Properties

Label 840.2.g.b.421.10
Level $840$
Weight $2$
Character 840.421
Analytic conductor $6.707$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(421,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.421"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.3058043990573056.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + x^{10} - 8x^{7} - 16x^{5} + 16x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 421.10
Root \(-1.11568 - 0.869059i\) of defining polynomial
Character \(\chi\) \(=\) 840.421
Dual form 840.2.g.b.421.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.869059 + 1.11568i) q^{2} +1.00000i q^{3} +(-0.489471 + 1.93918i) q^{4} +1.00000i q^{5} +(-1.11568 + 0.869059i) q^{6} -1.00000 q^{7} +(-2.58888 + 1.13917i) q^{8} -1.00000 q^{9} +(-1.11568 + 0.869059i) q^{10} +0.759176i q^{11} +(-1.93918 - 0.489471i) q^{12} +0.759176i q^{13} +(-0.869059 - 1.11568i) q^{14} -1.00000 q^{15} +(-3.52084 - 1.89835i) q^{16} -5.26887 q^{17} +(-0.869059 - 1.11568i) q^{18} +1.64700i q^{19} +(-1.93918 - 0.489471i) q^{20} -1.00000i q^{21} +(-0.846995 + 0.659769i) q^{22} +2.20737 q^{23} +(-1.13917 - 2.58888i) q^{24} -1.00000 q^{25} +(-0.846995 + 0.659769i) q^{26} -1.00000i q^{27} +(0.489471 - 1.93918i) q^{28} +1.39265i q^{29} +(-0.869059 - 1.11568i) q^{30} +3.52322 q^{31} +(-0.941874 - 5.57789i) q^{32} -0.759176 q^{33} +(-4.57896 - 5.87836i) q^{34} -1.00000i q^{35} +(0.489471 - 1.93918i) q^{36} +11.4133i q^{37} +(-1.83753 + 1.43135i) q^{38} -0.759176 q^{39} +(-1.13917 - 2.58888i) q^{40} -1.60002 q^{41} +(1.11568 - 0.869059i) q^{42} -9.22676i q^{43} +(-1.47218 - 0.371595i) q^{44} -1.00000i q^{45} +(1.91833 + 2.46271i) q^{46} -2.62393 q^{47} +(1.89835 - 3.52084i) q^{48} +1.00000 q^{49} +(-0.869059 - 1.11568i) q^{50} -5.26887i q^{51} +(-1.47218 - 0.371595i) q^{52} -2.62309i q^{53} +(1.11568 - 0.869059i) q^{54} -0.759176 q^{55} +(2.58888 - 1.13917i) q^{56} -1.64700 q^{57} +(-1.55375 + 1.21030i) q^{58} +8.77025i q^{59} +(0.489471 - 1.93918i) q^{60} +2.97609i q^{61} +(3.06189 + 3.93078i) q^{62} +1.00000 q^{63} +(5.40458 - 5.89835i) q^{64} -0.759176 q^{65} +(-0.659769 - 0.846995i) q^{66} +6.36407i q^{67} +(2.57896 - 10.2173i) q^{68} +2.20737i q^{69} +(1.11568 - 0.869059i) q^{70} +8.77979 q^{71} +(2.58888 - 1.13917i) q^{72} +4.59136 q^{73} +(-12.7335 + 9.91881i) q^{74} -1.00000i q^{75} +(-3.19384 - 0.806162i) q^{76} -0.759176i q^{77} +(-0.659769 - 0.846995i) q^{78} +15.8524 q^{79} +(1.89835 - 3.52084i) q^{80} +1.00000 q^{81} +(-1.39051 - 1.78510i) q^{82} +2.86269i q^{83} +(1.93918 + 0.489471i) q^{84} -5.26887i q^{85} +(10.2941 - 8.01860i) q^{86} -1.39265 q^{87} +(-0.864831 - 1.96541i) q^{88} -15.0005 q^{89} +(1.11568 - 0.869059i) q^{90} -0.759176i q^{91} +(-1.08044 + 4.28048i) q^{92} +3.52322i q^{93} +(-2.28035 - 2.92746i) q^{94} -1.64700 q^{95} +(5.57789 - 0.941874i) q^{96} -6.10971 q^{97} +(0.869059 + 1.11568i) q^{98} -0.759176i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + 2 q^{4} - 12 q^{7} - 2 q^{8} - 12 q^{9} + 2 q^{14} - 12 q^{15} + 2 q^{16} + 2 q^{18} + 40 q^{23} - 12 q^{25} - 2 q^{28} + 2 q^{30} - 8 q^{31} - 2 q^{32} - 20 q^{34} - 2 q^{36} + 24 q^{38}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.869059 + 1.11568i 0.614518 + 0.788903i
\(3\) 1.00000i 0.577350i
\(4\) −0.489471 + 1.93918i −0.244736 + 0.969590i
\(5\) 1.00000i 0.447214i
\(6\) −1.11568 + 0.869059i −0.455473 + 0.354792i
\(7\) −1.00000 −0.377964
\(8\) −2.58888 + 1.13917i −0.915307 + 0.402757i
\(9\) −1.00000 −0.333333
\(10\) −1.11568 + 0.869059i −0.352808 + 0.274821i
\(11\) 0.759176i 0.228900i 0.993429 + 0.114450i \(0.0365106\pi\)
−0.993429 + 0.114450i \(0.963489\pi\)
\(12\) −1.93918 0.489471i −0.559793 0.141298i
\(13\) 0.759176i 0.210558i 0.994443 + 0.105279i \(0.0335735\pi\)
−0.994443 + 0.105279i \(0.966427\pi\)
\(14\) −0.869059 1.11568i −0.232266 0.298177i
\(15\) −1.00000 −0.258199
\(16\) −3.52084 1.89835i −0.880209 0.474587i
\(17\) −5.26887 −1.27789 −0.638944 0.769253i \(-0.720629\pi\)
−0.638944 + 0.769253i \(0.720629\pi\)
\(18\) −0.869059 1.11568i −0.204839 0.262968i
\(19\) 1.64700i 0.377849i 0.981992 + 0.188924i \(0.0605001\pi\)
−0.981992 + 0.188924i \(0.939500\pi\)
\(20\) −1.93918 0.489471i −0.433614 0.109449i
\(21\) 1.00000i 0.218218i
\(22\) −0.846995 + 0.659769i −0.180580 + 0.140663i
\(23\) 2.20737 0.460268 0.230134 0.973159i \(-0.426084\pi\)
0.230134 + 0.973159i \(0.426084\pi\)
\(24\) −1.13917 2.58888i −0.232532 0.528453i
\(25\) −1.00000 −0.200000
\(26\) −0.846995 + 0.659769i −0.166109 + 0.129391i
\(27\) 1.00000i 0.192450i
\(28\) 0.489471 1.93918i 0.0925014 0.366471i
\(29\) 1.39265i 0.258609i 0.991605 + 0.129304i \(0.0412745\pi\)
−0.991605 + 0.129304i \(0.958726\pi\)
\(30\) −0.869059 1.11568i −0.158668 0.203694i
\(31\) 3.52322 0.632790 0.316395 0.948628i \(-0.397528\pi\)
0.316395 + 0.948628i \(0.397528\pi\)
\(32\) −0.941874 5.57789i −0.166501 0.986041i
\(33\) −0.759176 −0.132156
\(34\) −4.57896 5.87836i −0.785285 1.00813i
\(35\) 1.00000i 0.169031i
\(36\) 0.489471 1.93918i 0.0815786 0.323197i
\(37\) 11.4133i 1.87633i 0.346189 + 0.938165i \(0.387475\pi\)
−0.346189 + 0.938165i \(0.612525\pi\)
\(38\) −1.83753 + 1.43135i −0.298086 + 0.232195i
\(39\) −0.759176 −0.121565
\(40\) −1.13917 2.58888i −0.180119 0.409338i
\(41\) −1.60002 −0.249881 −0.124940 0.992164i \(-0.539874\pi\)
−0.124940 + 0.992164i \(0.539874\pi\)
\(42\) 1.11568 0.869059i 0.172153 0.134099i
\(43\) 9.22676i 1.40707i −0.710662 0.703534i \(-0.751604\pi\)
0.710662 0.703534i \(-0.248396\pi\)
\(44\) −1.47218 0.371595i −0.221939 0.0560200i
\(45\) 1.00000i 0.149071i
\(46\) 1.91833 + 2.46271i 0.282843 + 0.363107i
\(47\) −2.62393 −0.382740 −0.191370 0.981518i \(-0.561293\pi\)
−0.191370 + 0.981518i \(0.561293\pi\)
\(48\) 1.89835 3.52084i 0.274003 0.508189i
\(49\) 1.00000 0.142857
\(50\) −0.869059 1.11568i −0.122904 0.157781i
\(51\) 5.26887i 0.737789i
\(52\) −1.47218 0.371595i −0.204154 0.0515309i
\(53\) 2.62309i 0.360309i −0.983638 0.180155i \(-0.942340\pi\)
0.983638 0.180155i \(-0.0576598\pi\)
\(54\) 1.11568 0.869059i 0.151824 0.118264i
\(55\) −0.759176 −0.102367
\(56\) 2.58888 1.13917i 0.345953 0.152228i
\(57\) −1.64700 −0.218151
\(58\) −1.55375 + 1.21030i −0.204017 + 0.158920i
\(59\) 8.77025i 1.14179i 0.821023 + 0.570894i \(0.193403\pi\)
−0.821023 + 0.570894i \(0.806597\pi\)
\(60\) 0.489471 1.93918i 0.0631905 0.250347i
\(61\) 2.97609i 0.381049i 0.981682 + 0.190524i \(0.0610188\pi\)
−0.981682 + 0.190524i \(0.938981\pi\)
\(62\) 3.06189 + 3.93078i 0.388860 + 0.499210i
\(63\) 1.00000 0.125988
\(64\) 5.40458 5.89835i 0.675573 0.737293i
\(65\) −0.759176 −0.0941642
\(66\) −0.659769 0.846995i −0.0812120 0.104258i
