.134442i −0.397529 0.0111265i
\(147\) 1.00000i 0.0824786i
\(148\) 0.146662 2.61794i 0.0120555 0.215193i
\(149\) 16.8619i 1.38138i 0.723152 + 0.690689i \(0.242693\pi\)
−0.723152 + 0.690689i \(0.757307\pi\)
\(150\) −0.0395670 + 1.41366i −0.00323063 + 0.115425i
\(151\) −11.8374 −0.963318 −0.481659 0.876359i \(-0.659966\pi\)
−0.481659 + 0.876359i \(0.659966\pi\)
\(152\) −0.131251 + 1.55986i −0.0106459 + 0.126521i
\(153\) −0.863547 −0.0698136
\(154\) 0.111168 3.97184i 0.00895817 0.320060i
\(155\) 9.48607i 0.761939i
\(156\) −6.94796 0.389238i −0.556282 0.0311640i
\(157\) 0.482238i 0.0384868i −0.999815 0.0192434i \(-0.993874\pi\)
0.999815 0.0192434i \(-0.00612574\pi\)
\(158\) −18.1518 0.508051i −1.44408 0.0404183i
\(159\) 8.75346 0.694195
\(160\) −0.788864 + 5.60158i −0.0623652 + 0.442844i
\(161\) −7.12393 −0.561444
\(162\) −1.41366 0.0395670i −0.111068 0.00310868i
\(163\) 4.33358i 0.339432i −0.985493 0.169716i \(-0.945715\pi\)
0.985493 0.169716i \(-0.0542851\pi\)
\(164\) −5.43517 0.304489i −0.424416 0.0237766i
\(165\) 2.80961i 0.218728i
\(166\) 0.597415 21.3446i 0.0463684 1.65666i
\(167\) −7.80031 −0.603606 −0.301803 0.953370i \(-0.597589\pi\)
−0.301803 + 0.953370i \(0.597589\pi\)
\(168\) −0.237154 + 2.81847i −0.0182968 + 0.217449i
\(169\) 0.893602 0.0687386
\(170\) −0.0341680 + 1.22076i −0.00262056 + 0.0936281i
\(171\) 0.553442i 0.0423228i
\(172\) −0.873087 + 15.5847i −0.0665723 + 1.18832i
\(173\) 9.27539i 0.705195i 0.935775 + 0.352597i \(0.114701\pi\)
−0.935775 + 0.352597i \(0.885299\pi\)
\(174\) −10.6438 0.297909i −0.806903 0.0225845i
\(175\) 1.00000 0.0755929
\(176\) 1.25526 11.1681i 0.0946189 0.841830i
\(177\) −3.04890 −0.229169
\(178\) −8.57626 0.240041i −0.642818 0.0179919i
\(179\) 6.53854i 0.488714i 0.969685 + 0.244357i \(0.0785768\pi\)
−0.969685 + 0.244357i \(0.921423\pi\)
\(180\) −0.111869 + 1.99687i −0.00833819 + 0.148838i
\(181\) 19.6396i 1.45980i −0.683555 0.729899i \(-0.739567\pi\)
0.683555 0.729899i \(-0.260433\pi\)
\(182\) −0.137670 + 4.91872i −0.0102048 + 0.364600i
\(183\) 7.97671 0.589656
\(184\) −20.0786 1.68947i −1.48021 0.124549i
\(185\) −1.31102 −0.0963882
\(186\) 0.375335 13.4101i 0.0275209 0.983274i
\(187\) 2.42623i 0.177424i
\(188\) 17.3257 + 0.970623i 1.26361 + 0.0707899i
\(189\) 1.00000i 0.0727393i
\(190\) 0.782379 + 0.0218981i 0.0567598 + 0.00158865i
\(191\) −14.0209 −1.01452 −0.507258 0.861794i \(-0.669341\pi\)
−0.507258 + 0.861794i \(0.669341\pi\)
\(192\) −1.33682 + 7.88752i −0.0964769 + 0.569232i
\(193\) −20.5477 −1.47906 −0.739529 0.673124i \(-0.764952\pi\)
−0.739529 + 0.673124i \(0.764952\pi\)
\(194\) 0.797081 + 0.0223095i 0.0572271 + 0.00160173i
\(195\) 3.47943i 0.249167i
\(196\) 1.99687 + 0.111869i 0.142633 + 0.00799061i
\(197\) 7.83824i 0.558451i −0.960225 0.279226i \(-0.909922\pi\)
0.960225 0.279226i \(-0.0900778\pi\)
\(198\) 0.111168 3.97184i 0.00790037 0.282266i
\(199\) −18.7178 −1.32687 −0.663436 0.748233i \(-0.730902\pi\)
−0.663436 + 0.748233i \(0.730902\pi\)
\(200\) 2.81847 + 0.237154i 0.199296 + 0.0167693i
\(201\) 1.95461 0.137867
\(202\) −0.555208 + 19.8366i −0.0390643 + 1.39570i
\(203\) 7.52924i 0.528449i
\(204\) −0.0966037 + 1.72439i −0.00676361 + 0.120731i
\(205\) 2.72185i 0.190102i
\(206\) −20.1703 0.564547i −1.40533 0.0393339i
\(207\) −7.12393 −0.495147
\(208\) −1.55452 + 13.8306i −0.107786 + 0.958980i
\(209\) −1.55496 −0.107559
\(210\) 1.41366 + 0.0395670i 0.0975518 + 0.00273038i
\(211\) 19.6301i 1.35139i −0.737181 0.675695i \(-0.763843\pi\)
0.737181 0.675695i \(-0.236157\pi\)
\(212\) 0.979237 17.4795i 0.0672543 1.20050i
\(213\) 5.56767i 0.381491i
\(214\) −0.471172 + 16.8342i −0.0322087 + 1.15076i
\(215\) 7.80458 0.532268
\(216\) −0.237154 + 2.81847i −0.0161363 + 0.191772i
\(217\) −9.48607 −0.643956
\(218\) 0.624418 22.3094i 0.0422910 1.51098i
\(219\) 3.39782i 0.229603i
\(220\) −5.61043 0.314308i −0.378255 0.0211906i
\(221\) 3.00465i 0.202114i
\(222\) −1.85334 0.0518732i −0.124388 0.00348150i
\(223\) −16.8902 −1.13105 −0.565525 0.824731i \(-0.691326\pi\)
−0.565525 + 0.824731i \(0.691326\pi\)
\(224\) 5.60158 + 0.788864i 0.374271 + 0.0527082i
\(225\) 1.00000 0.0666667
\(226\) 8.36728 + 0.234192i 0.556583 + 0.0155782i
\(227\) 21.1593i 1.40439i 0.711985 + 0.702194i \(0.247796\pi\)
−0.711985 + 0.702194i \(0.752204\pi\)
\(228\) 1.10515 + 0.0619128i 0.0731905 + 0.00410028i
\(229\) 24.5393i 1.62160i 0.585323 + 0.810800i \(0.300968\pi\)
−0.585323 + 0.810800i \(0.699032\pi\)
\(230\) −0.281873 + 10.0708i −0.0185861 + 0.664050i
\(231\) −2.80961 −0.184859
\(232\) −1.78559 + 21.2209i −0.117230 + 1.39322i
\(233\) −21.3530 −1.39888 −0.699442 0.714690i \(-0.746568\pi\)
−0.699442 + 0.714690i \(0.746568\pi\)
\(234\) −0.137670 + 4.91872i −0.00899980 + 0.321547i
\(235\) 8.67645i 0.565989i
\(236\) −0.341076 + 6.08825i −0.0222021 + 0.396311i
\(237\) 12.8403i 0.834065i
\(238\) 1.22076 + 0.0341680i 0.0791302 + 0.00221478i
\(239\) 12.8637 0.832081 0.416041 0.909346i \(-0.363417\pi\)
0.416041 + 0.909346i \(0.363417\pi\)
\(240\) 3.97497 + 0.446774i 0.256583 + 0.0288391i
\(241\) 9.69675 0.624623 0.312311 0.949980i \(-0.398897\pi\)
0.312311 + 0.949980i \(0.398897\pi\)
\(242\) −4.39092 0.122898i −0.282259 0.00790016i
\(243\) 1.00000i 0.0641500i
\(244\) 0.892344 15.9285i 0.0571264 1.01971i
\(245\) 1.00000i 0.0638877i
\(246\) −0.107695 + 3.84777i −0.00686640 + 0.245325i
\(247\) 1.92566 0.122527
\(248\) −26.7362 2.24966i −1.69775 0.142854i
