Properties

Label 840.2.e.d.491.23
Level $840$
Weight $2$
Character 840.491
Analytic conductor $6.707$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(491,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.23
Character \(\chi\) \(=\) 840.491
Dual form 840.2.e.d.491.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.252227 - 1.39154i) q^{2} +(1.52280 - 0.825275i) q^{3} +(-1.87276 - 0.701969i) q^{4} -1.00000 q^{5} +(-0.764310 - 2.32719i) q^{6} -1.00000i q^{7} +(-1.44918 + 2.42897i) q^{8} +(1.63784 - 2.51346i) q^{9} +(-0.252227 + 1.39154i) q^{10} -3.18310i q^{11} +(-3.43116 + 0.476586i) q^{12} -0.611147i q^{13} +(-1.39154 - 0.252227i) q^{14} +(-1.52280 + 0.825275i) q^{15} +(3.01448 + 2.62924i) q^{16} -3.24419i q^{17} +(-3.08447 - 2.91309i) q^{18} -1.51894 q^{19} +(1.87276 + 0.701969i) q^{20} +(-0.825275 - 1.52280i) q^{21} +(-4.42941 - 0.802866i) q^{22} -3.27747 q^{23} +(-0.202245 + 4.89480i) q^{24} +1.00000 q^{25} +(-0.850435 - 0.154148i) q^{26} +(0.419813 - 5.17917i) q^{27} +(-0.701969 + 1.87276i) q^{28} -6.32996 q^{29} +(0.764310 + 2.32719i) q^{30} +5.58711i q^{31} +(4.41903 - 3.53160i) q^{32} +(-2.62694 - 4.84723i) q^{33} +(-4.51441 - 0.818273i) q^{34} +1.00000i q^{35} +(-4.83166 + 3.55740i) q^{36} +1.51137i q^{37} +(-0.383118 + 2.11366i) q^{38} +(-0.504364 - 0.930655i) q^{39} +(1.44918 - 2.42897i) q^{40} -4.12940i q^{41} +(-2.32719 + 0.764310i) q^{42} -0.874980 q^{43} +(-2.23444 + 5.96120i) q^{44} +(-1.63784 + 2.51346i) q^{45} +(-0.826669 + 4.56073i) q^{46} +0.289369 q^{47} +(6.76030 + 1.51604i) q^{48} -1.00000 q^{49} +(0.252227 - 1.39154i) q^{50} +(-2.67735 - 4.94025i) q^{51} +(-0.429006 + 1.14453i) q^{52} +3.74257 q^{53} +(-7.10112 - 1.89051i) q^{54} +3.18310i q^{55} +(2.42897 + 1.44918i) q^{56} +(-2.31304 + 1.25354i) q^{57} +(-1.59659 + 8.80839i) q^{58} +4.18632i q^{59} +(3.43116 - 0.476586i) q^{60} -11.4482i q^{61} +(7.77469 + 1.40922i) q^{62} +(-2.51346 - 1.63784i) q^{63} +(-3.79976 - 7.04002i) q^{64} +0.611147i q^{65} +(-7.40770 + 2.43288i) q^{66} +0.637748 q^{67} +(-2.27732 + 6.07559i) q^{68} +(-4.99094 + 2.70482i) q^{69} +(1.39154 + 0.252227i) q^{70} +13.8053 q^{71} +(3.73158 + 7.62072i) q^{72} +14.2348 q^{73} +(2.10314 + 0.381210i) q^{74} +(1.52280 - 0.825275i) q^{75} +(2.84461 + 1.06625i) q^{76} -3.18310 q^{77} +(-1.42226 + 0.467106i) q^{78} -12.9762i q^{79} +(-3.01448 - 2.62924i) q^{80} +(-3.63494 - 8.23330i) q^{81} +(-5.74622 - 1.04155i) q^{82} +2.55489i q^{83} +(0.476586 + 3.43116i) q^{84} +3.24419i q^{85} +(-0.220694 + 1.21757i) q^{86} +(-9.63927 + 5.22396i) q^{87} +(7.73165 + 4.61289i) q^{88} +8.07133i q^{89} +(3.08447 + 2.91309i) q^{90} -0.611147 q^{91} +(6.13793 + 2.30068i) q^{92} +(4.61091 + 8.50806i) q^{93} +(0.0729867 - 0.402668i) q^{94} +1.51894 q^{95} +(3.81476 - 9.02483i) q^{96} +13.4141 q^{97} +(-0.252227 + 1.39154i) q^{98} +(-8.00060 - 5.21342i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{2} + 4 q^{3} - 2 q^{4} - 44 q^{5} - 6 q^{6} - 22 q^{8} + 4 q^{9} - 2 q^{10} + 6 q^{12} + 4 q^{14} - 4 q^{15} + 22 q^{16} + 2 q^{18} + 16 q^{19} + 2 q^{20} + 16 q^{23} + 10 q^{24} + 44 q^{25}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.252227 1.39154i 0.178352 0.983967i
\(3\) 1.52280 0.825275i 0.879189 0.476473i
\(4\) −1.87276 0.701969i −0.936381 0.350984i
\(5\) −1.00000 −0.447214
\(6\) −0.764310 2.32719i −0.312028 0.950073i
\(7\) 1.00000i 0.377964i
\(8\) −1.44918 + 2.42897i −0.512362 + 0.858769i
\(9\) 1.63784 2.51346i 0.545948 0.837819i
\(10\) −0.252227 + 1.39154i −0.0797613 + 0.440043i
\(11\) 3.18310i 0.959742i −0.877339 0.479871i \(-0.840683\pi\)
0.877339 0.479871i \(-0.159317\pi\)
\(12\) −3.43116 + 0.476586i −0.990491 + 0.137578i
\(13\) 0.611147i 0.169502i −0.996402 0.0847508i \(-0.972991\pi\)
0.996402 0.0847508i \(-0.0270094\pi\)
\(14\) −1.39154 0.252227i −0.371904 0.0674106i
\(15\) −1.52280 + 0.825275i −0.393185 + 0.213085i
\(16\) 3.01448 + 2.62924i 0.753620 + 0.657310i
\(17\) 3.24419i 0.786831i −0.919361 0.393415i \(-0.871293\pi\)
0.919361 0.393415i \(-0.128707\pi\)
\(18\) −3.08447 2.91309i −0.727016 0.686621i
\(19\) −1.51894 −0.348468 −0.174234 0.984704i \(-0.555745\pi\)
−0.174234 + 0.984704i \(0.555745\pi\)
\(20\) 1.87276 + 0.701969i 0.418762 + 0.156965i
\(21\) −0.825275 1.52280i −0.180090 0.332302i
\(22\) −4.42941 0.802866i −0.944354 0.171172i
\(23\) −3.27747 −0.683401 −0.341700 0.939809i \(-0.611003\pi\)
−0.341700 + 0.939809i \(0.611003\pi\)
\(24\) −0.202245 + 4.89480i −0.0412831 + 0.999147i
\(25\) 1.00000 0.200000
\(26\) −0.850435 0.154148i −0.166784 0.0302309i
\(27\) 0.419813 5.17917i 0.0807931 0.996731i
\(28\) −0.701969 + 1.87276i −0.132660 + 0.353919i
\(29\) −6.32996 −1.17544 −0.587722 0.809063i \(-0.699975\pi\)
−0.587722 + 0.809063i \(0.699975\pi\)
\(30\) 0.764310 + 2.32719i 0.139543 + 0.424885i
\(31\) 5.58711i 1.00348i 0.865020 + 0.501738i \(0.167306\pi\)
−0.865020 + 0.501738i \(0.832694\pi\)
\(32\) 4.41903 3.53160i 0.781181 0.624305i
\(33\) −2.62694 4.84723i −0.457291 0.843795i
\(34\) −4.51441 0.818273i −0.774215 0.140333i
\(35\) 1.00000i 0.169031i
\(36\) −4.83166 + 3.55740i −0.805277 + 0.592899i
\(37\) 1.51137i 0.248468i 0.992253 + 0.124234i \(0.0396474\pi\)
−0.992253 + 0.124234i \(0.960353\pi\)
\(38\) −0.383118 + 2.11366i −0.0621500 + 0.342881i
\(39\) −0.504364 0.930655i −0.0807629 0.149024i
\(40\) 1.44918 2.42897i 0.229135 0.384053i
\(41\) 4.12940i 0.644904i −0.946586 0.322452i \(-0.895493\pi\)
0.946586 0.322452i \(-0.104507\pi\)
\(42\) −2.32719 + 0.764310i −0.359094 + 0.117936i
\(43\) −0.874980 −0.133433 −0.0667166 0.997772i \(-0.521252\pi\)
−0.0667166 + 0.997772i \(0.521252\pi\)
\(44\) −2.23444 + 5.96120i −0.336854 + 0.898684i
\(45\) −1.63784 + 2.51346i −0.244155 + 0.374684i
\(46\) −0.826669 + 4.56073i −0.121886 + 0.672444i
\(47\) 0.289369 0.0422087 0.0211044 0.999777i \(-0.493282\pi\)
0.0211044 + 0.999777i \(0.493282\pi\)
\(48\) 6.76030 + 1.51604i 0.975765 + 0.218821i
\(49\) −1.00000 −0.142857
\(50\) 0.252227 1.39154i 0.0356703 0.196793i
\(51\) −2.67735 4.94025i −0.374903 0.691773i
\(52\) −0.429006 + 1.14453i −0.0594924 + 0.158718i
\(53\) 3.74257 0.514081 0.257041 0.966401i \(-0.417253\pi\)
0.257041 + 0.966401i \(0.417253\pi\)
\(54\) −7.10112 1.89051i −0.966341 0.257266i
\(55\) 3.18310i 0.429210i
\(56\) 2.42897 + 1.44918i 0.324584 + 0.193655i
\(57\) −2.31304 + 1.25354i −0.306370 + 0.166036i
\(58\) −1.59659 + 8.80839i −0.209643 + 1.15660i
\(59\) 4.18632i 0.545013i 0.962154 + 0.272507i \(0.0878526\pi\)
−0.962154 + 0.272507i \(0.912147\pi\)
\(60\) 3.43116 0.476586i 0.442961 0.0615270i
\(61\) 11.4482i 1.46580i −0.680338 0.732898i \(-0.738167\pi\)
0.680338 0.732898i \(-0.261833\pi\)
\(62\) 7.77469 + 1.40922i 0.987387 + 0.178972i
\(63\) −2.51346 1.63784i −0.316666 0.206349i
\(64\) −3.79976 7.04002i −0.474970 0.880002i
\(65\) 0.611147i 0.0758034i
\(66\) −7.40770 + 2.43288i −0.911825 + 0.299467i
\(67\) 0.637748 0.0779133 0.0389567 0.999241i \(-0.487597\pi\)
0.0389567 + 0.999241i \(0.487597\pi\)
\(68\) −2.27732 + 6.07559i −0.276165 + 0.736774i
\(69\) −4.99094 + 2.70482i −0.600839 + 0.325622i
\(70\) 1.39154 + 0.252227i 0.166321 + 0.0301469i
\(71\) 13.8053 1.63839 0.819194 0.573516i \(-0.194421\pi\)
