Properties

Label 840.2.e.d.491.13
Level $840$
Weight $2$
Character 840.491
Analytic conductor $6.707$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(491,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.13
Character \(\chi\) \(=\) 840.491
Dual form 840.2.e.d.491.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.537216 - 1.30820i) q^{2} +(1.51567 + 0.838298i) q^{3} +(-1.42280 + 1.40558i) q^{4} -1.00000 q^{5} +(0.282422 - 2.43315i) q^{6} +1.00000i q^{7} +(2.60313 + 1.10621i) q^{8} +(1.59451 + 2.54117i) q^{9} +(0.537216 + 1.30820i) q^{10} -5.44156i q^{11} +(-3.33478 + 0.937663i) q^{12} +6.30076i q^{13} +(1.30820 - 0.537216i) q^{14} +(-1.51567 - 0.838298i) q^{15} +(0.0487085 - 3.99970i) q^{16} +5.38646i q^{17} +(2.46777 - 3.45111i) q^{18} +0.450936 q^{19} +(1.42280 - 1.40558i) q^{20} +(-0.838298 + 1.51567i) q^{21} +(-7.11868 + 2.92330i) q^{22} -2.17353 q^{23} +(3.01815 + 3.85885i) q^{24} +1.00000 q^{25} +(8.24269 - 3.38487i) q^{26} +(0.286506 + 5.18825i) q^{27} +(-1.40558 - 1.42280i) q^{28} -2.44547 q^{29} +(-0.282422 + 2.43315i) q^{30} +7.36749i q^{31} +(-5.25860 + 2.08498i) q^{32} +(4.56165 - 8.24762i) q^{33} +(7.04659 - 2.89369i) q^{34} -1.00000i q^{35} +(-5.84048 - 1.37435i) q^{36} +0.165494i q^{37} +(-0.242250 - 0.589917i) q^{38} +(-5.28191 + 9.54988i) q^{39} +(-2.60313 - 1.10621i) q^{40} +1.95075i q^{41} +(2.43315 + 0.282422i) q^{42} +11.0522 q^{43} +(7.64854 + 7.74225i) q^{44} +(-1.59451 - 2.54117i) q^{45} +(1.16766 + 2.84342i) q^{46} +4.57724 q^{47} +(3.42677 - 6.02140i) q^{48} -1.00000 q^{49} +(-0.537216 - 1.30820i) q^{50} +(-4.51546 + 8.16410i) q^{51} +(-8.85621 - 8.96471i) q^{52} +6.44585 q^{53} +(6.63337 - 3.16202i) q^{54} +5.44156i q^{55} +(-1.10621 + 2.60313i) q^{56} +(0.683471 + 0.378019i) q^{57} +(1.31375 + 3.19918i) q^{58} +12.1236i q^{59} +(3.33478 - 0.937663i) q^{60} -3.72274i q^{61} +(9.63819 - 3.95793i) q^{62} +(-2.54117 + 1.59451i) q^{63} +(5.55259 + 5.75923i) q^{64} -6.30076i q^{65} +(-13.2402 - 1.53682i) q^{66} +3.23021 q^{67} +(-7.57108 - 7.66385i) q^{68} +(-3.29436 - 1.82207i) q^{69} +(-1.30820 + 0.537216i) q^{70} -1.24334 q^{71} +(1.33966 + 8.37886i) q^{72} -15.6470 q^{73} +(0.216500 - 0.0889060i) q^{74} +(1.51567 + 0.838298i) q^{75} +(-0.641591 + 0.633825i) q^{76} +5.44156 q^{77} +(15.3307 + 1.77948i) q^{78} -5.02829i q^{79} +(-0.0487085 + 3.99970i) q^{80} +(-3.91505 + 8.10385i) q^{81} +(2.55198 - 1.04797i) q^{82} +9.16060i q^{83} +(-0.937663 - 3.33478i) q^{84} -5.38646i q^{85} +(-5.93743 - 14.4586i) q^{86} +(-3.70653 - 2.05003i) q^{87} +(6.01953 - 14.1651i) q^{88} -1.11292i q^{89} +(-2.46777 + 3.45111i) q^{90} -6.30076 q^{91} +(3.09250 - 3.05506i) q^{92} +(-6.17615 + 11.1667i) q^{93} +(-2.45897 - 5.98796i) q^{94} -0.450936 q^{95} +(-9.71814 - 1.24812i) q^{96} +6.10287 q^{97} +(0.537216 + 1.30820i) q^{98} +(13.8279 - 8.67665i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{2} + 4 q^{3} - 2 q^{4} - 44 q^{5} - 6 q^{6} - 22 q^{8} + 4 q^{9} - 2 q^{10} + 6 q^{12} + 4 q^{14} - 4 q^{15} + 22 q^{16} + 2 q^{18} + 16 q^{19} + 2 q^{20} + 16 q^{23} + 10 q^{24} + 44 q^{25}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.537216 1.30820i −0.379869 0.925040i
\(3\) 1.51567 + 0.838298i 0.875073 + 0.483991i
\(4\) −1.42280 + 1.40558i −0.711399 + 0.702788i
\(5\) −1.00000 −0.447214
\(6\) 0.282422 2.43315i 0.115298 0.993331i
\(7\) 1.00000i 0.377964i
\(8\) 2.60313 + 1.10621i 0.920346 + 0.391105i
\(9\) 1.59451 + 2.54117i 0.531505 + 0.847055i
\(10\) 0.537216 + 1.30820i 0.169883 + 0.413691i
\(11\) 5.44156i 1.64069i −0.571867 0.820347i \(-0.693780\pi\)
0.571867 0.820347i \(-0.306220\pi\)
\(12\) −3.33478 + 0.937663i −0.962669 + 0.270680i
\(13\) 6.30076i 1.74752i 0.486360 + 0.873759i \(0.338324\pi\)
−0.486360 + 0.873759i \(0.661676\pi\)
\(14\) 1.30820 0.537216i 0.349632 0.143577i
\(15\) −1.51567 0.838298i −0.391344 0.216447i
\(16\) 0.0487085 3.99970i 0.0121771 0.999926i
\(17\) 5.38646i 1.30641i 0.757182 + 0.653204i \(0.226576\pi\)
−0.757182 + 0.653204i \(0.773424\pi\)
\(18\) 2.46777 3.45111i 0.581658 0.813433i
\(19\) 0.450936 0.103452 0.0517259 0.998661i \(-0.483528\pi\)
0.0517259 + 0.998661i \(0.483528\pi\)
\(20\) 1.42280 1.40558i 0.318147 0.314296i
\(21\) −0.838298 + 1.51567i −0.182932 + 0.330746i
\(22\) −7.11868 + 2.92330i −1.51771 + 0.623249i
\(23\) −2.17353 −0.453213 −0.226606 0.973986i \(-0.572763\pi\)
−0.226606 + 0.973986i \(0.572763\pi\)
\(24\) 3.01815 + 3.85885i 0.616078 + 0.787685i
\(25\) 1.00000 0.200000
\(26\) 8.24269 3.38487i 1.61652 0.663828i
\(27\) 0.286506 + 5.18825i 0.0551381 + 0.998479i
\(28\) −1.40558 1.42280i −0.265629 0.268884i
\(29\) −2.44547 −0.454113 −0.227056 0.973882i \(-0.572910\pi\)
−0.227056 + 0.973882i \(0.572910\pi\)
\(30\) −0.282422 + 2.43315i −0.0515630 + 0.444231i
\(31\) 7.36749i 1.32324i 0.749839 + 0.661620i \(0.230131\pi\)
−0.749839 + 0.661620i \(0.769869\pi\)
\(32\) −5.25860 + 2.08498i −0.929597 + 0.368577i
\(33\) 4.56165 8.24762i 0.794081 1.43573i
\(34\) 7.04659 2.89369i 1.20848 0.496264i
\(35\) 1.00000i 0.169031i
\(36\) −5.84048 1.37435i −0.973413 0.229059i
\(37\) 0.165494i 0.0272070i 0.999907 + 0.0136035i \(0.00433027\pi\)
−0.999907 + 0.0136035i \(0.995670\pi\)
\(38\) −0.242250 0.589917i −0.0392981 0.0956971i
\(39\) −5.28191 + 9.54988i −0.845783 + 1.52920i
\(40\) −2.60313 1.10621i −0.411591 0.174908i
\(41\) 1.95075i 0.304656i 0.988330 + 0.152328i \(0.0486770\pi\)
−0.988330 + 0.152328i \(0.951323\pi\)
\(42\) 2.43315 + 0.282422i 0.375444 + 0.0435787i
\(43\) 11.0522 1.68545 0.842724 0.538346i \(-0.180951\pi\)
0.842724 + 0.538346i \(0.180951\pi\)
\(44\) 7.64854 + 7.74225i 1.15306 + 1.16719i
\(45\) −1.59451 2.54117i −0.237696 0.378815i
\(46\) 1.16766 + 2.84342i 0.172161 + 0.419240i
\(47\) 4.57724 0.667659 0.333829 0.942634i \(-0.391659\pi\)
0.333829 + 0.942634i \(0.391659\pi\)
\(48\) 3.42677 6.02140i 0.494611 0.869114i
\(49\) −1.00000 −0.142857
\(50\) −0.537216 1.30820i −0.0759738 0.185008i
\(51\) −4.51546 + 8.16410i −0.632290 + 1.14320i
\(52\) −8.85621 8.96471i −1.22813 1.24318i
\(53\) 6.44585 0.885406 0.442703 0.896668i \(-0.354020\pi\)
0.442703 + 0.896668i \(0.354020\pi\)
\(54\) 6.63337 3.16202i 0.902688 0.430296i
\(55\) 5.44156i 0.733740i
\(56\) −1.10621 + 2.60313i −0.147824 + 0.347858i
\(57\) 0.683471 + 0.378019i 0.0905279 + 0.0500698i
\(58\) 1.31375 + 3.19918i 0.172503 + 0.420072i
\(59\) 12.1236i 1.57836i 0.614159 + 0.789182i \(0.289495\pi\)
−0.614159 + 0.789182i \(0.710505\pi\)
\(60\) 3.33478 0.937663i 0.430519 0.121052i
\(61\) 3.72274i 0.476648i −0.971186 0.238324i \(-0.923402\pi\)
0.971186 0.238324i \(-0.0765980\pi\)
\(62\) 9.63819 3.95793i 1.22405 0.502658i
\(63\) −2.54117 + 1.59451i −0.320157 + 0.200890i
\(64\) 5.55259 + 5.75923i 0.694073 + 0.719904i
\(65\) 6.30076i 0.781514i
\(66\) −13.2402 1.53682i −1.62975 0.189169i
\(67\) 3.23021 0.394633 0.197317 0.980340i \(-0.436777\pi\)
0.197317 + 0.980340i \(0.436777\pi\)
\(68\) −7.57108 7.66385i −0.918129 0.929378i
\(69\) −3.29436 1.82207i −0.396594 0.219351i
\(70\) −1.30820 + 0.537216i −0.156360 + 0.0642096i
\(71\) −1.24334 −0.147557 −0.0737787 0.997275i \(-0.523506\pi\)