\(249\) −15.0988 −0.956848
\(250\) 0.0395670 1.41366i 0.00250244 0.0894077i
\(251\) 2.53329i 0.159900i 0.996799 + 0.0799499i \(0.0254760\pi\)
−0.996799 + 0.0799499i \(0.974524\pi\)
\(252\) 1.99687 + 0.111869i 0.125791 + 0.00704706i
\(253\) 20.0155i 1.25836i
\(254\) 1.41509 + 0.0396071i 0.0887908 + 0.00248517i
\(255\) 0.863547 0.0540774
\(256\) 15.6008 + 3.55183i 0.975049 + 0.221989i
\(257\) 21.5413 1.34371 0.671853 0.740684i \(-0.265499\pi\)
0.671853 + 0.740684i \(0.265499\pi\)
\(258\) 11.0330 + 0.308804i 0.686886 + 0.0192253i
\(259\) 1.31102i 0.0814629i
\(260\) 6.94796 + 0.389238i 0.430894 + 0.0241395i
\(261\) 7.52924i 0.466048i
\(262\) 0.172838 6.17521i 0.0106780 0.381506i
\(263\) 4.25109 0.262133 0.131067 0.991374i \(-0.458160\pi\)
0.131067 + 0.991374i \(0.458160\pi\)
\(264\) −7.91881 0.666312i −0.487369 0.0410087i
\(265\) −8.75346 −0.537721
\(266\) 0.0218981 0.782379i 0.00134266 0.0479708i
\(267\) 6.06670i 0.371276i
\(268\) 0.218659 3.90310i 0.0133567 0.238420i
\(269\) 8.65414i 0.527652i −0.964570 0.263826i \(-0.915016\pi\)
0.964570 0.263826i \(-0.0849845\pi\)
\(270\) 1.41366 + 0.0395670i 0.0860326 + 0.00240797i
\(271\) 30.4146 1.84755 0.923777 0.382931i \(-0.125085\pi\)
0.923777 + 0.382931i \(0.125085\pi\)
\(272\) 3.43257 + 0.385810i 0.208130 + 0.0233932i
\(273\) 3.47943 0.210584
\(274\) 17.1286 + 0.479414i 1.03478 + 0.0289625i
\(275\) 2.80961i 0.169426i
\(276\) −0.796944 + 14.2256i −0.0479704 + 0.856278i
\(277\) 9.76898i 0.586961i −0.955965 0.293481i \(-0.905186\pi\)
0.955965 0.293481i \(-0.0948136\pi\)
\(278\) −0.373374 + 13.3400i −0.0223935 + 0.800079i
\(279\) −9.48607 −0.567916
\(280\) 0.237154 2.81847i 0.0141727 0.168436i
\(281\) −28.0103 −1.67096 −0.835479 0.549523i \(-0.814809\pi\)
−0.835479 + 0.549523i \(0.814809\pi\)
\(282\) 0.343301 12.2656i 0.0204433 0.730403i
\(283\) 8.40448i 0.499594i −0.968298 0.249797i \(-0.919636\pi\)
0.968298 0.249797i \(-0.0803640\pi\)
\(284\) 11.1179 + 0.622848i 0.659727 + 0.0369592i
\(285\) 0.553442i 0.0327831i
\(286\) −13.8197 0.386801i −0.817177 0.0228720i
\(287\) 2.72185 0.160666
\(288\) 5.60158 + 0.788864i 0.330076 + 0.0464842i
\(289\) −16.2543 −0.956135
\(290\) 10.6438 + 0.297909i 0.625025 + 0.0174938i
\(291\) 0.563842i 0.0330530i
\(292\) 6.78500 + 0.380109i 0.397062 + 0.0222442i
\(293\) 13.1337i 0.767281i −0.923482 0.383641i \(-0.874670\pi\)
0.923482 0.383641i \(-0.125330\pi\)
\(294\) 0.0395670 1.41366i 0.00230759 0.0824463i
\(295\) 3.04890 0.177514
\(296\) −0.310914 + 3.69507i −0.0180715 + 0.214772i
\(297\) −2.80961 −0.163030
\(298\) 0.667174 23.8370i 0.0386483 1.38084i
\(299\) 24.7872i 1.43348i
\(300\) 0.111869 1.99687i 0.00645873 0.115289i
\(301\) 7.80458i 0.449849i
\(302\) 16.7341 + 0.468372i 0.962941 + 0.0269518i
\(303\) 14.0321 0.806123
\(304\) 0.247264 2.19992i 0.0141815 0.126174i
\(305\) −7.97671 −0.456745
\(306\) 1.22076 + 0.0341680i 0.0697863 + 0.00195325i
\(307\) 21.2100i 1.21052i −0.796029 0.605259i \(-0.793070\pi\)
0.796029 0.605259i \(-0.206930\pi\)
\(308\) −0.314308 + 5.61043i −0.0179093 + 0.319684i
\(309\) 14.2681i 0.811686i
\(310\) −0.375335 + 13.4101i −0.0213176 + 0.761641i
\(311\) −28.7116 −1.62809 −0.814043 0.580805i \(-0.802738\pi\)
−0.814043 + 0.580805i \(0.802738\pi\)
\(312\) 9.80665 + 0.825160i 0.555192 + 0.0467155i
\(313\) −2.95790 −0.167190 −0.0835952 0.996500i \(-0.526640\pi\)
−0.0835952 + 0.996500i \(0.526640\pi\)
\(314\) −0.0190807 + 0.681720i −0.00107679 + 0.0384717i
\(315\) 1.00000i 0.0563436i
\(316\) 25.6403 + 1.43642i 1.44238 + 0.0808050i
\(317\) 7.82017i 0.439225i −0.975587 0.219612i \(-0.929521\pi\)
0.975587 0.219612i \(-0.0704793\pi\)
\(318\) −12.3744 0.346348i −0.693923 0.0194222i
\(319\) −21.1543 −1.18441
\(320\) 1.33682 7.88752i 0.0747307 0.440926i
\(321\) 11.9082 0.664652
\(322\) 10.0708 + 0.281873i 0.561224 + 0.0157081i
\(323\) 0.477923i 0.0265924i
\(324\) 1.99687 + 0.111869i 0.110937 + 0.00621492i
\(325\) 3.47943i 0.193004i
\(326\) −0.171467 + 6.12621i −0.00949667 + 0.339299i
\(327\) −15.7813 −0.872708
\(328\) 7.67144 + 0.645497i 0.423584 + 0.0356416i
\(329\) −8.67645 −0.478348
\(330\) −0.111168 + 3.97184i −0.00611960 + 0.218643i
\(331\) 4.74076i 0.260576i −0.991476 0.130288i \(-0.958410\pi\)
0.991476 0.130288i \(-0.0415902\pi\)
\(332\) −1.68908 + 30.1503i −0.0927004 + 1.65471i
\(333\) 1.31102i 0.0718435i
\(334\) 11.0270 + 0.308635i 0.603370 + 0.0168878i
\(335\) −1.95461 −0.106792
\(336\) 0.446774 3.97497i 0.0243735 0.216852i
\(337\) −3.31491 −0.180574 −0.0902872 0.995916i \(-0.528778\pi\)
−0.0902872 + 0.995916i \(0.528778\pi\)
\(338\) −1.26325 0.0353571i −0.0687117 0.00192317i
\(339\) 5.91888i 0.321469i
\(340\) 0.0966037 1.72439i 0.00523907 0.0935182i
\(341\) 26.6522i 1.44330i
\(342\) 0.0218981 0.782379i 0.00118411 0.0423062i
\(343\) −1.00000 −0.0539949
\(344\) 1.85089 21.9970i 0.0997933 1.18600i
\(345\) 7.12393 0.383539
\(346\) 0.366999 13.1122i 0.0197300 0.704918i
\(347\) 14.6395i 0.785891i −0.919562 0.392945i \(-0.871456\pi\)
0.919562 0.392945i \(-0.128544\pi\)
\(348\) 15.0349 + 0.842285i 0.805955 + 0.0451512i
\(349\) 15.0773i 0.807071i 0.914964 + 0.403535i \(0.132219\pi\)
−0.914964 + 0.403535i \(0.867781\pi\)
\(350\) −1.41366 0.0395670i −0.0755633 0.00211495i
\(351\) 3.47943 0.185718
\(352\) −2.21640 + 15.7383i −0.118135 + 0.838853i
\(353\) 10.9907 0.584975 0.292487 0.956269i \(-0.405517\pi\)
0.292487 + 0.956269i \(0.405517\pi\)