0.819194 + 0.573516i \(0.194421\pi\)
\(72\) 3.73158 + 7.62072i 0.439771 + 0.898110i
\(73\) 14.2348 1.66605 0.833027 0.553233i \(-0.186606\pi\)
0.833027 + 0.553233i \(0.186606\pi\)
\(74\) 2.10314 + 0.381210i 0.244485 + 0.0443148i
\(75\) 1.52280 0.825275i 0.175838 0.0952945i
\(76\) 2.84461 + 1.06625i 0.326299 + 0.122307i
\(77\) −3.18310 −0.362748
\(78\) −1.42226 + 0.467106i −0.161039 + 0.0528893i
\(79\) 12.9762i 1.45993i −0.683483 0.729966i \(-0.739536\pi\)
0.683483 0.729966i \(-0.260464\pi\)
\(80\) −3.01448 2.62924i −0.337029 0.293958i
\(81\) −3.63494 8.23330i −0.403883 0.914811i
\(82\) −5.74622 1.04155i −0.634564 0.115020i
\(83\) 2.55489i 0.280436i 0.990121 + 0.140218i \(0.0447803\pi\)
−0.990121 + 0.140218i \(0.955220\pi\)
\(84\) 0.476586 + 3.43116i 0.0519998 + 0.374370i
\(85\) 3.24419i 0.351881i
\(86\) −0.220694 + 1.21757i −0.0237980 + 0.131294i
\(87\) −9.63927 + 5.22396i −1.03344 + 0.560067i
\(88\) 7.73165 + 4.61289i 0.824197 + 0.491736i
\(89\) 8.07133i 0.855559i 0.903883 + 0.427780i \(0.140704\pi\)
−0.903883 + 0.427780i \(0.859296\pi\)
\(90\) 3.08447 + 2.91309i 0.325131 + 0.307066i
\(91\) −0.611147 −0.0640656
\(92\) 6.13793 + 2.30068i 0.639924 + 0.239863i
\(93\) 4.61091 + 8.50806i 0.478129 + 0.882245i
\(94\) 0.0729867 0.402668i 0.00752800 0.0415320i
\(95\) 1.51894 0.155840
\(96\) 3.81476 9.02483i 0.389342 0.921093i
\(97\) 13.4141 1.36199 0.680997 0.732286i \(-0.261546\pi\)
0.680997 + 0.732286i \(0.261546\pi\)
\(98\) −0.252227 + 1.39154i −0.0254788 + 0.140567i
\(99\) −8.00060 5.21342i −0.804090 0.523969i
\(100\) −1.87276 0.701969i −0.187276 0.0701969i
\(101\) 19.4589 1.93623 0.968115 0.250507i \(-0.0805974\pi\)
0.968115 + 0.250507i \(0.0805974\pi\)
\(102\) −7.54985 + 2.47956i −0.747546 + 0.245514i
\(103\) 6.25210i 0.616038i −0.951380 0.308019i \(-0.900334\pi\)
0.951380 0.308019i \(-0.0996660\pi\)
\(104\) 1.48446 + 0.885661i 0.145563 + 0.0868462i
\(105\) 0.825275 + 1.52280i 0.0805386 + 0.148610i
\(106\) 0.943978 5.20793i 0.0916872 0.505839i
\(107\) 5.85213i 0.565747i 0.959157 + 0.282873i \(0.0912876\pi\)
−0.959157 + 0.282873i \(0.908712\pi\)
\(108\) −4.42182 + 9.40465i −0.425490 + 0.904963i
\(109\) 9.96334i 0.954315i −0.878818 0.477157i \(-0.841667\pi\)
0.878818 0.477157i \(-0.158333\pi\)
\(110\) 4.42941 + 0.802866i 0.422328 + 0.0765503i
\(111\) 1.24730 + 2.30152i 0.118388 + 0.218451i
\(112\) 2.62924 3.01448i 0.248440 0.284842i
\(113\) 0.131393i 0.0123604i −0.999981 0.00618021i \(-0.998033\pi\)
0.999981 0.00618021i \(-0.00196724\pi\)
\(114\) 1.16094 + 3.53486i 0.108732 + 0.331070i
\(115\) 3.27747 0.305626
\(116\) 11.8545 + 4.44344i 1.10066 + 0.412563i
\(117\) −1.53609 1.00096i −0.142012 0.0925390i
\(118\) 5.82543 + 1.05591i 0.536275 + 0.0972040i
\(119\) −3.24419 −0.297394
\(120\) 0.202245 4.89480i 0.0184624 0.446832i
\(121\) 0.867849 0.0788953
\(122\) −15.9307 2.88756i −1.44230 0.261427i
\(123\) −3.40789 6.28825i −0.307279 0.566992i
\(124\) 3.92198 10.4633i 0.352204 0.939636i
\(125\) −1.00000 −0.0894427
\(126\) −2.91309 + 3.08447i −0.259518 + 0.274786i
\(127\) 2.32125i 0.205978i 0.994682 + 0.102989i \(0.0328406\pi\)
−0.994682 + 0.102989i \(0.967159\pi\)
\(128\) −10.7549 + 3.51183i −0.950604 + 0.310405i
\(129\) −1.33242 + 0.722099i −0.117313 + 0.0635773i
\(130\) 0.850435 + 0.154148i 0.0745881 + 0.0135197i
\(131\) 9.68475i 0.846161i −0.906092 0.423080i \(-0.860949\pi\)
0.906092 0.423080i \(-0.139051\pi\)
\(132\) 1.51702 + 10.9217i 0.132040 + 0.950616i
\(133\) 1.51894i 0.131709i
\(134\) 0.160858 0.887451i 0.0138960 0.0766641i
\(135\) −0.419813 + 5.17917i −0.0361318 + 0.445752i
\(136\) 7.88002 + 4.70141i 0.675706 + 0.403142i
\(137\) 14.6389i 1.25069i 0.780350 + 0.625343i \(0.215041\pi\)
−0.780350 + 0.625343i \(0.784959\pi\)
\(138\) 2.50501 + 7.62732i 0.213240 + 0.649280i
\(139\) −12.3779 −1.04988 −0.524938 0.851141i \(-0.675911\pi\)
−0.524938 + 0.851141i \(0.675911\pi\)
\(140\) 0.701969 1.87276i 0.0593272 0.158277i
\(141\) 0.440651 0.238809i 0.0371095 0.0201113i
\(142\) 3.48208 19.2106i 0.292209 1.61212i
\(143\) −1.94534 −0.162678
\(144\) 11.5457 3.27048i 0.962144 0.272540i
\(145\) 6.32996 0.525675
\(146\) 3.59040 19.8082i 0.297144 1.63934i
\(147\) −1.52280 + 0.825275i −0.125598 + 0.0680675i
\(148\) 1.06094 2.83045i 0.0872085 0.232661i
\(149\) −16.7175 −1.36955 −0.684777 0.728753i \(-0.740100\pi\)
−0.684777 + 0.728753i \(0.740100\pi\)
\(150\) −0.764310 2.32719i −0.0624057 0.190015i
\(151\) 7.45900i 0.607005i 0.952831 + 0.303502i \(0.0981561\pi\)
−0.952831 + 0.303502i \(0.901844\pi\)
\(152\) 2.20121 3.68945i 0.178542 0.299254i
\(153\) −8.15413 5.31347i −0.659222 0.429568i
\(154\) −0.802866 + 4.42941i −0.0646968 + 0.356932i
\(155\) 5.58711i 0.448768i
\(156\) 0.291264 + 2.09694i 0.0233198 + 0.167890i
\(157\) 13.9858i 1.11619i 0.829777 + 0.558095i \(0.188468\pi\)
−0.829777 + 0.558095i \(0.811532\pi\)
\(158\) −18.0568 3.27294i −1.43653 0.260382i
\(159\) 5.69918 3.08865i 0.451975 0.244946i
\(160\) −4.41903 + 3.53160i −0.349355 + 0.279197i
\(161\) 3.27747i 0.258301i
\(162\) −12.3738 + 2.98150i −0.972177 + 0.234249i
\(163\) −15.1310 −1.18515 −0.592576 0.805515i \(-0.701889\pi\)
−0.592576 + 0.805515i \(0.701889\pi\)
\(164\) −2.89871 + 7.73338i −0.226351 + 0.603876i
\(165\) 2.62694 + 4.84723i 0.204507 + 0.377357i
\(166\) 3.55523 + 0.644414i 0.275939 + 0.0500162i
\(167\) −3.06283 −0.237009 −0.118504 0.992954i \(-0.537810\pi\)
−0.118504 + 0.992954i \(0.537810\pi\)
\(168\) 4.89480 + 0.202245i 0.377642 + 0.0156036i
\(169\) 12.6265 0.971269
\(170\) 4.51441 + 0.818273i 0.346240 + 0.0627587i
\(171\) −2.48778 + 3.81779i −0.190245 + 0.291954i
\(172\) 1.63863 + 0.614208i 0.124944 + 0.0468330i
\(173\) 12.0690 0.917591 0.458795 0.888542i \(-0.348281\pi\)
0.458795 + 0.888542i \(0.348281\pi\)
\(174\) 4.83805 + 14.7310i 0.366772 + 1.11676i
\(175\) 1.00000i 0.0755929i
\(176\) 8.36915 9.59540i 0.630848 0.723281i
\(177\) 3.45487 + 6.37494i 0.259684 + 0.479170i
\(178\) 11.2316 + 2.03581i 0.841842 + 0.152590i
\(179\) 1.52974i 0.114338i −0.998365 0.0571692i \(-0.981793\pi\)
0.998365 0.0571692i \(-0.0182074\pi\)
\(180\) 4.83166 3.55740i 0.360131 0.265153i
\(181\) 14.8089i 1.10074i −0.834922 0.550368i \(-0.814488\pi\)
0.834922 0.550368i \(-0.185512\pi\)
\(182\) −0.154148 + 0.850435i −0.0114262 + 0.0630384i
\(183\) −9.44794 17.4334i −0.698412 1.28871i
\(184\) 4.74965 7.96088i 0.350149 0.586884i
\(185\) 1.51137i 0.111118i
\(186\) 13.0023 4.27029i 0.953375 0.313113i
\(187\) −10.3266 −0.755154
\(188\) −0.541919 0.203128i −0.0395235 0.0148146i
\(189\) −5.17917 0.419813i −0.376729 0.0305369i
\(190\) 0.383118 2.11366i 0.0277943 0.153341i
\(191\) 1.22855 0.0888950 0.0444475 0.999012i \(-0.485847\pi\)
0.0444475 + 0.999012i \(0.485847\pi\)
\(192\) −11.5962 7.58469i −0.836885 0.547378i
\(193\) 26.0157 1.87265 0.936327 0.351129i \(-0.114202\pi\)
0.936327 + 0.351129i \(0.114202\pi\)
\(194\) 3.38340 18.6662i 0.242914 1.34016i
\(195\) 0.504364 + 0.930655i 0.0361183 + 0.0666456i
\(196\) 1.87276 + 0.701969i 0.133769 + 0.0501406i
\(197\) −9.99215 −0.711912 −0.355956 0.934503i \(-0.615845\pi\)
−0.355956 + 0.934503i \(0.615845\pi\)