−0.0737787 + 0.997275i \(0.523506\pi\)
\(72\) 1.33966 + 8.37886i 0.157881 + 0.987458i
\(73\) −15.6470 −1.83134 −0.915669 0.401933i \(-0.868338\pi\)
−0.915669 + 0.401933i \(0.868338\pi\)
\(74\) 0.216500 0.0889060i 0.0251676 0.0103351i
\(75\) 1.51567 + 0.838298i 0.175015 + 0.0967983i
\(76\) −0.641591 + 0.633825i −0.0735955 + 0.0727047i
\(77\) 5.44156 0.620124
\(78\) 15.3307 + 1.77948i 1.73586 + 0.201486i
\(79\) 5.02829i 0.565726i −0.959160 0.282863i \(-0.908716\pi\)
0.959160 0.282863i \(-0.0912842\pi\)
\(80\) −0.0487085 + 3.99970i −0.00544577 + 0.447180i
\(81\) −3.91505 + 8.10385i −0.435005 + 0.900428i
\(82\) 2.55198 1.04797i 0.281819 0.115729i
\(83\) 9.16060i 1.00551i 0.864430 + 0.502753i \(0.167680\pi\)
−0.864430 + 0.502753i \(0.832320\pi\)
\(84\) −0.937663 3.33478i −0.102307 0.363855i
\(85\) 5.38646i 0.584244i
\(86\) −5.93743 14.4586i −0.640249 1.55911i
\(87\) −3.70653 2.05003i −0.397382 0.219786i
\(88\) 6.01953 14.1651i 0.641684 1.51001i
\(89\) 1.11292i 0.117970i −0.998259 0.0589848i \(-0.981214\pi\)
0.998259 0.0589848i \(-0.0187864\pi\)
\(90\) −2.46777 + 3.45111i −0.260125 + 0.363779i
\(91\) −6.30076 −0.660499
\(92\) 3.09250 3.05506i 0.322415 0.318512i
\(93\) −6.17615 + 11.1667i −0.640437 + 1.15793i
\(94\) −2.45897 5.98796i −0.253623 0.617611i
\(95\) −0.450936 −0.0462651
\(96\) −9.71814 1.24812i −0.991853 0.127386i
\(97\) 6.10287 0.619653 0.309827 0.950793i \(-0.399729\pi\)
0.309827 + 0.950793i \(0.399729\pi\)
\(98\) 0.537216 + 1.30820i 0.0542670 + 0.132149i
\(99\) 13.8279 8.67665i 1.38976 0.872036i
\(100\) −1.42280 + 1.40558i −0.142280 + 0.140558i
\(101\) 1.28684 0.128046 0.0640229 0.997948i \(-0.479607\pi\)
0.0640229 + 0.997948i \(0.479607\pi\)
\(102\) 13.1061 + 1.52126i 1.29770 + 0.150627i
\(103\) 14.3515i 1.41409i −0.707167 0.707046i \(-0.750027\pi\)
0.707167 0.707046i \(-0.249973\pi\)
\(104\) −6.96998 + 16.4017i −0.683463 + 1.60832i
\(105\) 0.838298 1.51567i 0.0818095 0.147914i
\(106\) −3.46281 8.43249i −0.336338 0.819036i
\(107\) 15.1898i 1.46845i −0.678906 0.734225i \(-0.737545\pi\)
0.678906 0.734225i \(-0.262455\pi\)
\(108\) −7.70012 6.97912i −0.740944 0.671566i
\(109\) 8.89022i 0.851529i −0.904834 0.425764i \(-0.860005\pi\)
0.904834 0.425764i \(-0.139995\pi\)
\(110\) 7.11868 2.92330i 0.678739 0.278725i
\(111\) −0.138733 + 0.250834i −0.0131680 + 0.0238081i
\(112\) 3.99970 + 0.0487085i 0.377936 + 0.00460252i
\(113\) 8.28028i 0.778943i 0.921039 + 0.389472i \(0.127342\pi\)
−0.921039 + 0.389472i \(0.872658\pi\)
\(114\) 0.127354 1.09720i 0.0119278 0.102762i
\(115\) 2.17353 0.202683
\(116\) 3.47941 3.43730i 0.323055 0.319145i
\(117\) −16.0113 + 10.0467i −1.48024 + 0.928814i
\(118\) 15.8602 6.51302i 1.46005 0.599572i
\(119\) −5.38646 −0.493776
\(120\) −3.01815 3.85885i −0.275519 0.352263i
\(121\) −18.6106 −1.69187
\(122\) −4.87010 + 1.99991i −0.440918 + 0.181064i
\(123\) −1.63531 + 2.95669i −0.147451 + 0.266596i
\(124\) −10.3556 10.4825i −0.929958 0.941352i
\(125\) −1.00000 −0.0894427
\(126\) 3.45111 + 2.46777i 0.307449 + 0.219846i
\(127\) 5.57578i 0.494770i −0.968917 0.247385i \(-0.920429\pi\)
0.968917 0.247385i \(-0.0795713\pi\)
\(128\) 4.55132 10.3579i 0.402283 0.915515i
\(129\) 16.7515 + 9.26505i 1.47489 + 0.815742i
\(130\) −8.24269 + 3.38487i −0.722931 + 0.296873i
\(131\) 13.1854i 1.15201i −0.817445 0.576007i \(-0.804610\pi\)
0.817445 0.576007i \(-0.195390\pi\)
\(132\) 5.10235 + 18.1464i 0.444103 + 1.57945i
\(133\) 0.450936i 0.0391011i
\(134\) −1.73532 4.22578i −0.149909 0.365052i
\(135\) −0.286506 5.18825i −0.0246585 0.446533i
\(136\) −5.95857 + 14.0217i −0.510943 + 1.20235i
\(137\) 1.82188i 0.155654i −0.996967 0.0778269i \(-0.975202\pi\)
0.996967 0.0778269i \(-0.0247981\pi\)
\(138\) −0.613853 + 5.28854i −0.0522547 + 0.450190i
\(139\) 2.81981 0.239173 0.119586 0.992824i \(-0.461843\pi\)
0.119586 + 0.992824i \(0.461843\pi\)
\(140\) 1.40558 + 1.42280i 0.118793 + 0.120248i
\(141\) 6.93759 + 3.83709i 0.584250 + 0.323141i
\(142\) 0.667942 + 1.62654i 0.0560525 + 0.136496i
\(143\) 34.2860 2.86714
\(144\) 10.2416 6.25381i 0.853465 0.521151i
\(145\) 2.44547 0.203085
\(146\) 8.40580 + 20.4694i 0.695669 + 1.69406i
\(147\) −1.51567 0.838298i −0.125010 0.0691416i
\(148\) −0.232614 0.235464i −0.0191208 0.0193551i
\(149\) 22.1243 1.81249 0.906246 0.422751i \(-0.138935\pi\)
0.906246 + 0.422751i \(0.138935\pi\)
\(150\) 0.282422 2.43315i 0.0230597 0.198666i
\(151\) 5.15119i 0.419198i 0.977787 + 0.209599i \(0.0672159\pi\)
−0.977787 + 0.209599i \(0.932784\pi\)
\(152\) 1.17385 + 0.498831i 0.0952115 + 0.0404605i
\(153\) −13.6879 + 8.58879i −1.10660 + 0.694363i
\(154\) −2.92330 7.11868i −0.235566 0.573639i
\(155\) 7.36749i 0.591771i
\(156\) −5.90799 21.0117i −0.473018 1.68228i
\(157\) 24.1605i 1.92822i −0.265501 0.964110i \(-0.585537\pi\)
0.265501 0.964110i \(-0.414463\pi\)
\(158\) −6.57803 + 2.70128i −0.523320 + 0.214902i
\(159\) 9.76979 + 5.40354i 0.774795 + 0.428529i
\(160\) 5.25860 2.08498i 0.415729 0.164832i
\(161\) 2.17353i 0.171298i
\(162\) 12.7047 + 0.768163i 0.998177 + 0.0603526i
\(163\) 11.6705 0.914107 0.457054 0.889439i \(-0.348905\pi\)
0.457054 + 0.889439i \(0.348905\pi\)
\(164\) −2.74193 2.77552i −0.214109 0.216732i
\(165\) −4.56165 + 8.24762i −0.355124 + 0.642076i
\(166\) 11.9839 4.92122i 0.930134 0.381961i
\(167\) −8.23086 −0.636923 −0.318462 0.947936i \(-0.603166\pi\)
−0.318462 + 0.947936i \(0.603166\pi\)
\(168\) −3.85885 + 3.01815i −0.297717 + 0.232856i
\(169\) −26.6996 −2.05382
\(170\) −7.04659 + 2.89369i −0.540449 + 0.221936i
\(171\) 0.719024 + 1.14590i 0.0549851 + 0.0876294i
\(172\) −15.7251 + 15.5347i −1.19903 + 1.18451i
\(173\) −17.9203 −1.36246 −0.681229 0.732070i \(-0.738554\pi\)
−0.681229 + 0.732070i \(0.738554\pi\)
\(174\) −0.690655 + 5.95021i −0.0523584 + 0.451084i
\(175\) 1.00000i 0.0755929i
\(176\) −21.7646 0.265050i −1.64057 0.0199789i
\(177\) −10.1632 + 18.3755i −0.763914 + 1.38118i
\(178\) −1.45593 + 0.597880i −0.109127 + 0.0448130i
\(179\) 3.42976i 0.256352i −0.991751 0.128176i \(-0.959088\pi\)
0.991751 0.128176i \(-0.0409123\pi\)
\(180\) 5.84048 + 1.37435i 0.435323 + 0.102438i
\(181\) 20.0077i 1.48716i −0.668646 0.743581i \(-0.733126\pi\)
0.668646 0.743581i \(-0.266874\pi\)
\(182\) 3.38487 + 8.24269i 0.250903 + 0.610989i
\(183\) 3.12076 5.64244i 0.230693 0.417101i
\(184\) −5.65799 2.40439i −0.417112 0.177254i
\(185\) 0.165494i 0.0121674i
\(186\) 17.9262 + 2.08074i 1.31442 + 0.152567i
\(187\) 29.3108 2.14342
\(188\) −6.51249 + 6.43366i −0.474972 + 0.469223i
\(189\) −5.18825 + 0.286506i −0.377389 + 0.0208402i
\(190\) 0.242250 + 0.589917i 0.0175747 + 0.0427970i
\(191\) −19.7644 −1.43010 −0.715052 0.699072i \(-0.753597\pi\)
−0.715052 + 0.699072i \(0.753597\pi\)
\(192\) 3.58794 + 13.3838i 0.258937 + 0.965894i
\(193\) 8.55215 0.615597 0.307798 0.951452i \(-0.400408\pi\)
0.307798 + 0.951452i \(0.400408\pi\)
\(194\) −3.27856 7.98381i −0.235387 0.573204i
\(195\) 5.28191 9.54988i 0.378246 0.683881i
\(196\) 1.42280 1.40558i 0.101628 0.100398i
\(197\) −7.82139 −0.557251 −0.278625 0.960400i \(-0.589879\pi\)
−0.278625 + 0.960400i \(0.589879\pi\)
\(198\) −18.7794 13.4285i −1.33459 0.954322i