\(354\) 4.31010 + 0.120636i 0.229079 + 0.00641172i
\(355\) 5.56767i 0.295501i
\(356\) 12.1144 + 0.678673i 0.642063 + 0.0359696i
\(357\) 0.863547i 0.0457037i
\(358\) 0.258710 9.24327i 0.0136733 0.488522i
\(359\) 15.9728 0.843013 0.421506 0.906825i \(-0.361502\pi\)
0.421506 + 0.906825i \(0.361502\pi\)
\(360\) 0.237154 2.81847i 0.0124991 0.148546i
\(361\) 18.6937 0.983879
\(362\) −0.777079 + 27.7637i −0.0408424 + 1.45923i
\(363\) 3.10607i 0.163026i
\(364\) 0.389238 6.94796i 0.0204016 0.364172i
\(365\) 3.39782i 0.177850i
\(366\) −11.2764 0.315615i −0.589425 0.0164974i
\(367\) 30.3136 1.58236 0.791178 0.611586i \(-0.209468\pi\)
0.791178 + 0.611586i \(0.209468\pi\)
\(368\) 28.3174 + 3.18278i 1.47615 + 0.165914i
\(369\) 2.72185 0.141694
\(370\) 1.85334 + 0.0518732i 0.0963505 + 0.00269676i
\(371\) 8.75346i 0.454457i
\(372\) −1.06119 + 18.9424i −0.0550203 + 0.982120i
\(373\) 18.4520i 0.955408i −0.878521 0.477704i \(-0.841469\pi\)
0.878521 0.477704i \(-0.158531\pi\)
\(374\) −0.0959988 + 3.42987i −0.00496398 + 0.177354i
\(375\) −1.00000 −0.0516398
\(376\) −24.4543 2.05766i −1.26113 0.106116i
\(377\) 26.1974 1.34924
\(378\) 0.0395670 1.41366i 0.00203511 0.0727108i
\(379\) 24.6867i 1.26807i −0.773304 0.634036i \(-0.781397\pi\)
0.773304 0.634036i \(-0.218603\pi\)
\(380\) −1.10515 0.0619128i −0.0566931 0.00317606i
\(381\) 1.00101i 0.0512835i
\(382\) 19.8208 + 0.554764i 1.01412 + 0.0283842i
\(383\) −5.48907 −0.280478 −0.140239 0.990118i \(-0.544787\pi\)
−0.140239 + 0.990118i \(0.544787\pi\)
\(384\) 2.20190 11.0974i 0.112365 0.566310i
\(385\) 2.80961 0.143191
\(386\) 29.0475 + 0.813012i 1.47848 + 0.0413812i
\(387\) 7.80458i 0.396729i
\(388\) −1.12592 0.0630762i −0.0571599 0.00320221i
\(389\) 22.0112i 1.11601i 0.829836 + 0.558007i \(0.188434\pi\)
−0.829836 + 0.558007i \(0.811566\pi\)
\(390\) 0.137670 4.91872i 0.00697121 0.249069i
\(391\) 6.15185 0.311112
\(392\) −2.81847 0.237154i −0.142354 0.0119781i
\(393\) −4.36825 −0.220349
\(394\) −0.310136 + 11.0806i −0.0156244 + 0.558233i
\(395\) 12.8403i 0.646064i
\(396\) −0.314308 + 5.61043i −0.0157946 + 0.281935i
\(397\) 13.0077i 0.652837i −0.945225 0.326418i \(-0.894158\pi\)
0.945225 0.326418i \(-0.105842\pi\)
\(398\) 26.4606 + 0.740608i 1.32635 + 0.0371233i
\(399\) −0.553442 −0.0277068
\(400\) −3.97497 0.446774i −0.198749 0.0223387i
\(401\) −7.32422 −0.365754 −0.182877 0.983136i \(-0.558541\pi\)
−0.182877 + 0.983136i \(0.558541\pi\)
\(402\) −2.76315 0.0773380i −0.137813 0.00385727i
\(403\) 33.0061i 1.64415i
\(404\) 1.56975 28.0203i 0.0780980 1.39406i
\(405\) 1.00000i 0.0496904i
\(406\) 0.297909 10.6438i 0.0147850 0.528242i
\(407\) −3.68346 −0.182583
\(408\) 0.204794 2.43388i 0.0101388 0.120495i
\(409\) 9.66468 0.477888 0.238944 0.971033i \(-0.423199\pi\)
0.238944 + 0.971033i \(0.423199\pi\)
\(410\) 0.107695 3.84777i 0.00531869 0.190028i
\(411\) 12.1165i 0.597664i
\(412\) 28.4916 + 1.59616i 1.40368 + 0.0786369i
\(413\) 3.04890i 0.150026i
\(414\) 10.0708 + 0.281873i 0.494953 + 0.0138533i
\(415\) 15.0988 0.741171
\(416\) 2.74479 19.4903i 0.134575 0.955589i
\(417\) 9.43649 0.462107
\(418\) 2.19818 + 0.0615251i 0.107517 + 0.00300929i
\(419\) 5.38879i 0.263260i 0.991299 + 0.131630i \(0.0420210\pi\)
−0.991299 + 0.131630i \(0.957979\pi\)
\(420\) −1.99687 0.111869i −0.0974372 0.00545863i
\(421\) 32.7820i 1.59770i 0.601533 + 0.798848i \(0.294557\pi\)
−0.601533 + 0.798848i \(0.705443\pi\)
\(422\) −0.776704 + 27.7503i −0.0378093 + 1.35086i
\(423\) −8.67645 −0.421864
\(424\) −2.07592 + 24.6713i −0.100816 + 1.19815i
\(425\) −0.863547 −0.0418882
\(426\) 0.220296 7.87080i 0.0106734 0.381341i
\(427\) 7.97671i 0.386020i
\(428\) 1.33215 23.7791i 0.0643921 1.14941i
\(429\) 9.77584i 0.471982i
\(430\) −11.0330 0.308804i −0.532060 0.0148918i
\(431\) −32.4970 −1.56533 −0.782663 0.622445i \(-0.786139\pi\)
−0.782663 + 0.622445i \(0.786139\pi\)
\(432\) 0.446774 3.97497i 0.0214954 0.191246i
\(433\) 1.48523 0.0713754 0.0356877 0.999363i \(-0.488638\pi\)
0.0356877 + 0.999363i \(0.488638\pi\)
\(434\) 13.4101 + 0.375335i 0.643704 + 0.0180167i
\(435\) 7.52924i 0.360999i
\(436\) −1.76543 + 31.5132i −0.0845488 + 1.50921i
\(437\) 3.94268i 0.188604i
\(438\) 0.134442 4.80336i 0.00642387 0.229514i
\(439\) −3.99942 −0.190882 −0.0954409 0.995435i \(-0.530426\pi\)
−0.0954409 + 0.995435i \(0.530426\pi\)
\(440\) 7.91881 + 0.666312i 0.377514 + 0.0317652i
\(441\) −1.00000 −0.0476190
\(442\) 0.118885 4.24755i 0.00565478 0.202035i
\(443\) 31.9373i 1.51739i 0.651447 + 0.758694i \(0.274162\pi\)
−0.651447 + 0.758694i \(0.725838\pi\)
\(444\) 2.61794 + 0.146662i 0.124242 + 0.00696027i
\(445\) 6.06670i 0.287589i
\(446\) 23.8770 + 0.668293i 1.13061 + 0.0316446i
\(447\) −16.8619 −0.797539
\(448\) −7.88752 1.33682i −0.372650 0.0631589i
\(449\) −10.3778 −0.489760 −0.244880 0.969553i \(-0.578749\pi\)
−0.244880 + 0.969553i \(0.578749\pi\)
\(450\) −1.41366 0.0395670i −0.0666406 0.00186521i
\(451\) 7.64734i 0.360099i
\(452\) −11.8192 0.662136i −0.555929 0.0311443i
\(453\) 11.8374i 0.556172i
\(454\) 0.837208 29.9120i 0.0392921 1.40384i
\(455\) −3.47943 −0.163118
\(456\) −1.55986 0.131251i −0.0730471 0.00614640i
\(457\) −18.0964 −0.846512 −0.423256 0.906010i \(-0.639113\pi\)
−0.423256 + 0.906010i \(0.639113\pi\)
\(458\) 0.970945 34.6902i 0.0453693 1.62097i
\(459\) 0.863547i 0.0403069i
\(460\) 0.796944 14.2256i 0.0371577 0.663270i
\(461\) 28.7960i 1.34116i 0.741836 + 0.670582i \(0.233955\pi\)