\(198\) −9.27265 + 9.81818i −0.658979 + 0.697748i
\(199\) 19.9327i 1.41299i 0.707716 + 0.706497i \(0.249725\pi\)
−0.707716 + 0.706497i \(0.750275\pi\)
\(200\) −1.44918 + 2.42897i −0.102472 + 0.171754i
\(201\) 0.971163 0.526317i 0.0685005 0.0371236i
\(202\) 4.90806 27.0778i 0.345330 1.90519i
\(203\) 6.32996i 0.444276i
\(204\) 1.54613 + 11.1313i 0.108251 + 0.779349i
\(205\) 4.12940i 0.288410i
\(206\) −8.70004 1.57695i −0.606161 0.109871i
\(207\) −5.36799 + 8.23780i −0.373101 + 0.572566i
\(208\) 1.60685 1.84229i 0.111415 0.127740i
\(209\) 4.83494i 0.334440i
\(210\) 2.32719 0.764310i 0.160592 0.0527424i
\(211\) −4.55116 −0.313315 −0.156658 0.987653i \(-0.550072\pi\)
−0.156658 + 0.987653i \(0.550072\pi\)
\(212\) −7.00894 2.62716i −0.481376 0.180434i
\(213\) 21.0227 11.3932i 1.44045 0.780647i
\(214\) 8.14347 + 1.47607i 0.556676 + 0.100902i
\(215\) 0.874980 0.0596731
\(216\) 11.9716 + 8.52525i 0.814567 + 0.580070i
\(217\) 5.58711 0.379278
\(218\) −13.8644 2.51303i −0.939014 0.170204i
\(219\) 21.6767 11.7476i 1.46478 0.793829i
\(220\) 2.23444 5.96120i 0.150646 0.401904i
\(221\) −1.98267 −0.133369
\(222\) 3.51726 1.15516i 0.236063 0.0775292i
\(223\) 16.4614i 1.10234i −0.834395 0.551168i \(-0.814182\pi\)
0.834395 0.551168i \(-0.185818\pi\)
\(224\) −3.53160 4.41903i −0.235965 0.295259i
\(225\) 1.63784 2.51346i 0.109190 0.167564i
\(226\) −0.182839 0.0331409i −0.0121622 0.00220450i
\(227\) 24.3134i 1.61373i −0.590733 0.806867i \(-0.701161\pi\)
0.590733 0.806867i \(-0.298839\pi\)
\(228\) 5.21172 0.723905i 0.345155 0.0479417i
\(229\) 24.3515i 1.60919i −0.593821 0.804597i \(-0.702381\pi\)
0.593821 0.804597i \(-0.297619\pi\)
\(230\) 0.826669 4.56073i 0.0545089 0.300726i
\(231\) −4.84723 + 2.62694i −0.318924 + 0.172840i
\(232\) 9.17325 15.3753i 0.602253 1.00944i
\(233\) 28.2542i 1.85099i 0.378757 + 0.925496i \(0.376352\pi\)
−0.378757 + 0.925496i \(0.623648\pi\)
\(234\) −1.78032 + 1.88506i −0.116383 + 0.123230i
\(235\) −0.289369 −0.0188763
\(236\) 2.93867 7.83999i 0.191291 0.510340i
\(237\) −10.7089 19.7601i −0.695618 1.28356i
\(238\) −0.818273 + 4.51441i −0.0530407 + 0.292626i
\(239\) 2.63400 0.170379 0.0851897 0.996365i \(-0.472850\pi\)
0.0851897 + 0.996365i \(0.472850\pi\)
\(240\) −6.76030 1.51604i −0.436375 0.0978597i
\(241\) 29.6819 1.91198 0.955991 0.293398i \(-0.0947860\pi\)
0.955991 + 0.293398i \(0.0947860\pi\)
\(242\) 0.218895 1.20765i 0.0140711 0.0776304i
\(243\) −12.3300 9.53784i −0.790972 0.611853i
\(244\) −8.03630 + 21.4398i −0.514472 + 1.37254i
\(245\) 1.00000 0.0638877
\(246\) −9.60991 + 3.15614i −0.612705 + 0.201228i
\(247\) 0.928295i 0.0590660i
\(248\) −13.5709 8.09673i −0.861754 0.514143i
\(249\) 2.10849 + 3.89059i 0.133620 + 0.246556i
\(250\) −0.252227 + 1.39154i −0.0159523 + 0.0880087i
\(251\) 0.525155i 0.0331475i −0.999863 0.0165737i \(-0.994724\pi\)
0.999863 0.0165737i \(-0.00527583\pi\)
\(252\) 3.55740 + 4.83166i 0.224095 + 0.304366i
\(253\) 10.4325i 0.655888i
\(254\) 3.23012 + 0.585484i 0.202675 + 0.0367365i
\(255\) 2.67735 + 4.94025i 0.167662 + 0.309370i
\(256\) 2.17418 + 15.8516i 0.135886 + 0.990724i
\(257\) 8.87096i 0.553355i 0.960963 + 0.276678i \(0.0892335\pi\)
−0.960963 + 0.276678i \(0.910767\pi\)
\(258\) 0.668756 + 2.03625i 0.0416349 + 0.126771i
\(259\) 1.51137 0.0939122
\(260\) 0.429006 1.14453i 0.0266058 0.0709809i
\(261\) −10.3675 + 15.9101i −0.641731 + 0.984810i
\(262\) −13.4767 2.44276i −0.832594 0.150914i
\(263\) −28.5258 −1.75897 −0.879487 0.475922i \(-0.842114\pi\)
−0.879487 + 0.475922i \(0.842114\pi\)
\(264\) 15.5807 + 0.643768i 0.958924 + 0.0396212i
\(265\) −3.74257 −0.229904
\(266\) 2.11366 + 0.383118i 0.129597 + 0.0234905i
\(267\) 6.66107 + 12.2910i 0.407651 + 0.752198i
\(268\) −1.19435 0.447679i −0.0729566 0.0273464i
\(269\) 27.8415 1.69753 0.848764 0.528771i \(-0.177347\pi\)
0.848764 + 0.528771i \(0.177347\pi\)
\(270\) 7.10112 + 1.89051i 0.432161 + 0.115053i
\(271\) 11.3907i 0.691935i −0.938247 0.345967i \(-0.887551\pi\)
0.938247 0.345967i \(-0.112449\pi\)
\(272\) 8.52975 9.77953i 0.517192 0.592971i
\(273\) −0.930655 + 0.504364i −0.0563258 + 0.0305255i
\(274\) 20.3706 + 3.69233i 1.23063 + 0.223062i
\(275\) 3.18310i 0.191948i
\(276\) 11.2455 1.56200i 0.676902 0.0940212i
\(277\) 7.15528i 0.429919i 0.976623 + 0.214959i \(0.0689619\pi\)
−0.976623 + 0.214959i \(0.931038\pi\)
\(278\) −3.12203 + 17.2243i −0.187247 + 1.03304i
\(279\) 14.0430 + 9.15081i 0.840731 + 0.547845i
\(280\) −2.42897 1.44918i −0.145159 0.0866050i
\(281\) 23.5148i 1.40277i 0.712781 + 0.701387i \(0.247435\pi\)
−0.712781 + 0.701387i \(0.752565\pi\)
\(282\) −0.221167 0.673417i −0.0131703 0.0401014i
\(283\) 4.23414 0.251694 0.125847 0.992050i \(-0.459835\pi\)
0.125847 + 0.992050i \(0.459835\pi\)
\(284\) −25.8541 9.69089i −1.53416 0.575049i
\(285\) 2.31304 1.25354i 0.137013 0.0742534i
\(286\) −0.490669 + 2.70702i −0.0290139 + 0.160070i
\(287\) −4.12940 −0.243751
\(288\) −1.63886 16.8912i −0.0965706 0.995326i
\(289\) 6.47526 0.380897
\(290\) 1.59659 8.80839i 0.0937550 0.517246i
\(291\) 20.4270 11.0703i 1.19745 0.648953i
\(292\) −26.6583 9.99236i −1.56006 0.584759i
\(293\) 16.6676 0.973732 0.486866 0.873477i \(-0.338140\pi\)
0.486866 + 0.873477i \(0.338140\pi\)
\(294\) 0.764310 + 2.32719i 0.0445755 + 0.135725i
\(295\) 4.18632i 0.243737i
\(296\) −3.67108 2.19025i −0.213377 0.127306i
\(297\) −16.4858 1.33631i −0.956604 0.0775405i
\(298\) −4.21662 + 23.2631i −0.244262 + 1.34760i
\(299\) 2.00302i 0.115838i
\(300\) −3.43116 + 0.476586i −0.198098 + 0.0275157i
\(301\) 0.874980i 0.0504330i
\(302\) 10.3795 + 1.88136i 0.597273 + 0.108260i
\(303\) 29.6320 16.0589i 1.70231 0.922560i
\(304\) −4.57881 3.99366i −0.262613 0.229052i
\(305\) 11.4482i 0.655524i
\(306\) −9.45059 + 10.0066i −0.540254 + 0.572038i
\(307\) −5.46542 −0.311928 −0.155964 0.987763i \(-0.549848\pi\)
−0.155964 + 0.987763i \(0.549848\pi\)
\(308\) 5.96120 + 2.23444i 0.339671 + 0.127319i
\(309\) −5.15970 9.52070i −0.293525 0.541614i
\(310\) −7.77469 1.40922i −0.441573 0.0800385i
\(311\) 18.8900 1.07115 0.535576 0.844487i \(-0.320095\pi\)
0.535576 + 0.844487i \(0.320095\pi\)
\(312\) 2.99144 + 0.123602i 0.169357 + 0.00699756i
\(313\) −18.5316 −1.04747 −0.523735 0.851881i \(-0.675462\pi\)
−0.523735 + 0.851881i \(0.675462\pi\)
\(314\) 19.4618 + 3.52761i 1.09829 + 0.199075i
\(315\) 2.51346 + 1.63784i 0.141617 + 0.0922820i
\(316\) −9.10886 + 24.3013i −0.512414 + 1.36705i
\(317\) −20.6294 −1.15866 −0.579330 0.815093i \(-0.696686\pi\)
−0.579330 + 0.815093i \(0.696686\pi\)
\(318\) −2.86048 8.70968i −0.160408 0.488414i
\(319\) 20.1489i 1.12812i
\(320\) 3.79976 + 7.04002i 0.212413 + 0.393549i
\(321\) 4.82962 + 8.91162i 0.269563 + 0.497398i
\(322\) 4.56073 + 0.826669i 0.254160 + 0.0460685i
\(323\) 4.92772i 0.274186i
\(324\) 1.02787 + 17.9706i 0.0571039 + 0.998368i
\(325\) 0.611147i 0.0339003i
\(326\) −3.81645 + 21.0554i −0.211374 + 1.16615i
\(327\) −8.22249 15.1722i −0.454705 0.839023i
\(328\) 10.0302 + 5.98424i 0.553823 + 0.330424i
\(329\) 0.289369i 0.0159534i
\(330\) 7.40770 2.43288i 0.407780 0.133926i
\(331\) −26.6014 −1.46215 −0.731073 0.682299i \(-0.760980\pi\)
−0.731073 + 0.682299i \(0.760980\pi\)
