Properties

Label 840.2.e.c.491.31
Level $840$
Weight $2$
Character 840.491
Analytic conductor $6.707$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(491,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.31
Character \(\chi\) \(=\) 840.491
Dual form 840.2.e.c.491.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.537216 - 1.30820i) q^{2} +(1.51567 + 0.838298i) q^{3} +(-1.42280 - 1.40558i) q^{4} +1.00000 q^{5} +(1.91091 - 1.53246i) q^{6} -1.00000i q^{7} +(-2.60313 + 1.10621i) q^{8} +(1.59451 + 2.54117i) q^{9} +(0.537216 - 1.30820i) q^{10} -5.44156i q^{11} +(-0.978202 - 3.32312i) q^{12} -6.30076i q^{13} +(-1.30820 - 0.537216i) q^{14} +(1.51567 + 0.838298i) q^{15} +(0.0487085 + 3.99970i) q^{16} +5.38646i q^{17} +(4.18096 - 0.720796i) q^{18} +0.450936 q^{19} +(-1.42280 - 1.40558i) q^{20} +(0.838298 - 1.51567i) q^{21} +(-7.11868 - 2.92330i) q^{22} +2.17353 q^{23} +(-4.87283 - 0.505545i) q^{24} +1.00000 q^{25} +(-8.24269 - 3.38487i) q^{26} +(0.286506 + 5.18825i) q^{27} +(-1.40558 + 1.42280i) q^{28} +2.44547 q^{29} +(1.91091 - 1.53246i) q^{30} -7.36749i q^{31} +(5.25860 + 2.08498i) q^{32} +(4.56165 - 8.24762i) q^{33} +(7.04659 + 2.89369i) q^{34} -1.00000i q^{35} +(1.30313 - 5.85678i) q^{36} -0.165494i q^{37} +(0.242250 - 0.589917i) q^{38} +(5.28191 - 9.54988i) q^{39} +(-2.60313 + 1.10621i) q^{40} +1.95075i q^{41} +(-1.53246 - 1.91091i) q^{42} +11.0522 q^{43} +(-7.64854 + 7.74225i) q^{44} +(1.59451 + 2.54117i) q^{45} +(1.16766 - 2.84342i) q^{46} -4.57724 q^{47} +(-3.27912 + 6.10306i) q^{48} -1.00000 q^{49} +(0.537216 - 1.30820i) q^{50} +(-4.51546 + 8.16410i) q^{51} +(-8.85621 + 8.96471i) q^{52} -6.44585 q^{53} +(6.94120 + 2.41240i) q^{54} -5.44156i q^{55} +(1.10621 + 2.60313i) q^{56} +(0.683471 + 0.378019i) q^{57} +(1.31375 - 3.19918i) q^{58} +12.1236i q^{59} +(-0.978202 - 3.32312i) q^{60} +3.72274i q^{61} +(-9.63819 - 3.95793i) q^{62} +(2.54117 - 1.59451i) q^{63} +(5.55259 - 5.75923i) q^{64} -6.30076i q^{65} +(-8.33898 - 10.3983i) q^{66} +3.23021 q^{67} +(7.57108 - 7.66385i) q^{68} +(3.29436 + 1.82207i) q^{69} +(-1.30820 - 0.537216i) q^{70} +1.24334 q^{71} +(-6.96180 - 4.85112i) q^{72} -15.6470 q^{73} +(-0.216500 - 0.0889060i) q^{74} +(1.51567 + 0.838298i) q^{75} +(-0.641591 - 0.633825i) q^{76} -5.44156 q^{77} +(-9.65567 - 12.0402i) q^{78} +5.02829i q^{79} +(0.0487085 + 3.99970i) q^{80} +(-3.91505 + 8.10385i) q^{81} +(2.55198 + 1.04797i) q^{82} +9.16060i q^{83} +(-3.32312 + 0.978202i) q^{84} +5.38646i q^{85} +(5.93743 - 14.4586i) q^{86} +(3.70653 + 2.05003i) q^{87} +(6.01953 + 14.1651i) q^{88} -1.11292i q^{89} +(4.18096 - 0.720796i) q^{90} -6.30076 q^{91} +(-3.09250 - 3.05506i) q^{92} +(6.17615 - 11.1667i) q^{93} +(-2.45897 + 5.98796i) q^{94} +0.450936 q^{95} +(6.22246 + 7.56842i) q^{96} +6.10287 q^{97} +(-0.537216 + 1.30820i) q^{98} +(13.8279 - 8.67665i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 2 q^{2} + 4 q^{3} - 2 q^{4} + 44 q^{5} + 18 q^{6} + 22 q^{8} + 4 q^{9} - 2 q^{10} + 6 q^{12} - 4 q^{14} + 4 q^{15} + 22 q^{16} + 10 q^{18} + 16 q^{19} - 2 q^{20} - 16 q^{23} - 26 q^{24} + 44 q^{25}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.537216 1.30820i 0.379869 0.925040i
\(3\) 1.51567 + 0.838298i 0.875073 + 0.483991i
\(4\) −1.42280 1.40558i −0.711399 0.702788i
\(5\) 1.00000 0.447214
\(6\) 1.91091 1.53246i 0.780125 0.625624i
\(7\) 1.00000i 0.377964i
\(8\) −2.60313 + 1.10621i −0.920346 + 0.391105i
\(9\) 1.59451 + 2.54117i 0.531505 + 0.847055i
\(10\) 0.537216 1.30820i 0.169883 0.413691i
\(11\) 5.44156i 1.64069i −0.571867 0.820347i \(-0.693780\pi\)
0.571867 0.820347i \(-0.306220\pi\)
\(12\) −0.978202 3.32312i −0.282383 0.959302i
\(13\) 6.30076i 1.74752i −0.486360 0.873759i \(-0.661676\pi\)
0.486360 0.873759i \(-0.338324\pi\)
\(14\) −1.30820 0.537216i −0.349632 0.143577i
\(15\) 1.51567 + 0.838298i 0.391344 + 0.216447i
\(16\) 0.0487085 + 3.99970i 0.0121771 + 0.999926i
\(17\) 5.38646i 1.30641i 0.757182 + 0.653204i \(0.226576\pi\)
−0.757182 + 0.653204i \(0.773424\pi\)
\(18\) 4.18096 0.720796i 0.985462 0.169893i
\(19\) 0.450936 0.103452 0.0517259 0.998661i \(-0.483528\pi\)
0.0517259 + 0.998661i \(0.483528\pi\)
\(20\) −1.42280 1.40558i −0.318147 0.314296i
\(21\) 0.838298 1.51567i 0.182932 0.330746i
\(22\) −7.11868 2.92330i −1.51771 0.623249i
\(23\) 2.17353 0.453213 0.226606 0.973986i \(-0.427237\pi\)
0.226606 + 0.973986i \(0.427237\pi\)
\(24\) −4.87283 0.505545i −0.994661 0.103194i
\(25\) 1.00000 0.200000
\(26\) −8.24269 3.38487i −1.61652 0.663828i
\(27\) 0.286506 + 5.18825i 0.0551381 + 0.998479i
\(28\) −1.40558 + 1.42280i −0.265629 + 0.268884i
\(29\) 2.44547 0.454113 0.227056 0.973882i \(-0.427090\pi\)
0.227056 + 0.973882i \(0.427090\pi\)
\(30\) 1.91091 1.53246i 0.348882 0.279788i
\(31\) 7.36749i 1.32324i −0.749839 0.661620i \(-0.769869\pi\)
0.749839 0.661620i \(-0.230131\pi\)
\(32\) 5.25860 + 2.08498i 0.929597 + 0.368577i
\(33\) 4.56165 8.24762i 0.794081 1.43573i
\(34\) 7.04659 + 2.89369i 1.20848 + 0.496264i
\(35\) 1.00000i 0.169031i
\(36\) 1.30313 5.85678i 0.217189 0.976130i
\(37\) 0.165494i 0.0272070i −0.999907 0.0136035i \(-0.995670\pi\)
0.999907 0.0136035i \(-0.00433027\pi\)
\(38\) 0.242250 0.589917i 0.0392981 0.0956971i
\(39\) 5.28191 9.54988i 0.845783 1.52920i
\(40\) −2.60313 + 1.10621i −0.411591 + 0.174908i
\(41\) 1.95075i 0.304656i 0.988330 + 0.152328i \(0.0486770\pi\)
−0.988330 + 0.152328i \(0.951323\pi\)
\(42\) −1.53246 1.91091i −0.236464 0.294859i
\(43\) 11.0522 1.68545 0.842724 0.538346i \(-0.180951\pi\)
0.842724 + 0.538346i \(0.180951\pi\)
\(44\) −7.64854 + 7.74225i −1.15306 + 1.16719i
\(45\) 1.59451 + 2.54117i 0.237696 + 0.378815i
\(46\) 1.16766 2.84342i 0.172161 0.419240i
\(47\) −4.57724 −0.667659 −0.333829 0.942634i \(-0.608341\pi\)
−0.333829 + 0.942634i \(0.608341\pi\)