\(67\) 6.36407i 0.777494i 0.921344 + 0.388747i \(0.127092\pi\)
−0.921344 + 0.388747i \(0.872908\pi\)
\(68\) 2.57896 10.2173i 0.312745 1.23903i
\(69\) 2.20737i 0.265736i
\(70\) 1.11568 0.869059i 0.133349 0.103872i
\(71\) 8.77979 1.04197 0.520985 0.853566i \(-0.325565\pi\)
0.520985 + 0.853566i \(0.325565\pi\)
\(72\) 2.58888 1.13917i 0.305102 0.134252i
\(73\) 4.59136 0.537378 0.268689 0.963227i \(-0.413410\pi\)
0.268689 + 0.963227i \(0.413410\pi\)
\(74\) −12.7335 + 9.91881i −1.48024 + 1.15304i
\(75\) 1.00000i 0.115470i
\(76\) −3.19384 0.806162i −0.366358 0.0924731i
\(77\) 0.759176i 0.0865161i
\(78\) −0.659769 0.846995i −0.0747041 0.0959033i
\(79\) 15.8524 1.78353 0.891765 0.452498i \(-0.149467\pi\)
0.891765 + 0.452498i \(0.149467\pi\)
\(80\) 1.89835 3.52084i 0.212242 0.393641i
\(81\) 1.00000 0.111111
\(82\) −1.39051 1.78510i −0.153556 0.197132i
\(83\) 2.86269i 0.314221i 0.987581 + 0.157111i \(0.0502179\pi\)
−0.987581 + 0.157111i \(0.949782\pi\)
\(84\) 1.93918 + 0.489471i 0.211582 + 0.0534057i
\(85\) 5.26887i 0.571489i
\(86\) 10.2941 8.01860i 1.11004 0.864668i
\(87\) −1.39265 −0.149308
\(88\) −0.864831 1.96541i −0.0921913 0.209514i
\(89\) −15.0005 −1.59004 −0.795022 0.606580i \(-0.792541\pi\)
−0.795022 + 0.606580i \(0.792541\pi\)
\(90\) 1.11568 0.869059i 0.117603 0.0916069i
\(91\) 0.759176i 0.0795833i
\(92\) −1.08044 + 4.28048i −0.112644 + 0.446271i
\(93\) 3.52322i 0.365341i
\(94\) −2.28035 2.92746i −0.235201 0.301945i
\(95\) −1.64700 −0.168979
\(96\) 5.57789 0.941874i 0.569291 0.0961296i
\(97\) −6.10971 −0.620347 −0.310174 0.950680i \(-0.600387\pi\)
−0.310174 + 0.950680i \(0.600387\pi\)
\(98\) 0.869059 + 1.11568i 0.0877883 + 0.112700i
\(99\) 0.759176i 0.0763001i
\(100\) 0.489471 1.93918i 0.0489471 0.193918i
\(101\) 18.7638i 1.86707i 0.358489 + 0.933534i \(0.383292\pi\)
−0.358489 + 0.933534i \(0.616708\pi\)
\(102\) 5.87836 4.57896i 0.582044 0.453385i
\(103\) −2.87928 −0.283703 −0.141852 0.989888i \(-0.545306\pi\)
−0.141852 + 0.989888i \(0.545306\pi\)
\(104\) −0.864831 1.96541i −0.0848036 0.192725i
\(105\) 1.00000 0.0975900
\(106\) 2.92652 2.27962i 0.284249 0.221416i
\(107\) 6.05806i 0.585654i 0.956165 + 0.292827i \(0.0945961\pi\)
−0.956165 + 0.292827i \(0.905404\pi\)
\(108\) 1.93918 + 0.489471i 0.186598 + 0.0470994i
\(109\) 5.64799i 0.540980i 0.962723 + 0.270490i \(0.0871857\pi\)
−0.962723 + 0.270490i \(0.912814\pi\)
\(110\) −0.659769 0.846995i −0.0629065 0.0807578i
\(111\) −11.4133 −1.08330
\(112\) 3.52084 + 1.89835i 0.332688 + 0.179377i
\(113\) −5.92320 −0.557208 −0.278604 0.960406i \(-0.589872\pi\)
−0.278604 + 0.960406i \(0.589872\pi\)
\(114\) −1.43135 1.83753i −0.134058 0.172100i
\(115\) 2.20737i 0.205838i
\(116\) −2.70060 0.681663i −0.250745 0.0632909i
\(117\) 0.759176i 0.0701858i
\(118\) −9.78477 + 7.62187i −0.900761 + 0.701650i
\(119\) 5.26887 0.482997
\(120\) 2.58888 1.13917i 0.236331 0.103992i
\(121\) 10.4237 0.947605
\(122\) −3.32035 + 2.58639i −0.300610 + 0.234161i
\(123\) 1.60002i 0.144269i
\(124\) −1.72452 + 6.83216i −0.154866 + 0.613546i
\(125\) 1.00000i 0.0894427i
\(126\) 0.869059 + 1.11568i 0.0774220 + 0.0993924i
\(127\) 8.08979 0.717852 0.358926 0.933366i \(-0.383143\pi\)
0.358926 + 0.933366i \(0.383143\pi\)
\(128\) 11.2776 + 0.903757i 0.996804 + 0.0798815i
\(129\) 9.22676 0.812371
\(130\) −0.659769 0.846995i −0.0578656 0.0742864i
\(131\) 7.28585i 0.636567i −0.947996 0.318284i \(-0.896894\pi\)
0.947996 0.318284i \(-0.103106\pi\)
\(132\) 0.371595 1.47218i 0.0323432 0.128137i
\(133\) 1.64700i 0.142813i
\(134\) −7.10024 + 5.53075i −0.613368 + 0.477784i
\(135\) 1.00000 0.0860663
\(136\) 13.6405 6.00214i 1.16966 0.514679i
\(137\) −8.53031 −0.728793 −0.364397 0.931244i \(-0.618725\pi\)
−0.364397 + 0.931244i \(0.618725\pi\)
\(138\) −2.46271 + 1.91833i −0.209640 + 0.163299i
\(139\) 6.26877i 0.531710i −0.964013 0.265855i \(-0.914346\pi\)
0.964013 0.265855i \(-0.0856542\pi\)
\(140\) 1.93918 + 0.489471i 0.163891 + 0.0413679i
\(141\) 2.62393i 0.220975i
\(142\) 7.63016 + 9.79541i 0.640309 + 0.822013i
\(143\) −0.576348 −0.0481967
\(144\) 3.52084 + 1.89835i 0.293403 + 0.158196i
\(145\) −1.39265 −0.115653
\(146\) 3.99017 + 5.12248i 0.330229 + 0.423939i
\(147\) 1.00000i 0.0824786i
\(148\) −22.1324 5.58647i −1.81927 0.459205i
\(149\) 14.4120i 1.18068i 0.807155 + 0.590340i \(0.201006\pi\)
−0.807155 + 0.590340i \(0.798994\pi\)
\(150\) 1.11568 0.869059i 0.0910947 0.0709584i
\(151\) 20.0306 1.63006 0.815032 0.579416i \(-0.196719\pi\)
0.815032 + 0.579416i \(0.196719\pi\)
\(152\) −1.87622 4.26390i −0.152181 0.345848i
\(153\) 5.26887 0.425963
\(154\) 0.846995 0.659769i 0.0682528 0.0531657i
\(155\) 3.52322i 0.282992i
\(156\) 0.371595 1.47218i 0.0297514 0.117869i
\(157\) 14.6849i 1.17198i 0.810317 + 0.585991i \(0.199295\pi\)
−0.810317 + 0.585991i \(0.800705\pi\)
\(158\) 13.7766 + 17.6861i 1.09601 + 1.40703i
\(159\) 2.62309 0.208025
\(160\) 5.57789 0.941874i 0.440971 0.0744616i
\(161\) −2.20737 −0.173965
\(162\) 0.869059 + 1.11568i 0.0682798 + 0.0876559i
\(163\) 10.5669i 0.827664i −0.910353 0.413832i \(-0.864190\pi\)
0.910353 0.413832i \(-0.135810\pi\)
\(164\) 0.783164 3.10272i 0.0611548 0.242282i
\(165\) 0.759176i 0.0591018i
\(166\) −3.19384 + 2.48785i −0.247890 + 0.193094i
\(167\) −8.60243 −0.665676 −0.332838 0.942984i \(-0.608006\pi\)
−0.332838 + 0.942984i \(0.608006\pi\)
\(168\) 1.13917 + 2.58888i 0.0878889 + 0.199736i
\(169\) 12.4237 0.955666
\(170\) 5.87836 4.57896i 0.450850 0.351190i
\(171\) 1.64700i 0.125950i
\(172\) 17.8923 + 4.51623i 1.36428 + 0.344360i
\(173\) 0.318314i 0.0242010i −0.999927 0.0121005i \(-0.996148\pi\)
0.999927 0.0121005i \(-0.00385180\pi\)
\(174\) −1.21030 1.55375i −0.0917524 0.117789i
\(175\) 1.00000 0.0755929
\(176\) 1.44118 2.67293i 0.108633 0.201480i
\(177\) −8.77025 −0.659212
\(178\) −13.0363 16.7357i −0.977111 1.25439i
\(179\) 12.9092i 0.964882i 0.875928 + 0.482441i \(0.160250\pi\)
−0.875928 + 0.482441i \(0.839750\pi\)
\(180\) 1.93918 + 0.489471i 0.144538 + 0.0364830i
\(181\) 10.0187i 0.744684i −0.928096 0.372342i \(-0.878555\pi\)
0.928096 0.372342i \(-0.121445\pi\)
\(182\) 0.846995 0.659769i 0.0627835 0.0489053i
\(183\) −2.97609 −0.219999
\(184\) −5.71460 + 2.51457i −0.421286 + 0.185376i
\(185\) −11.4133 −0.839120
\(186\) −3.93078 + 3.06189i −0.288219 + 0.224509i
\(187\) 4.00000i 0.292509i
\(188\) 1.28434 5.08828i 0.0936702 0.371101i
\(189\) 1.00000i 0.0727393i
\(190\) −1.43135 1.83753i −0.103841 0.133308i
\(191\) 2.08846 0.151115 0.0755577 0.997141i \(-0.475926\pi\)
0.0755577 + 0.997141i \(0.475926\pi\)
\(192\) 5.89835 + 5.40458i 0.425676 + 0.390042i
\(193\) 2.39763 0.172585 0.0862925 0.996270i \(-0.472498\pi\)
0.0862925 + 0.996270i \(0.472498\pi\)