\(332\) 1.79345 4.78470i 0.0984286 0.262595i
\(333\) 3.79878 + 2.47539i 0.208172 + 0.135651i
\(334\) −0.772530 + 4.26205i −0.0422709 + 0.233209i
\(335\) −0.637748 −0.0348439
\(336\) 1.51604 6.76030i 0.0827065 0.368805i
\(337\) 6.17287 0.336258 0.168129 0.985765i \(-0.446228\pi\)
0.168129 + 0.985765i \(0.446228\pi\)
\(338\) 3.18475 17.5703i 0.173228 0.955697i
\(339\) −0.108435 0.200085i −0.00588940 0.0108672i
\(340\) 2.27732 6.07559i 0.123505 0.329495i
\(341\) 17.7844 0.963078
\(342\) 4.68512 + 4.42480i 0.253342 + 0.239266i
\(343\) 1.00000i 0.0539949i
\(344\) 1.26800 2.12530i 0.0683661 0.114588i
\(345\) 4.99094 2.70482i 0.268703 0.145622i
\(346\) 3.04414 16.7945i 0.163654 0.902879i
\(347\) 33.9389i 1.82194i 0.412477 + 0.910968i \(0.364664\pi\)
−0.412477 + 0.910968i \(0.635336\pi\)
\(348\) 21.7191 3.01677i 1.16427 0.161716i
\(349\) 29.0093i 1.55283i −0.630222 0.776415i \(-0.717036\pi\)
0.630222 0.776415i \(-0.282964\pi\)
\(350\) −1.39154 0.252227i −0.0743809 0.0134821i
\(351\) −3.16523 0.256568i −0.168948 0.0136946i
\(352\) −11.2414 14.0662i −0.599171 0.749732i
\(353\) 14.8212i 0.788851i −0.918928 0.394425i \(-0.870944\pi\)
0.918928 0.394425i \(-0.129056\pi\)
\(354\) 9.74239 3.19965i 0.517802 0.170060i
\(355\) −13.8053 −0.732709
\(356\) 5.66582 15.1157i 0.300288 0.801130i
\(357\) −4.94025 + 2.67735i −0.261466 + 0.141700i
\(358\) −2.12870 0.385843i −0.112505 0.0203924i
\(359\) 33.2076 1.75263 0.876316 0.481737i \(-0.159994\pi\)
0.876316 + 0.481737i \(0.159994\pi\)
\(360\) −3.73158 7.62072i −0.196671 0.401647i
\(361\) −16.6928 −0.878570
\(362\) −20.6071 3.73521i −1.08309 0.196318i
\(363\) 1.32156 0.716214i 0.0693639 0.0375915i
\(364\) 1.14453 + 0.429006i 0.0599898 + 0.0224860i
\(365\) −14.2348 −0.745082
\(366\) −26.6423 + 8.75001i −1.39261 + 0.457370i
\(367\) 28.3135i 1.47795i 0.673732 + 0.738976i \(0.264690\pi\)
−0.673732 + 0.738976i \(0.735310\pi\)
\(368\) −9.87988 8.61727i −0.515024 0.449206i
\(369\) −10.3791 6.76330i −0.540313 0.352083i
\(370\) −2.10314 0.381210i −0.109337 0.0198182i
\(371\) 3.74257i 0.194304i
\(372\) −2.66274 19.1703i −0.138057 0.993933i
\(373\) 26.4429i 1.36916i 0.728938 + 0.684580i \(0.240014\pi\)
−0.728938 + 0.684580i \(0.759986\pi\)
\(374\) −2.60465 + 14.3698i −0.134683 + 0.743047i
\(375\) −1.52280 + 0.825275i −0.0786371 + 0.0426170i
\(376\) −0.419347 + 0.702867i −0.0216262 + 0.0362476i
\(377\) 3.86854i 0.199240i
\(378\) −1.89051 + 7.10112i −0.0972376 + 0.365242i
\(379\) −35.0973 −1.80283 −0.901413 0.432960i \(-0.857469\pi\)
−0.901413 + 0.432960i \(0.857469\pi\)
\(380\) −2.84461 1.06625i −0.145926 0.0546973i
\(381\) 1.91567 + 3.53481i 0.0981429 + 0.181094i
\(382\) 0.309875 1.70958i 0.0158546 0.0874697i
\(383\) −14.4373 −0.737710 −0.368855 0.929487i \(-0.620250\pi\)
−0.368855 + 0.929487i \(0.620250\pi\)
\(384\) −13.4793 + 14.2235i −0.687862 + 0.725842i
\(385\) 3.18310 0.162226
\(386\) 6.56188 36.2019i 0.333991 1.84263i
\(387\) −1.43308 + 2.19922i −0.0728475 + 0.111793i
\(388\) −25.1214 9.41628i −1.27535 0.478039i
\(389\) −17.0620 −0.865076 −0.432538 0.901616i \(-0.642382\pi\)
−0.432538 + 0.901616i \(0.642382\pi\)
\(390\) 1.42226 0.467106i 0.0720188 0.0236528i
\(391\) 10.6327i 0.537721i
\(392\) 1.44918 2.42897i 0.0731946 0.122681i
\(393\) −7.99258 14.7479i −0.403172 0.743935i
\(394\) −2.52030 + 13.9045i −0.126971 + 0.700497i
\(395\) 12.9762i 0.652902i
\(396\) 11.3236 + 15.3797i 0.569030 + 0.772858i
\(397\) 16.7656i 0.841443i 0.907190 + 0.420721i \(0.138223\pi\)
−0.907190 + 0.420721i \(0.861777\pi\)
\(398\) 27.7372 + 5.02758i 1.39034 + 0.252010i
\(399\) 1.25354 + 2.31304i 0.0627556 + 0.115797i
\(400\) 3.01448 + 2.62924i 0.150724 + 0.131462i
\(401\) 25.5862i 1.27772i −0.769325 0.638858i \(-0.779407\pi\)
0.769325 0.638858i \(-0.220593\pi\)
\(402\) −0.487437 1.48416i −0.0243112 0.0740233i
\(403\) 3.41455 0.170091
\(404\) −36.4418 13.6595i −1.81305 0.679586i
\(405\) 3.63494 + 8.23330i 0.180622 + 0.409116i
\(406\) 8.80839 + 1.59659i 0.437153 + 0.0792374i
\(407\) 4.81086 0.238466
\(408\) 15.8797 + 0.656121i 0.786160 + 0.0324828i
\(409\) −34.0307 −1.68271 −0.841355 0.540482i \(-0.818242\pi\)
−0.841355 + 0.540482i \(0.818242\pi\)
\(410\) 5.74622 + 1.04155i 0.283785 + 0.0514384i
\(411\) 12.0811 + 22.2921i 0.595918 + 1.09959i
\(412\) −4.38878 + 11.7087i −0.216220 + 0.576846i
\(413\) 4.18632 0.205996
\(414\) 10.1093 + 9.54756i 0.496843 + 0.469237i
\(415\) 2.55489i 0.125415i
\(416\) −2.15833 2.70067i −0.105821 0.132411i
\(417\) −18.8490 + 10.2151i −0.923039 + 0.500237i
\(418\) 6.72801 + 1.21950i 0.329078 + 0.0596479i
\(419\) 3.50519i 0.171240i 0.996328 + 0.0856199i \(0.0272871\pi\)
−0.996328 + 0.0856199i \(0.972713\pi\)
\(420\) −0.476586 3.43116i −0.0232550 0.167424i
\(421\) 20.7225i 1.00996i 0.863132 + 0.504978i \(0.168499\pi\)
−0.863132 + 0.504978i \(0.831501\pi\)
\(422\) −1.14793 + 6.33312i −0.0558803 + 0.308292i
\(423\) 0.473940 0.727316i 0.0230438 0.0353633i
\(424\) −5.42365 + 9.09057i −0.263396 + 0.441477i
\(425\) 3.24419i 0.157366i
\(426\) −10.5515 32.1276i −0.511224 1.55659i
\(427\) −11.4482 −0.554019
\(428\) 4.10801 10.9596i 0.198568 0.529755i
\(429\) −2.96237 + 1.60544i −0.143025 + 0.0775116i
\(430\) 0.220694 1.21757i 0.0106428 0.0587164i
\(431\) −20.2688 −0.976313 −0.488156 0.872756i \(-0.662330\pi\)
−0.488156 + 0.872756i \(0.662330\pi\)
\(432\) 14.8828 14.5087i 0.716049 0.698050i
\(433\) −13.7333 −0.659979 −0.329989 0.943985i \(-0.607045\pi\)
−0.329989 + 0.943985i \(0.607045\pi\)
\(434\) 1.40922 7.77469i 0.0676449 0.373197i
\(435\) 9.63927 5.22396i 0.462168 0.250470i
\(436\) −6.99395 + 18.6590i −0.334949 + 0.893602i
\(437\) 4.97828 0.238144
\(438\) −10.8798 33.1271i −0.519856 1.58287i
\(439\) 19.9303i 0.951219i −0.879656 0.475610i \(-0.842228\pi\)
0.879656 0.475610i \(-0.157772\pi\)
\(440\) −7.73165 4.61289i −0.368592 0.219911i
\(441\) −1.63784 + 2.51346i −0.0779925 + 0.119688i
\(442\) −0.500085 + 2.75897i −0.0237866 + 0.131231i
\(443\) 7.34323i 0.348887i 0.984667 + 0.174444i \(0.0558127\pi\)
−0.984667 + 0.174444i \(0.944187\pi\)
\(444\) −0.720299 5.18577i −0.0341839 0.246106i
\(445\) 8.07133i 0.382618i
\(446\) −22.9066 4.15201i −1.08466 0.196603i
\(447\) −25.4575 + 13.7966i −1.20410 + 0.652555i
\(448\) −7.04002 + 3.79976i −0.332610 + 0.179522i
\(449\) 5.65278i 0.266771i −0.991064 0.133386i \(-0.957415\pi\)
0.991064 0.133386i \(-0.0425849\pi\)
\(450\) −3.08447 2.91309i −0.145403 0.137324i
\(451\) −13.1443 −0.618941
\(452\) −0.0922339 + 0.246068i −0.00433832 + 0.0115741i
\(453\) 6.15573 + 11.3586i 0.289221 + 0.533672i
\(454\) −33.8330 6.13250i −1.58786 0.287812i
\(455\) 0.611147 0.0286510
\(456\) 0.307198 7.43491i 0.0143859 0.348171i
\(457\) 18.3259 0.857250 0.428625 0.903483i \(-0.358998\pi\)
0.428625 + 0.903483i \(0.358998\pi\)
\(458\) −33.8861 6.14212i −1.58339 0.287002i
\(459\) −16.8022 1.36195i −0.784258 0.0635705i
\(460\) −6.13793 2.30068i −0.286183 0.107270i
\(461\) −1.96787 −0.0916527 −0.0458263 0.998949i \(-0.514592\pi\)
−0.0458263 + 0.998949i \(0.514592\pi\)
\(462\) 2.43288 + 7.40770i 0.113188 + 0.344637i
\(463\) 14.0960i 0.655098i −0.944834 0.327549i \(-0.893777\pi\)
0.944834 0.327549i \(-0.106223\pi\)