\(199\) 9.39557i 0.666035i 0.942921 + 0.333017i \(0.108067\pi\)
−0.942921 + 0.333017i \(0.891933\pi\)
\(200\) 2.60313 + 1.10621i 0.184069 + 0.0782210i
\(201\) 4.89594 + 2.70788i 0.345333 + 0.190999i
\(202\) −0.691313 1.68345i −0.0486406 0.118447i
\(203\) 2.44547i 0.171638i
\(204\) −5.05069 17.9627i −0.353619 1.25764i
\(205\) 1.95075i 0.136246i
\(206\) −18.7747 + 7.70984i −1.30809 + 0.537170i
\(207\) −3.46573 5.52330i −0.240885 0.383896i
\(208\) 25.2012 + 0.306901i 1.74739 + 0.0212797i
\(209\) 2.45380i 0.169733i
\(210\) −2.43315 0.282422i −0.167904 0.0194890i
\(211\) −9.09833 −0.626355 −0.313178 0.949695i \(-0.601393\pi\)
−0.313178 + 0.949695i \(0.601393\pi\)
\(212\) −9.17115 + 9.06014i −0.629877 + 0.622253i
\(213\) −1.88449 1.04229i −0.129123 0.0714165i
\(214\) −19.8713 + 8.16019i −1.35838 + 0.557819i
\(215\) −11.0522 −0.753755
\(216\) −4.99349 + 13.8226i −0.339764 + 0.940511i
\(217\) −7.36749 −0.500138
\(218\) −11.6302 + 4.77597i −0.787699 + 0.323469i
\(219\) −23.7156 13.1168i −1.60255 0.886352i
\(220\) −7.64854 7.74225i −0.515664 0.521982i
\(221\) −33.9388 −2.28297
\(222\) 0.402672 + 0.0467392i 0.0270256 + 0.00313693i
\(223\) 7.37577i 0.493918i 0.969026 + 0.246959i \(0.0794313\pi\)
−0.969026 + 0.246959i \(0.920569\pi\)
\(224\) −2.08498 5.25860i −0.139309 0.351355i
\(225\) 1.59451 + 2.54117i 0.106301 + 0.169411i
\(226\) 10.8323 4.44830i 0.720554 0.295896i
\(227\) 12.0258i 0.798180i 0.916912 + 0.399090i \(0.130674\pi\)
−0.916912 + 0.399090i \(0.869326\pi\)
\(228\) −1.50377 + 0.422826i −0.0995899 + 0.0280023i
\(229\) 1.33389i 0.0881456i −0.999028 0.0440728i \(-0.985967\pi\)
0.999028 0.0440728i \(-0.0140334\pi\)
\(230\) −1.16766 2.84342i −0.0769929 0.187490i
\(231\) 8.24762 + 4.56165i 0.542653 + 0.300135i
\(232\) −6.36588 2.70521i −0.417941 0.177606i
\(233\) 16.3168i 1.06895i 0.845184 + 0.534475i \(0.179491\pi\)
−0.845184 + 0.534475i \(0.820509\pi\)
\(234\) 21.7446 + 15.5488i 1.42149 + 1.01646i
\(235\) −4.57724 −0.298586
\(236\) −17.0407 17.2495i −1.10926 1.12285i
\(237\) 4.21520 7.62123i 0.273807 0.495052i
\(238\) 2.89369 + 7.04659i 0.187570 + 0.456763i
\(239\) −5.45208 −0.352665 −0.176333 0.984331i \(-0.556423\pi\)
−0.176333 + 0.984331i \(0.556423\pi\)
\(240\) −3.42677 + 6.02140i −0.221197 + 0.388680i
\(241\) −7.02214 −0.452336 −0.226168 0.974088i \(-0.572620\pi\)
−0.226168 + 0.974088i \(0.572620\pi\)
\(242\) 9.99792 + 24.3465i 0.642691 + 1.56505i
\(243\) −12.7274 + 9.00080i −0.816460 + 0.577401i
\(244\) 5.23259 + 5.29670i 0.334982 + 0.339087i
\(245\) 1.00000 0.0638877
\(246\) 4.74647 + 0.550935i 0.302624 + 0.0351263i
\(247\) 2.84124i 0.180784i
\(248\) −8.15001 + 19.1786i −0.517526 + 1.21784i
\(249\) −7.67931 + 13.8845i −0.486656 + 0.879891i
\(250\) 0.537216 + 1.30820i 0.0339765 + 0.0827381i
\(251\) 15.8047i 0.997581i −0.866723 0.498791i \(-0.833778\pi\)
0.866723 0.498791i \(-0.166222\pi\)
\(252\) 1.37435 5.84048i 0.0865761 0.367915i
\(253\) 11.8274i 0.743583i
\(254\) −7.29426 + 2.99540i −0.457682 + 0.187948i
\(255\) 4.51546 8.16410i 0.282769 0.511256i
\(256\) −15.9953 0.389639i −0.999703 0.0243524i
\(257\) 3.11771i 0.194477i −0.995261 0.0972386i \(-0.968999\pi\)
0.995261 0.0972386i \(-0.0310010\pi\)
\(258\) 3.12139 26.8917i 0.194329 1.67421i
\(259\) −0.165494 −0.0102833
\(260\) 8.85621 + 8.96471i 0.549239 + 0.555968i
\(261\) −3.89934 6.21435i −0.241363 0.384658i
\(262\) −17.2492 + 7.08341i −1.06566 + 0.437615i
\(263\) 19.5713 1.20682 0.603408 0.797433i \(-0.293809\pi\)
0.603408 + 0.797433i \(0.293809\pi\)
\(264\) 20.9982 16.4235i 1.29235 1.01080i
\(265\) −6.44585 −0.395966
\(266\) 0.589917 0.242250i 0.0361701 0.0148533i
\(267\) 0.932961 1.68683i 0.0570963 0.103232i
\(268\) −4.59594 + 4.54031i −0.280742 + 0.277344i
\(269\) 1.80334 0.109951 0.0549757 0.998488i \(-0.482492\pi\)
0.0549757 + 0.998488i \(0.482492\pi\)
\(270\) −6.63337 + 3.16202i −0.403694 + 0.192434i
\(271\) 31.2148i 1.89616i 0.318029 + 0.948081i \(0.396979\pi\)
−0.318029 + 0.948081i \(0.603021\pi\)
\(272\) 21.5442 + 0.262366i 1.30631 + 0.0159083i
\(273\) −9.54988 5.28191i −0.577985 0.319676i
\(274\) −2.38339 + 0.978743i −0.143986 + 0.0591280i
\(275\) 5.44156i 0.328139i
\(276\) 7.24826 2.03804i 0.436294 0.122676i
\(277\) 16.5075i 0.991839i −0.868369 0.495919i \(-0.834831\pi\)
0.868369 0.495919i \(-0.165169\pi\)
\(278\) −1.51484 3.68888i −0.0908544 0.221244i
\(279\) −18.7220 + 11.7476i −1.12086 + 0.703309i
\(280\) 1.10621 2.60313i 0.0661088 0.155567i
\(281\) 27.0180i 1.61176i −0.592080 0.805879i \(-0.701693\pi\)
0.592080 0.805879i \(-0.298307\pi\)
\(282\) 1.29271 11.1371i 0.0769800 0.663206i
\(283\) 30.7294 1.82667 0.913337 0.407204i \(-0.133496\pi\)
0.913337 + 0.407204i \(0.133496\pi\)
\(284\) 1.76902 1.74761i 0.104972 0.103702i
\(285\) −0.683471 0.378019i −0.0404853 0.0223919i
\(286\) −18.4190 44.8531i −1.08914 2.65222i
\(287\) −1.95075 −0.115149
\(288\) −13.6832 10.0384i −0.806290 0.591520i
\(289\) −12.0140 −0.706704
\(290\) −1.31375 3.19918i −0.0771458 0.187862i
\(291\) 9.24995 + 5.11602i 0.542242 + 0.299907i
\(292\) 22.2625 21.9930i 1.30281 1.28704i
\(293\) −15.8032 −0.923233 −0.461617 0.887079i \(-0.652730\pi\)
−0.461617 + 0.887079i \(0.652730\pi\)
\(294\) −0.282422 + 2.43315i −0.0164712 + 0.141904i
\(295\) 12.1236i 0.705866i
\(296\) −0.183071 + 0.430803i −0.0106408 + 0.0250399i
\(297\) 28.2322 1.55904i 1.63820 0.0904647i
\(298\) −11.8855 28.9431i −0.688510 1.67663i
\(299\) 13.6949i 0.791997i
\(300\) −3.33478 + 0.937663i −0.192534 + 0.0541360i
\(301\) 11.0522i 0.637039i
\(302\) 6.73881 2.76730i 0.387775 0.159240i
\(303\) 1.95043 + 1.07876i 0.112049 + 0.0619730i
\(304\) 0.0219644 1.80361i 0.00125975 0.103444i
\(305\) 3.72274i 0.213163i
\(306\) 18.5892 + 13.2925i 1.06268 + 0.759883i
\(307\) 14.2385 0.812634 0.406317 0.913732i \(-0.366813\pi\)
0.406317 + 0.913732i \(0.366813\pi\)
\(308\) −7.74225 + 7.64854i −0.441155 + 0.435816i
\(309\) 12.0308 21.7521i 0.684409 1.23743i
\(310\) −9.63819 + 3.95793i −0.547412 + 0.224796i
\(311\) 33.3592 1.89162 0.945812 0.324714i \(-0.105268\pi\)
0.945812 + 0.324714i \(0.105268\pi\)
\(312\) −24.3137 + 19.0167i −1.37649 + 1.07661i
\(313\) −11.5901 −0.655113 −0.327556 0.944832i \(-0.606225\pi\)
−0.327556 + 0.944832i \(0.606225\pi\)
\(314\) −31.6069 + 12.9794i −1.78368 + 0.732471i
\(315\) 2.54117 1.59451i 0.143178 0.0898407i
\(316\) 7.06764 + 7.15424i 0.397586 + 0.402457i
\(317\) 31.0124 1.74183 0.870916 0.491432i \(-0.163526\pi\)
0.870916 + 0.491432i \(0.163526\pi\)
\(318\) 1.82045 15.6838i 0.102086 0.879501i
\(319\) 13.3072i 0.745059i
\(320\) −5.55259 5.75923i −0.310399 0.321951i
\(321\) 12.7336 23.0227i 0.710717 1.28500i
\(322\) −2.84342 + 1.16766i −0.158458 + 0.0650709i
\(323\) 2.42895i 0.135150i
\(324\) −5.82026 17.0330i −0.323348 0.946280i
\(325\) 6.30076i 0.349503i
\(326\) −6.26960 15.2675i −0.347241 0.845586i
\(327\) 7.45265 13.4746i 0.412133 0.745150i
\(328\) −2.15794 + 5.07806i −0.119153 + 0.280389i
\(329\) 4.57724i 0.252351i
\(330\) 13.2402 + 1.53682i 0.728847 + 0.0845991i
\(331\) 24.0577 1.32233 0.661165 0.750241i \(-0.270062\pi\)
0.661165 + 0.750241i \(0.270062\pi\)