\(48\) −3.27912 + 6.10306i −0.473300 + 0.880902i
\(49\) −1.00000 −0.142857
\(50\) 0.537216 1.30820i 0.0759738 0.185008i
\(51\) −4.51546 + 8.16410i −0.632290 + 1.14320i
\(52\) −8.85621 + 8.96471i −1.22813 + 1.24318i
\(53\) −6.44585 −0.885406 −0.442703 0.896668i \(-0.645980\pi\)
−0.442703 + 0.896668i \(0.645980\pi\)
\(54\) 6.94120 + 2.41240i 0.944578 + 0.328286i
\(55\) 5.44156i 0.733740i
\(56\) 1.10621 + 2.60313i 0.147824 + 0.347858i
\(57\) 0.683471 + 0.378019i 0.0905279 + 0.0500698i
\(58\) 1.31375 3.19918i 0.172503 0.420072i
\(59\) 12.1236i 1.57836i 0.614159 + 0.789182i \(0.289495\pi\)
−0.614159 + 0.789182i \(0.710505\pi\)
\(60\) −0.978202 3.32312i −0.126285 0.429013i
\(61\) 3.72274i 0.476648i 0.971186 + 0.238324i \(0.0765980\pi\)
−0.971186 + 0.238324i \(0.923402\pi\)
\(62\) −9.63819 3.95793i −1.22405 0.502658i
\(63\) 2.54117 1.59451i 0.320157 0.200890i
\(64\) 5.55259 5.75923i 0.694073 0.719904i
\(65\) 6.30076i 0.781514i
\(66\) −8.33898 10.3983i −1.02646 1.27995i
\(67\) 3.23021 0.394633 0.197317 0.980340i \(-0.436777\pi\)
0.197317 + 0.980340i \(0.436777\pi\)
\(68\) 7.57108 7.66385i 0.918129 0.929378i
\(69\) 3.29436 + 1.82207i 0.396594 + 0.219351i
\(70\) −1.30820 0.537216i −0.156360 0.0642096i
\(71\) 1.24334 0.147557 0.0737787 0.997275i \(-0.476494\pi\)
0.0737787 + 0.997275i \(0.476494\pi\)
\(72\) −6.96180 4.85112i −0.820456 0.571710i
\(73\) −15.6470 −1.83134 −0.915669 0.401933i \(-0.868338\pi\)
−0.915669 + 0.401933i \(0.868338\pi\)
\(74\) −0.216500 0.0889060i −0.0251676 0.0103351i
\(75\) 1.51567 + 0.838298i 0.175015 + 0.0967983i
\(76\) −0.641591 0.633825i −0.0735955 0.0727047i
\(77\) −5.44156 −0.620124
\(78\) −9.65567 12.0402i −1.09329 1.36328i
\(79\) 5.02829i 0.565726i 0.959160 + 0.282863i \(0.0912842\pi\)
−0.959160 + 0.282863i \(0.908716\pi\)
\(80\) 0.0487085 + 3.99970i 0.00544577 + 0.447180i
\(81\) −3.91505 + 8.10385i −0.435005 + 0.900428i
\(82\) 2.55198 + 1.04797i 0.281819 + 0.115729i
\(83\) 9.16060i 1.00551i 0.864430 + 0.502753i \(0.167680\pi\)
−0.864430 + 0.502753i \(0.832320\pi\)
\(84\) −3.32312 + 0.978202i −0.362582 + 0.106731i
\(85\) 5.38646i 0.584244i
\(86\) 5.93743 14.4586i 0.640249 1.55911i
\(87\) 3.70653 + 2.05003i 0.397382 + 0.219786i
\(88\) 6.01953 + 14.1651i 0.641684 + 1.51001i
\(89\) 1.11292i 0.117970i −0.998259 0.0589848i \(-0.981214\pi\)
0.998259 0.0589848i \(-0.0187864\pi\)
\(90\) 4.18096 0.720796i 0.440712 0.0759786i
\(91\) −6.30076 −0.660499
\(92\) −3.09250 3.05506i −0.322415 0.318512i
\(93\) 6.17615 11.1667i 0.640437 1.15793i
\(94\) −2.45897 + 5.98796i −0.253623 + 0.617611i
\(95\) 0.450936 0.0462651
\(96\) 6.22246 + 7.56842i 0.635078 + 0.772448i
\(97\) 6.10287 0.619653 0.309827 0.950793i \(-0.399729\pi\)
0.309827 + 0.950793i \(0.399729\pi\)
\(98\) −0.537216 + 1.30820i −0.0542670 + 0.132149i
\(99\) 13.8279 8.67665i 1.38976 0.872036i
\(100\) −1.42280 1.40558i −0.142280 0.140558i
\(101\) −1.28684 −0.128046 −0.0640229 0.997948i \(-0.520393\pi\)
−0.0640229 + 0.997948i \(0.520393\pi\)
\(102\) 8.25454 + 10.2930i 0.817321 + 1.01916i
\(103\) 14.3515i 1.41409i 0.707167 + 0.707046i \(0.249973\pi\)
−0.707167 + 0.707046i \(0.750027\pi\)
\(104\) 6.96998 + 16.4017i 0.683463 + 1.60832i
\(105\) 0.838298 1.51567i 0.0818095 0.147914i
\(106\) −3.46281 + 8.43249i −0.336338 + 0.819036i
\(107\) 15.1898i 1.46845i −0.678906 0.734225i \(-0.737545\pi\)
0.678906 0.734225i \(-0.262455\pi\)
\(108\) 6.88484 7.78453i 0.662494 0.749067i
\(109\) 8.89022i 0.851529i 0.904834 + 0.425764i \(0.139995\pi\)
−0.904834 + 0.425764i \(0.860005\pi\)
\(110\) −7.11868 2.92330i −0.678739 0.278725i
\(111\) 0.138733 0.250834i 0.0131680 0.0238081i
\(112\) 3.99970 0.0487085i 0.377936 0.00460252i
\(113\) 8.28028i 0.778943i 0.921039 + 0.389472i \(0.127342\pi\)
−0.921039 + 0.389472i \(0.872658\pi\)
\(114\) 0.861697 0.691042i 0.0807053 0.0647220i
\(115\) 2.17353 0.202683
\(116\) −3.47941 3.43730i −0.323055 0.319145i
\(117\) 16.0113 10.0467i 1.48024 0.928814i
\(118\) 15.8602 + 6.51302i 1.46005 + 0.599572i
\(119\) 5.38646 0.493776
\(120\) −4.87283 0.505545i −0.444826 0.0461497i
\(121\) −18.6106 −1.69187
\(122\) 4.87010 + 1.99991i 0.440918 + 0.181064i
\(123\) −1.63531 + 2.95669i −0.147451 + 0.266596i
\(124\) −10.3556 + 10.4825i −0.929958 + 0.941352i
\(125\) 1.00000 0.0894427
\(126\) −0.720796 4.18096i −0.0642136 0.372470i
\(127\) 5.57578i 0.494770i 0.968917 + 0.247385i \(0.0795713\pi\)
−0.968917 + 0.247385i \(0.920429\pi\)
\(128\) −4.55132 10.3579i −0.402283 0.915515i
\(129\) 16.7515 + 9.26505i 1.47489 + 0.815742i
\(130\) −8.24269 3.38487i −0.722931 0.296873i
\(131\) 13.1854i 1.15201i −0.817445 0.576007i \(-0.804610\pi\)
0.817445 0.576007i \(-0.195390\pi\)
\(132\) −18.0830 + 5.32295i −1.57392 + 0.463303i
\(133\) 0.450936i 0.0391011i
\(134\) 1.73532 4.22578i 0.149909 0.365052i
\(135\) 0.286506 + 5.18825i 0.0246585 + 0.446533i
\(136\) −5.95857 14.0217i −0.510943 1.20235i
\(137\) 1.82188i 0.155654i −0.996967 0.0778269i \(-0.975202\pi\)
0.996967 0.0778269i \(-0.0247981\pi\)
\(138\) 4.15342 3.33085i 0.353562 0.283541i
\(139\) 2.81981 0.239173 0.119586 0.992824i \(-0.461843\pi\)
0.119586 + 0.992824i \(0.461843\pi\)
\(140\) −1.40558 + 1.42280i −0.118793 + 0.120248i
\(141\) −6.93759 3.83709i −0.584250 0.323141i
\(142\) 0.667942 1.62654i 0.0560525 0.136496i
\(143\) −34.2860 −2.86714
\(144\) −10.0862 + 6.50136i −0.840520 + 0.541780i
\(145\) 2.44547 0.203085
\(146\) −8.40580 + 20.4694i −0.695669 + 1.69406i
\(147\) −1.51567 0.838298i −0.125010 0.0691416i
\(148\) −0.232614 + 0.235464i −0.0191208 + 0.0193551i
\(149\) −22.1243 −1.81249 −0.906246 0.422751i \(-0.861065\pi\)
−0.906246 + 0.422751i \(0.861065\pi\)
\(150\) 1.91091 1.53246i 0.156025 0.125125i
\(151\) 5.15119i 0.419198i −0.977787 0.209599i \(-0.932784\pi\)