\(464\) −19.0815 16.6430i −0.885838 0.772632i
\(465\) −4.61091 8.50806i −0.213826 0.394552i
\(466\) 39.3168 + 7.12648i 1.82132 + 0.330128i
\(467\) 13.5412i 0.626612i 0.949652 + 0.313306i \(0.101437\pi\)
−0.949652 + 0.313306i \(0.898563\pi\)
\(468\) 2.17409 + 2.95285i 0.100497 + 0.136496i
\(469\) 0.637748i 0.0294485i
\(470\) −0.0729867 + 0.402668i −0.00336663 + 0.0185737i
\(471\) 11.5422 + 21.2976i 0.531834 + 0.981343i
\(472\) −10.1684 6.06673i −0.468041 0.279244i
\(473\) 2.78515i 0.128061i
\(474\) −30.1980 + 9.91782i −1.38704 + 0.455540i
\(475\) −1.51894 −0.0696937
\(476\) 6.07559 + 2.27732i 0.278474 + 0.104381i
\(477\) 6.12973 9.40678i 0.280661 0.430707i
\(478\) 0.664367 3.66532i 0.0303875 0.167648i
\(479\) 41.0871 1.87732 0.938658 0.344849i \(-0.112070\pi\)
0.938658 + 0.344849i \(0.112070\pi\)
\(480\) −3.81476 + 9.02483i −0.174119 + 0.411925i
\(481\) 0.923672 0.0421158
\(482\) 7.48660 41.3036i 0.341005 1.88133i
\(483\) 2.70482 + 4.99094i 0.123073 + 0.227096i
\(484\) −1.62527 0.609203i −0.0738761 0.0276910i
\(485\) −13.4141 −0.609103
\(486\) −16.3823 + 14.7520i −0.743114 + 0.669165i
\(487\) 33.5339i 1.51956i 0.650178 + 0.759782i \(0.274694\pi\)
−0.650178 + 0.759782i \(0.725306\pi\)
\(488\) 27.8074 + 16.5905i 1.25878 + 0.751019i
\(489\) −23.0415 + 12.4872i −1.04197 + 0.564692i
\(490\) 0.252227 1.39154i 0.0113945 0.0628633i
\(491\) 18.6783i 0.842940i 0.906842 + 0.421470i \(0.138486\pi\)
−0.906842 + 0.421470i \(0.861514\pi\)
\(492\) 1.96801 + 14.1686i 0.0887248 + 0.638771i
\(493\) 20.5356i 0.924876i
\(494\) 1.29176 + 0.234141i 0.0581190 + 0.0105345i
\(495\) 8.00060 + 5.21342i 0.359600 + 0.234326i
\(496\) −14.6899 + 16.8422i −0.659595 + 0.756239i
\(497\) 13.8053i 0.619252i
\(498\) 5.94573 1.95273i 0.266434 0.0875039i
\(499\) 21.3606 0.956233 0.478116 0.878296i \(-0.341320\pi\)
0.478116 + 0.878296i \(0.341320\pi\)
\(500\) 1.87276 + 0.701969i 0.0837525 + 0.0313930i
\(501\) −4.66408 + 2.52768i −0.208376 + 0.112928i
\(502\) −0.730774 0.132458i −0.0326160 0.00591191i
\(503\) −33.0495 −1.47360 −0.736802 0.676109i \(-0.763665\pi\)
−0.736802 + 0.676109i \(0.763665\pi\)
\(504\) 7.62072 3.73158i 0.339454 0.166218i
\(505\) −19.4589 −0.865908
\(506\) 14.5173 + 2.63137i 0.645372 + 0.116979i
\(507\) 19.2276 10.4203i 0.853929 0.462783i
\(508\) 1.62945 4.34716i 0.0722950 0.192874i
\(509\) 13.9071 0.616420 0.308210 0.951318i \(-0.400270\pi\)
0.308210 + 0.951318i \(0.400270\pi\)
\(510\) 7.54985 2.47956i 0.334313 0.109797i
\(511\) 14.2348i 0.629709i
\(512\) 22.6065 + 0.972756i 0.999075 + 0.0429901i
\(513\) −0.637671 + 7.86684i −0.0281538 + 0.347329i
\(514\) 12.3443 + 2.23750i 0.544483 + 0.0986919i
\(515\) 6.25210i 0.275500i
\(516\) 3.00220 0.417003i 0.132164 0.0183575i
\(517\) 0.921090i 0.0405095i
\(518\) 0.381210 2.10314i 0.0167494 0.0924065i
\(519\) 18.3787 9.96026i 0.806736 0.437207i
\(520\) −1.48446 0.885661i −0.0650977 0.0388388i
\(521\) 4.23868i 0.185700i −0.995680 0.0928501i \(-0.970402\pi\)
0.995680 0.0928501i \(-0.0295977\pi\)
\(522\) 19.5246 + 18.4397i 0.854567 + 0.807084i
\(523\) −33.8757 −1.48128 −0.740641 0.671901i \(-0.765478\pi\)
−0.740641 + 0.671901i \(0.765478\pi\)
\(524\) −6.79839 + 18.1372i −0.296989 + 0.792329i
\(525\) −0.825275 1.52280i −0.0360180 0.0664605i
\(526\) −7.19498 + 39.6947i −0.313716 + 1.73077i
\(527\) 18.1256 0.789565
\(528\) 4.82570 21.5187i 0.210012 0.936483i
\(529\) −12.2582 −0.532963
\(530\) −0.943978 + 5.20793i −0.0410038 + 0.226218i
\(531\) 10.5222 + 6.85654i 0.456623 + 0.297549i
\(532\) 1.06625 2.84461i 0.0462277 0.123330i
\(533\) −2.52367 −0.109312
\(534\) 18.7835 6.16900i 0.812843 0.266959i
\(535\) 5.85213i 0.253010i
\(536\) −0.924211 + 1.54907i −0.0399198 + 0.0669096i
\(537\) −1.26246 2.32949i −0.0544791 0.100525i
\(538\) 7.02240 38.7426i 0.302757 1.67031i
\(539\) 3.18310i 0.137106i
\(540\) 4.42182 9.40465i 0.190285 0.404712i
\(541\) 28.4229i 1.22200i 0.791632 + 0.610998i \(0.209232\pi\)
−0.791632 + 0.610998i \(0.790768\pi\)
\(542\) −15.8506 2.87304i −0.680841 0.123408i
\(543\) −12.2214 22.5510i −0.524470 0.967755i
\(544\) −11.4572 14.3361i −0.491222 0.614657i
\(545\) 9.96334i 0.426782i
\(546\) 0.467106 + 1.42226i 0.0199903 + 0.0608670i
\(547\) 23.5245 1.00584 0.502918 0.864334i \(-0.332260\pi\)
0.502918 + 0.864334i \(0.332260\pi\)
\(548\) 10.2761 27.4152i 0.438971 1.17112i
\(549\) −28.7747 18.7504i −1.22807 0.800248i
\(550\) −4.42941 0.802866i −0.188871 0.0342343i
\(551\) 9.61482 0.409605
\(552\) 0.662854 16.0426i 0.0282129 0.682818i
\(553\) −12.9762 −0.551803
\(554\) 9.95685 + 1.80476i 0.423026 + 0.0766768i
\(555\) −1.24730 2.30152i −0.0529449 0.0976942i
\(556\) 23.1808 + 8.68887i 0.983084 + 0.368490i
\(557\) −4.60175 −0.194982 −0.0974912 0.995236i \(-0.531082\pi\)
−0.0974912 + 0.995236i \(0.531082\pi\)
\(558\) 16.2757 17.2333i 0.689007 0.729542i
\(559\) 0.534741i 0.0226171i
\(560\) −2.62924 + 3.01448i −0.111106 + 0.127385i
\(561\) −15.7253 + 8.52227i −0.663924 + 0.359810i
\(562\) 32.7217 + 5.93107i 1.38028 + 0.250187i
\(563\) 13.8201i 0.582450i 0.956655 + 0.291225i \(0.0940628\pi\)
−0.956655 + 0.291225i \(0.905937\pi\)
\(564\) −0.992870 + 0.137909i −0.0418074 + 0.00580701i
\(565\) 0.131393i 0.00552775i
\(566\) 1.06797 5.89197i 0.0448900 0.247658i
\(567\) −8.23330 + 3.63494i −0.345766 + 0.152653i
\(568\) −20.0064 + 33.5326i −0.839448 + 1.40700i
\(569\) 3.61438i 0.151523i 0.997126 + 0.0757614i \(0.0241387\pi\)
−0.997126 + 0.0757614i \(0.975861\pi\)
\(570\) −1.16094 3.53486i −0.0486265 0.148059i
\(571\) 20.0146 0.837584 0.418792 0.908082i \(-0.362454\pi\)
0.418792 + 0.908082i \(0.362454\pi\)
\(572\) 3.64317 + 1.36557i 0.152328 + 0.0570974i
\(573\) 1.87084 1.01389i 0.0781555 0.0423560i
\(574\) −1.04155 + 5.74622i −0.0434733 + 0.239843i
\(575\) −3.27747 −0.136680
\(576\) −23.9182 1.97990i −0.996591 0.0824959i
\(577\) −3.16309 −0.131681 −0.0658406 0.997830i \(-0.520973\pi\)
−0.0658406 + 0.997830i \(0.520973\pi\)
\(578\) 1.63324 9.01057i 0.0679337 0.374790i
\(579\) 39.6168 21.4701i 1.64642 0.892269i
\(580\) −11.8545 4.44344i −0.492232 0.184504i
\(581\) 2.55489 0.105995
\(582\) −10.2525 31.2172i −0.424981 1.29399i
\(583\) 11.9130i 0.493385i
\(584\) −20.6287 + 34.5758i −0.853623 + 1.43076i
\(585\) 1.53609 + 1.00096i 0.0635096 + 0.0413847i
\(586\) 4.20403 23.1936i 0.173667 0.958120i
\(587\) 13.3591i 0.551391i 0.961245 + 0.275695i \(0.0889081\pi\)
−0.961245 + 0.275695i \(0.911092\pi\)
\(588\) 3.43116 0.476586i 0.141499 0.0196541i
\(589\) 8.48649i 0.349680i
\(590\) −5.82543 1.05591i −0.239829 0.0434710i
\(591\) −15.2161 + 8.24627i −0.625905 + 0.339206i
\(592\) −3.97377 + 4.55601i −0.163321 + 0.187251i
\(593\) 28.7133i 1.17911i −0.807727 0.589556i \(-0.799303\pi\)
0.807727 0.589556i \(-0.200697\pi\)
\(594\) −6.01770 + 22.6036i −0.246909 + 0.927438i
\(595\) 3.24419 0.132999
\(596\) 31.3080 + 11.7352i 1.28242 + 0.480692i
\(597\) 16.4500 + 30.3536i 0.673253 + 1.24229i
\(598\) 2.78728 + 0.505216i 0.113980 + 0.0206598i
\(599\) −21.3190 −0.871070 −0.435535 0.900172i \(-0.643441\pi\)
−0.435535 + 0.900172i \(0.643441\pi\)
\(600\) −0.202245 + 4.89480i −0.00825663 + 0.199829i
\(601\) −21.1769 −0.863823 −0.431912 0.901916i \(-0.642161\pi\)