−0.741836 + 0.670582i \(0.766045\pi\)
\(462\) 3.97184 + 0.111168i 0.184787 + 0.00517200i
\(463\) −16.8916 −0.785021 −0.392510 0.919748i \(-0.628393\pi\)
−0.392510 + 0.919748i \(0.628393\pi\)
\(464\) 3.36387 29.9285i 0.156164 1.38940i
\(465\) 9.48607 0.439906
\(466\) 30.1859 + 0.844875i 1.39834 + 0.0391381i
\(467\) 7.75973i 0.359077i −0.983751 0.179539i \(-0.942539\pi\)
0.983751 0.179539i \(-0.0574605\pi\)
\(468\) 0.389238 6.94796i 0.0179925 0.321169i
\(469\) 1.95461i 0.0902554i
\(470\) −0.343301 + 12.2656i −0.0158353 + 0.565768i
\(471\) 0.482238 0.0222203
\(472\) 0.723059 8.59322i 0.0332815 0.395535i
\(473\) 21.9279 1.00824
\(474\) 0.508051 18.1518i 0.0233355 0.833738i
\(475\) 0.553442i 0.0253937i
\(476\) −1.72439 0.0966037i −0.0790373 0.00442783i
\(477\) 8.75346i 0.400793i
\(478\) −18.1848 0.508977i −0.831756 0.0232800i
\(479\) 42.8009 1.95562 0.977811 0.209488i \(-0.0671797\pi\)
0.977811 + 0.209488i \(0.0671797\pi\)
\(480\) −5.60158 0.788864i −0.255676 0.0360065i
\(481\) 4.56160 0.207991
\(482\) −13.7079 0.383671i −0.624378 0.0174758i
\(483\) 7.12393i 0.324150i
\(484\) 6.20241 + 0.347471i 0.281928 + 0.0157941i
\(485\) 0.563842i 0.0256028i
\(486\) 0.0395670 1.41366i 0.00179480 0.0641249i
\(487\) −27.5656 −1.24912 −0.624559 0.780978i \(-0.714721\pi\)
−0.624559 + 0.780978i \(0.714721\pi\)
\(488\) −1.89171 + 22.4821i −0.0856338 + 1.01772i
\(489\) 4.33358 0.195971
\(490\) −0.0395670 + 1.41366i −0.00178745 + 0.0638626i
\(491\) 42.7380i 1.92874i 0.264560 + 0.964369i \(0.414773\pi\)
−0.264560 + 0.964369i \(0.585227\pi\)
\(492\) 0.304489 5.43517i 0.0137274 0.245036i
\(493\) 6.50185i 0.292829i
\(494\) −2.72223 0.0761927i −0.122479 0.00342807i
\(495\) 2.80961 0.126283
\(496\) 37.7068 + 4.23813i 1.69309 + 0.190298i
\(497\) −5.56767 −0.249744
\(498\) 21.3446 + 0.597415i 0.956474 + 0.0267708i
\(499\) 38.3432i 1.71648i −0.513250 0.858239i \(-0.671559\pi\)
0.513250 0.858239i \(-0.328441\pi\)
\(500\) −0.111869 + 1.99687i −0.00500291 + 0.0893027i
\(501\) 7.80031i 0.348492i
\(502\) 0.100235 3.58121i 0.00447369 0.159837i
\(503\) −6.94672 −0.309739 −0.154869 0.987935i \(-0.549496\pi\)
−0.154869 + 0.987935i \(0.549496\pi\)
\(504\) −2.81847 0.237154i −0.125545 0.0105637i
\(505\) −14.0321 −0.624420
\(506\) −0.791953 + 28.2951i −0.0352066 + 1.25787i
\(507\) 0.893602i 0.0396862i
\(508\) −1.99889 0.111982i −0.0886866 0.00496840i
\(509\) 35.7341i 1.58389i 0.610594 + 0.791944i \(0.290931\pi\)
−0.610594 + 0.791944i \(0.709069\pi\)
\(510\) −1.22076 0.0341680i −0.0540562 0.00151298i
\(511\) −3.39782 −0.150311
\(512\) −21.9137 5.63835i −0.968457 0.249182i
\(513\) −0.553442 −0.0244351
\(514\) −30.4520 0.852323i −1.34318 0.0375943i
\(515\) 14.2681i 0.628729i
\(516\) −15.5847 0.873087i −0.686079 0.0384355i
\(517\) 24.3775i 1.07212i
\(518\) 0.0518732 1.85334i 0.00227918 0.0814310i
\(519\) −9.27539 −0.407144
\(520\) −9.80665 0.825160i −0.430050 0.0361857i
\(521\) 31.3294 1.37256 0.686282 0.727335i \(-0.259241\pi\)
0.686282 + 0.727335i \(0.259241\pi\)
\(522\) 0.297909 10.6438i 0.0130391 0.465866i
\(523\) 20.4455i 0.894019i 0.894529 + 0.447010i \(0.147511\pi\)
−0.894529 + 0.447010i \(0.852489\pi\)
\(524\) −0.488669 + 8.72282i −0.0213476 + 0.381058i
\(525\) 1.00000i 0.0436436i
\(526\) −6.00959 0.168203i −0.262031 0.00733399i
\(527\) 8.19166 0.356835
\(528\) 11.1681 + 1.25526i 0.486031 + 0.0546283i
\(529\) 27.7504 1.20654
\(530\) 12.3744 + 0.346348i 0.537510 + 0.0150444i
\(531\) 3.04890i 0.132311i
\(532\) −0.0619128 + 1.10515i −0.00268426 + 0.0479144i
\(533\) 9.47046i 0.410211i
\(534\) 0.240041 8.57626i 0.0103876 0.371131i
\(535\) −11.9082 −0.514837
\(536\) −0.463544 + 5.50900i −0.0200220 + 0.237953i
\(537\) −6.53854 −0.282159
\(538\) −0.342418 + 12.2340i −0.0147627 + 0.527445i
\(539\) 2.80961i 0.121019i
\(540\) −1.99687 0.111869i −0.0859316 0.00481406i
\(541\) 16.4956i 0.709200i 0.935018 + 0.354600i \(0.115383\pi\)
−0.935018 + 0.354600i \(0.884617\pi\)
\(542\) −42.9959 1.20341i −1.84683 0.0516910i
\(543\) 19.6396 0.842815
\(544\) −4.83723 0.681221i −0.207394 0.0292071i
\(545\) 15.7813 0.675996
\(546\) −4.91872 0.137670i −0.210502 0.00589175i
\(547\) 0.601699i 0.0257268i 0.999917 + 0.0128634i \(0.00409466\pi\)
−0.999917 + 0.0128634i \(0.995905\pi\)
\(548\) −24.1951 1.35546i −1.03356 0.0579023i
\(549\) 7.97671i 0.340438i
\(550\) 0.111168 3.97184i 0.00474022 0.169360i
\(551\) −4.16700 −0.177520
\(552\) 1.68947 20.0786i 0.0719086 0.854600i
\(553\) −12.8403 −0.546023
\(554\) −0.386529 + 13.8100i −0.0164221 + 0.586731i
\(555\) 1.31102i 0.0556497i
\(556\) 1.05565 18.8434i 0.0447694 0.799139i
\(557\) 34.5932i 1.46576i −0.680357 0.732881i \(-0.738175\pi\)
0.680357 0.732881i \(-0.261825\pi\)
\(558\) 13.4101 + 0.375335i 0.567694 + 0.0158892i
\(559\) −27.1555 −1.14855
\(560\) −0.446774 + 3.97497i −0.0188796 + 0.167973i
\(561\) 2.42623 0.102436
\(562\) 39.5971 + 1.10829i 1.67030 + 0.0467502i
\(563\) 30.6398i 1.29131i 0.763629 + 0.645656i \(0.223416\pi\)
−0.763629 + 0.645656i \(0.776584\pi\)
\(564\) −0.970623 + 17.3257i −0.0408706 + 0.729545i
\(565\) 5.91888i 0.249009i
\(566\) −0.332540 + 11.8811i −0.0139777 + 0.499399i
\(567\) −1.00000 −0.0419961
\(568\) −15.6923 1.32040i −0.658435 0.0554026i
\(569\) 30.5985 1.28276 0.641378 0.767225i \(-0.278363\pi\)
0.641378 + 0.767225i \(0.278363\pi\)
\(570\) −0.0218981 + 0.782379i −0.000917209 + 0.0327703i
\(571\) 35.9626i 1.50499i 0.658598 + 0.752495i \(0.271150\pi\)