0.977787 0.209599i \(-0.0672159\pi\)
\(152\) −1.17385 + 0.498831i −0.0952115 + 0.0404605i
\(153\) −13.6879 + 8.58879i −1.10660 + 0.694363i
\(154\) −2.92330 + 7.11868i −0.235566 + 0.573639i
\(155\) 7.36749i 0.591771i
\(156\) −20.9382 + 6.16342i −1.67640 + 0.493468i
\(157\) 24.1605i 1.92822i 0.265501 + 0.964110i \(0.414463\pi\)
−0.265501 + 0.964110i \(0.585537\pi\)
\(158\) 6.57803 + 2.70128i 0.523320 + 0.214902i
\(159\) −9.76979 5.40354i −0.774795 0.428529i
\(160\) 5.25860 + 2.08498i 0.415729 + 0.164832i
\(161\) 2.17353i 0.171298i
\(162\) 8.49827 + 9.47520i 0.667687 + 0.744442i
\(163\) 11.6705 0.914107 0.457054 0.889439i \(-0.348905\pi\)
0.457054 + 0.889439i \(0.348905\pi\)
\(164\) 2.74193 2.77552i 0.214109 0.216732i
\(165\) 4.56165 8.24762i 0.355124 0.642076i
\(166\) 11.9839 + 4.92122i 0.930134 + 0.381961i
\(167\) 8.23086 0.636923 0.318462 0.947936i \(-0.396834\pi\)
0.318462 + 0.947936i \(0.396834\pi\)
\(168\) −0.505545 + 4.87283i −0.0390036 + 0.375947i
\(169\) −26.6996 −2.05382
\(170\) 7.04659 + 2.89369i 0.540449 + 0.221936i
\(171\) 0.719024 + 1.14590i 0.0549851 + 0.0876294i
\(172\) −15.7251 15.5347i −1.19903 1.18451i
\(173\) 17.9203 1.36246 0.681229 0.732070i \(-0.261446\pi\)
0.681229 + 0.732070i \(0.261446\pi\)
\(174\) 4.67307 3.74759i 0.354264 0.284104i
\(175\) 1.00000i 0.0755929i
\(176\) 21.7646 0.265050i 1.64057 0.0199789i
\(177\) −10.1632 + 18.3755i −0.763914 + 1.38118i
\(178\) −1.45593 0.597880i −0.109127 0.0448130i
\(179\) 3.42976i 0.256352i −0.991751 0.128176i \(-0.959088\pi\)
0.991751 0.128176i \(-0.0409123\pi\)
\(180\) 1.30313 5.85678i 0.0971297 0.436538i
\(181\) 20.0077i 1.48716i 0.668646 + 0.743581i \(0.266874\pi\)
−0.668646 + 0.743581i \(0.733126\pi\)
\(182\) −3.38487 + 8.24269i −0.250903 + 0.610989i
\(183\) −3.12076 + 5.64244i −0.230693 + 0.417101i
\(184\) −5.65799 + 2.40439i −0.417112 + 0.177254i
\(185\) 0.165494i 0.0121674i
\(186\) −11.2904 14.0786i −0.827851 1.03229i
\(187\) 29.3108 2.14342
\(188\) 6.51249 + 6.43366i 0.474972 + 0.469223i
\(189\) 5.18825 0.286506i 0.377389 0.0208402i
\(190\) 0.242250 0.589917i 0.0175747 0.0427970i
\(191\) 19.7644 1.43010 0.715052 0.699072i \(-0.246403\pi\)
0.715052 + 0.699072i \(0.246403\pi\)
\(192\) 13.2438 4.07438i 0.955792 0.294043i
\(193\) 8.55215 0.615597 0.307798 0.951452i \(-0.400408\pi\)
0.307798 + 0.951452i \(0.400408\pi\)
\(194\) 3.27856 7.98381i 0.235387 0.573204i
\(195\) 5.28191 9.54988i 0.378246 0.683881i
\(196\) 1.42280 + 1.40558i 0.101628 + 0.100398i
\(197\) 7.82139 0.557251 0.278625 0.960400i \(-0.410121\pi\)
0.278625 + 0.960400i \(0.410121\pi\)
\(198\) −3.92226 22.7510i −0.278743 1.61684i
\(199\) 9.39557i 0.666035i −0.942921 0.333017i \(-0.891933\pi\)
0.942921 0.333017i \(-0.108067\pi\)
\(200\) −2.60313 + 1.10621i −0.184069 + 0.0782210i
\(201\) 4.89594 + 2.70788i 0.345333 + 0.190999i
\(202\) −0.691313 + 1.68345i −0.0486406 + 0.118447i
\(203\) 2.44547i 0.171638i
\(204\) 17.8999 5.26905i 1.25324 0.368907i
\(205\) 1.95075i 0.136246i
\(206\) 18.7747 + 7.70984i 1.30809 + 0.537170i
\(207\) 3.46573 + 5.52330i 0.240885 + 0.383896i
\(208\) 25.2012 0.306901i 1.74739 0.0212797i
\(209\) 2.45380i 0.169733i
\(210\) −1.53246 1.91091i −0.105750 0.131865i
\(211\) −9.09833 −0.626355 −0.313178 0.949695i \(-0.601393\pi\)
−0.313178 + 0.949695i \(0.601393\pi\)
\(212\) 9.17115 + 9.06014i 0.629877 + 0.622253i
\(213\) 1.88449 + 1.04229i 0.129123 + 0.0714165i
\(214\) −19.8713 8.16019i −1.35838 0.557819i
\(215\) 11.0522 0.753755
\(216\) −6.48512 13.1888i −0.441256 0.897381i
\(217\) −7.36749 −0.500138
\(218\) 11.6302 + 4.77597i 0.787699 + 0.323469i
\(219\) −23.7156 13.1168i −1.60255 0.886352i
\(220\) −7.64854 + 7.74225i −0.515664 + 0.521982i
\(221\) 33.9388 2.28297
\(222\) −0.253613 0.316244i −0.0170214 0.0212249i
\(223\) 7.37577i 0.493918i −0.969026 0.246959i \(-0.920569\pi\)
0.969026 0.246959i \(-0.0794313\pi\)
\(224\) 2.08498 5.25860i 0.139309 0.351355i
\(225\) 1.59451 + 2.54117i 0.106301 + 0.169411i
\(226\) 10.8323 + 4.44830i 0.720554 + 0.295896i
\(227\) 12.0258i 0.798180i 0.916912 + 0.399090i \(0.130674\pi\)
−0.916912 + 0.399090i \(0.869326\pi\)
\(228\) −0.441106 1.49851i −0.0292130 0.0992415i
\(229\) 1.33389i 0.0881456i 0.999028 + 0.0440728i \(0.0140334\pi\)
−0.999028 + 0.0440728i \(0.985967\pi\)
\(230\) 1.16766 2.84342i 0.0769929 0.187490i
\(231\) −8.24762 4.56165i −0.542653 0.300135i
\(232\) −6.36588 + 2.70521i −0.417941 + 0.177606i
\(233\) 16.3168i 1.06895i 0.845184 + 0.534475i \(0.179491\pi\)
−0.845184 + 0.534475i \(0.820509\pi\)
\(234\) −4.54157 26.3433i −0.296892 1.72211i
\(235\) −4.57724 −0.298586
\(236\) 17.0407 17.2495i 1.10926 1.12285i
\(237\) −4.21520 + 7.62123i −0.273807 + 0.495052i
\(238\) 2.89369 7.04659i 0.187570 0.456763i
\(239\) 5.45208 0.352665 0.176333 0.984331i \(-0.443577\pi\)
0.176333 + 0.984331i \(0.443577\pi\)
\(240\) −3.27912 + 6.10306i −0.211666 + 0.393951i
\(241\) −7.02214 −0.452336 −0.226168 0.974088i \(-0.572620\pi\)
−0.226168 + 0.974088i \(0.572620\pi\)
\(242\) −9.99792 + 24.3465i −0.642691 + 1.56505i
\(243\) −12.7274 + 9.00080i −0.816460 + 0.577401i
\(244\) 5.23259 5.29670i 0.334982 0.339087i
\(245\) −1.00000 −0.0638877
\(246\) 2.98945 + 3.72770i 0.190600 + 0.237670i
\(247\) 2.84124i 0.180784i
\(248\) 8.15001 + 19.1786i 0.517526 + 1.21784i
\(249\) −7.67931 + 13.8845i −0.486656 + 0.879891i
\(250\) 0.537216 1.30820i 0.0339765 0.0827381i
\(251\) 15.8047i 0.997581i −0.866723 0.498791i \(-0.833778\pi\)
0.866723 0.498791i \(-0.166222\pi\)
\(252\) −5.85678 1.30313i −0.368942 0.0820895i
\(253\) 11.8274i 0.743583i
\(254\) 7.29426 + 2.99540i 0.457682 + 0.187948i
\(255\) −4.51546 + 8.16410i −0.282769 + 0.511256i
\(256\) −15.9953 + 0.389639i −0.999703 + 0.0243524i
\(257\) 3.11771i 0.194477i −0.995261 0.0972386i \(-0.968999\pi\)