−0.431912 + 0.901916i \(0.642161\pi\)
\(602\) 1.21757 + 0.220694i 0.0496244 + 0.00899481i
\(603\) 1.04453 1.60295i 0.0425366 0.0652773i
\(604\) 5.23599 13.9689i 0.213049 0.568388i
\(605\) −0.867849 −0.0352831
\(606\) −14.8726 45.2845i −0.604159 1.83956i
\(607\) 41.2524i 1.67438i 0.546909 + 0.837192i \(0.315804\pi\)
−0.546909 + 0.837192i \(0.684196\pi\)
\(608\) −6.71223 + 5.36428i −0.272217 + 0.217550i
\(609\) 5.22396 + 9.63927i 0.211685 + 0.390603i
\(610\) 15.9307 + 2.88756i 0.645014 + 0.116914i
\(611\) 0.176847i 0.00715445i
\(612\) 11.5409 + 15.6748i 0.466511 + 0.633616i
\(613\) 44.7492i 1.80740i −0.428164 0.903701i \(-0.640840\pi\)
0.428164 0.903701i \(-0.359160\pi\)
\(614\) −1.37853 + 7.60534i −0.0556329 + 0.306927i
\(615\) 3.40789 + 6.28825i 0.137419 + 0.253567i
\(616\) 4.61289 7.73165i 0.185859 0.311517i
\(617\) 7.18138i 0.289112i −0.989497 0.144556i \(-0.953825\pi\)
0.989497 0.144556i \(-0.0461753\pi\)
\(618\) −14.5498 + 4.77855i −0.585281 + 0.192221i
\(619\) −14.9728 −0.601806 −0.300903 0.953655i \(-0.597288\pi\)
−0.300903 + 0.953655i \(0.597288\pi\)
\(620\) −3.92198 + 10.4633i −0.157511 + 0.420218i
\(621\) −1.37593 + 16.9746i −0.0552141 + 0.681167i
\(622\) 4.76457 26.2861i 0.191042 1.05398i
\(623\) 8.07133 0.323371
\(624\) 0.926521 4.13154i 0.0370905 0.165394i
\(625\) 1.00000 0.0400000
\(626\) −4.67419 + 25.7875i −0.186818 + 1.03068i
\(627\) 3.99015 + 7.36265i 0.159351 + 0.294036i
\(628\) 9.81761 26.1921i 0.391765 1.04518i
\(629\) 4.90318 0.195503
\(630\) 2.91309 3.08447i 0.116060 0.122888i
\(631\) 37.5150i 1.49345i −0.665134 0.746724i \(-0.731626\pi\)
0.665134 0.746724i \(-0.268374\pi\)
\(632\) 31.5187 + 18.8048i 1.25375 + 0.748014i
\(633\) −6.93051 + 3.75596i −0.275463 + 0.149286i
\(634\) −5.20329 + 28.7066i −0.206649 + 1.14008i
\(635\) 2.32125i 0.0921161i
\(636\) −12.8413 + 1.78365i −0.509193 + 0.0707265i
\(637\) 0.611147i 0.0242145i
\(638\) 28.0380 + 5.08211i 1.11004 + 0.201203i
\(639\) 22.6109 34.6991i 0.894474 1.37267i
\(640\) 10.7549 3.51183i 0.425123 0.138817i
\(641\) 3.16867i 0.125155i −0.998040 0.0625775i \(-0.980068\pi\)
0.998040 0.0625775i \(-0.0199321\pi\)
\(642\) 13.6190 4.47284i 0.537500 0.176529i
\(643\) 25.1374 0.991321 0.495660 0.868516i \(-0.334926\pi\)
0.495660 + 0.868516i \(0.334926\pi\)
\(644\) 2.30068 6.13793i 0.0906597 0.241868i
\(645\) 1.33242 0.722099i 0.0524640 0.0284326i
\(646\) 6.85712 + 1.24291i 0.269790 + 0.0489015i
\(647\) 4.95837 0.194934 0.0974668 0.995239i \(-0.468926\pi\)
0.0974668 + 0.995239i \(0.468926\pi\)
\(648\) 25.2661 + 3.10237i 0.992546 + 0.121872i
\(649\) 13.3255 0.523072
\(650\) −0.850435 0.154148i −0.0333568 0.00604618i
\(651\) 8.50806 4.61091i 0.333457 0.180716i
\(652\) 28.3368 + 10.6215i 1.10975 + 0.415970i
\(653\) 12.5298 0.490331 0.245165 0.969481i \(-0.421158\pi\)
0.245165 + 0.969481i \(0.421158\pi\)
\(654\) −23.1866 + 7.61508i −0.906668 + 0.297773i
\(655\) 9.68475i 0.378415i
\(656\) 10.8572 12.4480i 0.423902 0.486012i
\(657\) 23.3143 35.7785i 0.909578 1.39585i
\(658\) −0.402668 0.0729867i −0.0156976 0.00284532i
\(659\) 18.8673i 0.734964i −0.930031 0.367482i \(-0.880220\pi\)
0.930031 0.367482i \(-0.119780\pi\)
\(660\) −1.51702 10.9217i −0.0590500 0.425128i
\(661\) 29.0940i 1.13163i −0.824533 0.565814i \(-0.808562\pi\)
0.824533 0.565814i \(-0.191438\pi\)
\(662\) −6.70961 + 37.0169i −0.260776 + 1.43870i
\(663\) −3.01922 + 1.63625i −0.117257 + 0.0635467i
\(664\) −6.20575 3.70249i −0.240830 0.143685i
\(665\) 1.51894i 0.0589019i
\(666\) 4.40276 4.66178i 0.170604 0.180640i
\(667\) 20.7463 0.803299
\(668\) 5.73595 + 2.15001i 0.221931 + 0.0831864i
\(669\) −13.5852 25.0674i −0.525233 0.969161i
\(670\) −0.160858 + 0.887451i −0.00621447 + 0.0342852i
\(671\) −36.4409 −1.40679
\(672\) −9.02483 3.81476i −0.348141 0.147157i
\(673\) 16.9244 0.652389 0.326194 0.945303i \(-0.394234\pi\)
0.326194 + 0.945303i \(0.394234\pi\)
\(674\) 1.55697 8.58979i 0.0599721 0.330866i
\(675\) 0.419813 5.17917i 0.0161586 0.199346i
\(676\) −23.6464 8.86341i −0.909478 0.340900i
\(677\) 15.8627 0.609654 0.304827 0.952408i \(-0.401401\pi\)
0.304827 + 0.952408i \(0.401401\pi\)
\(678\) −0.305777 + 0.100425i −0.0117433 + 0.00385680i
\(679\) 13.4141i 0.514786i
\(680\) −7.88002 4.70141i −0.302185 0.180291i
\(681\) −20.0652 37.0244i −0.768901 1.41878i
\(682\) 4.48571 24.7476i 0.171767 0.947636i
\(683\) 35.9075i 1.37396i 0.726675 + 0.686981i \(0.241065\pi\)
−0.726675 + 0.686981i \(0.758935\pi\)
\(684\) 7.33899 5.40347i 0.280613 0.206607i
\(685\) 14.6389i 0.559324i
\(686\) 1.39154 + 0.252227i 0.0531292 + 0.00963009i
\(687\) −20.0967 37.0825i −0.766737 1.41479i
\(688\) −2.63761 2.30053i −0.100558 0.0877070i
\(689\) 2.28726i 0.0871376i
\(690\) −2.50501 7.62732i −0.0953640 0.290367i
\(691\) 29.5157 1.12283 0.561414 0.827535i \(-0.310257\pi\)
0.561414 + 0.827535i \(0.310257\pi\)
\(692\) −22.6024 8.47208i −0.859215 0.322060i
\(693\) −5.21342 + 8.00060i −0.198042 + 0.303918i
\(694\) 47.2273 + 8.56032i 1.79272 + 0.324945i
\(695\) 12.3779 0.469519
\(696\) 1.28020 30.9839i 0.0485260 1.17444i
\(697\) −13.3965 −0.507430
\(698\) −40.3675 7.31693i −1.52793 0.276950i
\(699\) 23.3175 + 43.0255i 0.881947 + 1.62737i
\(700\) −0.701969 + 1.87276i −0.0265319 + 0.0707838i
\(701\) 11.6157 0.438720 0.219360 0.975644i \(-0.429603\pi\)
0.219360 + 0.975644i \(0.429603\pi\)
\(702\) −1.15538 + 4.33983i −0.0436071 + 0.163796i
\(703\) 2.29569i 0.0865834i
\(704\) −22.4091 + 12.0950i −0.844575 + 0.455849i
\(705\) −0.440651 + 0.238809i −0.0165959 + 0.00899405i
\(706\) −20.6242 3.73830i −0.776203 0.140693i
\(707\) 19.4589i 0.731826i
\(708\) −1.99514 14.3640i −0.0749821 0.539830i
\(709\) 11.6247i 0.436575i −0.975884 0.218288i \(-0.929953\pi\)
0.975884 0.218288i \(-0.0700471\pi\)
\(710\) −3.48208 + 19.2106i −0.130680 + 0.720962i
\(711\) −32.6150 21.2529i −1.22316 0.797047i
\(712\) −19.6050 11.6968i −0.734728 0.438356i
\(713\) 18.3116i 0.685776i
\(714\) 2.47956 + 7.54985i 0.0927954 + 0.282546i
\(715\) 1.94534 0.0727517
\(716\) −1.07383 + 2.86484i −0.0401310 + 0.107064i
\(717\) 4.01106 2.17377i 0.149796 0.0811811i
\(718\) 8.37588 46.2097i 0.312585 1.72453i
\(719\) 26.3029 0.980934 0.490467 0.871460i \(-0.336826\pi\)
0.490467 + 0.871460i \(0.336826\pi\)
\(720\) −11.5457 + 3.27048i −0.430284 + 0.121884i
\(721\) −6.25210 −0.232840
\(722\) −4.21039 + 23.2287i −0.156694 + 0.864483i
\(723\) 45.1997 24.4958i 1.68099 0.911007i
\(724\) −10.3954 + 27.7335i −0.386341 + 1.03071i
\(725\) −6.32996 −0.235089
\(726\) −0.663306 2.01965i −0.0246176 0.0749563i
\(727\) 4.00280i 0.148456i 0.997241 + 0.0742279i \(0.0236492\pi\)
−0.997241 + 0.0742279i \(0.976351\pi\)
\(728\) 0.885661 1.48446i 0.0328248 0.0550176i
\(729\) −26.6475 4.34857i −0.986945 0.161058i
\(730\) −3.59040 + 19.8082i −0.132887 + 0.733136i
\(731\) 2.83860i 0.104989i
\(732\) 5.45607 + 39.2807i 0.201662 + 1.45186i
\(733\) 28.5005i 1.05269i 0.850271 + 0.526346i \(0.176438\pi\)
−0.850271 + 0.526346i \(0.823562\pi\)
\(734\) 39.3993 + 7.14144i 1.45426 + 0.263595i
\(735\) 1.52280 0.825275i 0.0561693 0.0304407i
\(736\) −14.4833 + 11.5747i −0.533860 + 0.426650i
\(737\) 2.03002i 0.0747767i