\(332\) −12.8759 13.0337i −0.706658 0.715316i
\(333\) −0.420548 + 0.263883i −0.0230459 + 0.0144607i
\(334\) 4.42175 + 10.7677i 0.241947 + 0.589180i
\(335\) −3.23021 −0.176485
\(336\) 6.02140 + 3.42677i 0.328494 + 0.186945i
\(337\) 20.1078 1.09534 0.547670 0.836694i \(-0.315515\pi\)
0.547670 + 0.836694i \(0.315515\pi\)
\(338\) 14.3435 + 34.9286i 0.780181 + 1.89986i
\(339\) −6.94134 + 12.5502i −0.377002 + 0.681632i
\(340\) 7.57108 + 7.66385i 0.410600 + 0.415630i
\(341\) 40.0907 2.17103
\(342\) 1.11280 1.55623i 0.0601736 0.0841512i
\(343\) 1.00000i 0.0539949i
\(344\) 28.7704 + 12.2261i 1.55119 + 0.659187i
\(345\) 3.29436 + 1.82207i 0.177362 + 0.0980967i
\(346\) 9.62709 + 23.4435i 0.517556 + 1.26033i
\(347\) 9.58609i 0.514608i −0.966330 0.257304i \(-0.917166\pi\)
0.966330 0.257304i \(-0.0828342\pi\)
\(348\) 8.15512 2.29303i 0.437160 0.122919i
\(349\) 19.2627i 1.03111i 0.856858 + 0.515553i \(0.172414\pi\)
−0.856858 + 0.515553i \(0.827586\pi\)
\(350\) 1.30820 0.537216i 0.0699265 0.0287154i
\(351\) −32.6899 + 1.80521i −1.74486 + 0.0963548i
\(352\) 11.3456 + 28.6150i 0.604721 + 1.52518i
\(353\) 10.7547i 0.572417i 0.958167 + 0.286209i \(0.0923950\pi\)
−0.958167 + 0.286209i \(0.907605\pi\)
\(354\) 29.4987 + 3.42399i 1.56784 + 0.181983i
\(355\) 1.24334 0.0659896
\(356\) 1.56430 + 1.58347i 0.0829077 + 0.0839235i
\(357\) −8.16410 4.51546i −0.432090 0.238983i
\(358\) −4.48683 + 1.84252i −0.237136 + 0.0973803i
\(359\) 3.04868 0.160903 0.0804515 0.996759i \(-0.474364\pi\)
0.0804515 + 0.996759i \(0.474364\pi\)
\(360\) −1.33966 8.37886i −0.0706064 0.441605i
\(361\) −18.7967 −0.989298
\(362\) −26.1742 + 10.7485i −1.37568 + 0.564927i
\(363\) −28.2076 15.6012i −1.48051 0.818853i
\(364\) 8.96471 8.85621i 0.469879 0.464191i
\(365\) 15.6470 0.818999
\(366\) −9.05799 1.05138i −0.473469 0.0549567i
\(367\) 26.3146i 1.37361i −0.726841 0.686806i \(-0.759012\pi\)
0.726841 0.686806i \(-0.240988\pi\)
\(368\) −0.105869 + 8.69348i −0.00551882 + 0.453179i
\(369\) −4.95718 + 3.11050i −0.258060 + 0.161926i
\(370\) −0.216500 + 0.0889060i −0.0112553 + 0.00462200i
\(371\) 6.44585i 0.334652i
\(372\) −6.90823 24.5690i −0.358175 1.27384i
\(373\) 28.4560i 1.47340i 0.676221 + 0.736698i \(0.263616\pi\)
−0.676221 + 0.736698i \(0.736384\pi\)
\(374\) −15.7462 38.3445i −0.814217 1.98275i
\(375\) −1.51567 0.838298i −0.0782689 0.0432895i
\(376\) 11.9152 + 5.06340i 0.614477 + 0.261125i
\(377\) 15.4083i 0.793569i
\(378\) 3.16202 + 6.63337i 0.162637 + 0.341184i
\(379\) −10.6033 −0.544656 −0.272328 0.962204i \(-0.587794\pi\)
−0.272328 + 0.962204i \(0.587794\pi\)
\(380\) 0.641591 0.633825i 0.0329129 0.0325145i
\(381\) 4.67416 8.45104i 0.239464 0.432960i
\(382\) 10.6178 + 25.8559i 0.543252 + 1.32290i
\(383\) 15.4881 0.791403 0.395702 0.918379i \(-0.370501\pi\)
0.395702 + 0.918379i \(0.370501\pi\)
\(384\) 15.5813 11.8838i 0.795129 0.606441i
\(385\) −5.44156 −0.277328
\(386\) −4.59435 11.1880i −0.233846 0.569452i
\(387\) 17.6229 + 28.0855i 0.895823 + 1.42767i
\(388\) −8.68316 + 8.57806i −0.440821 + 0.435485i
\(389\) 15.3888 0.780243 0.390122 0.920763i \(-0.372433\pi\)
0.390122 + 0.920763i \(0.372433\pi\)
\(390\) −15.3307 1.77948i −0.776302 0.0901072i
\(391\) 11.7076i 0.592081i
\(392\) −2.60313 1.10621i −0.131478 0.0558722i
\(393\) 11.0533 19.9847i 0.557565 1.00810i
\(394\) 4.20177 + 10.2320i 0.211682 + 0.515479i
\(395\) 5.02829i 0.253001i
\(396\) −7.47863 + 31.7813i −0.375815 + 1.59707i
\(397\) 29.1797i 1.46449i −0.681042 0.732245i \(-0.738473\pi\)
0.681042 0.732245i \(-0.261527\pi\)
\(398\) 12.2913 5.04745i 0.616109 0.253006i
\(399\) −0.378019 + 0.683471i −0.0189246 + 0.0342163i
\(400\) 0.0487085 3.99970i 0.00243542 0.199985i
\(401\) 7.49305i 0.374185i 0.982342 + 0.187093i \(0.0599065\pi\)
−0.982342 + 0.187093i \(0.940094\pi\)
\(402\) 0.912284 7.85960i 0.0455006 0.392001i
\(403\) −46.4208 −2.31239
\(404\) −1.83092 + 1.80876i −0.0910916 + 0.0899890i
\(405\) 3.91505 8.10385i 0.194540 0.402684i
\(406\) −3.19918 + 1.31375i −0.158772 + 0.0652001i
\(407\) 0.900546 0.0446384
\(408\) −20.7856 + 16.2572i −1.02904 + 0.804850i
\(409\) −5.43009 −0.268501 −0.134250 0.990947i \(-0.542863\pi\)
−0.134250 + 0.990947i \(0.542863\pi\)
\(410\) −2.55198 + 1.04797i −0.126033 + 0.0517557i
\(411\) 1.52728 2.76137i 0.0753350 0.136208i
\(412\) 20.1721 + 20.4193i 0.993808 + 1.00598i
\(413\) −12.1236 −0.596566
\(414\) −5.36377 + 7.50109i −0.263615 + 0.368658i
\(415\) 9.16060i 0.449676i
\(416\) −13.1370 33.1332i −0.644094 1.62449i
\(417\) 4.27390 + 2.36384i 0.209294 + 0.115758i
\(418\) −3.21007 + 1.31822i −0.157010 + 0.0644762i
\(419\) 12.9501i 0.632655i −0.948650 0.316328i \(-0.897550\pi\)
0.948650 0.316328i \(-0.102450\pi\)
\(420\) 0.937663 + 3.33478i 0.0457533 + 0.162721i
\(421\) 33.0234i 1.60946i 0.593639 + 0.804731i \(0.297691\pi\)
−0.593639 + 0.804731i \(0.702309\pi\)
\(422\) 4.88777 + 11.9025i 0.237933 + 0.579404i
\(423\) 7.29847 + 11.6315i 0.354864 + 0.565544i
\(424\) 16.7794 + 7.13048i 0.814880 + 0.346287i
\(425\) 5.38646i 0.261282i
\(426\) −0.351147 + 3.02524i −0.0170131 + 0.146573i
\(427\) 3.72274 0.180156
\(428\) 21.3504 + 21.6120i 1.03201 + 1.04465i
\(429\) 51.9663 + 28.7419i 2.50896 + 1.38767i
\(430\) 5.93743 + 14.4586i 0.286328 + 0.697254i
\(431\) 24.0536 1.15862 0.579312 0.815106i \(-0.303321\pi\)
0.579312 + 0.815106i \(0.303321\pi\)
\(432\) 20.7654 0.893227i 0.999076 0.0429754i
\(433\) −11.0992 −0.533395 −0.266698 0.963780i \(-0.585933\pi\)
−0.266698 + 0.963780i \(0.585933\pi\)
\(434\) 3.95793 + 9.63819i 0.189987 + 0.462648i
\(435\) 3.70653 + 2.05003i 0.177714 + 0.0982915i
\(436\) 12.4959 + 12.6490i 0.598445 + 0.605777i
\(437\) −0.980123 −0.0468857
\(438\) −4.41905 + 38.0715i −0.211150 + 1.81912i
\(439\) 15.3749i 0.733806i −0.930259 0.366903i \(-0.880418\pi\)
0.930259 0.366903i \(-0.119582\pi\)
\(440\) −6.01953 + 14.1651i −0.286970 + 0.675295i
\(441\) −1.59451 2.54117i −0.0759293 0.121008i
\(442\) 18.2325 + 44.3989i 0.867230 + 2.11184i
\(443\) 7.53726i 0.358106i −0.983839 0.179053i \(-0.942697\pi\)
0.983839 0.179053i \(-0.0573034\pi\)
\(444\) −0.155178 0.551887i −0.00736440 0.0261914i
\(445\) 1.11292i 0.0527577i
\(446\) 9.64901 3.96238i 0.456894 0.187624i
\(447\) 33.5331 + 18.5467i 1.58606 + 0.877230i
\(448\) −5.75923 + 5.55259i −0.272098 + 0.262335i
\(449\) 9.94711i 0.469433i 0.972064 + 0.234716i \(0.0754162\pi\)
−0.972064 + 0.234716i \(0.924584\pi\)
\(450\) 2.46777 3.45111i 0.116332 0.162687i
\(451\) 10.6151 0.499847
\(452\) −11.6386 11.7812i −0.547432 0.554139i
\(453\) −4.31823 + 7.80751i −0.202888 + 0.366829i
\(454\) 15.7322 6.46045i 0.738349 0.303204i
\(455\) 6.30076 0.295384
\(456\) 1.36099 + 1.74010i 0.0637344 + 0.0814874i
\(457\) 14.8038 0.692493 0.346246 0.938144i \(-0.387456\pi\)
0.346246 + 0.938144i \(0.387456\pi\)
\(458\) −1.74500 + 0.716585i −0.0815383 + 0.0334838i
\(459\) −27.9463 + 1.54325i −1.30442 + 0.0720329i
\(460\) −3.09250 + 3.05506i −0.144188 + 0.142443i
\(461\) 1.05944 0.0493431 0.0246715 0.999696i \(-0.492146\pi\)
0.0246715 + 0.999696i \(0.492146\pi\)
\(462\) 1.53682 13.2402i 0.0714993 0.615988i
\(463\) 5.56498i 0.258626i −0.991604 0.129313i \(-0.958723\pi\)