0.995261 0.0972386i \(-0.0310010\pi\)
\(258\) 21.1198 16.9371i 1.31486 1.05446i
\(259\) −0.165494 −0.0102833
\(260\) −8.85621 + 8.96471i −0.549239 + 0.555968i
\(261\) 3.89934 + 6.21435i 0.241363 + 0.384658i
\(262\) −17.2492 7.08341i −1.06566 0.437615i
\(263\) −19.5713 −1.20682 −0.603408 0.797433i \(-0.706191\pi\)
−0.603408 + 0.797433i \(0.706191\pi\)
\(264\) −2.75095 + 26.5158i −0.169310 + 1.63193i
\(265\) −6.44585 −0.395966
\(266\) −0.589917 0.242250i −0.0361701 0.0148533i
\(267\) 0.932961 1.68683i 0.0570963 0.103232i
\(268\) −4.59594 4.54031i −0.280742 0.277344i
\(269\) −1.80334 −0.109951 −0.0549757 0.998488i \(-0.517508\pi\)
−0.0549757 + 0.998488i \(0.517508\pi\)
\(270\) 6.94120 + 2.41240i 0.422428 + 0.146814i
\(271\) 31.2148i 1.89616i −0.318029 0.948081i \(-0.603021\pi\)
0.318029 0.948081i \(-0.396979\pi\)
\(272\) −21.5442 + 0.262366i −1.30631 + 0.0159083i
\(273\) −9.54988 5.28191i −0.577985 0.319676i
\(274\) −2.38339 0.978743i −0.143986 0.0591280i
\(275\) 5.44156i 0.328139i
\(276\) −2.12615 7.22290i −0.127979 0.434768i
\(277\) 16.5075i 0.991839i 0.868369 + 0.495919i \(0.165169\pi\)
−0.868369 + 0.495919i \(0.834831\pi\)
\(278\) 1.51484 3.68888i 0.0908544 0.221244i
\(279\) 18.7220 11.7476i 1.12086 0.703309i
\(280\) 1.10621 + 2.60313i 0.0661088 + 0.155567i
\(281\) 27.0180i 1.61176i −0.592080 0.805879i \(-0.701693\pi\)
0.592080 0.805879i \(-0.298307\pi\)
\(282\) −8.74668 + 7.01444i −0.520857 + 0.417704i
\(283\) 30.7294 1.82667 0.913337 0.407204i \(-0.133496\pi\)
0.913337 + 0.407204i \(0.133496\pi\)
\(284\) −1.76902 1.74761i −0.104972 0.103702i
\(285\) 0.683471 + 0.378019i 0.0404853 + 0.0223919i
\(286\) −18.4190 + 44.8531i −1.08914 + 2.65222i
\(287\) 1.95075 0.115149
\(288\) 3.08662 + 16.6875i 0.181881 + 0.983321i
\(289\) −12.0140 −0.706704
\(290\) 1.31375 3.19918i 0.0771458 0.187862i
\(291\) 9.24995 + 5.11602i 0.542242 + 0.299907i
\(292\) 22.2625 + 21.9930i 1.30281 + 1.28704i
\(293\) 15.8032 0.923233 0.461617 0.887079i \(-0.347270\pi\)
0.461617 + 0.887079i \(0.347270\pi\)
\(294\) −1.91091 + 1.53246i −0.111446 + 0.0893749i
\(295\) 12.1236i 0.705866i
\(296\) 0.183071 + 0.430803i 0.0106408 + 0.0250399i
\(297\) 28.2322 1.55904i 1.63820 0.0904647i
\(298\) −11.8855 + 28.9431i −0.688510 + 1.67663i
\(299\) 13.6949i 0.791997i
\(300\) −0.978202 3.32312i −0.0564765 0.191860i
\(301\) 11.0522i 0.637039i
\(302\) −6.73881 2.76730i −0.387775 0.159240i
\(303\) −1.95043 1.07876i −0.112049 0.0619730i
\(304\) 0.0219644 + 1.80361i 0.00125975 + 0.103444i
\(305\) 3.72274i 0.213163i
\(306\) 3.88254 + 22.5206i 0.221950 + 1.28742i
\(307\) 14.2385 0.812634 0.406317 0.913732i \(-0.366813\pi\)
0.406317 + 0.913732i \(0.366813\pi\)
\(308\) 7.74225 + 7.64854i 0.441155 + 0.435816i
\(309\) −12.0308 + 21.7521i −0.684409 + 1.23743i
\(310\) −9.63819 3.95793i −0.547412 0.224796i
\(311\) −33.3592 −1.89162 −0.945812 0.324714i \(-0.894732\pi\)
−0.945812 + 0.324714i \(0.894732\pi\)
\(312\) −3.18532 + 30.7025i −0.180333 + 1.73819i
\(313\) −11.5901 −0.655113 −0.327556 0.944832i \(-0.606225\pi\)
−0.327556 + 0.944832i \(0.606225\pi\)
\(314\) 31.6069 + 12.9794i 1.78368 + 0.732471i
\(315\) 2.54117 1.59451i 0.143178 0.0898407i
\(316\) 7.06764 7.15424i 0.397586 0.402457i
\(317\) −31.0124 −1.74183 −0.870916 0.491432i \(-0.836474\pi\)
−0.870916 + 0.491432i \(0.836474\pi\)
\(318\) −12.3174 + 9.87801i −0.690727 + 0.553931i
\(319\) 13.3072i 0.745059i
\(320\) 5.55259 5.75923i 0.310399 0.321951i
\(321\) 12.7336 23.0227i 0.710717 1.28500i
\(322\) −2.84342 1.16766i −0.158458 0.0650709i
\(323\) 2.42895i 0.135150i
\(324\) 16.9609 6.02725i 0.942273 0.334847i
\(325\) 6.30076i 0.349503i
\(326\) 6.26960 15.2675i 0.347241 0.845586i
\(327\) −7.45265 + 13.4746i −0.412133 + 0.745150i
\(328\) −2.15794 5.07806i −0.119153 0.280389i
\(329\) 4.57724i 0.252351i
\(330\) −8.33898 10.3983i −0.459046 0.572409i
\(331\) 24.0577 1.32233 0.661165 0.750241i \(-0.270062\pi\)
0.661165 + 0.750241i \(0.270062\pi\)
\(332\) 12.8759 13.0337i 0.706658 0.715316i
\(333\) 0.420548 0.263883i 0.0230459 0.0144607i
\(334\) 4.42175 10.7677i 0.241947 0.589180i
\(335\) 3.23021 0.176485
\(336\) 6.10306 + 3.27912i 0.332949 + 0.178890i
\(337\) 20.1078 1.09534 0.547670 0.836694i \(-0.315515\pi\)
0.547670 + 0.836694i \(0.315515\pi\)
\(338\) −14.3435 + 34.9286i −0.780181 + 1.89986i
\(339\) −6.94134 + 12.5502i −0.377002 + 0.681632i
\(340\) 7.57108 7.66385i 0.410600 0.415630i
\(341\) −40.0907 −2.17103
\(342\) 1.88535 0.325033i 0.101948 0.0175758i
\(343\) 1.00000i 0.0539949i
\(344\) −28.7704 + 12.2261i −1.55119 + 0.659187i
\(345\) 3.29436 + 1.82207i 0.177362 + 0.0980967i
\(346\) 9.62709 23.4435i 0.517556 1.26033i
\(347\) 9.58609i 0.514608i −0.966330 0.257304i \(-0.917166\pi\)
0.966330 0.257304i \(-0.0828342\pi\)
\(348\) −2.39216 8.12659i −0.128233 0.435631i
\(349\) 19.2627i 1.03111i −0.856858 0.515553i \(-0.827586\pi\)
0.856858 0.515553i \(-0.172414\pi\)
\(350\) −1.30820 0.537216i −0.0699265 0.0287154i
\(351\) 32.6899 1.80521i 1.74486 0.0963548i
\(352\) 11.3456 28.6150i 0.604721 1.52518i
\(353\) 10.7547i 0.572417i 0.958167 + 0.286209i \(0.0923950\pi\)
−0.958167 + 0.286209i \(0.907605\pi\)
\(354\) 18.5790 + 23.1672i 0.987463 + 1.23132i
\(355\) 1.24334 0.0659896
\(356\) −1.56430 + 1.58347i −0.0829077 + 0.0839235i
\(357\) 8.16410 + 4.51546i 0.432090 + 0.238983i
\(358\) −4.48683 1.84252i −0.237136 0.0973803i
\(359\) −3.04868 −0.160903 −0.0804515 0.996759i \(-0.525636\pi\)
−0.0804515 + 0.996759i \(0.525636\pi\)
\(360\) −6.96180 4.85112i −0.366919 0.255676i
\(361\) −18.7967 −0.989298
\(362\) 26.1742 + 10.7485i 1.37568 + 0.564927i
\(363\) −28.2076 15.6012i −1.48051 0.818853i
\(364\) 8.96471 + 8.85621i 0.469879 + 0.464191i
\(365\) −15.6470 −0.818999
\(366\) 5.70495 + 7.11381i 0.298202 + 0.371845i