−0.658598 + 0.752495i \(0.728850\pi\)
\(572\) 19.5211 + 1.09361i 0.816217 + 0.0457261i
\(573\) 14.0209i 0.585731i
\(574\) −3.84777 0.107695i −0.160603 0.00449512i
\(575\) −7.12393 −0.297088
\(576\) −7.88752 1.33682i −0.328646 0.0557010i
\(577\) 0.504706 0.0210112 0.0105056 0.999945i \(-0.496656\pi\)
0.0105056 + 0.999945i \(0.496656\pi\)
\(578\) 22.9780 + 0.643133i 0.955760 + 0.0267508i
\(579\) 20.5477i 0.853935i
\(580\) −15.0349 0.842285i −0.624290 0.0349740i
\(581\) 15.0988i 0.626404i
\(582\) −0.0223095 + 0.797081i −0.000924760 + 0.0330401i
\(583\) −24.5939 −1.01857
\(584\) −9.57665 0.805808i −0.396284 0.0333446i
\(585\) −3.47943 −0.143857
\(586\) −0.519663 + 18.5666i −0.0214671 + 0.766981i
\(587\) 41.6609i 1.71953i 0.510691 + 0.859764i \(0.329390\pi\)
−0.510691 + 0.859764i \(0.670610\pi\)
\(588\) −0.111869 + 1.99687i −0.00461338 + 0.0823495i
\(589\) 5.24999i 0.216322i
\(590\) −4.31010 0.120636i −0.177444 0.00496649i
\(591\) 7.83824 0.322422
\(592\) 0.585730 5.21127i 0.0240733 0.214182i
\(593\) −35.3697 −1.45246 −0.726229 0.687452i \(-0.758729\pi\)
−0.726229 + 0.687452i \(0.758729\pi\)
\(594\) 3.97184 + 0.111168i 0.162967 + 0.00456128i
\(595\) 0.863547i 0.0354020i
\(596\) −1.88631 + 33.6710i −0.0772664 + 1.37922i
\(597\) 18.7178i 0.766070i
\(598\) 0.980754 35.0406i 0.0401060 1.43292i
\(599\) −9.60460 −0.392433 −0.196217 0.980561i \(-0.562866\pi\)
−0.196217 + 0.980561i \(0.562866\pi\)
\(600\) −0.237154 + 2.81847i −0.00968178 + 0.115063i
\(601\) 24.0066 0.979249 0.489625 0.871933i \(-0.337134\pi\)
0.489625 + 0.871933i \(0.337134\pi\)
\(602\) −0.308804 + 11.0330i −0.0125859 + 0.449672i
\(603\) 1.95461i 0.0795978i
\(604\) −23.6378 1.32424i −0.961810 0.0538825i
\(605\) 3.10607i 0.126280i
\(606\) −19.8366 0.555208i −0.805807 0.0225538i
\(607\) 27.6599 1.12268 0.561340 0.827585i \(-0.310286\pi\)
0.561340 + 0.827585i \(0.310286\pi\)
\(608\) −0.436591 + 3.10015i −0.0177061 + 0.125728i
\(609\) −7.52924 −0.305100
\(610\) 11.2764 + 0.315615i 0.456566 + 0.0127789i
\(611\) 30.1891i 1.22132i
\(612\) −1.72439 0.0966037i −0.0697043 0.00390497i
\(613\) 42.6747i 1.72361i 0.507237 + 0.861807i \(0.330667\pi\)
−0.507237 + 0.861807i \(0.669333\pi\)
\(614\) −0.839215 + 29.9837i −0.0338680 + 1.21004i
\(615\) −2.72185 −0.109755
\(616\) 0.666312 7.91881i 0.0268465 0.319058i
\(617\) 3.74613 0.150813 0.0754067 0.997153i \(-0.475975\pi\)
0.0754067 + 0.997153i \(0.475975\pi\)
\(618\) 0.564547 20.1703i 0.0227094 0.811368i
\(619\) 12.8696i 0.517275i 0.965974 + 0.258637i \(0.0832735\pi\)
−0.965974 + 0.258637i \(0.916727\pi\)
\(620\) 1.06119 18.9424i 0.0426185 0.760747i
\(621\) 7.12393i 0.285873i
\(622\) 40.5884 + 1.13603i 1.62745 + 0.0455507i
\(623\) −6.06670 −0.243057
\(624\) −13.8306 1.55452i −0.553668 0.0622304i
\(625\) 1.00000 0.0400000
\(626\) 4.18147 + 0.117035i 0.167125 + 0.00467767i
\(627\) 1.55496i 0.0620991i
\(628\) 0.0539472 0.962966i 0.00215273 0.0384265i
\(629\) 1.13213i 0.0451409i
\(630\) −0.0395670 + 1.41366i −0.00157639 + 0.0563216i
\(631\) 13.6593 0.543768 0.271884 0.962330i \(-0.412353\pi\)
0.271884 + 0.962330i \(0.412353\pi\)
\(632\) −36.1899 3.04512i −1.43956 0.121128i
\(633\) 19.6301 0.780226
\(634\) −0.309421 + 11.0551i −0.0122887 + 0.439053i
\(635\) 1.00101i 0.0397240i
\(636\) 17.4795 + 0.979237i 0.693108 + 0.0388293i
\(637\) 3.47943i 0.137860i
\(638\) 29.9049 + 0.837011i 1.18395 + 0.0331376i
\(639\) −5.56767 −0.220254
\(640\) −2.20190 + 11.0974i −0.0870377 + 0.438662i
\(641\) −27.6311 −1.09136 −0.545682 0.837993i \(-0.683729\pi\)
−0.545682 + 0.837993i \(0.683729\pi\)
\(642\) −16.8342 0.471172i −0.664391 0.0185957i
\(643\) 43.5088i 1.71582i −0.513799 0.857911i \(-0.671762\pi\)
0.513799 0.857911i \(-0.328238\pi\)
\(644\) −14.2256 0.796944i −0.560565 0.0314040i
\(645\) 7.80458i 0.307305i
\(646\) −0.0189100 + 0.675621i −0.000744004 + 0.0265820i
\(647\) −4.11243 −0.161676 −0.0808381 0.996727i \(-0.525760\pi\)
−0.0808381 + 0.996727i \(0.525760\pi\)
\(648\) −2.81847 0.237154i −0.110720 0.00931630i
\(649\) 8.56623 0.336254
\(650\) −0.137670 + 4.91872i −0.00539988 + 0.192928i
\(651\) 9.48607i 0.371788i
\(652\) 0.484791 8.65359i 0.0189859 0.338901i
\(653\) 20.3053i 0.794608i −0.917687 0.397304i \(-0.869946\pi\)
0.917687 0.397304i \(-0.130054\pi\)
\(654\) 22.3094 + 0.624418i 0.872366 + 0.0244167i
\(655\) 4.36825 0.170682
\(656\) −10.8193 1.21605i −0.422421 0.0474788i
\(657\) −3.39782 −0.132562
\(658\) 12.2656 + 0.343301i 0.478161 + 0.0133833i
\(659\) 29.4449i 1.14701i −0.819201 0.573506i \(-0.805583\pi\)
0.819201 0.573506i \(-0.194417\pi\)
\(660\) 0.314308 5.61043i 0.0122344 0.218386i
\(661\) 4.38825i 0.170683i 0.996352 + 0.0853416i \(0.0271982\pi\)
−0.996352 + 0.0853416i \(0.972802\pi\)
\(662\) −0.187578 + 6.70182i −0.00729041 + 0.260474i
\(663\) −3.00465 −0.116691
\(664\) 3.58075 42.5555i 0.138960 1.65147i
\(665\) 0.553442 0.0214616
\(666\) 0.0518732 1.85334i 0.00201004 0.0718154i
\(667\) 53.6378i 2.07686i
\(668\) −15.5762 0.872610i −0.602661 0.0337623i
\(669\) 16.8902i 0.653012i
\(670\) 2.76315 + 0.0773380i 0.106750 + 0.00298783i
\(671\) −22.4115 −0.865186
\(672\) −0.788864 + 5.60158i −0.0304311 + 0.216086i
\(673\) −26.9497 −1.03883 −0.519417 0.854521i \(-0.673851\pi\)
−0.519417 + 0.854521i \(0.673851\pi\)
\(674\) 4.68615 + 0.131161i 0.180504 + 0.00505213i
\(675\) 1.00000i 0.0384900i
\(676\) 1.78441 + 0.0999659i 0.0686310 + 0.00384484i