0.991604 0.129313i \(-0.0412773\pi\)
\(464\) −0.119115 + 9.78116i −0.00552978 + 0.454079i
\(465\) 6.17615 11.1667i 0.286412 0.517843i
\(466\) 21.3457 8.76565i 0.988821 0.406061i
\(467\) 14.3401i 0.663582i −0.943353 0.331791i \(-0.892347\pi\)
0.943353 0.331791i \(-0.107653\pi\)
\(468\) 8.65947 36.7995i 0.400284 1.70106i
\(469\) 3.23021i 0.149157i
\(470\) 2.45897 + 5.98796i 0.113424 + 0.276204i
\(471\) 20.2537 36.6194i 0.933242 1.68733i
\(472\) −13.4113 + 31.5594i −0.617306 + 1.45264i
\(473\) 60.1414i 2.76530i
\(474\) −12.2346 1.42010i −0.561953 0.0652273i
\(475\) 0.450936 0.0206904
\(476\) 7.66385 7.57108i 0.351272 0.347020i
\(477\) 10.2780 + 16.3800i 0.470598 + 0.749988i
\(478\) 2.92894 + 7.13243i 0.133967 + 0.326230i
\(479\) −19.9309 −0.910665 −0.455332 0.890321i \(-0.650480\pi\)
−0.455332 + 0.890321i \(0.650480\pi\)
\(480\) 9.71814 + 1.24812i 0.443570 + 0.0569686i
\(481\) −1.04274 −0.0475448
\(482\) 3.77240 + 9.18639i 0.171828 + 0.418429i
\(483\) 1.82207 3.29436i 0.0829069 0.149898i
\(484\) 26.4792 26.1587i 1.20360 1.18903i
\(485\) −6.10287 −0.277117
\(486\) 18.6122 + 11.8146i 0.844268 + 0.535922i
\(487\) 44.0236i 1.99490i 0.0713704 + 0.997450i \(0.477263\pi\)
−0.0713704 + 0.997450i \(0.522737\pi\)
\(488\) 4.11814 9.69078i 0.186419 0.438681i
\(489\) 17.6887 + 9.78339i 0.799910 + 0.442420i
\(490\) −0.537216 1.30820i −0.0242689 0.0590987i
\(491\) 38.1740i 1.72277i −0.507953 0.861385i \(-0.669597\pi\)
0.507953 0.861385i \(-0.330403\pi\)
\(492\) −1.82915 6.50533i −0.0824643 0.293283i
\(493\) 13.1724i 0.593257i
\(494\) 3.71692 1.52636i 0.167232 0.0686742i
\(495\) −13.8279 + 8.67665i −0.621519 + 0.389987i
\(496\) 29.4678 + 0.358859i 1.32314 + 0.0161133i
\(497\) 1.24334i 0.0557714i
\(498\) 22.2891 + 2.58716i 0.998801 + 0.115933i
\(499\) 10.5612 0.472783 0.236391 0.971658i \(-0.424035\pi\)
0.236391 + 0.971658i \(0.424035\pi\)
\(500\) 1.42280 1.40558i 0.0636295 0.0628593i
\(501\) −12.4753 6.89991i −0.557354 0.308265i
\(502\) −20.6757 + 8.49051i −0.922803 + 0.378950i
\(503\) 15.2687 0.680796 0.340398 0.940281i \(-0.389438\pi\)
0.340398 + 0.940281i \(0.389438\pi\)
\(504\) −8.37886 + 1.33966i −0.373224 + 0.0596733i
\(505\) −1.28684 −0.0572638
\(506\) 15.4727 6.35387i 0.687844 0.282464i
\(507\) −40.4678 22.3822i −1.79724 0.994029i
\(508\) 7.83718 + 7.93320i 0.347719 + 0.351979i
\(509\) 21.2276 0.940895 0.470447 0.882428i \(-0.344093\pi\)
0.470447 + 0.882428i \(0.344093\pi\)
\(510\) −13.1061 1.52126i −0.580347 0.0673624i
\(511\) 15.6470i 0.692181i
\(512\) 8.08318 + 21.1344i 0.357229 + 0.934017i
\(513\) 0.129196 + 2.33957i 0.00570414 + 0.103294i
\(514\) −4.07860 + 1.67488i −0.179899 + 0.0738759i
\(515\) 14.3515i 0.632402i
\(516\) −36.8568 + 10.3633i −1.62253 + 0.456217i
\(517\) 24.9073i 1.09542i
\(518\) 0.0889060 + 0.216500i 0.00390630 + 0.00951246i
\(519\) −27.1613 15.0226i −1.19225 0.659418i
\(520\) 6.96998 16.4017i 0.305654 0.719263i
\(521\) 17.2328i 0.754983i −0.926013 0.377492i \(-0.876787\pi\)
0.926013 0.377492i \(-0.123213\pi\)
\(522\) −6.03485 + 8.43958i −0.264138 + 0.369390i
\(523\) −1.39211 −0.0608725 −0.0304363 0.999537i \(-0.509690\pi\)
−0.0304363 + 0.999537i \(0.509690\pi\)
\(524\) 18.5331 + 18.7602i 0.809622 + 0.819542i
\(525\) −0.838298 + 1.51567i −0.0365863 + 0.0661493i
\(526\) −10.5140 25.6032i −0.458432 1.11635i
\(527\) −39.6847 −1.72869
\(528\) −32.7658 18.6470i −1.42595 0.811505i
\(529\) −18.2758 −0.794598
\(530\) 3.46281 + 8.43249i 0.150415 + 0.366284i
\(531\) −30.8082 + 19.3313i −1.33696 + 0.838908i
\(532\) −0.633825 0.641591i −0.0274798 0.0278165i
\(533\) −12.2912 −0.532392
\(534\) −2.70792 0.314314i −0.117183 0.0136017i
\(535\) 15.1898i 0.656711i
\(536\) 8.40867 + 3.57330i 0.363199 + 0.154343i
\(537\) 2.87516 5.19839i 0.124072 0.224327i
\(538\) −0.968781 2.35913i −0.0417671 0.101709i
\(539\) 5.44156i 0.234385i
\(540\) 7.70012 + 6.97912i 0.331360 + 0.300334i
\(541\) 4.48368i 0.192768i 0.995344 + 0.0963841i \(0.0307277\pi\)
−0.995344 + 0.0963841i \(0.969272\pi\)
\(542\) 40.8353 16.7691i 1.75403 0.720293i
\(543\) 16.7724 30.3251i 0.719773 1.30138i
\(544\) −11.2307 28.3252i −0.481512 1.21443i
\(545\) 8.89022i 0.380815i
\(546\) −1.77948 + 15.3307i −0.0761545 + 0.656095i
\(547\) −1.74728 −0.0747084 −0.0373542 0.999302i \(-0.511893\pi\)
−0.0373542 + 0.999302i \(0.511893\pi\)
\(548\) 2.56079 + 2.59217i 0.109392 + 0.110732i
\(549\) 9.46009 5.93596i 0.403747 0.253341i
\(550\) −7.11868 + 2.92330i −0.303541 + 0.124650i
\(551\) −1.10275 −0.0469788
\(552\) −6.56005 8.38734i −0.279214 0.356989i
\(553\) 5.02829 0.213824
\(554\) −21.5952 + 8.86808i −0.917491 + 0.376769i
\(555\) 0.138733 0.250834i 0.00588889 0.0106473i
\(556\) −4.01201 + 3.96345i −0.170147 + 0.168088i
\(557\) −28.6621 −1.21445 −0.607226 0.794529i \(-0.707718\pi\)
−0.607226 + 0.794529i \(0.707718\pi\)
\(558\) 25.4260 + 18.1812i 1.07637 + 0.769673i
\(559\) 69.6374i 2.94535i
\(560\) −3.99970 0.0487085i −0.169018 0.00205831i
\(561\) 44.4255 + 24.5712i 1.87565 + 1.03739i
\(562\) −35.3451 + 14.5145i −1.49094 + 0.612257i
\(563\) 32.5866i 1.37336i 0.726960 + 0.686680i \(0.240933\pi\)
−0.726960 + 0.686680i \(0.759067\pi\)
\(564\) −15.2641 + 4.29191i −0.642735 + 0.180722i
\(565\) 8.28028i 0.348354i
\(566\) −16.5083 40.2004i −0.693897 1.68975i
\(567\) −8.10385 3.91505i −0.340330 0.164417i
\(568\) −3.23658 1.37540i −0.135804 0.0577104i
\(569\) 4.23943i 0.177726i −0.996044 0.0888632i \(-0.971677\pi\)
0.996044 0.0888632i \(-0.0283234\pi\)
\(570\) −0.127354 + 1.09720i −0.00533429 + 0.0459565i
\(571\) −29.0004 −1.21363 −0.606814 0.794844i \(-0.707553\pi\)
−0.606814 + 0.794844i \(0.707553\pi\)
\(572\) −48.7821 + 48.1916i −2.03968 + 2.01499i
\(573\) −29.9564 16.5685i −1.25144 0.692158i
\(574\) 1.04797 + 2.55198i 0.0437416 + 0.106518i
\(575\) −2.17353 −0.0906425
\(576\) −5.78149 + 23.2932i −0.240895 + 0.970551i
\(577\) 25.8553 1.07637 0.538186 0.842826i \(-0.319110\pi\)
0.538186 + 0.842826i \(0.319110\pi\)
\(578\) 6.45409 + 15.7167i 0.268455 + 0.653730i
\(579\) 12.9622 + 7.16924i 0.538692 + 0.297944i
\(580\) −3.47941 + 3.43730i −0.144475 + 0.142726i
\(581\) −9.16060 −0.380046
\(582\) 1.72359 14.8492i 0.0714450 0.615521i
\(583\) 35.0755i 1.45268i
\(584\) −40.7311 17.3089i −1.68546 0.716246i
\(585\) 16.0113 10.0467i 0.661985 0.415378i
\(586\) 8.48974 + 20.6738i 0.350708 + 0.854028i
\(587\) 2.76600i 0.114165i −0.998369 0.0570826i \(-0.981820\pi\)
0.998369 0.0570826i \(-0.0181798\pi\)
\(588\) 3.33478 0.937663i 0.137524 0.0386686i
\(589\) 3.32227i 0.136892i
\(590\) −15.8602 + 6.51302i −0.652954 + 0.268137i
\(591\) −11.8546 6.55665i −0.487635 0.269705i
\(592\) 0.661927 + 0.00806096i 0.0272050 + 0.000331303i
\(593\) 10.5837i 0.434622i 0.976102 + 0.217311i \(0.0697286\pi\)
−0.976102 + 0.217311i \(0.930271\pi\)
\(594\) −17.2063 36.0959i −0.705984 1.48103i
\(595\) 5.38646 0.220823
\(596\) −31.4784 + 31.0974i −1.28940 + 1.27380i
\(597\) −7.87629 + 14.2406i −0.322355 + 0.582829i
\(598\) −17.9157 + 7.35712i −0.732629 + 0.300855i
\(599\) 20.6552 0.843950 0.421975 0.906607i \(-0.361337\pi\)
0.421975 + 0.906607i \(0.361337\pi\)
\(600\) 3.01815 + 3.85885i 0.123216 + 0.157537i