\(367\) 26.3146i 1.37361i 0.726841 + 0.686806i \(0.240988\pi\)
−0.726841 + 0.686806i \(0.759012\pi\)
\(368\) 0.105869 + 8.69348i 0.00551882 + 0.453179i
\(369\) −4.95718 + 3.11050i −0.258060 + 0.161926i
\(370\) −0.216500 0.0889060i −0.0112553 0.00462200i
\(371\) 6.44585i 0.334652i
\(372\) −24.4831 + 7.20689i −1.26939 + 0.373660i
\(373\) 28.4560i 1.47340i −0.676221 0.736698i \(-0.736384\pi\)
0.676221 0.736698i \(-0.263616\pi\)
\(374\) 15.7462 38.3445i 0.814217 1.98275i
\(375\) 1.51567 + 0.838298i 0.0782689 + 0.0432895i
\(376\) 11.9152 5.06340i 0.614477 0.261125i
\(377\) 15.4083i 0.793569i
\(378\) 2.41240 6.94120i 0.124081 0.357017i
\(379\) −10.6033 −0.544656 −0.272328 0.962204i \(-0.587794\pi\)
−0.272328 + 0.962204i \(0.587794\pi\)
\(380\) −0.641591 0.633825i −0.0329129 0.0325145i
\(381\) −4.67416 + 8.45104i −0.239464 + 0.432960i
\(382\) 10.6178 25.8559i 0.543252 1.32290i
\(383\) −15.4881 −0.791403 −0.395702 0.918379i \(-0.629499\pi\)
−0.395702 + 0.918379i \(0.629499\pi\)
\(384\) 1.78468 19.5145i 0.0910741 0.995844i
\(385\) −5.44156 −0.277328
\(386\) 4.59435 11.1880i 0.233846 0.569452i
\(387\) 17.6229 + 28.0855i 0.895823 + 1.42767i
\(388\) −8.68316 8.57806i −0.440821 0.435485i
\(389\) −15.3888 −0.780243 −0.390122 0.920763i \(-0.627567\pi\)
−0.390122 + 0.920763i \(0.627567\pi\)
\(390\) −9.65567 12.0402i −0.488934 0.609678i
\(391\) 11.7076i 0.592081i
\(392\) 2.60313 1.10621i 0.131478 0.0558722i
\(393\) 11.0533 19.9847i 0.557565 1.00810i
\(394\) 4.20177 10.2320i 0.211682 0.515479i
\(395\) 5.02829i 0.253001i
\(396\) −31.8700 7.09107i −1.60153 0.356340i
\(397\) 29.1797i 1.46449i 0.681042 + 0.732245i \(0.261527\pi\)
−0.681042 + 0.732245i \(0.738473\pi\)
\(398\) −12.2913 5.04745i −0.616109 0.253006i
\(399\) 0.378019 0.683471i 0.0189246 0.0342163i
\(400\) 0.0487085 + 3.99970i 0.00243542 + 0.199985i
\(401\) 7.49305i 0.374185i 0.982342 + 0.187093i \(0.0599065\pi\)
−0.982342 + 0.187093i \(0.940094\pi\)
\(402\) 6.17264 4.95017i 0.307863 0.246892i
\(403\) −46.4208 −2.31239
\(404\) 1.83092 + 1.80876i 0.0910916 + 0.0899890i
\(405\) −3.91505 + 8.10385i −0.194540 + 0.402684i
\(406\) −3.19918 1.31375i −0.158772 0.0652001i
\(407\) −0.900546 −0.0446384
\(408\) 2.72310 26.2473i 0.134813 1.29943i
\(409\) −5.43009 −0.268501 −0.134250 0.990947i \(-0.542863\pi\)
−0.134250 + 0.990947i \(0.542863\pi\)
\(410\) 2.55198 + 1.04797i 0.126033 + 0.0517557i
\(411\) 1.52728 2.76137i 0.0753350 0.136208i
\(412\) 20.1721 20.4193i 0.993808 1.00598i
\(413\) 12.1236 0.596566
\(414\) 9.08745 1.56667i 0.446624 0.0769978i
\(415\) 9.16060i 0.449676i
\(416\) 13.1370 33.1332i 0.644094 1.62449i
\(417\) 4.27390 + 2.36384i 0.209294 + 0.115758i
\(418\) −3.21007 1.31822i −0.157010 0.0644762i
\(419\) 12.9501i 0.632655i −0.948650 0.316328i \(-0.897550\pi\)
0.948650 0.316328i \(-0.102450\pi\)
\(420\) −3.32312 + 0.978202i −0.162152 + 0.0477314i
\(421\) 33.0234i 1.60946i −0.593639 0.804731i \(-0.702309\pi\)
0.593639 0.804731i \(-0.297691\pi\)
\(422\) −4.88777 + 11.9025i −0.237933 + 0.579404i
\(423\) −7.29847 11.6315i −0.354864 0.565544i
\(424\) 16.7794 7.13048i 0.814880 0.346287i
\(425\) 5.38646i 0.261282i
\(426\) 2.37591 1.90537i 0.115113 0.0923154i
\(427\) 3.72274 0.180156
\(428\) −21.3504 + 21.6120i −1.03201 + 1.04465i
\(429\) −51.9663 28.7419i −2.50896 1.38767i
\(430\) 5.93743 14.4586i 0.286328 0.697254i
\(431\) −24.0536 −1.15862 −0.579312 0.815106i \(-0.696679\pi\)
−0.579312 + 0.815106i \(0.696679\pi\)
\(432\) −20.7375 + 1.39865i −0.997733 + 0.0672926i
\(433\) −11.0992 −0.533395 −0.266698 0.963780i \(-0.585933\pi\)
−0.266698 + 0.963780i \(0.585933\pi\)
\(434\) −3.95793 + 9.63819i −0.189987 + 0.462648i
\(435\) 3.70653 + 2.05003i 0.177714 + 0.0982915i
\(436\) 12.4959 12.6490i 0.598445 0.605777i
\(437\) 0.980123 0.0468857
\(438\) −29.8999 + 23.9783i −1.42867 + 1.14573i
\(439\) 15.3749i 0.733806i 0.930259 + 0.366903i \(0.119582\pi\)
−0.930259 + 0.366903i \(0.880418\pi\)
\(440\) 6.01953 + 14.1651i 0.286970 + 0.675295i
\(441\) −1.59451 2.54117i −0.0759293 0.121008i
\(442\) 18.2325 44.3989i 0.867230 2.11184i
\(443\) 7.53726i 0.358106i −0.983839 0.179053i \(-0.942697\pi\)
0.983839 0.179053i \(-0.0573034\pi\)
\(444\) −0.549956 + 0.161886i −0.0260998 + 0.00768279i
\(445\) 1.11292i 0.0527577i
\(446\) −9.64901 3.96238i −0.456894 0.187624i
\(447\) −33.5331 18.5467i −1.58606 0.877230i
\(448\) −5.75923 5.55259i −0.272098 0.262335i
\(449\) 9.94711i 0.469433i 0.972064 + 0.234716i \(0.0754162\pi\)
−0.972064 + 0.234716i \(0.924584\pi\)
\(450\) 4.18096 0.720796i 0.197092 0.0339787i
\(451\) 10.6151 0.499847
\(452\) 11.6386 11.7812i 0.547432 0.554139i
\(453\) 4.31823 7.80751i 0.202888 0.366829i
\(454\) 15.7322 + 6.46045i 0.738349 + 0.303204i
\(455\) −6.30076 −0.295384
\(456\) −2.19733 0.227968i −0.102900 0.0106756i
\(457\) 14.8038 0.692493 0.346246 0.938144i \(-0.387456\pi\)
0.346246 + 0.938144i \(0.387456\pi\)
\(458\) 1.74500 + 0.716585i 0.0815383 + 0.0334838i
\(459\) −27.9463 + 1.54325i −1.30442 + 0.0720329i
\(460\) −3.09250 3.05506i −0.144188 0.142443i
\(461\) −1.05944 −0.0493431 −0.0246715 0.999696i \(-0.507854\pi\)
−0.0246715 + 0.999696i \(0.507854\pi\)
\(462\) −10.3983 + 8.33898i −0.483774 + 0.387965i
\(463\) 5.56498i 0.258626i 0.991604 + 0.129313i \(0.0412773\pi\)
−0.991604 + 0.129313i \(0.958723\pi\)
\(464\) 0.119115 + 9.78116i 0.00552978 + 0.454079i
\(465\) 6.17615 11.1667i 0.286412 0.517843i
\(466\) 21.3457 + 8.76565i 0.988821 + 0.406061i
\(467\) 14.3401i 0.663582i −0.943353 0.331791i \(-0.892347\pi\)
0.943353 0.331791i \(-0.107653\pi\)
\(468\) −36.9022 8.21072i −1.70580 0.379541i
\(469\) 3.23021i 0.149157i
\(470\) −2.45897 + 5.98796i −0.113424 + 0.276204i
\(471\) −20.2537 + 36.6194i −0.933242 + 1.68733i
\(472\) −13.4113 31.5594i −0.617306 1.45264i