\(677\) 17.3231i 0.665781i −0.942966 0.332890i \(-0.891976\pi\)
0.942966 0.332890i \(-0.108024\pi\)
\(678\) −0.234192 + 8.36728i −0.00899410 + 0.321343i
\(679\) 0.563842 0.0216383
\(680\) −0.204794 + 2.43388i −0.00785348 + 0.0933350i
\(681\) −21.1593 −0.810824
\(682\) −1.05455 + 37.6771i −0.0403807 + 1.44273i
\(683\) 3.60974i 0.138123i 0.997612 + 0.0690614i \(0.0220005\pi\)
−0.997612 + 0.0690614i \(0.978000\pi\)
\(684\) −0.0619128 + 1.10515i −0.00236730 + 0.0422565i
\(685\) 12.1165i 0.462948i
\(686\) 1.41366 + 0.0395670i 0.0539738 + 0.00151068i
\(687\) −24.5393 −0.936232
\(688\) −3.48688 + 31.0230i −0.132936 + 1.18274i
\(689\) 30.4570 1.16032
\(690\) −10.0708 0.281873i −0.383389 0.0107307i
\(691\) 10.7675i 0.409616i 0.978802 + 0.204808i \(0.0656570\pi\)
−0.978802 + 0.204808i \(0.934343\pi\)
\(692\) −1.03762 + 18.5217i −0.0394446 + 0.704091i
\(693\) 2.80961i 0.106728i
\(694\) −0.579242 + 20.6953i −0.0219877 + 0.785583i
\(695\) −9.43649 −0.357946
\(696\) −21.2209 1.78559i −0.804377 0.0676827i
\(697\) −2.35044 −0.0890293
\(698\) 0.596564 21.3142i 0.0225803 0.806755i
\(699\) 21.3530i 0.807646i
\(700\) 1.99687 + 0.111869i 0.0754746 + 0.00422823i
\(701\) 18.0315i 0.681041i −0.940237 0.340520i \(-0.889397\pi\)
0.940237 0.340520i \(-0.110603\pi\)
\(702\) −4.91872 0.137670i −0.185645 0.00519603i
\(703\) −0.725575 −0.0273656
\(704\) 3.75596 22.1609i 0.141558 0.835220i
\(705\) 8.67645 0.326774
\(706\) −15.5371 0.434868i −0.584746 0.0163665i
\(707\) 14.0321i 0.527731i
\(708\) −6.08825 0.341076i −0.228810 0.0128184i
\(709\) 3.58513i 0.134642i 0.997731 + 0.0673212i \(0.0214452\pi\)
−0.997731 + 0.0673212i \(0.978555\pi\)
\(710\) −0.220296 + 7.87080i −0.00826757 + 0.295386i
\(711\) −12.8403 −0.481547
\(712\) −17.0988 1.43874i −0.640805 0.0539192i
\(713\) 67.5781 2.53082
\(714\) −0.0341680 + 1.22076i −0.00127870 + 0.0456859i
\(715\) 9.77584i 0.365596i
\(716\) −0.731457 + 13.0566i −0.0273358 + 0.487948i
\(717\) 12.8637i 0.480402i
\(718\) −22.5801 0.631996i −0.842683 0.0235859i
\(719\) 17.2843 0.644595 0.322297 0.946638i \(-0.395545\pi\)
0.322297 + 0.946638i \(0.395545\pi\)
\(720\) −0.446774 + 3.97497i −0.0166503 + 0.148138i
\(721\) −14.2681 −0.531373
\(722\) −26.4265 0.739654i −0.983494 0.0275271i
\(723\) 9.69675i 0.360626i
\(724\) 2.19705 39.2177i 0.0816528 1.45751i
\(725\) 7.52924i 0.279629i
\(726\) 0.122898 4.39092i 0.00456116 0.162962i
\(727\) −11.3098 −0.419458 −0.209729 0.977760i \(-0.567258\pi\)
−0.209729 + 0.977760i \(0.567258\pi\)
\(728\) −0.825160 + 9.80665i −0.0305825 + 0.363458i
\(729\) −1.00000 −0.0370370
\(730\) −0.134442 + 4.80336i −0.00497591 + 0.177780i
\(731\) 6.73962i 0.249274i
\(732\) 15.9285 + 0.892344i 0.588732 + 0.0329820i
\(733\) 3.01616i 0.111404i 0.998447 + 0.0557022i \(0.0177397\pi\)
−0.998447 + 0.0557022i \(0.982260\pi\)
\(734\) −42.8531 1.19942i −1.58174 0.0442713i
\(735\) 1.00000 0.0368856
\(736\) −39.9053 5.61981i −1.47093 0.207149i
\(737\) −5.49170 −0.202289
\(738\) −3.84777 0.107695i −0.141638 0.00396432i
\(739\) 38.9051i 1.43115i 0.698537 + 0.715574i \(0.253835\pi\)
−0.698537 + 0.715574i \(0.746165\pi\)
\(740\) −2.61794 0.146662i −0.0962373 0.00539140i
\(741\) 1.92566i 0.0707409i
\(742\) 0.346348 12.3744i 0.0127148 0.454279i
\(743\) −40.1048 −1.47130 −0.735651 0.677361i \(-0.763124\pi\)
−0.735651 + 0.677361i \(0.763124\pi\)
\(744\) 2.24966 26.7362i 0.0824766 0.980196i
\(745\) 16.8619 0.617771
\(746\) −0.730090 + 26.0848i −0.0267305 + 0.955034i
\(747\) 15.0988i 0.552437i
\(748\) 0.271419 4.84487i 0.00992407 0.177146i
\(749\) 11.9082i 0.435117i
\(750\) 1.41366 + 0.0395670i 0.0516196 + 0.00144478i
\(751\) 10.5756 0.385909 0.192954 0.981208i \(-0.438193\pi\)
0.192954 + 0.981208i \(0.438193\pi\)
\(752\) 34.4887 + 3.87641i 1.25767 + 0.141358i
\(753\) −2.53329 −0.0923182
\(754\) −37.0342 1.03655i −1.34871 0.0377491i
\(755\) 11.8374i 0.430809i
\(756\) −0.111869 + 1.99687i −0.00406862 + 0.0726254i
\(757\) 34.1819i 1.24236i 0.783667 + 0.621181i \(0.213347\pi\)
−0.783667 + 0.621181i \(0.786653\pi\)
\(758\) −0.976780 + 34.8986i −0.0354782 + 1.26758i
\(759\) 20.0155 0.726516
\(760\) 1.55986 + 0.131251i 0.0565821 + 0.00476098i
\(761\) 5.79177 0.209951 0.104976 0.994475i \(-0.466524\pi\)
0.104976 + 0.994475i \(0.466524\pi\)
\(762\) −0.0396071 + 1.41509i −0.00143481 + 0.0512634i
\(763\) 15.7813i 0.571321i
\(764\) −27.9979 1.56850i −1.01293 0.0567462i
\(765\) 0.863547i 0.0312216i
\(766\) 7.75968 + 0.217186i 0.280369 + 0.00784725i
\(767\) −10.6084 −0.383047
\(768\) −3.55183 + 15.6008i −0.128165 + 0.562945i
\(769\) 40.6536 1.46601 0.733003 0.680225i \(-0.238118\pi\)
0.733003 + 0.680225i \(0.238118\pi\)
\(770\) −3.97184 0.111168i −0.143135 0.00400622i
\(771\) 21.5413i 0.775789i
\(772\) −41.0311 2.29865i −1.47674 0.0827301i
\(773\) 33.1380i 1.19189i −0.803024 0.595946i \(-0.796777\pi\)
0.803024 0.595946i \(-0.203223\pi\)
\(774\) −0.308804 + 11.0330i −0.0110997 + 0.396574i
\(775\) −9.48607 −0.340750
\(776\) 1.58917 + 0.133718i 0.0570479 + 0.00480018i
\(777\) −1.31102 −0.0470326
\(778\) 0.870919 31.1164i 0.0312240 1.11558i
\(779\) 1.50639i 0.0539719i
\(780\) −0.389238 + 6.94796i −0.0139370 + 0.248777i
\(781\) 15.6430i 0.559751i
\(782\) −8.69662 0.243410i −0.310990 0.00870433i
\(783\) −7.52924 −0.269073
\(784\) 3.97497 + 0.446774i 0.141963 + 0.0159562i
\(785\) −0.482238 −0.0172118
\(786\) 6.17521 + 0.172838i 0.220263 + 0.00616494i