\(601\) 30.1511 1.22989 0.614945 0.788570i \(-0.289178\pi\)
0.614945 + 0.788570i \(0.289178\pi\)
\(602\) 14.4586 5.93743i 0.589287 0.241991i
\(603\) 5.15062 + 8.20850i 0.209749 + 0.334276i
\(604\) −7.24040 7.32911i −0.294608 0.298217i
\(605\) 18.6106 0.756629
\(606\) 0.363433 3.13109i 0.0147635 0.127192i
\(607\) 22.3226i 0.906046i −0.891499 0.453023i \(-0.850346\pi\)
0.891499 0.453023i \(-0.149654\pi\)
\(608\) −2.37129 + 0.940194i −0.0961685 + 0.0381299i
\(609\) 2.05003 3.70653i 0.0830715 0.150196i
\(610\) 4.87010 1.99991i 0.197185 0.0809742i
\(611\) 28.8401i 1.16675i
\(612\) 7.40290 31.4595i 0.299245 1.27167i
\(613\) 29.6525i 1.19765i 0.800879 + 0.598826i \(0.204366\pi\)
−0.800879 + 0.598826i \(0.795634\pi\)
\(614\) −7.64915 18.6269i −0.308695 0.751719i
\(615\) 1.63531 2.95669i 0.0659420 0.119225i
\(616\) 14.1651 + 6.01953i 0.570728 + 0.242534i
\(617\) 46.9803i 1.89136i −0.325105 0.945678i \(-0.605400\pi\)
0.325105 0.945678i \(-0.394600\pi\)
\(618\) −34.9193 4.05317i −1.40466 0.163043i
\(619\) −44.3264 −1.78163 −0.890814 0.454368i \(-0.849865\pi\)
−0.890814 + 0.454368i \(0.849865\pi\)
\(620\) 10.3556 + 10.4825i 0.415890 + 0.420985i
\(621\) −0.622729 11.2768i −0.0249893 0.452523i
\(622\) −17.9211 43.6406i −0.718569 1.74983i
\(623\) 1.11292 0.0445884
\(624\) 37.9394 + 21.5913i 1.51879 + 0.864342i
\(625\) 1.00000 0.0400000
\(626\) 6.22640 + 15.1623i 0.248857 + 0.606006i
\(627\) 2.05701 3.71915i 0.0821492 0.148528i
\(628\) 33.9595 + 34.3756i 1.35513 + 1.37173i
\(629\) −0.891427 −0.0355435
\(630\) −3.45111 2.46777i −0.137495 0.0983181i
\(631\) 8.13744i 0.323946i 0.986795 + 0.161973i \(0.0517858\pi\)
−0.986795 + 0.161973i \(0.948214\pi\)
\(632\) 5.56235 13.0893i 0.221259 0.520664i
\(633\) −13.7901 7.62711i −0.548106 0.303150i
\(634\) −16.6604 40.5706i −0.661668 1.61127i
\(635\) 5.57578i 0.221268i
\(636\) −21.4955 + 6.04404i −0.852353 + 0.239662i
\(637\) 6.30076i 0.249645i
\(638\) 17.4085 7.14883i 0.689210 0.283025i
\(639\) −1.98252 3.15953i −0.0784274 0.124989i
\(640\) −4.55132 + 10.3579i −0.179907 + 0.409431i
\(641\) 2.21141i 0.0873455i 0.999046 + 0.0436727i \(0.0139059\pi\)
−0.999046 + 0.0436727i \(0.986094\pi\)
\(642\) −36.9591 4.28993i −1.45866 0.169310i
\(643\) 23.2844 0.918248 0.459124 0.888372i \(-0.348163\pi\)
0.459124 + 0.888372i \(0.348163\pi\)
\(644\) 3.05506 + 3.09250i 0.120386 + 0.121861i
\(645\) −16.7515 9.26505i −0.659590 0.364811i
\(646\) 3.17756 1.30487i 0.125020 0.0513394i
\(647\) 20.0359 0.787693 0.393846 0.919176i \(-0.371144\pi\)
0.393846 + 0.919176i \(0.371144\pi\)
\(648\) −19.1560 + 16.7645i −0.752517 + 0.658572i
\(649\) 65.9716 2.58961
\(650\) 8.24269 3.38487i 0.323305 0.132766i
\(651\) −11.1667 6.17615i −0.437657 0.242062i
\(652\) −16.6048 + 16.4038i −0.650295 + 0.642424i
\(653\) 1.94296 0.0760340 0.0380170 0.999277i \(-0.487896\pi\)
0.0380170 + 0.999277i \(0.487896\pi\)
\(654\) −21.6313 2.51080i −0.845850 0.0981799i
\(655\) 13.1854i 0.515196i
\(656\) 7.80242 + 0.0950181i 0.304633 + 0.00370983i
\(657\) −24.9493 39.7615i −0.973365 1.55124i
\(658\) 5.98796 2.45897i 0.233435 0.0958605i
\(659\) 30.1972i 1.17632i 0.808746 + 0.588158i \(0.200147\pi\)
−0.808746 + 0.588158i \(0.799853\pi\)
\(660\) −5.10235 18.1464i −0.198609 0.706349i
\(661\) 18.1561i 0.706192i 0.935587 + 0.353096i \(0.114871\pi\)
−0.935587 + 0.353096i \(0.885129\pi\)
\(662\) −12.9242 31.4724i −0.502312 1.22321i
\(663\) −51.4401 28.4508i −1.99777 1.10494i
\(664\) −10.1336 + 23.8462i −0.393259 + 0.925414i
\(665\) 0.450936i 0.0174866i
\(666\) 0.571137 + 0.408400i 0.0221311 + 0.0158252i
\(667\) 5.31531 0.205809
\(668\) 11.7109 11.5691i 0.453107 0.447622i
\(669\) −6.18309 + 11.1792i −0.239052 + 0.432214i
\(670\) 1.73532 + 4.22578i 0.0670413 + 0.163256i
\(671\) −20.2575 −0.782033
\(672\) 1.24812 9.71814i 0.0481473 0.374885i
\(673\) −39.6558 −1.52862 −0.764309 0.644850i \(-0.776920\pi\)
−0.764309 + 0.644850i \(0.776920\pi\)
\(674\) −10.8022 26.3051i −0.416086 1.01323i
\(675\) 0.286506 + 5.18825i 0.0110276 + 0.199696i
\(676\) 37.9882 37.5284i 1.46108 1.44340i
\(677\) −9.48786 −0.364648 −0.182324 0.983239i \(-0.558362\pi\)
−0.182324 + 0.983239i \(0.558362\pi\)
\(678\) 20.1472 + 2.33853i 0.773748 + 0.0898109i
\(679\) 6.10287i 0.234207i
\(680\) 5.95857 14.0217i 0.228501 0.537706i
\(681\) −10.0812 + 18.2272i −0.386312 + 0.698466i
\(682\) −21.5374 52.4468i −0.824708 2.00829i
\(683\) 25.7975i 0.987113i 0.869714 + 0.493556i \(0.164303\pi\)
−0.869714 + 0.493556i \(0.835697\pi\)
\(684\) −2.63368 0.619745i −0.100701 0.0236966i
\(685\) 1.82188i 0.0696105i
\(686\) −1.30820 + 0.537216i −0.0499475 + 0.0205110i
\(687\) 1.11819 2.02173i 0.0426617 0.0771339i
\(688\) 0.538337 44.2056i 0.0205239 1.68532i
\(689\) 40.6138i 1.54726i
\(690\) 0.613853 5.28854i 0.0233690 0.201331i
\(691\) 34.5618 1.31479 0.657395 0.753546i \(-0.271658\pi\)
0.657395 + 0.753546i \(0.271658\pi\)
\(692\) 25.4970 25.1884i 0.969251 0.957520i
\(693\) 8.67665 + 13.8279i 0.329599 + 0.525279i
\(694\) −12.5406 + 5.14980i −0.476033 + 0.195484i
\(695\) −2.81981 −0.106961
\(696\) −7.38081 9.43671i −0.279769 0.357698i
\(697\) −10.5076 −0.398005
\(698\) 25.1995 10.3482i 0.953815 0.391685i
\(699\) −13.6783 + 24.7309i −0.517362 + 0.935409i
\(700\) −1.40558 1.42280i −0.0531258 0.0537767i
\(701\) −19.1996 −0.725157 −0.362579 0.931953i \(-0.618104\pi\)
−0.362579 + 0.931953i \(0.618104\pi\)
\(702\) 19.9231 + 41.7953i 0.751950 + 1.57746i
\(703\) 0.0746272i 0.00281462i
\(704\) 31.3392 30.2148i 1.18114 1.13876i
\(705\) −6.93759 3.83709i −0.261285 0.144513i
\(706\) 14.0694 5.77762i 0.529509 0.217444i
\(707\) 1.28684i 0.0483967i
\(708\) −11.3679 40.4297i −0.427232 1.51944i
\(709\) 20.0482i 0.752925i −0.926432 0.376463i \(-0.877140\pi\)
0.926432 0.376463i \(-0.122860\pi\)
\(710\) −0.667942 1.62654i −0.0250674 0.0610431i
\(711\) 12.7777 8.01768i 0.479201 0.300686i
\(712\) 1.23113 2.89709i 0.0461386 0.108573i
\(713\) 16.0135i 0.599709i
\(714\) −1.52126 + 13.1061i −0.0569316 + 0.490483i
\(715\) −34.2860 −1.28222
\(716\) 4.82079 + 4.87986i 0.180161 + 0.182369i
\(717\) −8.26355 4.57046i −0.308608 0.170687i
\(718\) −1.63780 3.98829i −0.0611221 0.148842i
\(719\) 10.4278 0.388891 0.194445 0.980913i \(-0.437709\pi\)
0.194445 + 0.980913i \(0.437709\pi\)
\(720\) −10.2416 + 6.25381i −0.381681 + 0.233066i
\(721\) 14.3515 0.534477
\(722\) 10.0979 + 24.5899i 0.375804 + 0.915140i
\(723\) −10.6432 5.88664i −0.395827 0.218926i
\(724\) 28.1224 + 28.4669i 1.04516 + 1.05797i
\(725\) −2.44547 −0.0908225
\(726\) −5.25605 + 45.2825i −0.195070 + 1.68059i
\(727\) 24.1849i 0.896970i −0.893790 0.448485i \(-0.851964\pi\)
0.893790 0.448485i \(-0.148036\pi\)
\(728\) −16.4017 6.96998i −0.607888 0.258325i
\(729\) −26.8358 + 2.97293i −0.993920 + 0.110108i
\(730\) −8.40580 20.4694i −0.311112 0.757607i
\(731\) 59.5323i 2.20188i
\(732\) 3.49067 + 12.4145i 0.129019 + 0.458854i
\(733\) 3.88553i 0.143515i −0.997422 0.0717576i \(-0.977139\pi\)
0.997422 0.0717576i \(-0.0228608\pi\)
\(734\) −34.4249 + 14.1366i −1.27065 + 0.521793i
\(735\) 1.51567 + 0.838298i 0.0559064 + 0.0309211i
\(736\) 11.4297 4.53178i 0.421305 0.167044i