\(738\) −12.0293 + 12.7370i −0.442804 + 0.468855i
\(739\) −5.16559 −0.190019 −0.0950096 0.995476i \(-0.530288\pi\)
−0.0950096 + 0.995476i \(0.530288\pi\)
\(740\) −1.06094 + 2.83045i −0.0390008 + 0.104049i
\(741\) 0.766098 + 1.41361i 0.0281433 + 0.0519302i
\(742\) −5.20793 0.943978i −0.191189 0.0346545i
\(743\) −26.3582 −0.966989 −0.483495 0.875347i \(-0.660633\pi\)
−0.483495 + 0.875347i \(0.660633\pi\)
\(744\) −27.3478 1.12997i −1.00262 0.0414266i
\(745\) 16.7175 0.612483
\(746\) 36.7963 + 6.66962i 1.34721 + 0.244192i
\(747\) 6.42161 + 4.18451i 0.234954 + 0.153103i
\(748\) 19.3392 + 7.24894i 0.707113 + 0.265047i
\(749\) 5.85213 0.213832
\(750\) 0.764310 + 2.32719i 0.0279087 + 0.0849771i
\(751\) 20.3767i 0.743556i −0.928322 0.371778i \(-0.878748\pi\)
0.928322 0.371778i \(-0.121252\pi\)
\(752\) 0.872296 + 0.760820i 0.0318093 + 0.0277442i
\(753\) −0.433397 0.799706i −0.0157939 0.0291429i
\(754\) 5.38322 + 0.975751i 0.196045 + 0.0355348i
\(755\) 7.45900i 0.271461i
\(756\) 9.40465 + 4.42182i 0.342044 + 0.160820i
\(757\) 42.6839i 1.55137i 0.631118 + 0.775687i \(0.282597\pi\)
−0.631118 + 0.775687i \(0.717403\pi\)
\(758\) −8.85250 + 48.8392i −0.321537 + 1.77392i
\(759\) 8.60972 + 15.8867i 0.312513 + 0.576650i
\(760\) −2.20121 + 3.68945i −0.0798464 + 0.133830i
\(761\) 1.09083i 0.0395426i 0.999805 + 0.0197713i \(0.00629381\pi\)
−0.999805 + 0.0197713i \(0.993706\pi\)
\(762\) 5.40201 1.77416i 0.195694 0.0642710i
\(763\) −9.96334 −0.360697
\(764\) −2.30079 0.862406i −0.0832396 0.0312008i
\(765\) 8.15413 + 5.31347i 0.294813 + 0.192109i
\(766\) −3.64147 + 20.0900i −0.131572 + 0.725882i
\(767\) 2.55846 0.0923806
\(768\) 16.3928 + 22.3445i 0.591523 + 0.806288i
\(769\) 4.69263 0.169221 0.0846104 0.996414i \(-0.473035\pi\)
0.0846104 + 0.996414i \(0.473035\pi\)
\(770\) 0.802866 4.42941i 0.0289333 0.159625i
\(771\) 7.32098 + 13.5087i 0.263659 + 0.486504i
\(772\) −48.7213 18.2622i −1.75352 0.657272i
\(773\) 32.2310 1.15927 0.579635 0.814876i \(-0.303195\pi\)
0.579635 + 0.814876i \(0.303195\pi\)
\(774\) 2.69885 + 2.54889i 0.0970080 + 0.0916180i
\(775\) 5.58711i 0.200695i
\(776\) −19.4394 + 32.5824i −0.697835 + 1.16964i
\(777\) 2.30152 1.24730i 0.0825666 0.0447466i
\(778\) −4.30349 + 23.7424i −0.154288 + 0.851206i
\(779\) 6.27230i 0.224729i
\(780\) −0.291264 2.09694i −0.0104289 0.0750826i
\(781\) 43.9437i 1.57243i
\(782\) 14.7959 + 2.68187i 0.529099 + 0.0959034i
\(783\) −2.65740 + 32.7839i −0.0949678 + 1.17160i
\(784\) −3.01448 2.62924i −0.107660 0.0939015i
\(785\) 13.9858i 0.499176i
\(786\) −22.5383 + 7.40216i −0.803914 + 0.264026i
\(787\) 53.1288 1.89384 0.946918 0.321474i \(-0.104178\pi\)
0.946918 + 0.321474i \(0.104178\pi\)
\(788\) 18.7129 + 7.01418i 0.666621 + 0.249870i
\(789\) −43.4391 + 23.5416i −1.54647 + 0.838103i
\(790\) 18.0568 + 3.27294i 0.642434 + 0.116446i
\(791\) −0.131393 −0.00467180
\(792\) 24.2575 11.8780i 0.861954 0.422067i
\(793\) −6.99655 −0.248455
\(794\) 23.3300 + 4.22875i 0.827952 + 0.150073i
\(795\) −5.69918 + 3.08865i −0.202129 + 0.109543i
\(796\) 13.9921 37.3293i 0.495939 1.32310i
\(797\) −15.1206 −0.535600 −0.267800 0.963475i \(-0.586297\pi\)
−0.267800 + 0.963475i \(0.586297\pi\)
\(798\) 3.53486 1.16094i 0.125133 0.0410969i
\(799\) 0.938765i 0.0332111i
\(800\) 4.41903 3.53160i 0.156236 0.124861i
\(801\) 20.2869 + 13.2196i 0.716804 + 0.467090i
\(802\) −35.6043 6.45355i −1.25723 0.227883i
\(803\) 45.3108i 1.59898i
\(804\) −2.18822 + 0.303942i −0.0771724 + 0.0107192i
\(805\) 3.27747i 0.115516i
\(806\) 0.861243 4.75148i 0.0303360 0.167364i
\(807\) 42.3971 22.9769i 1.49245 0.808826i
\(808\) −28.1994 + 47.2649i −0.992051 + 1.66277i
\(809\) 53.4286i 1.87845i −0.343304 0.939224i \(-0.611546\pi\)
0.343304 0.939224i \(-0.388454\pi\)
\(810\) 12.3738 2.98150i 0.434771 0.104759i
\(811\) −34.7634 −1.22071 −0.610354 0.792129i \(-0.708973\pi\)
−0.610354 + 0.792129i \(0.708973\pi\)
\(812\) 4.44344 11.8545i 0.155934 0.416012i
\(813\) −9.40044 17.3457i −0.329688 0.608341i
\(814\) 1.21343 6.69450i 0.0425308 0.234642i
\(815\) 15.1310 0.530016
\(816\) 4.91830 21.9317i 0.172175 0.767762i
\(817\) 1.32904 0.0464972
\(818\) −8.58348 + 47.3551i −0.300114 + 1.65573i
\(819\) −1.00096 + 1.53609i −0.0349765 + 0.0536754i
\(820\) 2.89871 7.73338i 0.101227 0.270061i
\(821\) −40.0191 −1.39668 −0.698338 0.715768i \(-0.746077\pi\)
−0.698338 + 0.715768i \(0.746077\pi\)
\(822\) 34.0676 11.1887i 1.18824 0.390250i
\(823\) 11.1838i 0.389843i 0.980819 + 0.194922i \(0.0624453\pi\)
−0.980819 + 0.194922i \(0.937555\pi\)
\(824\) 15.1861 + 9.06041i 0.529034 + 0.315635i
\(825\) −2.62694 4.84723i −0.0914582 0.168759i
\(826\) 1.05591 5.82543i 0.0367397 0.202693i
\(827\) 4.10171i 0.142630i −0.997454 0.0713152i \(-0.977280\pi\)
0.997454 0.0713152i \(-0.0227196\pi\)
\(828\) 15.8356 11.6593i 0.550327 0.405188i
\(829\) 31.7388i 1.10233i 0.834395 + 0.551166i \(0.185817\pi\)
−0.834395 + 0.551166i \(0.814183\pi\)
\(830\) −3.55523 0.644414i −0.123404 0.0223679i
\(831\) 5.90507 + 10.8961i 0.204845 + 0.377980i
\(832\) −4.30248 + 2.32221i −0.149162 + 0.0805082i
\(833\) 3.24419i 0.112404i
\(834\) 9.46052 + 28.8057i 0.327591 + 0.997458i
\(835\) 3.06283 0.105994
\(836\) 3.39398 9.05469i 0.117383 0.313163i
\(837\) 28.9366 + 2.34555i 1.00020 + 0.0810739i
\(838\) 4.87761 + 0.884105i 0.168494 + 0.0305409i
\(839\) 8.47189 0.292482 0.146241 0.989249i \(-0.453282\pi\)
0.146241 + 0.989249i \(0.453282\pi\)
\(840\) −4.89480 0.202245i −0.168887 0.00697813i
\(841\) 11.0684 0.381669
\(842\) 28.8362 + 5.22680i 0.993762 + 0.180127i
\(843\) 19.4062 + 35.8083i 0.668384 + 1.23330i
\(844\) 8.52325 + 3.19477i 0.293382 + 0.109969i
\(845\) −12.6265 −0.434365
\(846\) −0.892548 0.842955i −0.0306864 0.0289814i
\(847\) 0.867849i 0.0298196i
\(848\) 11.2819 + 9.84011i 0.387422 + 0.337911i
\(849\) 6.44775 3.49433i 0.221286 0.119925i
\(850\) −4.51441 0.818273i −0.154843 0.0280665i
\(851\) 4.95349i 0.169804i
\(852\) −47.3682 + 6.57941i −1.62281 + 0.225407i
\(853\) 31.6458i 1.08353i −0.840530 0.541766i \(-0.817756\pi\)
0.840530 0.541766i \(-0.182244\pi\)
\(854\) −2.88756 + 15.9307i −0.0988103 + 0.545136i
\(855\) 2.48778 3.81779i 0.0850804 0.130566i
\(856\) −14.2146 8.48078i −0.485846 0.289867i
\(857\) 19.0608i 0.651106i −0.945524 0.325553i \(-0.894450\pi\)
0.945524 0.325553i \(-0.105550\pi\)
\(858\) 1.48685 + 4.52719i 0.0507601 + 0.154556i
\(859\) 41.3435 1.41062 0.705311 0.708898i \(-0.250808\pi\)
0.705311 + 0.708898i \(0.250808\pi\)
\(860\) −1.63863 0.614208i −0.0558768 0.0209443i
\(861\) −6.28825 + 3.40789i −0.214303 + 0.116141i
\(862\) −5.11234 + 28.2048i −0.174127 + 0.960659i
\(863\) −42.3631 −1.44206 −0.721028 0.692906i \(-0.756330\pi\)
−0.721028 + 0.692906i \(0.756330\pi\)
\(864\) −16.4356 24.3695i −0.559150 0.829067i
\(865\) −12.0690 −0.410359
\(866\) −3.46391 + 19.1104i −0.117708 + 0.649397i
\(867\) 9.86052 5.34387i 0.334881 0.181487i
\(868\) −10.4633 3.92198i −0.355149 0.133121i
\(869\) −41.3045 −1.40116
\(870\) −4.83805 14.7310i −0.164025 0.499429i
\(871\) 0.389758i 0.0132064i
\(872\) 24.2006 + 14.4387i 0.819536 + 0.488955i
\(873\) 21.9702 33.7158i 0.743578 1.14111i
\(874\) 1.25566 6.92748i 0.0424733 0.234325i