\(787\) 13.6518i 0.486635i 0.969947 + 0.243318i \(0.0782357\pi\)
−0.969947 + 0.243318i \(0.921764\pi\)
\(788\) 0.876853 15.6519i 0.0312366 0.557577i
\(789\) 4.25109i 0.151343i
\(790\) −0.508051 + 18.1518i −0.0180756 + 0.645811i
\(791\) 5.91888 0.210451
\(792\) 0.666312 7.91881i 0.0236764 0.281383i
\(793\) 27.7544 0.985587
\(794\) −0.514675 + 18.3884i −0.0182651 + 0.652581i
\(795\) 8.75346i 0.310453i
\(796\) −37.3770 2.09394i −1.32479 0.0742176i
\(797\) 16.7731i 0.594132i −0.954857 0.297066i \(-0.903992\pi\)
0.954857 0.297066i \(-0.0960082\pi\)
\(798\) 0.782379 + 0.0218981i 0.0276959 + 0.000775183i
\(799\) 7.49252 0.265066
\(800\) 5.60158 + 0.788864i 0.198046 + 0.0278905i
\(801\) −6.06670 −0.214356
\(802\) 10.3540 + 0.289797i 0.365611 + 0.0102331i
\(803\) 9.54657i 0.336891i
\(804\) 3.90310 + 0.218659i 0.137652 + 0.00771152i
\(805\) 7.12393i 0.251085i
\(806\) 1.30595 46.6594i 0.0460002 1.64351i
\(807\) 8.65414 0.304640
\(808\) −3.32777 + 39.5490i −0.117071 + 1.39133i
\(809\) −11.8608 −0.417005 −0.208502 0.978022i \(-0.566859\pi\)
−0.208502 + 0.978022i \(0.566859\pi\)
\(810\) −0.0395670 + 1.41366i −0.00139024 + 0.0496709i
\(811\) 11.4122i 0.400736i −0.979721 0.200368i \(-0.935786\pi\)
0.979721 0.200368i \(-0.0642138\pi\)
\(812\) −0.842285 + 15.0349i −0.0295584 + 0.527622i
\(813\) 30.4146i 1.06669i
\(814\) 5.20717 + 0.145744i 0.182511 + 0.00510831i
\(815\) −4.33358 −0.151799
\(816\) −0.385810 + 3.43257i −0.0135061 + 0.120164i
\(817\) 4.31939 0.151116
\(818\) −13.6626 0.382402i −0.477701 0.0133704i
\(819\) 3.47943i 0.121581i
\(820\) −0.304489 + 5.43517i −0.0106332 + 0.189804i
\(821\) 38.7018i 1.35070i 0.737496 + 0.675351i \(0.236008\pi\)
−0.737496 + 0.675351i \(0.763992\pi\)
\(822\) −0.479414 + 17.1286i −0.0167215 + 0.597430i
\(823\) −18.7529 −0.653686 −0.326843 0.945079i \(-0.605985\pi\)
−0.326843 + 0.945079i \(0.605985\pi\)
\(824\) −40.2143 3.38375i −1.40093 0.117878i
\(825\) −2.80961 −0.0978182
\(826\) −0.120636 + 4.31010i −0.00419745 + 0.149968i
\(827\) 21.4894i 0.747261i −0.927578 0.373630i \(-0.878113\pi\)
0.927578 0.373630i \(-0.121887\pi\)
\(828\) −14.2256 0.796944i −0.494372 0.0276957i
\(829\) 31.8149i 1.10498i 0.833521 + 0.552488i \(0.186322\pi\)
−0.833521 + 0.552488i \(0.813678\pi\)
\(830\) −21.3446 0.597415i −0.740881 0.0207366i
\(831\) 9.76898 0.338882
\(832\) −4.65138 + 27.4440i −0.161257 + 0.951450i
\(833\) 0.863547 0.0299201
\(834\) −13.3400 0.373374i −0.461926 0.0129289i
\(835\) 7.80031i 0.269941i
\(836\) −3.10505 0.173951i −0.107390 0.00601623i
\(837\) 9.48607i 0.327887i
\(838\) 0.213218 7.61792i 0.00736550 0.263157i
\(839\) −45.6480 −1.57594 −0.787972 0.615711i \(-0.788869\pi\)
−0.787972 + 0.615711i \(0.788869\pi\)
\(840\) 2.81847 + 0.237154i 0.0972464 + 0.00818260i
\(841\) −27.6894 −0.954808
\(842\) 1.29708 46.3426i 0.0447005 1.59707i
\(843\) 28.0103i 0.964728i
\(844\) 2.19599 39.1987i 0.0755891 1.34928i
\(845\) 0.893602i 0.0307408i
\(846\) 12.2656 + 0.343301i 0.421699 + 0.0118029i
\(847\) −3.10607 −0.106726
\(848\) 3.91082 34.7948i 0.134298 1.19486i
\(849\) 8.40448 0.288441
\(850\) 1.22076 + 0.0341680i 0.0418718 + 0.00117195i
\(851\) 9.33962i 0.320158i
\(852\) −0.622848 + 11.1179i −0.0213384 + 0.380893i
\(853\) 28.2677i 0.967869i −0.875104 0.483934i \(-0.839207\pi\)
0.875104 0.483934i \(-0.160793\pi\)
\(854\) 0.315615 11.2764i 0.0108001 0.385869i
\(855\) 0.553442 0.0189273
\(856\) −2.82408 + 33.5629i −0.0965252 + 1.14716i
\(857\) 15.9761 0.545732 0.272866 0.962052i \(-0.412028\pi\)
0.272866 + 0.962052i \(0.412028\pi\)
\(858\) 0.386801 13.8197i 0.0132052 0.471797i
\(859\) 12.6407i 0.431295i 0.976471 + 0.215648i \(0.0691862\pi\)
−0.976471 + 0.215648i \(0.930814\pi\)
\(860\) 15.5847 + 0.873087i 0.531435 + 0.0297720i
\(861\) 2.72185i 0.0927603i
\(862\) 45.9398 + 1.28581i 1.56471 + 0.0437949i
\(863\) 50.8623 1.73137 0.865687 0.500586i \(-0.166882\pi\)
0.865687 + 0.500586i \(0.166882\pi\)
\(864\) −0.788864 + 5.60158i −0.0268377 + 0.190570i
\(865\) 9.27539 0.315373
\(866\) −2.09960 0.0587659i −0.0713474 0.00199695i
\(867\) 16.2543i 0.552025i
\(868\) −18.9424 1.06119i −0.642948 0.0360192i
\(869\) 36.0762i 1.22380i
\(870\) −0.297909 + 10.6438i −0.0101001 + 0.360858i
\(871\) 6.80091 0.230440
\(872\) 3.74260 44.4791i 0.126740 1.50625i
\(873\) 0.563842 0.0190832
\(874\) −0.156000 + 5.57362i −0.00527679 + 0.188530i
\(875\) 1.00000i 0.0338062i
\(876\) −0.380109 + 6.78500i −0.0128427 + 0.229244i
\(877\) 43.1596i 1.45740i −0.684835 0.728698i \(-0.740126\pi\)
0.684835 0.728698i \(-0.259874\pi\)
\(878\) 5.65382 + 0.158245i 0.190807 + 0.00534051i
\(879\) 13.1337 0.442990
\(880\) −11.1681 1.25526i −0.376478 0.0423149i
\(881\) −38.4122 −1.29414 −0.647071 0.762430i \(-0.724006\pi\)
−0.647071 + 0.762430i \(0.724006\pi\)
\(882\) 1.41366 + 0.0395670i 0.0476004 + 0.00133229i
\(883\) 51.4057i 1.72994i 0.501824 + 0.864970i \(0.332663\pi\)
−0.501824 + 0.864970i \(0.667337\pi\)
\(884\) −0.336125 + 5.99988i −0.0113051 + 0.201798i
\(885\) 3.04890i 0.102488i
\(886\) 1.26366 45.1485i 0.0424536 1.51679i
\(887\) −10.0880 −0.338722 −0.169361 0.985554i \(-0.554170\pi\)
−0.169361 + 0.985554i \(0.554170\pi\)
\(888\) −3.69507 0.310914i −0.123998 0.0104336i
\(889\) 1.00101 0.0335729
\(890\) −0.240041 + 8.57626i −0.00804620 + 0.287477i
\(891\) 2.80961i 0.0941256i
\(892\) −33.7275 1.88948i −1.12928 0.0632644i
\(893\) 4.80192i 0.160690i
\(894\) 23.8370 + 0.667174i 0.797227 + 0.0223136i