\(737\) 17.5774i 0.647472i
\(738\) 6.73224 + 4.81399i 0.247817 + 0.177206i
\(739\) 34.9865 1.28700 0.643500 0.765446i \(-0.277482\pi\)
0.643500 + 0.765446i \(0.277482\pi\)
\(740\) 0.232614 + 0.235464i 0.00855108 + 0.00865585i
\(741\) −2.38181 + 4.30639i −0.0874978 + 0.158199i
\(742\) 8.43249 3.46281i 0.309567 0.127124i
\(743\) −29.3568 −1.07700 −0.538498 0.842627i \(-0.681008\pi\)
−0.538498 + 0.842627i \(0.681008\pi\)
\(744\) −28.4301 + 22.2362i −1.04230 + 0.815220i
\(745\) −22.1243 −0.810571
\(746\) 37.2263 15.2870i 1.36295 0.559698i
\(747\) −23.2786 + 14.6067i −0.851719 + 0.534432i
\(748\) −41.7033 + 41.1985i −1.52482 + 1.50637i
\(749\) 15.1898 0.555022
\(750\) −0.282422 + 2.43315i −0.0103126 + 0.0888462i
\(751\) 33.5351i 1.22371i −0.790969 0.611857i \(-0.790423\pi\)
0.790969 0.611857i \(-0.209577\pi\)
\(752\) 0.222950 18.3076i 0.00813016 0.667609i
\(753\) 13.2490 23.9547i 0.482821 0.872956i
\(754\) −20.1572 + 8.27760i −0.734084 + 0.301452i
\(755\) 5.15119i 0.187471i
\(756\) 6.97912 7.70012i 0.253828 0.280051i
\(757\) 43.8155i 1.59250i 0.604967 + 0.796250i \(0.293186\pi\)
−0.604967 + 0.796250i \(0.706814\pi\)
\(758\) 5.69628 + 13.8713i 0.206898 + 0.503829i
\(759\) −9.91489 + 17.9265i −0.359888 + 0.650689i
\(760\) −1.17385 0.498831i −0.0425799 0.0180945i
\(761\) 22.5723i 0.818246i 0.912479 + 0.409123i \(0.134165\pi\)
−0.912479 + 0.409123i \(0.865835\pi\)
\(762\) −13.5667 1.57472i −0.491470 0.0570462i
\(763\) 8.89022 0.321848
\(764\) 28.1208 27.7804i 1.01737 1.00506i
\(765\) 13.6879 8.58879i 0.494887 0.310528i
\(766\) −8.32044 20.2616i −0.300630 0.732080i
\(767\) −76.3882 −2.75822
\(768\) −23.9169 13.9993i −0.863027 0.505158i
\(769\) 28.6178 1.03199 0.515993 0.856593i \(-0.327423\pi\)
0.515993 + 0.856593i \(0.327423\pi\)
\(770\) 2.92330 + 7.11868i 0.105348 + 0.256539i
\(771\) 2.61357 4.72542i 0.0941253 0.170182i
\(772\) −12.1680 + 12.0207i −0.437935 + 0.432634i
\(773\) 41.3736 1.48811 0.744053 0.668121i \(-0.232901\pi\)
0.744053 + 0.668121i \(0.232901\pi\)
\(774\) 27.2743 38.1424i 0.980354 1.37100i
\(775\) 7.36749i 0.264648i
\(776\) 15.8866 + 6.75108i 0.570295 + 0.242350i
\(777\) −0.250834 0.138733i −0.00899863 0.00497702i
\(778\) −8.26711 20.1317i −0.296390 0.721756i
\(779\) 0.879663i 0.0315172i
\(780\) 5.90799 + 21.0117i 0.211540 + 0.752339i
\(781\) 6.76572i 0.242096i
\(782\) −15.3160 + 6.28953i −0.547699 + 0.224913i
\(783\) −0.700642 12.6877i −0.0250389 0.453422i
\(784\) −0.0487085 + 3.99970i −0.00173959 + 0.142847i
\(785\) 24.1605i 0.862327i
\(786\) −32.0821 3.72385i −1.14433 0.132825i
\(787\) −8.87622 −0.316403 −0.158202 0.987407i \(-0.550570\pi\)
−0.158202 + 0.987407i \(0.550570\pi\)
\(788\) 11.1283 10.9936i 0.396428 0.391629i
\(789\) 29.6636 + 16.4065i 1.05605 + 0.584088i
\(790\) 6.57803 2.70128i 0.234036 0.0961071i
\(791\) −8.28028 −0.294413
\(792\) 45.5941 7.28985i 1.62012 0.259034i
\(793\) 23.4561 0.832950
\(794\) −38.1731 + 15.6758i −1.35471 + 0.556314i
\(795\) −9.76979 5.40354i −0.346499 0.191644i
\(796\) −13.2062 13.3680i −0.468081 0.473816i
\(797\) −6.80905 −0.241189 −0.120595 0.992702i \(-0.538480\pi\)
−0.120595 + 0.992702i \(0.538480\pi\)
\(798\) 1.09720 + 0.127354i 0.0388403 + 0.00450829i
\(799\) 24.6551i 0.872235i
\(800\) −5.25860 + 2.08498i −0.185919 + 0.0737153i
\(801\) 2.82812 1.77457i 0.0999269 0.0627015i
\(802\) 9.80245 4.02539i 0.346136 0.142141i
\(803\) 85.1439i 3.00466i
\(804\) −10.7721 + 3.02885i −0.379901 + 0.106819i
\(805\) 2.17353i 0.0766069i
\(806\) 24.9380 + 60.7279i 0.878404 + 2.13905i
\(807\) 2.73326 + 1.51173i 0.0962154 + 0.0532155i
\(808\) 3.34982 + 1.42352i 0.117846 + 0.0500793i
\(809\) 20.5432i 0.722261i −0.932515 0.361130i \(-0.882391\pi\)
0.932515 0.361130i \(-0.117609\pi\)
\(810\) −12.7047 0.768163i −0.446398 0.0269905i
\(811\) −39.6773 −1.39326 −0.696630 0.717430i \(-0.745318\pi\)
−0.696630 + 0.717430i \(0.745318\pi\)
\(812\) 3.43730 + 3.47941i 0.120625 + 0.122103i
\(813\) −26.1673 + 47.3113i −0.917726 + 1.65928i
\(814\) −0.483788 1.17810i −0.0169567 0.0412923i
\(815\) −11.6705 −0.408801
\(816\) 32.4340 + 18.4582i 1.13542 + 0.646165i
\(817\) 4.98384 0.174363
\(818\) 2.91713 + 7.10367i 0.101995 + 0.248374i
\(819\) −10.0467 16.0113i −0.351059 0.559480i
\(820\) 2.74193 + 2.77552i 0.0957523 + 0.0969255i
\(821\) −32.1099 −1.12064 −0.560322 0.828275i \(-0.689322\pi\)
−0.560322 + 0.828275i \(0.689322\pi\)
\(822\) −4.43291 0.514539i −0.154616 0.0179466i
\(823\) 44.6648i 1.55692i 0.627697 + 0.778458i \(0.283998\pi\)
−0.627697 + 0.778458i \(0.716002\pi\)
\(824\) 15.8758 37.3588i 0.553059 1.30145i
\(825\) 4.56165 8.24762i 0.158816 0.287145i
\(826\) 6.51302 + 15.8602i 0.226617 + 0.551847i
\(827\) 13.1115i 0.455930i −0.973669 0.227965i \(-0.926793\pi\)
0.973669 0.227965i \(-0.0732072\pi\)
\(828\) 12.6945 + 2.98720i 0.441163 + 0.103812i
\(829\) 32.9548i 1.14457i −0.820056 0.572283i \(-0.806058\pi\)
0.820056 0.572283i \(-0.193942\pi\)
\(830\) −11.9839 + 4.92122i −0.415969 + 0.170818i
\(831\) 13.8382 25.0199i 0.480041 0.867931i
\(832\) −36.2876 + 34.9855i −1.25805 + 1.21291i
\(833\) 5.38646i 0.186630i
\(834\) 0.796376 6.86102i 0.0275762 0.237578i
\(835\) 8.23086 0.284841
\(836\) 3.44900 + 3.49126i 0.119286 + 0.120748i
\(837\) −38.2244 + 2.11083i −1.32123 + 0.0729610i
\(838\) −16.9414 + 6.95702i −0.585232 + 0.240326i
\(839\) 9.64905 0.333122 0.166561 0.986031i \(-0.446734\pi\)
0.166561 + 0.986031i \(0.446734\pi\)
\(840\) 3.85885 3.01815i 0.133143 0.104136i
\(841\) −23.0197 −0.793782
\(842\) 43.2014 17.7407i 1.48882 0.611385i
\(843\) 22.6491 40.9504i 0.780077 1.41041i
\(844\) 12.9451 12.7884i 0.445588 0.440195i
\(845\) 26.6996 0.918495
\(846\) 11.2956 15.7965i 0.388349 0.543096i
\(847\) 18.6106i 0.639469i
\(848\) 0.313968 25.7815i 0.0107817 0.885340i
\(849\) 46.5757 + 25.7604i 1.59847 + 0.884095i
\(850\) 7.04659 2.89369i 0.241696 0.0992529i
\(851\) 0.359706i 0.0123306i
\(852\) 4.14627 1.16583i 0.142049 0.0399408i
\(853\) 56.9045i 1.94837i −0.225746 0.974186i \(-0.572482\pi\)
0.225746 0.974186i \(-0.427518\pi\)
\(854\) −1.99991 4.87010i −0.0684356 0.166651i
\(855\) −0.719024 1.14590i −0.0245901 0.0391891i
\(856\) 16.8031 39.5410i 0.574319 1.35148i
\(857\) 47.3354i 1.61695i 0.588533 + 0.808473i \(0.299706\pi\)
−0.588533 + 0.808473i \(0.700294\pi\)
\(858\) 9.68313 83.4231i 0.330577 2.84802i
\(859\) −50.9077 −1.73695 −0.868474 0.495735i \(-0.834899\pi\)
−0.868474 + 0.495735i \(0.834899\pi\)
\(860\) 15.7251 15.5347i 0.536221 0.529730i
\(861\) −2.95669 1.63531i −0.100764 0.0557312i
\(862\) −12.9220 31.4671i −0.440125 1.07177i
\(863\) 28.4324 0.967852 0.483926 0.875109i \(-0.339210\pi\)
0.483926 + 0.875109i \(0.339210\pi\)
\(864\) −12.3240 26.6855i −0.419272 0.907861i
\(865\) 17.9203 0.609310
\(866\) 5.96269 + 14.5201i 0.202620 + 0.493412i
\(867\) −18.2092 10.0713i −0.618417 0.342039i
\(868\) 10.4825 10.3556i 0.355798 0.351491i
\(869\) −27.3617 −0.928183
\(870\) 0.690655 5.95021i 0.0234154 0.201731i
\(871\) 20.3528i 0.689628i
\(872\) 9.83448 23.1424i 0.333037 0.783701i
\(873\) 9.73112 + 15.5084i 0.329349 + 0.524880i
\(874\) 0.526538 + 1.28220i 0.0178104 + 0.0433711i