\(194\) −5.30970 6.81647i −0.381215 0.489394i
\(195\) 0.759176i 0.0543657i
\(196\) −0.489471 + 1.93918i −0.0349622 + 0.138513i
\(197\) 7.00832i 0.499322i 0.968333 + 0.249661i \(0.0803192\pi\)
−0.968333 + 0.249661i \(0.919681\pi\)
\(198\) 0.846995 0.659769i 0.0601933 0.0468877i
\(199\) 22.6390 1.60484 0.802419 0.596761i \(-0.203546\pi\)
0.802419 + 0.596761i \(0.203546\pi\)
\(200\) 2.58888 1.13917i 0.183061 0.0805515i
\(201\) −6.36407 −0.448887
\(202\) −20.9343 + 16.3069i −1.47294 + 1.14735i
\(203\) 1.39265i 0.0977450i
\(204\) 10.2173 + 2.57896i 0.715353 + 0.180563i
\(205\) 1.60002i 0.111750i
\(206\) −2.50226 3.21234i −0.174341 0.223815i
\(207\) −2.20737 −0.153423
\(208\) 1.44118 2.67293i 0.0999278 0.185335i
\(209\) −1.25037 −0.0864897
\(210\) 0.869059 + 1.11568i 0.0599708 + 0.0769890i
\(211\) 27.5670i 1.89779i −0.315594 0.948894i \(-0.602204\pi\)
0.315594 0.948894i \(-0.397796\pi\)
\(212\) 5.08664 + 1.28393i 0.349352 + 0.0881805i
\(213\) 8.77979i 0.601581i
\(214\) −6.75884 + 5.26481i −0.462025 + 0.359895i
\(215\) 9.22676 0.629260
\(216\) 1.13917 + 2.58888i 0.0775107 + 0.176151i
\(217\) −3.52322 −0.239172
\(218\) −6.30134 + 4.90844i −0.426781 + 0.332442i
\(219\) 4.59136i 0.310255i
\(220\) 0.371595 1.47218i 0.0250529 0.0992543i
\(221\) 4.00000i 0.269069i
\(222\) −9.91881 12.7335i −0.665707 0.854618i
\(223\) −16.5839 −1.11054 −0.555269 0.831670i \(-0.687385\pi\)
−0.555269 + 0.831670i \(0.687385\pi\)
\(224\) 0.941874 + 5.57789i 0.0629316 + 0.372689i
\(225\) 1.00000 0.0666667
\(226\) −5.14762 6.60838i −0.342414 0.439583i
\(227\) 15.9885i 1.06119i 0.847625 + 0.530595i \(0.178032\pi\)
−0.847625 + 0.530595i \(0.821968\pi\)
\(228\) 0.806162 3.19384i 0.0533894 0.211517i
\(229\) 7.71525i 0.509838i 0.966962 + 0.254919i \(0.0820488\pi\)
−0.966962 + 0.254919i \(0.917951\pi\)
\(230\) −2.46271 + 1.91833i −0.162386 + 0.126491i
\(231\) 0.759176 0.0499501
\(232\) −1.58647 3.60541i −0.104157 0.236707i
\(233\) 22.7547 1.49071 0.745353 0.666670i \(-0.232281\pi\)
0.745353 + 0.666670i \(0.232281\pi\)
\(234\) 0.846995 0.659769i 0.0553698 0.0431304i
\(235\) 2.62393i 0.171167i
\(236\) −17.0071 4.29279i −1.10707 0.279437i
\(237\) 15.8524i 1.02972i
\(238\) 4.57896 + 5.87836i 0.296810 + 0.381037i
\(239\) −1.92129 −0.124278 −0.0621388 0.998068i \(-0.519792\pi\)
−0.0621388 + 0.998068i \(0.519792\pi\)
\(240\) 3.52084 + 1.89835i 0.227269 + 0.122538i
\(241\) 13.8987 0.895292 0.447646 0.894211i \(-0.352263\pi\)
0.447646 + 0.894211i \(0.352263\pi\)
\(242\) 9.05877 + 11.6294i 0.582320 + 0.747568i
\(243\) 1.00000i 0.0641500i
\(244\) −5.77116 1.45671i −0.369461 0.0932562i
\(245\) 1.00000i 0.0638877i
\(246\) 1.78510 1.39051i 0.113814 0.0886558i
\(247\) −1.25037 −0.0795589
\(248\) −9.12120 + 4.01355i −0.579197 + 0.254861i
\(249\) −2.86269 −0.181416
\(250\) 1.11568 0.869059i 0.0705616 0.0549641i
\(251\) 8.35551i 0.527395i −0.964605 0.263698i \(-0.915058\pi\)
0.964605 0.263698i \(-0.0849421\pi\)
\(252\) −0.489471 + 1.93918i −0.0308338 + 0.122157i
\(253\) 1.67578i 0.105355i
\(254\) 7.03050 + 9.02559i 0.441133 + 0.566316i
\(255\) 5.26887 0.329949
\(256\) 8.79256 + 13.3675i 0.549535 + 0.835471i
\(257\) −22.7154 −1.41695 −0.708474 0.705737i \(-0.750616\pi\)
−0.708474 + 0.705737i \(0.750616\pi\)
\(258\) 8.01860 + 10.2941i 0.499216 + 0.640882i
\(259\) 11.4133i 0.709186i
\(260\) 0.371595 1.47218i 0.0230453 0.0913006i
\(261\) 1.39265i 0.0862030i
\(262\) 8.12865 6.33183i 0.502190 0.391182i
\(263\) 6.68922 0.412475 0.206238 0.978502i \(-0.433878\pi\)
0.206238 + 0.978502i \(0.433878\pi\)
\(264\) 1.96541 0.864831i 0.120963 0.0532266i
\(265\) 2.62309 0.161135
\(266\) 1.83753 1.43135i 0.112666 0.0877614i
\(267\) 15.0005i 0.918013i
\(268\) −12.3411 3.11503i −0.753851 0.190281i
\(269\) 22.9310i 1.39813i −0.715060 0.699063i \(-0.753601\pi\)
0.715060 0.699063i \(-0.246399\pi\)
\(270\) 0.869059 + 1.11568i 0.0528893 + 0.0678980i
\(271\) −13.9109 −0.845027 −0.422513 0.906357i \(-0.638852\pi\)
−0.422513 + 0.906357i \(0.638852\pi\)
\(272\) 18.5508 + 10.0021i 1.12481 + 0.606469i
\(273\) 0.759176 0.0459474
\(274\) −7.41335 9.51707i −0.447857 0.574947i
\(275\) 0.759176i 0.0457800i
\(276\) −4.28048 1.08044i −0.257655 0.0650350i
\(277\) 6.88548i 0.413708i −0.978372 0.206854i \(-0.933677\pi\)
0.978372 0.206854i \(-0.0663225\pi\)
\(278\) 6.99392 5.44793i 0.419467 0.326745i
\(279\) −3.52322 −0.210930
\(280\) 1.13917 + 2.58888i 0.0680784 + 0.154715i
\(281\) −4.53774 −0.270699 −0.135349 0.990798i \(-0.543216\pi\)
−0.135349 + 0.990798i \(0.543216\pi\)
\(282\) 2.92746 2.28035i 0.174328 0.135793i
\(283\) 8.07320i 0.479902i −0.970785 0.239951i \(-0.922869\pi\)
0.970785 0.239951i \(-0.0771314\pi\)
\(284\) −4.29746 + 17.0256i −0.255007 + 1.01028i
\(285\) 1.64700i 0.0975601i
\(286\) −0.500881 0.643018i −0.0296177 0.0380225i
\(287\) 1.60002 0.0944461
\(288\) 0.941874 + 5.57789i 0.0555004 + 0.328680i
\(289\) 10.7610 0.633000
\(290\) −1.21030 1.55375i −0.0710711 0.0912394i
\(291\) 6.10971i 0.358158i
\(292\) −2.24734 + 8.90348i −0.131516 + 0.521036i
\(293\) 8.07931i 0.471999i −0.971753 0.235999i \(-0.924164\pi\)
0.971753 0.235999i \(-0.0758363\pi\)
\(294\) −1.11568 + 0.869059i −0.0650676 + 0.0506846i
\(295\) −8.77025 −0.510624
\(296\) −13.0017 29.5476i −0.755706 1.71742i
\(297\) 0.759176 0.0440519
\(298\) −16.0792 + 12.5249i −0.931442 + 0.725549i
\(299\) 1.67578i 0.0969129i
\(300\) 1.93918 + 0.489471i 0.111959 + 0.0282596i
\(301\) 9.22676i 0.531821i
\(302\) 17.4078 + 22.3476i 1.00170 + 1.28596i
\(303\) −18.7638 −1.07795
\(304\) 3.12659 5.79883i 0.179322 0.332586i
\(305\) −2.97609 −0.170410
\(306\) 4.57896 + 5.87836i 0.261762 + 0.336043i
\(307\) 14.0669i 0.802841i 0.915894 + 0.401421i \(0.131483\pi\)
−0.915894 + 0.401421i \(0.868517\pi\)
\(308\) 1.47218 + 0.371595i 0.0838852 + 0.0211736i
\(309\) 2.87928i 0.163796i
\(310\) −3.93078 + 3.06189i −0.223253 + 0.173904i
\(311\) 17.0926 0.969232 0.484616 0.874727i \(-0.338959\pi\)
0.484616 + 0.874727i \(0.338959\pi\)
\(312\) 1.96541 0.864831i 0.111270 0.0489614i
\(313\) −10.6013 −0.599222 −0.299611 0.954062i \(-0.596857\pi\)
−0.299611 + 0.954062i \(0.596857\pi\)
\(314\) −16.3836 + 12.7620i −0.924580 + 0.720204i
\(315\) 1.00000i 0.0563436i
\(316\) −7.75928 + 30.7406i −0.436494 + 1.72929i
\(317\) 0.755148i 0.0424133i −0.999775 0.0212067i \(-0.993249\pi\)
0.999775 0.0212067i \(-0.00675080\pi\)
\(318\) 2.27962 + 2.92652i 0.127835 + 0.164111i
\(319\) −1.05727 −0.0591956
\(320\) 5.89835 + 5.40458i 0.329728 + 0.302125i
\(321\) −6.05806 −0.338128
\(322\) −1.91833 2.46271i −0.106905 0.137241i
\(323\) 8.67786i 0.482849i
\(324\) −0.489471 + 1.93918i −0.0271929 + 0.107732i
\(325\) 0.759176i 0.0421115i
\(326\) 11.7893 9.18327i 0.652947 0.508614i
