L(s) = 1 | + (0.252 − 1.39i)2-s + (1.52 − 0.825i)3-s + (−1.87 − 0.701i)4-s − 5-s + (−0.764 − 2.32i)6-s − i·7-s + (−1.44 + 2.42i)8-s + (1.63 − 2.51i)9-s + (−0.252 + 1.39i)10-s − 3.18i·11-s + (−3.43 + 0.476i)12-s − 0.611i·13-s + (−1.39 − 0.252i)14-s + (−1.52 + 0.825i)15-s + (3.01 + 2.62i)16-s − 3.24i·17-s + ⋯ |
L(s) = 1 | + (0.178 − 0.983i)2-s + (0.879 − 0.476i)3-s + (−0.936 − 0.350i)4-s − 0.447·5-s + (−0.312 − 0.950i)6-s − 0.377i·7-s + (−0.512 + 0.858i)8-s + (0.545 − 0.837i)9-s + (−0.0797 + 0.440i)10-s − 0.959i·11-s + (−0.990 + 0.137i)12-s − 0.169i·13-s + (−0.371 − 0.0674i)14-s + (−0.393 + 0.213i)15-s + (0.753 + 0.657i)16-s − 0.786i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0324711 + 1.57242i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0324711 + 1.57242i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.252 + 1.39i)T \) |
| 3 | \( 1 + (-1.52 + 0.825i)T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 + iT \) |
good | 11 | \( 1 + 3.18iT - 11T^{2} \) |
| 13 | \( 1 + 0.611iT - 13T^{2} \) |
| 17 | \( 1 + 3.24iT - 17T^{2} \) |
| 19 | \( 1 + 1.51T + 19T^{2} \) |
| 23 | \( 1 + 3.27T + 23T^{2} \) |
| 29 | \( 1 + 6.32T + 29T^{2} \) |
| 31 | \( 1 - 5.58iT - 31T^{2} \) |
| 37 | \( 1 - 1.51iT - 37T^{2} \) |
| 41 | \( 1 + 4.12iT - 41T^{2} \) |
| 43 | \( 1 + 0.874T + 43T^{2} \) |
| 47 | \( 1 - 0.289T + 47T^{2} \) |
| 53 | \( 1 - 3.74T + 53T^{2} \) |
| 59 | \( 1 - 4.18iT - 59T^{2} \) |
| 61 | \( 1 + 11.4iT - 61T^{2} \) |
| 67 | \( 1 - 0.637T + 67T^{2} \) |
| 71 | \( 1 - 13.8T + 71T^{2} \) |
| 73 | \( 1 - 14.2T + 73T^{2} \) |
| 79 | \( 1 + 12.9iT - 79T^{2} \) |
| 83 | \( 1 - 2.55iT - 83T^{2} \) |
| 89 | \( 1 - 8.07iT - 89T^{2} \) |
| 97 | \( 1 - 13.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.768182132371565627426767118583, −8.952985867640703521920679859015, −8.270895930831576591782341513018, −7.44945309763595206457063432710, −6.29580076463873872783088359299, −5.05505850809413179871334444707, −3.84177542318314967076989662205, −3.26246123006698212308922876971, −2.07927927740205993251735972787, −0.65699842347373064594832515871,
2.17785474335175354399586202509, 3.67043572251269333682776065686, 4.28001630756652400639363861617, 5.26317723141196636359986077314, 6.38118529594997405789439837455, 7.43869079321045783331052257345, 7.996324193355279190012116764714, 8.808247989879596819644513940017, 9.550676430648308762286169190879, 10.25074648876128506338318681721