\(875\) 1.00000i 0.0338062i
\(876\) 52.1792 14.6716i 1.76297 0.495707i
\(877\) 44.7606i 1.51146i 0.654883 + 0.755730i \(0.272718\pi\)
−0.654883 + 0.755730i \(0.727282\pi\)
\(878\) −20.1136 + 8.25966i −0.678800 + 0.278750i
\(879\) −23.9525 13.2478i −0.807897 0.446837i
\(880\) 21.7646 + 0.265050i 0.733686 + 0.00893484i
\(881\) 32.3358i 1.08942i −0.838625 0.544710i \(-0.816640\pi\)
0.838625 0.544710i \(-0.183360\pi\)
\(882\) −2.46777 + 3.45111i −0.0830940 + 0.116205i
\(883\) 38.2272 1.28645 0.643223 0.765679i \(-0.277597\pi\)
0.643223 + 0.765679i \(0.277597\pi\)
\(884\) 48.2881 47.7036i 1.62410 1.60445i
\(885\) 10.1632 18.3755i 0.341633 0.617684i
\(886\) −9.86028 + 4.04914i −0.331263 + 0.136033i
\(887\) −5.25939 −0.176593 −0.0882965 0.996094i \(-0.528142\pi\)
−0.0882965 + 0.996094i \(0.528142\pi\)
\(888\) −0.638617 + 0.499486i −0.0214306 + 0.0167617i
\(889\) 5.57578 0.187006
\(890\) 1.45593 0.597880i 0.0488030 0.0200410i
\(891\) 44.0976 + 21.3040i 1.47733 + 0.713710i
\(892\) −10.3672 10.4942i −0.347120 0.351373i
\(893\) 2.06404 0.0690705
\(894\) 6.24839 53.8318i 0.208977 1.80040i
\(895\) 3.42976i 0.114644i
\(896\) 10.3579 + 4.55132i 0.346032 + 0.152049i
\(897\) 11.4804 20.7570i 0.383320 0.693055i
\(898\) 13.0128 5.34374i 0.434244 0.178323i
\(899\) 18.0170i 0.600900i
\(900\) −5.84048 1.37435i −0.194683 0.0458118i
\(901\) 34.7203i 1.15670i
\(902\) −5.70262 13.8868i −0.189876 0.462379i
\(903\) −9.26505 + 16.7515i −0.308321 + 0.557456i
\(904\) −9.15975 + 21.5547i −0.304649 + 0.716897i
\(905\) 20.0077i 0.665079i
\(906\) 12.5336 + 1.45481i 0.416403 + 0.0483329i
\(907\) 5.86289 0.194674 0.0973370 0.995251i \(-0.468968\pi\)
0.0973370 + 0.995251i \(0.468968\pi\)
\(908\) −16.9032 17.1103i −0.560952 0.567825i
\(909\) 2.05189 + 3.27008i 0.0680569 + 0.108462i
\(910\) −3.38487 8.24269i −0.112207 0.273242i
\(911\) 23.4750 0.777760 0.388880 0.921288i \(-0.372862\pi\)
0.388880 + 0.921288i \(0.372862\pi\)
\(912\) 1.54525 2.71527i 0.0511684 0.0899115i
\(913\) 49.8480 1.64973
\(914\) −7.95284 19.3664i −0.263057 0.640584i
\(915\) −3.12076 + 5.64244i −0.103169 + 0.186533i
\(916\) 1.87488 + 1.89785i 0.0619477 + 0.0627067i
\(917\) 13.1854 0.435420
\(918\) 17.0321 + 35.7304i 0.562143 + 1.17928i
\(919\) 7.89412i 0.260403i 0.991488 + 0.130201i \(0.0415624\pi\)
−0.991488 + 0.130201i \(0.958438\pi\)
\(920\) 5.65799 + 2.40439i 0.186538 + 0.0792703i
\(921\) 21.5809 + 11.9361i 0.711114 + 0.393308i
\(922\) −0.569149 1.38597i −0.0187439 0.0456443i
\(923\) 7.83399i 0.257859i
\(924\) −18.1464 + 5.10235i −0.596974 + 0.167855i
\(925\) 0.165494i 0.00544141i
\(926\) −7.28013 + 2.98959i −0.239240 + 0.0982442i
\(927\) 36.4695 22.8836i 1.19781 0.751597i
\(928\) 12.8597 5.09877i 0.422142 0.167375i
\(929\) 4.83035i 0.158479i 0.996856 + 0.0792393i \(0.0252491\pi\)
−0.996856 + 0.0792393i \(0.974751\pi\)
\(930\) −17.9262 2.08074i −0.587825 0.0682303i
\(931\) −0.450936 −0.0147788
\(932\) −22.9345 23.2155i −0.751245 0.760450i
\(933\) 50.5615 + 27.9649i 1.65531 + 0.915530i
\(934\) −18.7598 + 7.70374i −0.613840 + 0.252074i
\(935\) −29.3108 −0.958565
\(936\) −52.7932 + 8.44089i −1.72560 + 0.275899i
\(937\) −15.8234 −0.516927 −0.258463 0.966021i \(-0.583216\pi\)
−0.258463 + 0.966021i \(0.583216\pi\)
\(938\) 4.22578 1.73532i 0.137977 0.0566603i
\(939\) −17.5668 9.71598i −0.573271 0.317069i
\(940\) 6.51249 6.43366i 0.212414 0.209843i
\(941\) −21.5116 −0.701258 −0.350629 0.936514i \(-0.614032\pi\)
−0.350629 + 0.936514i \(0.614032\pi\)
\(942\) −58.7863 6.82347i −1.91536 0.222321i
\(943\) 4.24002i 0.138074i
\(944\) 48.4910 + 0.590524i 1.57825 + 0.0192199i
\(945\) 5.18825 0.286506i 0.168774 0.00932004i
\(946\) −78.6772 + 32.3089i −2.55802 + 1.05045i
\(947\) 2.56085i 0.0832165i −0.999134 0.0416083i \(-0.986752\pi\)
0.999134 0.0416083i \(-0.0132481\pi\)
\(948\) 4.71484 + 16.7683i 0.153131 + 0.544607i
\(949\) 98.5878i 3.20030i
\(950\) −0.242250 0.589917i −0.00785963 0.0191394i
\(951\) 47.0046 + 25.9977i 1.52423 + 0.843032i
\(952\) −14.0217 5.95857i −0.454445 0.193118i
\(953\) 37.7653i 1.22334i 0.791114 + 0.611669i \(0.209501\pi\)
−0.791114 + 0.611669i \(0.790499\pi\)
\(954\) 15.9069 22.2453i 0.515003 0.720219i
\(955\) 19.7644 0.639562
\(956\) 7.75720 7.66331i 0.250886 0.247849i
\(957\) −11.1554 + 20.1693i −0.360602 + 0.651981i
\(958\) 10.7072 + 26.0737i 0.345933 + 0.842402i
\(959\) 1.82188 0.0588316
\(960\) −3.58794 13.3838i −0.115800 0.431961i
\(961\) −23.2799 −0.750966
\(962\) 0.560176 + 1.36411i 0.0180608 + 0.0439808i
\(963\) 38.5997 24.2203i 1.24386 0.780489i
\(964\) 9.99108 9.87015i 0.321791 0.317896i
\(965\) −8.55215 −0.275303
\(966\) −5.28854 0.613853i −0.170156 0.0197504i
\(967\) 35.3522i 1.13685i −0.822735 0.568425i \(-0.807553\pi\)
0.822735 0.568425i \(-0.192447\pi\)
\(968\) −48.4459 20.5873i −1.55711 0.661701i
\(969\) −2.03618 + 3.68149i −0.0654116 + 0.118266i
\(970\) 3.27856 + 7.98381i 0.105268 + 0.256345i
\(971\) 14.4815i 0.464734i −0.972628 0.232367i \(-0.925353\pi\)
0.972628 0.232367i \(-0.0746470\pi\)
\(972\) 5.45715 30.6956i 0.175038 0.984562i
\(973\) 2.81981i 0.0903988i
\(974\) 57.5919 23.6502i 1.84536 0.757801i
\(975\) −5.28191 + 9.54988i −0.169157 + 0.305841i
\(976\) −14.8898 0.181329i −0.476612 0.00580420i
\(977\) 29.2774i 0.936667i 0.883552 + 0.468333i \(0.155145\pi\)
−0.883552 + 0.468333i \(0.844855\pi\)
\(978\) 3.29602 28.3962i 0.105395 0.908011i
\(979\) −6.05605 −0.193552
\(980\) −1.42280 + 1.40558i −0.0454496 + 0.0448995i
\(981\) 22.5915 14.1756i 0.721292 0.452592i
\(982\) −49.9394 + 20.5077i −1.59363 + 0.654427i
\(983\) −24.6216 −0.785307 −0.392653 0.919687i \(-0.628443\pi\)
−0.392653 + 0.919687i \(0.628443\pi\)
\(984\) −7.52766 + 5.88766i −0.239973 + 0.187692i
\(985\) 7.82139 0.249210
\(986\) −17.2322 + 7.07644i −0.548786 + 0.225360i
\(987\) −3.83709 + 6.93759i −0.122136 + 0.220826i
\(988\) −3.99358 4.04251i −0.127053 0.128609i
\(989\) −24.0223 −0.763866
\(990\) 18.7794 + 13.4285i 0.596849 + 0.426786i
\(991\) 29.1715i 0.926663i 0.886185 + 0.463331i \(0.153346\pi\)
−0.886185 + 0.463331i \(0.846654\pi\)
\(992\) −15.3611 38.7427i −0.487715 1.23008i
\(993\) 36.4635 + 20.1675i 1.15713 + 0.639996i
\(994\) −1.62654 + 0.667942i −0.0515908 + 0.0211858i
\(995\) 9.39557i 0.297860i
\(996\) −8.58956 30.5486i −0.272171 0.967970i
\(997\) 36.6193i 1.15975i 0.814707 + 0.579873i \(0.196898\pi\)
−0.814707 + 0.579873i \(0.803102\pi\)
\(998\) −5.67363 13.8162i −0.179596 0.437343i
\(999\) −0.858624 + 0.0474150i −0.0271656 + 0.00150014i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.e.d.491.13 yes 44
3.2 odd 2 840.2.e.c.491.32 yes 44
4.3 odd 2 3360.2.e.c.911.9 44
8.3 odd 2 840.2.e.c.491.31 44
8.5 even 2 3360.2.e.d.911.9 44
12.11 even 2 3360.2.e.d.911.10 44
24.5 odd 2 3360.2.e.c.911.10 44
24.11 even 2 inner 840.2.e.d.491.14 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.e.c.491.31 44 8.3 odd 2
840.2.e.c.491.32 yes 44 3.2 odd 2
840.2.e.d.491.13 yes 44 1.1 even 1 trivial
840.2.e.d.491.14 yes 44 24.11 even 2 inner
3360.2.e.c.911.9 44 4.3 odd 2
3360.2.e.c.911.10 44 24.5 odd 2
3360.2.e.d.911.9 44 8.5 even 2
3360.2.e.d.911.10 44 12.11 even 2