\(327\) −5.64799 −0.312335
\(328\) 4.14225 1.82269i 0.228718 0.100641i
\(329\) 2.62393 0.144662
\(330\) 0.846995 0.659769i 0.0466256 0.0363191i
\(331\) 19.8656i 1.09191i −0.837814 0.545956i \(-0.816167\pi\)
0.837814 0.545956i \(-0.183833\pi\)
\(332\) −5.55127 1.40121i −0.304666 0.0769011i
\(333\) 11.4133i 0.625443i
\(334\) −7.47603 9.59754i −0.409070 0.525154i
\(335\) −6.36407 −0.347706
\(336\) −1.89835 + 3.52084i −0.103563 + 0.192077i
\(337\) −0.827020 −0.0450506 −0.0225253 0.999746i \(-0.507171\pi\)
−0.0225253 + 0.999746i \(0.507171\pi\)
\(338\) 10.7969 + 13.8608i 0.587273 + 0.753927i
\(339\) 5.92320i 0.321704i
\(340\) 10.2173 + 2.57896i 0.554110 + 0.139864i
\(341\) 2.67475i 0.144846i
\(342\) 1.83753 1.43135i 0.0993620 0.0773983i
\(343\) −1.00000 −0.0539949
\(344\) 10.5108 + 23.8870i 0.566707 + 1.28790i
\(345\) −2.20737 −0.118841
\(346\) 0.355136 0.276634i 0.0190922 0.0148719i
\(347\) 33.6178i 1.80470i −0.431004 0.902350i \(-0.641840\pi\)
0.431004 0.902350i \(-0.358160\pi\)
\(348\) 0.681663 2.70060i 0.0365410 0.144767i
\(349\) 22.3359i 1.19562i −0.801640 0.597808i \(-0.796039\pi\)
0.801640 0.597808i \(-0.203961\pi\)
\(350\) 0.869059 + 1.11568i 0.0464532 + 0.0596355i
\(351\) 0.759176 0.0405218
\(352\) 4.23460 0.715048i 0.225705 0.0381122i
\(353\) 17.0337 0.906613 0.453306 0.891355i \(-0.350244\pi\)
0.453306 + 0.891355i \(0.350244\pi\)
\(354\) −7.62187 9.78477i −0.405098 0.520054i
\(355\) 8.77979i 0.465983i
\(356\) 7.34229 29.0886i 0.389141 1.54169i
\(357\) 5.26887i 0.278858i
\(358\) −14.4025 + 11.2189i −0.761198 + 0.592937i
\(359\) 28.5845 1.50863 0.754316 0.656512i \(-0.227969\pi\)
0.754316 + 0.656512i \(0.227969\pi\)
\(360\) 1.13917 + 2.58888i 0.0600395 + 0.136446i
\(361\) 16.2874 0.857230
\(362\) 11.1776 8.70684i 0.587483 0.457621i
\(363\) 10.4237i 0.547100i
\(364\) 1.47218 + 0.371595i 0.0771631 + 0.0194769i
\(365\) 4.59136i 0.240323i
\(366\) −2.58639 3.32035i −0.135193 0.173558i
\(367\) −30.3026 −1.58178 −0.790891 0.611957i \(-0.790382\pi\)
−0.790891 + 0.611957i \(0.790382\pi\)
\(368\) −7.77178 4.19035i −0.405132 0.218437i
\(369\) 1.60002 0.0832937
\(370\) −9.91881 12.7335i −0.515654 0.661984i
\(371\) 2.62309i 0.136184i
\(372\) −6.83216 1.72452i −0.354231 0.0894121i
\(373\) 18.9208i 0.979682i 0.871812 + 0.489841i \(0.162945\pi\)
−0.871812 + 0.489841i \(0.837055\pi\)
\(374\) 4.46271 3.47624i 0.230761 0.179752i
\(375\) 1.00000 0.0516398
\(376\) 6.79305 2.98911i 0.350325 0.154151i
\(377\) −1.05727 −0.0544521
\(378\) −1.11568 + 0.869059i −0.0573842 + 0.0446996i
\(379\) 26.1328i 1.34235i −0.741297 0.671177i \(-0.765789\pi\)
0.741297 0.671177i \(-0.234211\pi\)
\(380\) 0.806162 3.19384i 0.0413552 0.163840i
\(381\) 8.08979i 0.414452i
\(382\) 1.81499 + 2.33004i 0.0928631 + 0.119215i
\(383\) 2.42915 0.124124 0.0620618 0.998072i \(-0.480232\pi\)
0.0620618 + 0.998072i \(0.480232\pi\)
\(384\) −0.903757 + 11.2776i −0.0461196 + 0.575505i
\(385\) 0.759176 0.0386912
\(386\) 2.08368 + 2.67498i 0.106057 + 0.136153i
\(387\) 9.22676i 0.469022i
\(388\) 2.99053 11.8478i 0.151821 0.601483i
\(389\) 11.9716i 0.606985i −0.952834 0.303493i \(-0.901847\pi\)
0.952834 0.303493i \(-0.0981528\pi\)
\(390\) 0.846995 0.659769i 0.0428893 0.0334087i
\(391\) −11.6303 −0.588171
\(392\) −2.58888 + 1.13917i −0.130758 + 0.0575368i
\(393\) 7.28585 0.367522
\(394\) −7.81902 + 6.09065i −0.393917 + 0.306842i
\(395\) 15.8524i 0.797619i
\(396\) 1.47218 + 0.371595i 0.0739798 + 0.0186733i
\(397\) 9.76882i 0.490283i −0.969487 0.245142i \(-0.921166\pi\)
0.969487 0.245142i \(-0.0788344\pi\)
\(398\) 19.6747 + 25.2579i 0.986202 + 1.26606i
\(399\) 1.64700 0.0824534
\(400\) 3.52084 + 1.89835i 0.176042 + 0.0949173i
\(401\) −36.6062 −1.82803 −0.914014 0.405683i \(-0.867034\pi\)
−0.914014 + 0.405683i \(0.867034\pi\)
\(402\) −5.53075 7.10024i −0.275849 0.354128i
\(403\) 2.67475i 0.133239i
\(404\) −36.3864 9.18435i −1.81029 0.456938i
\(405\) 1.00000i 0.0496904i
\(406\) 1.55375 1.21030i 0.0771113 0.0600661i
\(407\) −8.66468 −0.429492
\(408\) 6.00214 + 13.6405i 0.297150 + 0.675304i
\(409\) −28.8414 −1.42612 −0.713058 0.701105i \(-0.752690\pi\)
−0.713058 + 0.701105i \(0.752690\pi\)
\(410\) 1.78510 1.39051i 0.0881600 0.0686725i
\(411\) 8.53031i 0.420769i
\(412\) 1.40932 5.58343i 0.0694324 0.275076i
\(413\) 8.77025i 0.431556i
\(414\) −1.91833 2.46271i −0.0942809 0.121036i
\(415\) −2.86269 −0.140524
\(416\) 4.23460 0.715048i 0.207618 0.0350581i
\(417\) 6.26877 0.306983
\(418\) −1.08664 1.39501i −0.0531494 0.0682319i
\(419\) 3.79286i 0.185294i 0.995699 + 0.0926468i \(0.0295327\pi\)
−0.995699 + 0.0926468i \(0.970467\pi\)
\(420\) −0.489471 + 1.93918i −0.0238838 + 0.0946223i
\(421\) 26.4659i 1.28987i −0.764238 0.644935i \(-0.776885\pi\)
0.764238 0.644935i \(-0.223115\pi\)
\(422\) 30.7558 23.9573i 1.49717 1.16622i
\(423\) 2.62393 0.127580
\(424\) 2.98815 + 6.79086i 0.145117 + 0.329793i
\(425\) 5.26887 0.255578
\(426\) −9.79541 + 7.63016i −0.474589 + 0.369682i
\(427\) 2.97609i 0.144023i
\(428\) −11.7477 2.96525i −0.567845 0.143331i
\(429\) 0.576348i 0.0278263i
\(430\) 8.01860 + 10.2941i 0.386691 + 0.496425i
\(431\) −14.2288 −0.685376 −0.342688 0.939449i \(-0.611337\pi\)
−0.342688 + 0.939449i \(0.611337\pi\)
\(432\) −1.89835 + 3.52084i −0.0913342 + 0.169396i
\(433\) 38.8923 1.86904 0.934521 0.355907i \(-0.115828\pi\)
0.934521 + 0.355907i \(0.115828\pi\)
\(434\) −3.06189 3.93078i −0.146975 0.188683i
\(435\) 1.39265i 0.0667726i
\(436\) −10.9525 2.76453i −0.524528 0.132397i
\(437\) 3.63554i 0.173912i
\(438\) −5.12248 + 3.99017i −0.244761 + 0.190658i
\(439\) 31.0557 1.48221 0.741105 0.671389i \(-0.234302\pi\)
0.741105 + 0.671389i \(0.234302\pi\)
\(440\) 1.96541 0.864831i 0.0936974 0.0412292i
\(441\) −1.00000 −0.0476190
\(442\) 4.46271 3.47624i 0.212269 0.165348i
\(443\) 14.7071i 0.698755i −0.936982 0.349377i \(-0.886393\pi\)
0.936982 0.349377i \(-0.113607\pi\)
\(444\) 5.58647 22.1324i 0.265122 1.05036i
\(445\) 15.0005i 0.711090i
\(446\) −14.4124 18.5023i −0.682446 0.876107i
\(447\) −14.4120 −0.681666
\(448\) −5.40458 + 5.89835i −0.255343 + 0.278671i
\(449\) −37.7617 −1.78208 −0.891042 0.453920i \(-0.850025\pi\)
−0.891042 + 0.453920i \(0.850025\pi\)
\(450\) 0.869059 + 1.11568i 0.0409679 + 0.0525935i
\(451\) 1.21470i 0.0571978i
\(452\) 2.89924 11.4862i 0.136369 0.540263i
\(453\) 20.0306i 0.941118i
\(454\) −17.8380 + 13.8949i −0.837177 + 0.652121i
\(455\) 0.759176 0.0355907
\(456\) 4.26390 1.87622i 0.199675 0.0878620i
\(457\) 21.8085 1.02016 0.510080 0.860127i \(-0.329616\pi\)
0.510080 + 0.860127i \(0.329616\pi\)
\(458\) −8.60773 + 6.70501i −0.402213 + 0.313304i
\(459\) 5.26887i 0.245930i
\(460\) −4.28048 1.08044i −0.199578 0.0503759i