\(875\) 1.00000i 0.0338062i
\(876\) −48.8418 + 6.78409i −1.65021 + 0.229213i
\(877\) 20.0882i 0.678330i 0.940727 + 0.339165i \(0.110145\pi\)
−0.940727 + 0.339165i \(0.889855\pi\)
\(878\) −27.7337 5.02696i −0.935968 0.169652i
\(879\) 25.3814 13.7554i 0.856094 0.463957i
\(880\) −8.36915 + 9.59540i −0.282124 + 0.323461i
\(881\) 5.98528i 0.201649i −0.994904 0.100825i \(-0.967852\pi\)
0.994904 0.100825i \(-0.0321481\pi\)
\(882\) 3.08447 + 2.91309i 0.103859 + 0.0980887i
\(883\) 5.05387 0.170076 0.0850382 0.996378i \(-0.472899\pi\)
0.0850382 + 0.996378i \(0.472899\pi\)
\(884\) 3.71308 + 1.39178i 0.124884 + 0.0468105i
\(885\) −3.45487 6.37494i −0.116134 0.214291i
\(886\) 10.2184 + 1.85216i 0.343293 + 0.0622246i
\(887\) 45.6946 1.53427 0.767137 0.641484i \(-0.221681\pi\)
0.767137 + 0.641484i \(0.221681\pi\)
\(888\) −7.39788 0.305668i −0.248257 0.0102576i
\(889\) 2.32125 0.0778523
\(890\) −11.2316 2.03581i −0.376483 0.0682405i
\(891\) −26.2074 + 11.5704i −0.877982 + 0.387623i
\(892\) −11.5554 + 30.8282i −0.386902 + 1.03221i
\(893\) −0.439533 −0.0147084
\(894\) 12.7774 + 38.9049i 0.427340 + 1.30118i
\(895\) 1.52974i 0.0511337i
\(896\) 3.51183 + 10.7549i 0.117322 + 0.359295i
\(897\) 1.65304 + 3.05020i 0.0551934 + 0.101843i
\(898\) −7.86607 1.42579i −0.262494 0.0475791i
\(899\) 35.3662i 1.17953i
\(900\) −4.83166 + 3.55740i −0.161055 + 0.118580i
\(901\) 12.1416i 0.404495i
\(902\) −3.31535 + 18.2908i −0.110389 + 0.609017i
\(903\) 0.722099 + 1.33242i 0.0240299 + 0.0443401i
\(904\) 0.319149 + 0.190412i 0.0106148 + 0.00633301i
\(905\) 14.8089i 0.492264i
\(906\) 17.3585 5.70099i 0.576699 0.189403i
\(907\) −36.5992 −1.21526 −0.607629 0.794221i \(-0.707879\pi\)
−0.607629 + 0.794221i \(0.707879\pi\)
\(908\) −17.0672 + 45.5332i −0.566396 + 1.51107i
\(909\) 31.8706 48.9090i 1.05708 1.62221i
\(910\) 0.154148 0.850435i 0.00510996 0.0281916i
\(911\) −41.7072 −1.38182 −0.690911 0.722940i \(-0.742790\pi\)
−0.690911 + 0.722940i \(0.742790\pi\)
\(912\) −10.2685 2.30277i −0.340023 0.0762522i
\(913\) 8.13248 0.269146
\(914\) 4.62230 25.5012i 0.152892 0.843505i
\(915\) 9.44794 + 17.4334i 0.312339 + 0.576330i
\(916\) −17.0940 + 45.6046i −0.564802 + 1.50682i
\(917\) −9.68475 −0.319819
\(918\) −6.13318 + 23.0374i −0.202425 + 0.760346i
\(919\) 32.0158i 1.05610i 0.849212 + 0.528051i \(0.177077\pi\)
−0.849212 + 0.528051i \(0.822923\pi\)
\(920\) −4.74965 + 7.96088i −0.156591 + 0.262462i
\(921\) −8.32274 + 4.51047i −0.274244 + 0.148625i
\(922\) −0.496350 + 2.73836i −0.0163464 + 0.0901832i
\(923\) 8.43707i 0.277709i
\(924\) 10.9217 1.51702i 0.359299 0.0499064i
\(925\) 1.51137i 0.0496937i
\(926\) −19.6152 3.55541i −0.644595 0.116838i
\(927\) −15.7144 10.2400i −0.516128 0.336324i
\(928\) −27.9723 + 22.3549i −0.918235 + 0.733835i
\(929\) 19.9602i 0.654874i −0.944873 0.327437i \(-0.893815\pi\)
0.944873 0.327437i \(-0.106185\pi\)
\(930\) −13.0023 + 4.27029i −0.426362 + 0.140028i
\(931\) 1.51894 0.0497812
\(932\) 19.8335 52.9134i 0.649669 1.73323i
\(933\) 28.7656 15.5894i 0.941745 0.510374i
\(934\) 18.8431 + 3.41546i 0.616566 + 0.111757i
\(935\) 10.3266 0.337715
\(936\) 4.65738 2.28054i 0.152231 0.0745419i
\(937\) 12.2298 0.399532 0.199766 0.979844i \(-0.435982\pi\)
0.199766 + 0.979844i \(0.435982\pi\)
\(938\) −0.887451 0.160858i −0.0289763 0.00525218i
\(939\) −28.2200 + 15.2937i −0.920924 + 0.499091i
\(940\) 0.541919 + 0.203128i 0.0176754 + 0.00662529i
\(941\) 9.69349 0.315999 0.157999 0.987439i \(-0.449496\pi\)
0.157999 + 0.987439i \(0.449496\pi\)
\(942\) 32.5477 10.6895i 1.06046 0.348283i
\(943\) 13.5340i 0.440728i
\(944\) −11.0069 + 12.6196i −0.358243 + 0.410733i
\(945\) 5.17917 + 0.419813i 0.168478 + 0.0136565i
\(946\) 3.87565 + 0.702492i 0.126008 + 0.0228400i
\(947\) 18.2317i 0.592449i −0.955118 0.296225i \(-0.904272\pi\)
0.955118 0.296225i \(-0.0957277\pi\)
\(948\) 6.18425 + 44.5233i 0.200855 + 1.44605i
\(949\) 8.69953i 0.282399i
\(950\) −0.383118 + 2.11366i −0.0124300 + 0.0685763i
\(951\) −31.4144 + 17.0249i −1.01868 + 0.552070i
\(952\) 4.70141 7.88002i 0.152373 0.255393i
\(953\) 37.4130i 1.21193i 0.795493 + 0.605963i \(0.207212\pi\)
−0.795493 + 0.605963i \(0.792788\pi\)
\(954\) −11.5438 10.9024i −0.373745 0.352979i
\(955\) −1.22855 −0.0397551
\(956\) −4.93286 1.84899i −0.159540 0.0598005i
\(957\) 16.6284 + 30.6828i 0.537520 + 0.991834i
\(958\) 10.3633 57.1743i 0.334823 1.84722i
\(959\) 14.6389 0.472715
\(960\) 11.5962 + 7.58469i 0.374267 + 0.244795i
\(961\) −0.215854 −0.00696303
\(962\) 0.232975 1.28533i 0.00751143 0.0414406i
\(963\) 14.7091 + 9.58487i 0.473994 + 0.308868i
\(964\) −55.5872 20.8358i −1.79034 0.671075i
\(965\) −26.0157 −0.837476
\(966\) 7.62732 2.50501i 0.245405 0.0805973i
\(967\) 14.1408i 0.454737i −0.973809 0.227369i \(-0.926988\pi\)
0.973809 0.227369i \(-0.0730122\pi\)
\(968\) −1.25767 + 2.10798i −0.0404230 + 0.0677529i
\(969\) 4.06672 + 7.50393i 0.130642 + 0.241061i
\(970\) −3.38340 + 18.6662i −0.108635 + 0.599337i
\(971\) 7.81770i 0.250882i 0.992101 + 0.125441i \(0.0400346\pi\)
−0.992101 + 0.125441i \(0.959965\pi\)
\(972\) 16.3959 + 26.5174i 0.525900 + 0.850546i
\(973\) 12.3779i 0.396816i
\(974\) 46.6637 + 8.45816i 1.49520 + 0.271017i
\(975\) −0.504364 0.930655i −0.0161526 0.0298048i
\(976\) 30.1002 34.5105i 0.963483 1.10465i
\(977\) 42.9825i 1.37513i −0.726122 0.687565i \(-0.758679\pi\)
0.726122 0.687565i \(-0.241321\pi\)
\(978\) 11.5648 + 35.2128i 0.369801 + 1.12598i
\(979\) 25.6919 0.821116
\(980\) −1.87276 0.701969i −0.0598232 0.0224236i
\(981\) −25.0424 16.3184i −0.799543 0.521006i
\(982\) 25.9916 + 4.71118i 0.829425 + 0.150340i
\(983\) −10.2677 −0.327489 −0.163744 0.986503i \(-0.552357\pi\)
−0.163744 + 0.986503i \(0.552357\pi\)
\(984\) 20.2126 + 0.835151i 0.644354 + 0.0266236i
\(985\) 9.99215 0.318377
\(986\) 28.5761 + 5.17963i 0.910047 + 0.164953i
\(987\) −0.238809 0.440651i −0.00760136 0.0140261i
\(988\) 0.651634 1.73848i 0.0207312 0.0553083i
\(989\) 2.86772 0.0911883
\(990\) 9.27265 9.81818i 0.294704 0.312042i
\(991\) 19.1535i 0.608432i −0.952603 0.304216i \(-0.901606\pi\)
0.952603 0.304216i \(-0.0983945\pi\)
\(992\) 19.7315 + 24.6896i 0.626474 + 0.783896i
\(993\) −40.5087 + 21.9535i −1.28550 + 0.696673i
\(994\) −19.2106 3.48208i −0.609324 0.110445i
\(995\) 19.9327i 0.631910i
\(996\) −1.21762 8.76624i −0.0385819 0.277769i
\(997\) 2.43858i 0.0772306i 0.999254 + 0.0386153i \(0.0122947\pi\)
−0.999254 + 0.0386153i \(0.987705\pi\)
\(998\) 5.38774 29.7241i 0.170546 0.940901i
\(999\) 7.82766 + 0.634495i 0.247656 + 0.0200745i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.e.d.491.23 yes 44
3.2 odd 2 840.2.e.c.491.22 yes 44
4.3 odd 2 3360.2.e.c.911.8 44
8.3 odd 2 840.2.e.c.491.21 44
8.5 even 2 3360.2.e.d.911.8 44
12.11 even 2 3360.2.e.d.911.7 44
24.5 odd 2 3360.2.e.c.911.7 44
24.11 even 2 inner 840.2.e.d.491.24 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.e.c.491.21 44 8.3 odd 2
840.2.e.c.491.22 yes 44 3.2 odd 2
840.2.e.d.491.23 yes 44 1.1 even 1 trivial
840.2.e.d.491.24 yes 44 24.11 even 2 inner
3360.2.e.c.911.7 44 24.5 odd 2
3360.2.e.c.911.8 44 4.3 odd 2
3360.2.e.d.911.7 44 12.11 even 2
3360.2.e.d.911.8 44 8.5 even 2