\(473\) 60.1414i 2.76530i
\(474\) 7.70565 + 9.60859i 0.353932 + 0.441337i
\(475\) 0.450936 0.0206904
\(476\) −7.66385 7.57108i −0.351272 0.347020i
\(477\) −10.2780 16.3800i −0.470598 0.749988i
\(478\) 2.92894 7.13243i 0.133967 0.326230i
\(479\) 19.9309 0.910665 0.455332 0.890321i \(-0.349520\pi\)
0.455332 + 0.890321i \(0.349520\pi\)
\(480\) 6.22246 + 7.56842i 0.284015 + 0.345449i
\(481\) −1.04274 −0.0475448
\(482\) −3.77240 + 9.18639i −0.171828 + 0.418429i
\(483\) 1.82207 3.29436i 0.0829069 0.149898i
\(484\) 26.4792 + 26.1587i 1.20360 + 1.18903i
\(485\) 6.10287 0.277117
\(486\) 4.93754 + 21.4854i 0.223971 + 0.974596i
\(487\) 44.0236i 1.99490i −0.0713704 0.997450i \(-0.522737\pi\)
0.0713704 0.997450i \(-0.477263\pi\)
\(488\) −4.11814 9.69078i −0.186419 0.438681i
\(489\) 17.6887 + 9.78339i 0.799910 + 0.442420i
\(490\) −0.537216 + 1.30820i −0.0242689 + 0.0590987i
\(491\) 38.1740i 1.72277i −0.507953 0.861385i \(-0.669597\pi\)
0.507953 0.861385i \(-0.330403\pi\)
\(492\) 6.48257 1.90823i 0.292257 0.0860295i
\(493\) 13.1724i 0.593257i
\(494\) −3.71692 1.52636i −0.167232 0.0686742i
\(495\) 13.8279 8.67665i 0.621519 0.389987i
\(496\) 29.4678 0.358859i 1.32314 0.0161133i
\(497\) 1.24334i 0.0557714i
\(498\) 14.0383 + 17.5051i 0.629069 + 0.784420i
\(499\) 10.5612 0.472783 0.236391 0.971658i \(-0.424035\pi\)
0.236391 + 0.971658i \(0.424035\pi\)
\(500\) −1.42280 1.40558i −0.0636295 0.0628593i
\(501\) 12.4753 + 6.89991i 0.557354 + 0.308265i
\(502\) −20.6757 8.49051i −0.922803 0.378950i
\(503\) −15.2687 −0.680796 −0.340398 0.940281i \(-0.610562\pi\)
−0.340398 + 0.940281i \(0.610562\pi\)
\(504\) −4.85112 + 6.96180i −0.216086 + 0.310103i
\(505\) −1.28684 −0.0572638
\(506\) −15.4727 6.35387i −0.687844 0.282464i
\(507\) −40.4678 22.3822i −1.79724 0.994029i
\(508\) 7.83718 7.93320i 0.347719 0.351979i
\(509\) −21.2276 −0.940895 −0.470447 0.882428i \(-0.655907\pi\)
−0.470447 + 0.882428i \(0.655907\pi\)
\(510\) 8.25454 + 10.2930i 0.365517 + 0.455783i
\(511\) 15.6470i 0.692181i
\(512\) −8.08318 + 21.1344i −0.357229 + 0.934017i
\(513\) 0.129196 + 2.33957i 0.00570414 + 0.103294i
\(514\) −4.07860 1.67488i −0.179899 0.0738759i
\(515\) 14.3515i 0.632402i
\(516\) −10.8113 36.7278i −0.475941 1.61685i
\(517\) 24.9073i 1.09542i
\(518\) −0.0889060 + 0.216500i −0.00390630 + 0.00951246i
\(519\) 27.1613 + 15.0226i 1.19225 + 0.659418i
\(520\) 6.96998 + 16.4017i 0.305654 + 0.719263i
\(521\) 17.2328i 0.754983i −0.926013 0.377492i \(-0.876787\pi\)
0.926013 0.377492i \(-0.123213\pi\)
\(522\) 10.2244 1.76269i 0.447511 0.0771507i
\(523\) −1.39211 −0.0608725 −0.0304363 0.999537i \(-0.509690\pi\)
−0.0304363 + 0.999537i \(0.509690\pi\)
\(524\) −18.5331 + 18.7602i −0.809622 + 0.819542i
\(525\) 0.838298 1.51567i 0.0365863 0.0661493i
\(526\) −10.5140 + 25.6032i −0.458432 + 1.11635i
\(527\) 39.6847 1.72869
\(528\) 33.2102 + 17.8435i 1.44529 + 0.776539i
\(529\) −18.2758 −0.794598
\(530\) −3.46281 + 8.43249i −0.150415 + 0.366284i
\(531\) −30.8082 + 19.3313i −1.33696 + 0.838908i
\(532\) −0.633825 + 0.641591i −0.0274798 + 0.0278165i
\(533\) 12.2912 0.532392
\(534\) −1.70551 2.12669i −0.0738047 0.0920311i
\(535\) 15.1898i 0.656711i
\(536\) −8.40867 + 3.57330i −0.363199 + 0.154343i
\(537\) 2.87516 5.19839i 0.124072 0.224327i
\(538\) −0.968781 + 2.35913i −0.0417671 + 0.101709i
\(539\) 5.44156i 0.234385i
\(540\) 6.88484 7.78453i 0.296276 0.334993i
\(541\) 4.48368i 0.192768i −0.995344 0.0963841i \(-0.969272\pi\)
0.995344 0.0963841i \(-0.0307277\pi\)
\(542\) −40.8353 16.7691i −1.75403 0.720293i
\(543\) −16.7724 + 30.3251i −0.719773 + 1.30138i
\(544\) −11.2307 + 28.3252i −0.481512 + 1.21443i
\(545\) 8.89022i 0.380815i
\(546\) −12.0402 + 9.65567i −0.515272 + 0.413225i
\(547\) −1.74728 −0.0747084 −0.0373542 0.999302i \(-0.511893\pi\)
−0.0373542 + 0.999302i \(0.511893\pi\)
\(548\) −2.56079 + 2.59217i −0.109392 + 0.110732i
\(549\) −9.46009 + 5.93596i −0.403747 + 0.253341i
\(550\) −7.11868 2.92330i −0.303541 0.124650i
\(551\) 1.10275 0.0469788
\(552\) −10.5912 1.09882i −0.450793 0.0467688i
\(553\) 5.02829 0.213824
\(554\) 21.5952 + 8.86808i 0.917491 + 0.376769i
\(555\) 0.138733 0.250834i 0.00588889 0.0106473i
\(556\) −4.01201 3.96345i −0.170147 0.168088i
\(557\) 28.6621 1.21445 0.607226 0.794529i \(-0.292282\pi\)
0.607226 + 0.794529i \(0.292282\pi\)
\(558\) −5.31046 30.8032i −0.224810 1.30400i
\(559\) 69.6374i 2.94535i
\(560\) 3.99970 0.0487085i 0.169018 0.00205831i
\(561\) 44.4255 + 24.5712i 1.87565 + 1.03739i
\(562\) −35.3451 14.5145i −1.49094 0.612257i
\(563\) 32.5866i 1.37336i 0.726960 + 0.686680i \(0.240933\pi\)
−0.726960 + 0.686680i \(0.759067\pi\)
\(564\) 4.47746 + 15.2107i 0.188535 + 0.640486i
\(565\) 8.28028i 0.348354i
\(566\) 16.5083 40.2004i 0.693897 1.68975i
\(567\) 8.10385 + 3.91505i 0.340330 + 0.164417i
\(568\) −3.23658 + 1.37540i −0.135804 + 0.0577104i
\(569\) 4.23943i 0.177726i −0.996044 0.0888632i \(-0.971677\pi\)
0.996044 0.0888632i \(-0.0283234\pi\)
\(570\) 0.861697 0.691042i 0.0360925 0.0289445i
\(571\) −29.0004 −1.21363 −0.606814 0.794844i \(-0.707553\pi\)
−0.606814 + 0.794844i \(0.707553\pi\)
\(572\) 48.7821 + 48.1916i 2.03968 + 2.01499i
\(573\) 29.9564 + 16.5685i 1.25144 + 0.692158i
\(574\) 1.04797 2.55198i 0.0437416 0.106518i
\(575\) 2.17353 0.0906425
\(576\) 23.4888 + 4.92686i 0.978702 + 0.205286i
\(577\) 25.8553 1.07637 0.538186 0.842826i \(-0.319110\pi\)
0.538186 + 0.842826i \(0.319110\pi\)
\(578\) −6.45409 + 15.7167i −0.268455 + 0.653730i
\(579\) 12.9622 + 7.16924i 0.538692 + 0.297944i
\(580\) −3.47941 3.43730i −0.144475 0.142726i
\(581\) 9.16060 0.380046
\(582\) 11.6620 9.35241i 0.483407 0.387670i
\(583\) 35.0755i 1.45268i
\(584\) 40.7311 17.3089i 1.68546 0.716246i
\(585\) 16.0113 10.0467i 0.661985 0.415378i
\(586\) 8.48974 20.6738i 0.350708 0.854028i