\(461\) 29.4253i 1.37047i −0.728321 0.685236i \(-0.759699\pi\)
0.728321 0.685236i \(-0.240301\pi\)
\(462\) 0.659769 + 0.846995i 0.0306952 + 0.0394058i
\(463\) −16.5881 −0.770913 −0.385457 0.922726i \(-0.625956\pi\)
−0.385457 + 0.922726i \(0.625956\pi\)
\(464\) 2.64374 4.90330i 0.122732 0.227630i
\(465\) −3.52322 −0.163386
\(466\) 19.7751 + 25.3868i 0.916066 + 1.17602i
\(467\) 29.4748i 1.36393i −0.731384 0.681966i \(-0.761125\pi\)
0.731384 0.681966i \(-0.238875\pi\)
\(468\) 1.47218 + 0.371595i 0.0680515 + 0.0171770i
\(469\) 6.36407i 0.293865i
\(470\) 2.92746 2.28035i 0.135034 0.105185i
\(471\) −14.6849 −0.676644
\(472\) −9.99080 22.7051i −0.459864 1.04509i
\(473\) 7.00473 0.322078
\(474\) −17.6861 + 13.7766i −0.812351 + 0.632782i
\(475\) 1.64700i 0.0755698i
\(476\) −2.57896 + 10.2173i −0.118207 + 0.468309i
\(477\) 2.62309i 0.120103i
\(478\) −1.66971 2.14354i −0.0763708 0.0980430i
\(479\) 6.48363 0.296244 0.148122 0.988969i \(-0.452677\pi\)
0.148122 + 0.988969i \(0.452677\pi\)
\(480\) 0.941874 + 5.57789i 0.0429905 + 0.254595i
\(481\) −8.66468 −0.395075
\(482\) 12.0788 + 15.5064i 0.550173 + 0.706298i
\(483\) 2.20737i 0.100439i
\(484\) −5.10208 + 20.2133i −0.231913 + 0.918788i
\(485\) 6.10971i 0.277428i
\(486\) −1.11568 + 0.869059i −0.0506081 + 0.0394213i
\(487\) 4.21121 0.190828 0.0954142 0.995438i \(-0.469582\pi\)
0.0954142 + 0.995438i \(0.469582\pi\)
\(488\) −3.39027 7.70472i −0.153470 0.348776i
\(489\) 10.5669 0.477852
\(490\) −1.11568 + 0.869059i −0.0504012 + 0.0392601i
\(491\) 21.1287i 0.953523i 0.879033 + 0.476762i \(0.158190\pi\)
−0.879033 + 0.476762i \(0.841810\pi\)
\(492\) 3.10272 + 0.783164i 0.139882 + 0.0353077i
\(493\) 7.33770i 0.330474i
\(494\) −1.08664 1.39501i −0.0488904 0.0627643i
\(495\) 0.759176 0.0341224
\(496\) −12.4047 6.68830i −0.556987 0.300313i
\(497\) −8.77979 −0.393827
\(498\) −2.48785 3.19384i −0.111483 0.143119i
\(499\) 31.4442i 1.40763i 0.710381 + 0.703817i \(0.248523\pi\)
−0.710381 + 0.703817i \(0.751477\pi\)
\(500\) 1.93918 + 0.489471i 0.0867228 + 0.0218898i
\(501\) 8.60243i 0.384328i
\(502\) 9.32206 7.26144i 0.416064 0.324094i
\(503\) 3.33411 0.148661 0.0743303 0.997234i \(-0.476318\pi\)
0.0743303 + 0.997234i \(0.476318\pi\)
\(504\) −2.58888 + 1.13917i −0.115318 + 0.0507427i
\(505\) −18.7638 −0.834978
\(506\) −1.86963 + 1.45635i −0.0831152 + 0.0647428i
\(507\) 12.4237i 0.551754i
\(508\) −3.95972 + 15.6875i −0.175684 + 0.696022i
\(509\) 41.0835i 1.82099i −0.413516 0.910497i \(-0.635699\pi\)
0.413516 0.910497i \(-0.364301\pi\)
\(510\) 4.57896 + 5.87836i 0.202760 + 0.260298i
\(511\) −4.59136 −0.203110
\(512\) −7.27259 + 21.4268i −0.321406 + 0.946941i
\(513\) 1.64700 0.0727170
\(514\) −19.7410 25.3430i −0.870739 1.11783i
\(515\) 2.87928i 0.126876i
\(516\) −4.51623 + 17.8923i −0.198816 + 0.787666i
\(517\) 1.99203i 0.0876093i
\(518\) 12.7335 9.91881i 0.559479 0.435807i
\(519\) 0.318314 0.0139724
\(520\) 1.96541 0.864831i 0.0861891 0.0379253i
\(521\) 18.4073 0.806437 0.403218 0.915104i \(-0.367892\pi\)
0.403218 + 0.915104i \(0.367892\pi\)
\(522\) 1.55375 1.21030i 0.0680058 0.0529733i
\(523\) 18.0585i 0.789645i 0.918757 + 0.394822i \(0.129194\pi\)
−0.918757 + 0.394822i \(0.870806\pi\)
\(524\) 14.1286 + 3.56621i 0.617209 + 0.155791i
\(525\) 1.00000i 0.0436436i
\(526\) 5.81333 + 7.46301i 0.253473 + 0.325403i
\(527\) −18.5634 −0.808635
\(528\) 2.67293 + 1.44118i 0.116325 + 0.0627193i
\(529\) −18.1275 −0.788154
\(530\) 2.27962 + 2.92652i 0.0990204 + 0.127120i
\(531\) 8.77025i 0.380596i
\(532\) 3.19384 + 0.806162i 0.138470 + 0.0349515i
\(533\) 1.21470i 0.0526143i
\(534\) 16.7357 13.0363i 0.724223 0.564135i
\(535\) −6.05806 −0.261913
\(536\) −7.24975 16.4758i −0.313142 0.711646i
\(537\) −12.9092 −0.557075
\(538\) 25.5836 19.9284i 1.10299 0.859173i
\(539\) 0.759176i 0.0327000i
\(540\) −0.489471 + 1.93918i −0.0210635 + 0.0834490i
\(541\) 22.9354i 0.986069i 0.870010 + 0.493034i \(0.164112\pi\)
−0.870010 + 0.493034i \(0.835888\pi\)
\(542\) −12.0894 15.5201i −0.519284 0.666644i
\(543\) 10.0187 0.429943
\(544\) 4.96261 + 29.3892i 0.212770 + 1.26005i
\(545\) −5.64799 −0.241933
\(546\) 0.659769 + 0.846995i 0.0282355 + 0.0362481i
\(547\) 13.0149i 0.556475i 0.960512 + 0.278238i \(0.0897503\pi\)
−0.960512 + 0.278238i \(0.910250\pi\)
\(548\) 4.17534 16.5418i 0.178362 0.706631i
\(549\) 2.97609i 0.127016i
\(550\) 0.846995 0.659769i 0.0361160 0.0281326i
\(551\) −2.29370 −0.0977151
\(552\) −2.51457 5.71460i −0.107027 0.243230i
\(553\) −15.8524 −0.674111
\(554\) 7.68197 5.98389i 0.326376 0.254231i
\(555\) 11.4133i 0.484466i
\(556\) 12.1563 + 3.06838i 0.515540 + 0.130128i
\(557\) 38.6281i 1.63673i −0.574701 0.818363i \(-0.694882\pi\)
0.574701 0.818363i \(-0.305118\pi\)
\(558\) −3.06189 3.93078i −0.129620 0.166403i
\(559\) 7.00473 0.296269
\(560\) −1.89835 + 3.52084i −0.0802198 + 0.148782i
\(561\) 4.00000 0.168880
\(562\) −3.94357 5.06266i −0.166349 0.213555i
\(563\) 32.4427i 1.36730i 0.729812 + 0.683648i \(0.239608\pi\)
−0.729812 + 0.683648i \(0.760392\pi\)
\(564\) 5.08828 + 1.28434i 0.214255 + 0.0540805i
\(565\) 5.92320i 0.249191i
\(566\) 9.00709 7.01609i 0.378596 0.294908i
\(567\) −1.00000 −0.0419961
\(568\) −22.7298 + 10.0017i −0.953722 + 0.419661i
\(569\) −12.0215 −0.503969 −0.251984 0.967731i \(-0.581083\pi\)
−0.251984 + 0.967731i \(0.581083\pi\)
\(570\) 1.83753 1.43135i 0.0769655 0.0599524i
\(571\) 35.0459i 1.46662i 0.679892 + 0.733312i \(0.262026\pi\)
−0.679892 + 0.733312i \(0.737974\pi\)
\(572\) 0.282106 1.11764i 0.0117954 0.0467310i
\(573\) 2.08846i 0.0872466i
\(574\) 1.39051 + 1.78510i 0.0580388 + 0.0745088i
\(575\) −2.20737 −0.0920536
\(576\) −5.40458 + 5.89835i −0.225191 + 0.245764i
\(577\) 22.7204 0.945865 0.472932 0.881099i \(-0.343196\pi\)
0.472932 + 0.881099i \(0.343196\pi\)
\(578\) 9.35195 + 12.0058i 0.388990 + 0.499376i
\(579\) 2.39763i 0.0996420i
\(580\) 0.681663 2.70060i 0.0283045 0.112136i
\(581\) 2.86269i 0.118764i
\(582\) 6.81647 5.30970i 0.282552 0.220094i
\(583\) 1.99139 0.0824748
\(584\) −11.8865 + 5.23034i −0.491866 + 0.216433i
\(585\) 0.759176 0.0313881
\(586\) 9.01391 7.02140i 0.372361 0.290052i
\(587\) 6.79336i 0.280392i 0.990124 + 0.140196i \(0.0447733\pi\)
−0.990124 + 0.140196i \(0.955227\pi\)
\(588\) −1.93918 0.489471i −0.0799704 0.0201855i
\(589\) 5.80277i 0.239099i
\(590\) −7.62187 9.78477i −0.313787 0.402832i
\(591\) −7.00832 −0.288284
\(592\) 21.6663 40.1842i 0.890481 1.65156i
\(593\) 10.3483 0.424953 0.212476 0.977166i \(-0.431847\pi\)
0.212476 + 0.977166i \(0.431847\pi\)
\(594\) 0.659769 + 0.846995i 0.0270707 + 0.0347526i
\(595\) 5.26887i 0.216003i
\(596\) −27.9475 7.05428i −1.14478 0.288955i
\(597\) 22.6390i 0.926554i