\(895\) 6.53854 0.218559
\(896\) 11.0974 + 2.20190i 0.370737 + 0.0735603i
\(897\) −24.7872 −0.827620
\(898\) 14.6707 + 0.410620i 0.489568 + 0.0137026i
\(899\) 71.4229i 2.38209i
\(900\) 1.99687 + 0.111869i 0.0665623 + 0.00372895i
\(901\) 7.55902i 0.251828i
\(902\) 0.302582 10.8107i 0.0100749 0.359958i
\(903\) 7.80458 0.259720
\(904\) 16.6822 + 1.40369i 0.554840 + 0.0466859i
\(905\) −19.6396 −0.652841
\(906\) −0.468372 + 16.7341i −0.0155606 + 0.555954i
\(907\) 17.8486i 0.592654i −0.955086 0.296327i \(-0.904238\pi\)
0.955086 0.296327i \(-0.0957619\pi\)
\(908\) −2.36706 + 42.2523i −0.0785535 + 1.40219i
\(909\) 14.0321i 0.465415i
\(910\) 4.91872 + 0.137670i 0.163054 + 0.00456373i
\(911\) 34.9379 1.15755 0.578773 0.815489i \(-0.303532\pi\)
0.578773 + 0.815489i \(0.303532\pi\)
\(912\) 2.19992 + 0.247264i 0.0728466 + 0.00818771i
\(913\) 42.4218 1.40396
\(914\) 25.5821 + 0.716019i 0.846181 + 0.0236838i
\(915\) 7.97671i 0.263702i
\(916\) −2.74517 + 49.0017i −0.0907031 + 1.61906i
\(917\) 4.36825i 0.144252i
\(918\) −0.0341680 + 1.22076i −0.00112771 + 0.0402911i
\(919\) −15.2529 −0.503146 −0.251573 0.967838i \(-0.580948\pi\)
−0.251573 + 0.967838i \(0.580948\pi\)
\(920\) −1.68947 + 20.0786i −0.0557002 + 0.661971i
\(921\) 21.2100 0.698892
\(922\) 1.13937 40.7077i 0.0375232 1.34064i
\(923\) 19.3723i 0.637647i
\(924\) −5.61043 0.314308i −0.184570 0.0103400i
\(925\) 1.31102i 0.0431061i
\(926\) 23.8790 + 0.668351i 0.784714 + 0.0219634i
\(927\) −14.2681 −0.468627
\(928\) −5.93954 + 42.1756i −0.194975 + 1.38448i
\(929\) 1.95849 0.0642559 0.0321279 0.999484i \(-0.489772\pi\)
0.0321279 + 0.999484i \(0.489772\pi\)
\(930\) −13.4101 0.375335i −0.439734 0.0123077i
\(931\) 0.553442i 0.0181383i
\(932\) −42.6392 2.38873i −1.39669 0.0782455i
\(933\) 28.7116i 0.939976i
\(934\) −0.307029 + 10.9696i −0.0100463 + 0.358937i
\(935\) −2.42623 −0.0793463
\(936\) −0.825160 + 9.80665i −0.0269712 + 0.320540i
\(937\) 11.6735 0.381357 0.190679 0.981653i \(-0.438931\pi\)
0.190679 + 0.981653i \(0.438931\pi\)
\(938\) 0.0773380 2.76315i 0.00252517 0.0902201i
\(939\) 2.95790i 0.0965275i
\(940\) 0.970623 17.3257i 0.0316582 0.565103i
\(941\) 32.4009i 1.05624i −0.849170 0.528119i \(-0.822897\pi\)
0.849170 0.528119i \(-0.177103\pi\)
\(942\) −0.681720 0.0190807i −0.0222116 0.000621683i
\(943\) −19.3902 −0.631433
\(944\) −1.36217 + 12.1193i −0.0443348 + 0.394449i
\(945\) 1.00000 0.0325300
\(946\) −30.9985 0.867620i −1.00785 0.0282088i
\(947\) 15.7346i 0.511306i −0.966769 0.255653i \(-0.917710\pi\)
0.966769 0.255653i \(-0.0822905\pi\)
\(948\) −1.43642 + 25.6403i −0.0466528 + 0.832759i
\(949\) 11.8225i 0.383773i
\(950\) 0.0218981 0.782379i 0.000710467 0.0253837i
\(951\) 7.82017 0.253587
\(952\) 2.43388 + 0.204794i 0.0788824 + 0.00663740i
\(953\) −15.9340 −0.516153 −0.258076 0.966125i \(-0.583089\pi\)
−0.258076 + 0.966125i \(0.583089\pi\)
\(954\) 0.346348 12.3744i 0.0112134 0.400637i
\(955\) 14.0209i 0.453705i
\(956\) 25.6871 + 1.43904i 0.830779 + 0.0465419i
\(957\) 21.1543i 0.683820i
\(958\) −60.5059 1.69350i −1.95486 0.0547146i
\(959\) 12.1165 0.391263
\(960\) 7.88752 + 1.33682i 0.254568 + 0.0431458i
\(961\) 58.9855 1.90276
\(962\) −6.44855 0.180489i −0.207910 0.00581919i
\(963\) 11.9082i 0.383737i
\(964\) 19.3631 + 1.08476i 0.623645 + 0.0349378i
\(965\) 20.5477i 0.661455i
\(966\) −0.281873 + 10.0708i −0.00906910 + 0.324023i
\(967\) 12.0835 0.388579 0.194290 0.980944i \(-0.437760\pi\)
0.194290 + 0.980944i \(0.437760\pi\)
\(968\) −8.75434 0.736617i −0.281375 0.0236758i
\(969\) 0.477923 0.0153531
\(970\) 0.0223095 0.797081i 0.000716316 0.0255927i
\(971\) 24.5135i 0.786677i −0.919394 0.393338i \(-0.871320\pi\)
0.919394 0.393338i \(-0.128680\pi\)
\(972\) −0.111869 + 1.99687i −0.00358819 + 0.0640496i
\(973\) 9.43649i 0.302520i
\(974\) 38.9684 + 1.09069i 1.24863 + 0.0349480i
\(975\) 3.47943 0.111431
\(976\) 3.56379 31.7072i 0.114074 1.01492i
\(977\) 53.2542 1.70375 0.851876 0.523743i \(-0.175465\pi\)
0.851876 + 0.523743i \(0.175465\pi\)
\(978\) −6.12621 0.171467i −0.195895 0.00548290i
\(979\) 17.0451i 0.544764i
\(980\) 0.111869 1.99687i 0.00357351 0.0637876i
\(981\) 15.7813i 0.503858i
\(982\) 1.69101 60.4170i 0.0539624 1.92798i
\(983\) 50.7409 1.61838 0.809191 0.587546i \(-0.199906\pi\)
0.809191 + 0.587546i \(0.199906\pi\)
\(984\) −0.645497 + 7.67144i −0.0205777 + 0.244556i
\(985\) −7.83824 −0.249747
\(986\) −0.257259 + 9.19141i −0.00819279 + 0.292714i
\(987\) 8.67645i 0.276175i
\(988\) 3.84529 + 0.215421i 0.122335 + 0.00685346i
\(989\) 55.5993i 1.76795i
\(990\) −3.97184 0.111168i −0.126233 0.00353315i
\(991\) 26.4152 0.839105 0.419553 0.907731i \(-0.362187\pi\)
0.419553 + 0.907731i \(0.362187\pi\)
\(992\) −53.1370 7.48322i −1.68710 0.237592i
\(993\) 4.74076 0.150443
\(994\) 7.87080 + 0.220296i 0.249647 + 0.00698737i
\(995\) 18.7178i 0.593395i
\(996\) −30.1503 1.68908i −0.955350 0.0535206i
\(997\) 61.2231i 1.93896i 0.245179 + 0.969478i \(0.421153\pi\)
−0.245179 + 0.969478i \(0.578847\pi\)
\(998\) −1.51713 + 54.2043i −0.0480238 + 1.71581i
\(999\) −1.31102 −0.0414789
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.g.d.421.1 16
4.3 odd 2 3360.2.g.d.1681.7 16
8.3 odd 2 3360.2.g.d.1681.10 16
8.5 even 2 inner 840.2.g.d.421.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.g.d.421.1 16 1.1 even 1 trivial
840.2.g.d.421.2 yes 16 8.5 even 2 inner
3360.2.g.d.1681.7 16 4.3 odd 2
3360.2.g.d.1681.10 16 8.3 odd 2