\(587\) 2.76600i 0.114165i −0.998369 0.0570826i \(-0.981820\pi\)
0.998369 0.0570826i \(-0.0181798\pi\)
\(588\) 0.978202 + 3.32312i 0.0403404 + 0.137043i
\(589\) 3.32227i 0.136892i
\(590\) 15.8602 + 6.51302i 0.652954 + 0.268137i
\(591\) 11.8546 + 6.55665i 0.487635 + 0.269705i
\(592\) 0.661927 0.00806096i 0.0272050 0.000331303i
\(593\) 10.5837i 0.434622i 0.976102 + 0.217311i \(0.0697286\pi\)
−0.976102 + 0.217311i \(0.930271\pi\)
\(594\) 13.1272 37.7710i 0.538617 1.54976i
\(595\) 5.38646 0.220823
\(596\) 31.4784 + 31.0974i 1.28940 + 1.27380i
\(597\) 7.87629 14.2406i 0.322355 0.582829i
\(598\) −17.9157 7.35712i −0.732629 0.300855i
\(599\) −20.6552 −0.843950 −0.421975 0.906607i \(-0.638663\pi\)
−0.421975 + 0.906607i \(0.638663\pi\)
\(600\) −4.87283 0.505545i −0.198932 0.0206388i
\(601\) 30.1511 1.22989 0.614945 0.788570i \(-0.289178\pi\)
0.614945 + 0.788570i \(0.289178\pi\)
\(602\) −14.4586 5.93743i −0.589287 0.241991i
\(603\) 5.15062 + 8.20850i 0.209749 + 0.334276i
\(604\) −7.24040 + 7.32911i −0.294608 + 0.298217i
\(605\) −18.6106 −0.756629
\(606\) −2.45904 + 1.97204i −0.0998916 + 0.0801085i
\(607\) 22.3226i 0.906046i 0.891499 + 0.453023i \(0.149654\pi\)
−0.891499 + 0.453023i \(0.850346\pi\)
\(608\) 2.37129 + 0.940194i 0.0961685 + 0.0381299i
\(609\) 2.05003 3.70653i 0.0830715 0.150196i
\(610\) 4.87010 + 1.99991i 0.197185 + 0.0809742i
\(611\) 28.8401i 1.16675i
\(612\) 31.5473 + 7.01927i 1.27522 + 0.283737i
\(613\) 29.6525i 1.19765i −0.800879 0.598826i \(-0.795634\pi\)
0.800879 0.598826i \(-0.204366\pi\)
\(614\) 7.64915 18.6269i 0.308695 0.751719i
\(615\) −1.63531 + 2.95669i −0.0659420 + 0.119225i
\(616\) 14.1651 6.01953i 0.570728 0.242534i
\(617\) 46.9803i 1.89136i −0.325105 0.945678i \(-0.605400\pi\)
0.325105 0.945678i \(-0.394600\pi\)
\(618\) 21.9931 + 27.4243i 0.884691 + 1.10317i
\(619\) −44.3264 −1.78163 −0.890814 0.454368i \(-0.849865\pi\)
−0.890814 + 0.454368i \(0.849865\pi\)
\(620\) −10.3556 + 10.4825i −0.415890 + 0.420985i
\(621\) 0.622729 + 11.2768i 0.0249893 + 0.452523i
\(622\) −17.9211 + 43.6406i −0.718569 + 1.74983i
\(623\) −1.11292 −0.0445884
\(624\) 38.4540 + 20.6609i 1.53939 + 0.827099i
\(625\) 1.00000 0.0400000
\(626\) −6.22640 + 15.1623i −0.248857 + 0.606006i
\(627\) 2.05701 3.71915i 0.0821492 0.148528i
\(628\) 33.9595 34.3756i 1.35513 1.37173i
\(629\) 0.891427 0.0355435
\(630\) −0.720796 4.18096i −0.0287172 0.166574i
\(631\) 8.13744i 0.323946i −0.986795 0.161973i \(-0.948214\pi\)
0.986795 0.161973i \(-0.0517858\pi\)
\(632\) −5.56235 13.0893i −0.221259 0.520664i
\(633\) −13.7901 7.62711i −0.548106 0.303150i
\(634\) −16.6604 + 40.5706i −0.661668 + 1.61127i
\(635\) 5.57578i 0.221268i
\(636\) 6.30534 + 21.4203i 0.250023 + 0.849372i
\(637\) 6.30076i 0.249645i
\(638\) −17.4085 7.14883i −0.689210 0.283025i
\(639\) 1.98252 + 3.15953i 0.0784274 + 0.124989i
\(640\) −4.55132 10.3579i −0.179907 0.409431i
\(641\) 2.21141i 0.0873455i 0.999046 + 0.0436727i \(0.0139059\pi\)
−0.999046 + 0.0436727i \(0.986094\pi\)
\(642\) −23.2777 29.0262i −0.918699 1.14557i
\(643\) 23.2844 0.918248 0.459124 0.888372i \(-0.348163\pi\)
0.459124 + 0.888372i \(0.348163\pi\)
\(644\) −3.05506 + 3.09250i −0.120386 + 0.121861i
\(645\) 16.7515 + 9.26505i 0.659590 + 0.364811i
\(646\) 3.17756 + 1.30487i 0.125020 + 0.0513394i
\(647\) −20.0359 −0.787693 −0.393846 0.919176i \(-0.628856\pi\)
−0.393846 + 0.919176i \(0.628856\pi\)
\(648\) 1.22680 25.4263i 0.0481932 0.998838i
\(649\) 65.9716 2.58961
\(650\) −8.24269 3.38487i −0.323305 0.132766i
\(651\) −11.1667 6.17615i −0.437657 0.242062i
\(652\) −16.6048 16.4038i −0.650295 0.642424i
\(653\) −1.94296 −0.0760340 −0.0380170 0.999277i \(-0.512104\pi\)
−0.0380170 + 0.999277i \(0.512104\pi\)
\(654\) 13.6239 + 16.9884i 0.532737 + 0.664299i
\(655\) 13.1854i 0.515196i
\(656\) −7.80242 + 0.0950181i −0.304633 + 0.00370983i
\(657\) −24.9493 39.7615i −0.973365 1.55124i
\(658\) 5.98796 + 2.45897i 0.233435 + 0.0958605i
\(659\) 30.1972i 1.17632i 0.808746 + 0.588158i \(0.200147\pi\)
−0.808746 + 0.588158i \(0.799853\pi\)
\(660\) −18.0830 + 5.32295i −0.703879 + 0.207195i
\(661\) 18.1561i 0.706192i −0.935587 0.353096i \(-0.885129\pi\)
0.935587 0.353096i \(-0.114871\pi\)
\(662\) 12.9242 31.4724i 0.502312 1.22321i
\(663\) 51.4401 + 28.4508i 1.99777 + 1.10494i
\(664\) −10.1336 23.8462i −0.393259 0.925414i
\(665\) 0.450936i 0.0174866i
\(666\) −0.119287 0.691924i −0.00462229 0.0268115i
\(667\) 5.31531 0.205809
\(668\) −11.7109 11.5691i −0.453107 0.447622i
\(669\) 6.18309 11.1792i 0.239052 0.432214i
\(670\) 1.73532 4.22578i 0.0670413 0.163256i
\(671\) 20.2575 0.782033
\(672\) 7.56842 6.22246i 0.291958 0.240037i
\(673\) −39.6558 −1.52862 −0.764309 0.644850i \(-0.776920\pi\)
−0.764309 + 0.644850i \(0.776920\pi\)
\(674\) 10.8022 26.3051i 0.416086 1.01323i
\(675\) 0.286506 + 5.18825i 0.0110276 + 0.199696i
\(676\) 37.9882 + 37.5284i 1.46108 + 1.44340i
\(677\) 9.48786 0.364648 0.182324 0.983239i \(-0.441638\pi\)
0.182324 + 0.983239i \(0.441638\pi\)
\(678\) 12.6892 + 15.8228i 0.487326 + 0.607673i
\(679\) 6.10287i 0.234207i
\(680\) −5.95857 14.0217i −0.228501 0.537706i
\(681\) −10.0812 + 18.2272i −0.386312 + 0.698466i
\(682\) −21.5374 + 52.4468i −0.824708 + 2.00829i
\(683\) 25.7975i 0.987113i 0.869714 + 0.493556i \(0.164303\pi\)
−0.869714 + 0.493556i \(0.835697\pi\)
\(684\) 0.587629 2.64103i 0.0224685 0.100982i
\(685\) 1.82188i 0.0696105i
\(686\) 1.30820 + 0.537216i 0.0499475 + 0.0205110i
\(687\) −1.11819 + 2.02173i −0.0426617 + 0.0771339i
\(688\) 0.538337 + 44.2056i 0.0205239 + 1.68532i
\(689\) 40.6138i 1.54726i
\(690\) 4.15342 3.33085i 0.158118 0.126803i
\(691\) 34.5618 1.31479 0.657395 0.753546i \(-0.271658\pi\)
0.657395 + 0.753546i \(0.271658\pi\)
\(692\) −25.4970 25.1884i −0.969251 0.957520i