\(598\) −1.86963 + 1.45635i −0.0764548 + 0.0595547i
\(599\) −15.4656 −0.631908 −0.315954 0.948775i \(-0.602325\pi\)
−0.315954 + 0.948775i \(0.602325\pi\)
\(600\) 1.13917 + 2.58888i 0.0465064 + 0.105691i
\(601\) 9.98426 0.407267 0.203633 0.979047i \(-0.434725\pi\)
0.203633 + 0.979047i \(0.434725\pi\)
\(602\) −10.2941 + 8.01860i −0.419555 + 0.326814i
\(603\) 6.36407i 0.259165i
\(604\) −9.80439 + 38.8429i −0.398935 + 1.58049i
\(605\) 10.4237i 0.423782i
\(606\) −16.3069 20.9343i −0.662421 0.850400i
\(607\) −40.7315 −1.65324 −0.826620 0.562761i \(-0.809739\pi\)
−0.826620 + 0.562761i \(0.809739\pi\)
\(608\) 9.18681 1.55127i 0.372575 0.0629123i
\(609\) 1.39265 0.0564331
\(610\) −2.58639 3.32035i −0.104720 0.134437i
\(611\) 1.99203i 0.0805888i
\(612\) −2.57896 + 10.2173i −0.104248 + 0.413009i
\(613\) 3.70254i 0.149544i 0.997201 + 0.0747722i \(0.0238230\pi\)
−0.997201 + 0.0747722i \(0.976177\pi\)
\(614\) −15.6941 + 12.2250i −0.633364 + 0.493360i
\(615\) 1.60002 0.0645190
\(616\) 0.864831 + 1.96541i 0.0348450 + 0.0791888i
\(617\) −39.8374 −1.60379 −0.801897 0.597462i \(-0.796176\pi\)
−0.801897 + 0.597462i \(0.796176\pi\)
\(618\) 3.21234 2.50226i 0.129219 0.100656i
\(619\) 39.2895i 1.57918i 0.613635 + 0.789590i \(0.289707\pi\)
−0.613635 + 0.789590i \(0.710293\pi\)
\(620\) −6.83216 1.72452i −0.274386 0.0692583i
\(621\) 2.20737i 0.0885786i
\(622\) 14.8545 + 19.0698i 0.595610 + 0.764630i
\(623\) 15.0005 0.600980
\(624\) 2.67293 + 1.44118i 0.107003 + 0.0576933i
\(625\) 1.00000 0.0400000
\(626\) −9.21317 11.8276i −0.368232 0.472728i
\(627\) 1.25037i 0.0499348i
\(628\) −28.4767 7.18784i −1.13634 0.286826i
\(629\) 60.1350i 2.39774i
\(630\) −1.11568 + 0.869059i −0.0444496 + 0.0346242i
\(631\) 0.347978 0.0138528 0.00692639 0.999976i \(-0.497795\pi\)
0.00692639 + 0.999976i \(0.497795\pi\)
\(632\) −41.0398 + 18.0585i −1.63248 + 0.718330i
\(633\) 27.5670 1.09569
\(634\) 0.842501 0.656269i 0.0334600 0.0260638i
\(635\) 8.08979i 0.321033i
\(636\) −1.28393 + 5.08664i −0.0509110 + 0.201699i
\(637\) 0.759176i 0.0300796i
\(638\) −0.918829 1.17957i −0.0363768 0.0466996i
\(639\) −8.77979 −0.347323
\(640\) −0.903757 + 11.2776i −0.0357241 + 0.445784i
\(641\) 39.9083 1.57628 0.788142 0.615494i \(-0.211043\pi\)
0.788142 + 0.615494i \(0.211043\pi\)
\(642\) −5.26481 6.75884i −0.207786 0.266750i
\(643\) 9.88587i 0.389860i −0.980817 0.194930i \(-0.937552\pi\)
0.980817 0.194930i \(-0.0624480\pi\)
\(644\) 1.08044 4.28048i 0.0425754 0.168675i
\(645\) 9.22676i 0.363303i
\(646\) 9.68169 7.54157i 0.380921 0.296719i
\(647\) 21.3778 0.840447 0.420224 0.907421i \(-0.361952\pi\)
0.420224 + 0.907421i \(0.361952\pi\)
\(648\) −2.58888 + 1.13917i −0.101701 + 0.0447508i
\(649\) −6.65816 −0.261356
\(650\) 0.846995 0.659769i 0.0332219 0.0258783i
\(651\) 3.52322i 0.138086i
\(652\) 20.4911 + 5.17220i 0.802495 + 0.202559i
\(653\) 28.7011i 1.12316i 0.827422 + 0.561581i \(0.189807\pi\)
−0.827422 + 0.561581i \(0.810193\pi\)
\(654\) −4.90844 6.30134i −0.191935 0.246402i
\(655\) 7.28585 0.284682
\(656\) 5.63340 + 3.03739i 0.219947 + 0.118590i
\(657\) −4.59136 −0.179126
\(658\) 2.28035 + 2.92746i 0.0888975 + 0.114124i
\(659\) 2.45444i 0.0956115i 0.998857 + 0.0478058i \(0.0152228\pi\)
−0.998857 + 0.0478058i \(0.984777\pi\)
\(660\) 1.47218 + 0.371595i 0.0573045 + 0.0144643i
\(661\) 25.9433i 1.00908i 0.863389 + 0.504539i \(0.168338\pi\)
−0.863389 + 0.504539i \(0.831662\pi\)
\(662\) 22.1636 17.2644i 0.861412 0.670999i
\(663\) 4.00000 0.155347
\(664\) −3.26109 7.41116i −0.126555 0.287609i
\(665\) 1.64700 0.0638681
\(666\) 12.7335 9.91881i 0.493414 0.384346i
\(667\) 3.07409i 0.119029i
\(668\) 4.21065 16.6817i 0.162915 0.645433i
\(669\) 16.5839i 0.641170i
\(670\) −5.53075 7.10024i −0.213672 0.274306i
\(671\) −2.25937 −0.0872221
\(672\) −5.57789 + 0.941874i −0.215172 + 0.0363336i
\(673\) 4.38031 0.168849 0.0844243 0.996430i \(-0.473095\pi\)
0.0844243 + 0.996430i \(0.473095\pi\)
\(674\) −0.718729 0.922687i −0.0276844 0.0355406i
\(675\) 1.00000i 0.0384900i
\(676\) −6.08102 + 24.0917i −0.233885 + 0.926604i
\(677\) 1.75980i 0.0676346i 0.999428 + 0.0338173i \(0.0107664\pi\)
−0.999428 + 0.0338173i \(0.989234\pi\)
\(678\) 6.60838 5.14762i 0.253793 0.197693i
\(679\) 6.10971 0.234469
\(680\) 6.00214 + 13.6405i 0.230172 + 0.523088i
\(681\) −15.9885 −0.612679
\(682\) −2.98415 + 2.32451i −0.114269 + 0.0890102i
\(683\) 2.63083i 0.100666i 0.998732 + 0.0503329i \(0.0160282\pi\)
−0.998732 + 0.0503329i \(0.983972\pi\)
\(684\) 3.19384 + 0.806162i 0.122119 + 0.0308244i
\(685\) 8.53031i 0.325926i
\(686\) −0.869059 1.11568i −0.0331808 0.0425968i
\(687\) −7.71525 −0.294355
\(688\) −17.5156 + 32.4859i −0.667775 + 1.23851i
\(689\) 1.99139 0.0758658
\(690\) −1.91833 2.46271i −0.0730297 0.0937537i
\(691\) 5.14804i 0.195841i 0.995194 + 0.0979204i \(0.0312191\pi\)
−0.995194 + 0.0979204i \(0.968781\pi\)
\(692\) 0.617268 + 0.155806i 0.0234650 + 0.00592284i
\(693\) 0.759176i 0.0288387i
\(694\) 37.5067 29.2159i 1.42373 1.10902i
\(695\) 6.26877 0.237788
\(696\) 3.60541 1.58647i 0.136663 0.0601349i
\(697\) 8.43029 0.319320
\(698\) 24.9197 19.4113i 0.943224 0.734727i
\(699\) 22.7547i 0.860660i
\(700\) −0.489471 + 1.93918i −0.0185003 + 0.0732941i
\(701\) 10.2199i 0.386000i 0.981199 + 0.193000i \(0.0618217\pi\)
−0.981199 + 0.193000i \(0.938178\pi\)
\(702\) 0.659769 + 0.846995i 0.0249014 + 0.0319678i
\(703\) −18.7977 −0.708969
\(704\) 4.47788 + 4.10303i 0.168767 + 0.154639i
\(705\) 2.62393 0.0988231
\(706\) 14.8033 + 19.0041i 0.557130 + 0.715229i
\(707\) 18.7638i 0.705685i
\(708\) 4.29279 17.0071i 0.161333 0.639165i
\(709\) 4.28151i 0.160796i 0.996763 + 0.0803978i \(0.0256191\pi\)
−0.996763 + 0.0803978i \(0.974381\pi\)
\(710\) −9.79541 + 7.63016i −0.367615 + 0.286355i
\(711\) −15.8524 −0.594510
\(712\) 38.8343 17.0881i 1.45538 0.640402i
\(713\) 7.77705 0.291253
\(714\) −5.87836 + 4.57896i −0.219992 + 0.171363i
\(715\) 0.576348i 0.0215542i
\(716\) −25.0333 6.31870i −0.935540 0.236141i
\(717\) 1.92129i 0.0717517i
\(718\) 24.8416 + 31.8911i 0.927081 + 1.19016i
\(719\) 25.3452 0.945216 0.472608 0.881273i \(-0.343313\pi\)
0.472608 + 0.881273i \(0.343313\pi\)
\(720\) −1.89835 + 3.52084i −0.0707472 + 0.131214i
\(721\) 2.87928 0.107230
\(722\) 14.1547 + 18.1715i 0.526783 + 0.676271i
\(723\) 13.8987i 0.516897i
\(724\) 19.4280 + 4.90387i 0.722038 + 0.182251i
\(725\) 1.39265i 0.0517218i
\(726\) −11.6294 + 9.05877i −0.431609 + 0.336203i
\(727\) −16.9514 −0.628693 −0.314346 0.949308i \(-0.601785\pi\)
−0.314346 + 0.949308i \(0.601785\pi\)
\(728\) 0.864831 + 1.96541i 0.0320528 + 0.0728431i
\(729\) −1.00000 −0.0370370
\(730\) −5.12248 + 3.99017i −0.189591 + 0.147683i
\(731\) 48.6146i 1.79808i
\(732\) 1.45671 5.77116i 0.0538415 0.213308i
\(733\) 32.0871i 1.18516i 0.805511 + 0.592581i \(0.201891\pi\)
−0.805511 + 0.592581i \(0.798109\pi\)
\(734\) −26.3347 33.8079i −0.972033 1.24787i
\(735\) −1.00000 −0.0368856
\(736\) −2.07906 12.3125i −0.0766352 0.453843i
\(737\) −4.83145 −0.177969
\(738\) 1.39051 + 1.78510i 0.0511854 + 0.0657106i
\(739\) 20.2790i 0.745973i −0.927837 0.372987i \(-0.878334\pi\)
0.927837 0.372987i \(-0.121666\pi\)
\(740\) 5.58647 22.1324i 0.205363 0.813602i
\(741\) 1.25037i 0.0459334i
\(742\) −2.92652 + 2.27962i −0.107436 + 0.0836875i
\(743\) 25.7769 0.945663 0.472831 0.881153i \(-0.343232\pi\)
0.472831 + 0.881153i \(0.343232\pi\)
\(744\) −4.01355 9.12120i −0.147144 0.334399i
\(745\) −14.4120 −0.528016
\(746\) −21.1095 + 16.4433i −0.772874 + 0.602032i
\(747\) 2.86269i 0.104740i
\(748\) 7.75672 + 1.95789i 0.283614 + 0.0715874i
\(749\) 6.05806i 0.221357i
\(750\) 0.869059 + 1.11568i 0.0317336 + 0.0407388i
\(751\) 40.8693 1.49134 0.745671 0.666315i \(-0.232129\pi\)
0.745671 + 0.666315i \(0.232129\pi\)
\(752\) 9.23844 + 4.98113i 0.336891 + 0.181643i
\(753\) 8.35551 0.304492
\(754\) −0.918829 1.17957i −0.0334618 0.0429574i
\(755\) 20.0306i 0.728987i
\(756\) −1.93918 0.489471i −0.0705273 0.0178019i
\(757\) 11.8206i 0.429628i 0.976655 + 0.214814i \(0.0689146\pi\)
−0.976655 + 0.214814i \(0.931085\pi\)
\(758\) 29.1558 22.7110i 1.05899 0.824901i
\(759\) −1.67578 −0.0608270
\(760\) 4.26390 1.87622i 0.154668 0.0680576i
\(761\) 9.26267 0.335772 0.167886 0.985806i \(-0.446306\pi\)
0.167886 + 0.985806i \(0.446306\pi\)
\(762\) −9.02559 + 7.03050i −0.326963 + 0.254688i
\(763\) 5.64799i 0.204471i
\(764\) −1.02224 + 4.04989i −0.0369834 + 0.146520i
\(765\) 5.26887i 0.190496i
\(766\) 2.11107 + 2.71014i 0.0762762 + 0.0979215i
\(767\) −6.65816 −0.240412
\(768\) −13.3675 + 8.79256i −0.482359 + 0.317274i
\(769\) 41.1208 1.48286 0.741428 0.671033i \(-0.234149\pi\)
0.741428 + 0.671033i \(0.234149\pi\)
\(770\) 0.659769 + 0.846995i 0.0237764 + 0.0305236i
\(771\) 22.7154i 0.818075i
\(772\) −1.17357 + 4.64943i −0.0422377 + 0.167337i
\(773\) 9.81275i 0.352940i −0.984306 0.176470i \(-0.943532\pi\)
0.984306 0.176470i \(-0.0564679\pi\)
\(774\) −10.2941 + 8.01860i −0.370013 + 0.288223i
\(775\) −3.52322 −0.126558
\(776\) 15.8173 6.96000i 0.567808 0.249850i
\(777\) 11.4133 0.409449
\(778\) 13.3565 10.4041i 0.478852 0.373003i
\(779\) 2.63524i 0.0944172i
\(780\) 1.47218 + 0.371595i 0.0527124 + 0.0133052i
\(781\) 6.66541i 0.238507i
\(782\) −10.1074 12.9757i −0.361442 0.464010i
\(783\) 1.39265 0.0497693
\(784\) −3.52084 1.89835i −0.125744 0.0677981i
\(785\) −14.6849 −0.524127
\(786\) 6.33183 + 8.12865i 0.225849 + 0.289939i
\(787\) 40.6459i 1.44887i 0.689343 + 0.724435i \(0.257899\pi\)
−0.689343 + 0.724435i \(0.742101\pi\)
\(788\) −13.5904 3.43037i −0.484138 0.122202i
\(789\) 6.68922i 0.238143i
\(790\) −17.6861 + 13.7766i −0.629244 + 0.490151i
\(791\) 5.92320 0.210605
\(792\) 0.864831 + 1.96541i 0.0307304 + 0.0698380i
\(793\) −2.25937 −0.0802327
\(794\) 10.8989 8.48969i 0.386786 0.301288i
\(795\) 2.62309i 0.0930314i
\(796\) −11.0812 + 43.9012i −0.392761 + 1.55604i
\(797\) 37.9464i 1.34413i −0.740492 0.672065i \(-0.765408\pi\)
0.740492 0.672065i \(-0.234592\pi\)
\(798\) 1.43135 + 1.83753i 0.0506691 + 0.0650477i
\(799\) 13.8252 0.489099
\(800\) 0.941874 + 5.57789i 0.0333003 + 0.197208i
\(801\) 15.0005 0.530015
\(802\) −31.8130 40.8407i −1.12336 1.44214i
\(803\) 3.48565i 0.123006i
\(804\) 3.11503 12.3411i 0.109859 0.435236i
\(805\) 2.20737i 0.0777995i
\(806\) −2.98415 + 2.32451i −0.105112 + 0.0818775i
\(807\) 22.9310 0.807209
\(808\) −21.3752 48.5772i −0.751976 1.70894i
\(809\) 9.34260 0.328468 0.164234 0.986421i \(-0.447485\pi\)
0.164234 + 0.986421i \(0.447485\pi\)
\(810\) −1.11568 + 0.869059i −0.0392009 + 0.0305356i
\(811\) 15.4683i 0.543167i 0.962415 + 0.271583i \(0.0875473\pi\)
−0.962415 + 0.271583i \(0.912453\pi\)
\(812\) 2.70060 + 0.681663i 0.0947726 + 0.0239217i
\(813\) 13.9109i 0.487877i
\(814\) −7.53012 9.66698i −0.263931 0.338828i
\(815\) 10.5669 0.370143
\(816\) −10.0021 + 18.5508i −0.350145 + 0.649409i
\(817\) 15.1965 0.531659
\(818\) −25.0649 32.1777i −0.876373 1.12507i
\(819\) 0.759176i 0.0265278i
\(820\) 3.10272 + 0.783164i 0.108352 + 0.0273493i
\(821\) 19.8793i 0.693794i 0.937903 + 0.346897i \(0.112765\pi\)
−0.937903 + 0.346897i \(0.887235\pi\)
\(822\) 9.51707 7.41335i 0.331946 0.258570i
\(823\) −32.6029 −1.13646 −0.568232 0.822868i \(-0.692372\pi\)
−0.568232 + 0.822868i \(0.692372\pi\)
\(824\) 7.45410 3.27999i 0.259676 0.114264i
\(825\) 0.759176 0.0264311
\(826\) 9.78477 7.62187i 0.340456 0.265199i
\(827\) 8.21342i 0.285609i −0.989751 0.142804i \(-0.954388\pi\)
0.989751 0.142804i \(-0.0456119\pi\)
\(828\) 1.08044 4.28048i 0.0375480 0.148757i
\(829\) 21.6603i 0.752294i 0.926560 + 0.376147i \(0.122751\pi\)
−0.926560 + 0.376147i \(0.877249\pi\)
\(830\) −2.48785 3.19384i −0.0863545 0.110860i
\(831\) 6.88548 0.238854
\(832\) 4.47788 + 4.10303i 0.155243 + 0.142247i
\(833\) −5.26887 −0.182556
\(834\) 5.44793 + 6.99392i 0.188646 + 0.242180i
\(835\) 8.60243i 0.297699i
\(836\) 0.612019 2.42469i 0.0211671 0.0838595i
\(837\) 3.52322i 0.121780i
\(838\) −4.23161 + 3.29622i −0.146179 + 0.113866i
\(839\) 40.4787 1.39748 0.698740 0.715376i \(-0.253744\pi\)
0.698740 + 0.715376i \(0.253744\pi\)
\(840\) −2.58888 + 1.13917i −0.0893248 + 0.0393051i
\(841\) 27.0605 0.933121
\(842\) 29.5274 23.0005i 1.01758 0.792648i
\(843\) 4.53774i 0.156288i
\(844\) 53.4573 + 13.4932i 1.84008 + 0.464457i
\(845\) 12.4237i 0.427387i
\(846\) 2.28035 + 2.92746i 0.0784002 + 0.100648i
\(847\) −10.4237 −0.358161
\(848\) −4.97953 + 9.23547i −0.170998 + 0.317147i
\(849\) 8.07320 0.277071
\(850\) 4.57896 + 5.87836i 0.157057 + 0.201626i
\(851\) 25.1933i 0.863614i
\(852\) −17.0256 4.29746i −0.583287 0.147228i
\(853\) 13.2477i 0.453593i −0.973942 0.226797i \(-0.927175\pi\)
0.973942 0.226797i \(-0.0728253\pi\)
\(854\) 3.32035 2.58639i 0.113620 0.0885046i
\(855\) 1.64700 0.0563264
\(856\) −6.90116 15.6836i −0.235877 0.536054i
\(857\) −23.4200 −0.800012 −0.400006 0.916512i \(-0.630992\pi\)
−0.400006 + 0.916512i \(0.630992\pi\)
\(858\) 0.643018 0.500881i 0.0219523 0.0170998i
\(859\) 34.2044i 1.16704i 0.812099 + 0.583520i \(0.198325\pi\)
−0.812099 + 0.583520i \(0.801675\pi\)
\(860\) −4.51623 + 17.8923i −0.154002 + 0.610124i
\(861\) 1.60002i 0.0545285i
\(862\) −12.3657 15.8747i −0.421176 0.540695i
\(863\) −40.9143 −1.39274 −0.696369 0.717684i \(-0.745202\pi\)
−0.696369 + 0.717684i \(0.745202\pi\)
\(864\) −5.57789 + 0.941874i −0.189764 + 0.0320432i
\(865\) 0.318314 0.0108230
\(866\) 33.7997 + 43.3912i 1.14856 + 1.47449i
\(867\) 10.7610i 0.365463i
\(868\) 1.72452 6.83216i 0.0585339 0.231899i
\(869\) 12.0347i 0.408250i
\(870\) 1.55375 1.21030i 0.0526771 0.0410329i
\(871\) −4.83145 −0.163707
\(872\) −6.43403 14.6220i −0.217884 0.495162i
\(873\) 6.10971 0.206782
\(874\) −4.05609 + 3.15950i −0.137199 + 0.106872i
\(875\) 1.00000i 0.0338062i
\(876\) −8.90348 2.24734i −0.300821 0.0759306i
\(877\) 12.3099i 0.415674i 0.978163 + 0.207837i \(0.0666424\pi\)
−0.978163 + 0.207837i \(0.933358\pi\)
\(878\) 26.9893 + 34.6482i 0.910844 + 1.16932i
\(879\) 8.07931 0.272508
\(880\) 2.67293 + 1.44118i 0.0901046 + 0.0485821i
\(881\) 26.0861 0.878865 0.439432 0.898276i \(-0.355180\pi\)
0.439432 + 0.898276i \(0.355180\pi\)
\(882\) −0.869059 1.11568i −0.0292628 0.0375668i
\(883\) 21.7051i 0.730435i −0.930922 0.365218i \(-0.880995\pi\)
0.930922 0.365218i \(-0.119005\pi\)
\(884\) 7.75672 + 1.95789i 0.260887 + 0.0658508i
\(885\) 8.77025i 0.294809i
\(886\) 16.4084 12.7813i 0.551250 0.429397i
\(887\) 23.3521 0.784086 0.392043 0.919947i \(-0.371768\pi\)
0.392043 + 0.919947i \(0.371768\pi\)
\(888\) 29.5476 13.0017i 0.991551 0.436307i
\(889\) −8.08979 −0.271323
\(890\) 16.7357 13.0363i 0.560981 0.436977i
\(891\) 0.759176i 0.0254334i
\(892\) 8.11734 32.1591i 0.271789 1.07677i
\(893\) 4.32163i 0.144618i
\(894\) −12.5249 16.0792i −0.418896 0.537768i
\(895\) −12.9092 −0.431508
\(896\) −11.2776 0.903757i −0.376757 0.0301924i
\(897\) −1.67578 −0.0559527
\(898\) −32.8172 42.1299i −1.09512 1.40589i
\(899\) 4.90662i 0.163645i
\(900\) −0.489471 + 1.93918i −0.0163157 + 0.0646393i
\(901\) 13.8207i 0.460435i
\(902\) 1.35521 1.05564i 0.0451235 0.0351491i
\(903\) −9.22676 −0.307047
\(904\) 15.3345 6.74754i 0.510016 0.224420i
\(905\) 10.0187 0.333033
\(906\) −22.3476 + 17.4078i −0.742451 + 0.578334i
\(907\) 6.78247i 0.225208i −0.993640 0.112604i \(-0.964081\pi\)
0.993640 0.112604i \(-0.0359192\pi\)
\(908\) −31.0045 7.82589i −1.02892 0.259711i
\(909\) 18.7638i 0.622356i
\(910\) 0.659769 + 0.846995i 0.0218711 + 0.0280776i
\(911\) −24.9299 −0.825963 −0.412981 0.910739i \(-0.635513\pi\)
−0.412981 + 0.910739i \(0.635513\pi\)
\(912\) 5.79883 + 3.12659i 0.192019 + 0.103532i
\(913\) −2.17329 −0.0719253
\(914\) 18.9529 + 24.3313i 0.626907 + 0.804807i
\(915\) 2.97609i 0.0983863i
\(916\) −14.9613 3.77639i −0.494334 0.124776i
\(917\) 7.28585i 0.240600i
\(918\) −5.87836 + 4.57896i −0.194015 + 0.151128i
\(919\) 26.2942 0.867364 0.433682 0.901066i \(-0.357214\pi\)
0.433682 + 0.901066i \(0.357214\pi\)
\(920\) −2.51457 5.71460i −0.0829028 0.188405i
\(921\) −14.0669 −0.463521
\(922\) 32.8291 25.5723i 1.08117 0.842179i
\(923\) 6.66541i 0.219394i
\(924\) −0.371595 + 1.47218i −0.0122246 + 0.0484311i
\(925\) 11.4133i 0.375266i
\(926\) −14.4160 18.5069i −0.473740 0.608176i
\(927\) 2.87928 0.0945678
\(928\) 7.76806 1.31170i 0.254999 0.0430587i
\(929\) 55.6150 1.82467 0.912335 0.409444i \(-0.134277\pi\)
0.912335 + 0.409444i \(0.134277\pi\)
\(930\) −3.06189 3.93078i −0.100403 0.128895i
\(931\) 1.64700i 0.0539784i
\(932\) −11.1378 + 44.1254i −0.364829 + 1.44537i
\(933\) 17.0926i 0.559586i
\(934\) 32.8844 25.6154i 1.07601 0.838161i
\(935\) 4.00000 0.130814
\(936\) 0.864831 + 1.96541i 0.0282679 + 0.0642416i
\(937\) 45.8876 1.49908 0.749542 0.661957i \(-0.230274\pi\)
0.749542 + 0.661957i \(0.230274\pi\)
\(938\) 7.10024 5.53075i 0.231831 0.180585i
\(939\) 10.6013i 0.345961i
\(940\) 5.08828 + 1.28434i 0.165961 + 0.0418906i
\(941\) 32.9890i 1.07541i 0.843133 + 0.537705i \(0.180709\pi\)
−0.843133 + 0.537705i \(0.819291\pi\)
\(942\) −12.7620 16.3836i −0.415810 0.533807i
\(943\) −3.53183 −0.115012
\(944\) 16.6490 30.8786i 0.541878 1.00501i
\(945\) −1.00000 −0.0325300
\(946\) 6.08753 + 7.81502i 0.197923 + 0.254088i
\(947\) 26.7187i 0.868240i 0.900855 + 0.434120i \(0.142941\pi\)
−0.900855 + 0.434120i \(0.857059\pi\)
\(948\) −30.7406 7.75928i −0.998408 0.252010i
\(949\) 3.48565i 0.113149i
\(950\) 1.83753 1.43135i 0.0596172 0.0464390i
\(951\) 0.755148 0.0244874
\(952\) −13.6405 + 6.00214i −0.442090 + 0.194530i
\(953\) 57.3519 1.85781 0.928906 0.370317i \(-0.120751\pi\)
0.928906 + 0.370317i \(0.120751\pi\)
\(954\) −2.92652 + 2.27962i −0.0947496 + 0.0738055i
\(955\) 2.08846i 0.0675809i
\(956\) 0.940415 3.72572i 0.0304152 0.120498i
\(957\) 1.05727i 0.0341766i
\(958\) 5.63466 + 7.23363i 0.182048 + 0.233708i
\(959\) 8.53031 0.275458
\(960\) −5.40458 + 5.89835i −0.174432 + 0.190368i
\(961\) −18.5869 −0.599577
\(962\) −7.53012 9.66698i −0.242781 0.311676i
\(963\) 6.05806i 0.195218i
\(964\) −6.80300 + 26.9520i −0.219110 + 0.868066i
\(965\) 2.39763i 0.0771824i
\(966\) 2.46271 1.91833i 0.0792364 0.0617214i
\(967\) 23.2866 0.748848 0.374424 0.927258i \(-0.377840\pi\)
0.374424 + 0.927258i \(0.377840\pi\)
\(968\) −26.9856 + 11.8743i −0.867349 + 0.381655i
\(969\) 8.67786 0.278773
\(970\) 6.81647 5.30970i 0.218864 0.170484i
\(971\) 11.6103i 0.372591i 0.982494 + 0.186296i \(0.0596483\pi\)
−0.982494 + 0.186296i \(0.940352\pi\)
\(972\) −1.93918 0.489471i −0.0621992 0.0156998i
\(973\) 6.26877i 0.200967i
\(974\) 3.65980 + 4.69836i 0.117267 + 0.150545i
\(975\) 0.759176 0.0243131
\(976\) 5.64964 10.4783i 0.180841 0.335402i
\(977\) 36.1908 1.15784 0.578922 0.815383i \(-0.303473\pi\)
0.578922 + 0.815383i \(0.303473\pi\)
\(978\) 9.18327 + 11.7893i 0.293649 + 0.376979i
\(979\) 11.3880i 0.363961i
\(980\) −1.93918 0.489471i −0.0619448 0.0156356i
\(981\) 5.64799i 0.180327i
\(982\) −23.5728 + 18.3621i −0.752237 + 0.585957i
\(983\) 15.7506 0.502365 0.251182 0.967940i \(-0.419181\pi\)
0.251182 + 0.967940i \(0.419181\pi\)
\(984\) 1.82269 + 4.14225i 0.0581054 + 0.132050i
\(985\) −7.00832 −0.223304
\(986\) 8.18651 6.37690i 0.260712 0.203082i
\(987\) 2.62393i 0.0835207i
\(988\) 0.612019 2.42469i 0.0194709 0.0771395i
\(989\) 20.3668i 0.647628i
\(990\) 0.659769 + 0.846995i 0.0209688 + 0.0269193i
\(991\) −56.8361 −1.80546 −0.902729 0.430209i \(-0.858440\pi\)
−0.902729 + 0.430209i \(0.858440\pi\)
\(992\) −3.31843 19.6522i −0.105360 0.623957i
\(993\) 19.8656 0.630415
\(994\) −7.63016 9.79541i −0.242014 0.310692i
\(995\) 22.6390i 0.717706i
\(996\) 1.40121 5.55127i 0.0443989 0.175899i
\(997\) 56.6951i 1.79555i −0.440451 0.897777i \(-0.645182\pi\)
0.440451 0.897777i \(-0.354818\pi\)
\(998\) −35.0815 + 27.3269i −1.11049 + 0.865016i
\(999\) 11.4133 0.361100
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.g.b.421.10 yes 12
4.3 odd 2 3360.2.g.c.1681.3 12
8.3 odd 2 3360.2.g.c.1681.10 12
8.5 even 2 inner 840.2.g.b.421.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.g.b.421.9 12 8.5 even 2 inner
840.2.g.b.421.10 yes 12 1.1 even 1 trivial
3360.2.g.c.1681.3 12 4.3 odd 2
3360.2.g.c.1681.10 12 8.3 odd 2