\(693\) −8.67665 13.8279i −0.329599 0.525279i
\(694\) −12.5406 5.14980i −0.476033 0.195484i
\(695\) 2.81981 0.106961
\(696\) −11.9164 1.23630i −0.451688 0.0468616i
\(697\) −10.5076 −0.398005
\(698\) −25.1995 10.3482i −0.953815 0.391685i
\(699\) −13.6783 + 24.7309i −0.517362 + 0.935409i
\(700\) −1.40558 + 1.42280i −0.0531258 + 0.0537767i
\(701\) 19.1996 0.725157 0.362579 0.931953i \(-0.381896\pi\)
0.362579 + 0.931953i \(0.381896\pi\)
\(702\) 15.2000 43.7349i 0.573686 1.65067i
\(703\) 0.0746272i 0.00281462i
\(704\) −31.3392 30.2148i −1.18114 1.13876i
\(705\) −6.93759 3.83709i −0.261285 0.144513i
\(706\) 14.0694 + 5.77762i 0.529509 + 0.217444i
\(707\) 1.28684i 0.0483967i
\(708\) 40.2883 11.8594i 1.51413 0.445702i
\(709\) 20.0482i 0.752925i 0.926432 + 0.376463i \(0.122860\pi\)
−0.926432 + 0.376463i \(0.877140\pi\)
\(710\) 0.667942 1.62654i 0.0250674 0.0610431i
\(711\) −12.7777 + 8.01768i −0.479201 + 0.300686i
\(712\) 1.23113 + 2.89709i 0.0461386 + 0.108573i
\(713\) 16.0135i 0.599709i
\(714\) 10.2930 8.25454i 0.385207 0.308918i
\(715\) −34.2860 −1.28222
\(716\) −4.82079 + 4.87986i −0.180161 + 0.182369i
\(717\) 8.26355 + 4.57046i 0.308608 + 0.170687i
\(718\) −1.63780 + 3.98829i −0.0611221 + 0.148842i
\(719\) −10.4278 −0.388891 −0.194445 0.980913i \(-0.562291\pi\)
−0.194445 + 0.980913i \(0.562291\pi\)
\(720\) −10.0862 + 6.50136i −0.375892 + 0.242291i
\(721\) 14.3515 0.534477
\(722\) −10.0979 + 24.5899i −0.375804 + 0.915140i
\(723\) −10.6432 5.88664i −0.395827 0.218926i
\(724\) 28.1224 28.4669i 1.04516 1.05797i
\(725\) 2.44547 0.0908225
\(726\) −35.5632 + 28.5200i −1.31987 + 1.05848i
\(727\) 24.1849i 0.896970i 0.893790 + 0.448485i \(0.148036\pi\)
−0.893790 + 0.448485i \(0.851964\pi\)
\(728\) 16.4017 6.96998i 0.607888 0.258325i
\(729\) −26.8358 + 2.97293i −0.993920 + 0.110108i
\(730\) −8.40580 + 20.4694i −0.311112 + 0.757607i
\(731\) 59.5323i 2.20188i
\(732\) 12.3711 3.64159i 0.457249 0.134597i
\(733\) 3.88553i 0.143515i 0.997422 + 0.0717576i \(0.0228608\pi\)
−0.997422 + 0.0717576i \(0.977139\pi\)
\(734\) 34.4249 + 14.1366i 1.27065 + 0.521793i
\(735\) −1.51567 0.838298i −0.0559064 0.0309211i
\(736\) 11.4297 + 4.53178i 0.421305 + 0.167044i
\(737\) 17.5774i 0.647472i
\(738\) 1.40609 + 8.15601i 0.0517590 + 0.300227i
\(739\) 34.9865 1.28700 0.643500 0.765446i \(-0.277482\pi\)
0.643500 + 0.765446i \(0.277482\pi\)
\(740\) −0.232614 + 0.235464i −0.00855108 + 0.00865585i
\(741\) 2.38181 4.30639i 0.0874978 0.158199i
\(742\) 8.43249 + 3.46281i 0.309567 + 0.127124i
\(743\) 29.3568 1.07700 0.538498 0.842627i \(-0.318992\pi\)
0.538498 + 0.842627i \(0.318992\pi\)
\(744\) −3.72460 + 35.9005i −0.136550 + 1.31618i
\(745\) −22.1243 −0.810571
\(746\) −37.2263 15.2870i −1.36295 0.559698i
\(747\) −23.2786 + 14.6067i −0.851719 + 0.534432i
\(748\) −41.7033 41.1985i −1.52482 1.50637i
\(749\) −15.1898 −0.555022
\(750\) 1.91091 1.53246i 0.0697765 0.0559575i
\(751\) 33.5351i 1.22371i 0.790969 + 0.611857i \(0.209577\pi\)
−0.790969 + 0.611857i \(0.790423\pi\)
\(752\) −0.222950 18.3076i −0.00813016 0.667609i
\(753\) 13.2490 23.9547i 0.482821 0.872956i
\(754\) −20.1572 8.27760i −0.734084 0.301452i
\(755\) 5.15119i 0.187471i
\(756\) −7.78453 6.88484i −0.283121 0.250399i
\(757\) 43.8155i 1.59250i −0.604967 0.796250i \(-0.706814\pi\)
0.604967 0.796250i \(-0.293186\pi\)
\(758\) −5.69628 + 13.8713i −0.206898 + 0.503829i
\(759\) 9.91489 17.9265i 0.359888 0.650689i
\(760\) −1.17385 + 0.498831i −0.0425799 + 0.0180945i
\(761\) 22.5723i 0.818246i 0.912479 + 0.409123i \(0.134165\pi\)
−0.912479 + 0.409123i \(0.865835\pi\)
\(762\) 8.54466 + 10.6548i 0.309540 + 0.385982i
\(763\) 8.89022 0.321848
\(764\) −28.1208 27.7804i −1.01737 1.00506i
\(765\) −13.6879 + 8.58879i −0.494887 + 0.310528i
\(766\) −8.32044 + 20.2616i −0.300630 + 0.732080i
\(767\) 76.3882 2.75822
\(768\) −24.5702 12.8182i −0.886600 0.462538i
\(769\) 28.6178 1.03199 0.515993 0.856593i \(-0.327423\pi\)
0.515993 + 0.856593i \(0.327423\pi\)
\(770\) −2.92330 + 7.11868i −0.105348 + 0.256539i
\(771\) 2.61357 4.72542i 0.0941253 0.170182i
\(772\) −12.1680 12.0207i −0.437935 0.432634i
\(773\) −41.3736 −1.48811 −0.744053 0.668121i \(-0.767099\pi\)
−0.744053 + 0.668121i \(0.767099\pi\)
\(774\) 46.2089 7.96640i 1.66095 0.286346i
\(775\) 7.36749i 0.264648i
\(776\) −15.8866 + 6.75108i −0.570295 + 0.242350i
\(777\) −0.250834 0.138733i −0.00899863 0.00497702i
\(778\) −8.26711 + 20.1317i −0.296390 + 0.721756i
\(779\) 0.879663i 0.0315172i
\(780\) −20.9382 + 6.16342i −0.749707 + 0.220686i
\(781\) 6.76572i 0.242096i
\(782\) 15.3160 + 6.28953i 0.547699 + 0.224913i
\(783\) 0.700642 + 12.6877i 0.0250389 + 0.453422i
\(784\) −0.0487085 3.99970i −0.00173959 0.142847i
\(785\) 24.1605i 0.862327i
\(786\) −20.2061 25.1961i −0.720728 0.898714i
\(787\) −8.87622 −0.316403 −0.158202 0.987407i \(-0.550570\pi\)
−0.158202 + 0.987407i \(0.550570\pi\)
\(788\) −11.1283 10.9936i −0.396428 0.391629i
\(789\) −29.6636 16.4065i −1.05605 0.584088i
\(790\) 6.57803 + 2.70128i 0.234036 + 0.0961071i
\(791\) 8.28028 0.294413
\(792\) −26.3977 + 37.8831i −0.938000 + 1.34612i
\(793\) 23.4561 0.832950
\(794\) 38.1731 + 15.6758i 1.35471 + 0.556314i
\(795\) −9.76979 5.40354i −0.346499 0.191644i
\(796\) −13.2062 + 13.3680i −0.468081 + 0.473816i
\(797\) 6.80905 0.241189 0.120595 0.992702i \(-0.461520\pi\)
0.120595 + 0.992702i \(0.461520\pi\)
\(798\) −0.691042 0.861697i −0.0244626 0.0305037i
\(799\) 24.6551i 0.872235i
\(800\) 5.25860 + 2.08498i 0.185919 + 0.0737153i
\(801\) 2.82812 1.77457i 0.0999269 0.0627015i
\(802\) 9.80245 + 4.02539i 0.346136 + 0.142141i
\(803\) 85.1439i 3.00466i
\(804\) −3.15980 10.7344i −0.111438 0.378572i
\(805\) 2.17353i 0.0766069i
\(806\) −24.9380 + 60.7279i −0.878404 + 2.13905i
\(807\) −2.73326 1.51173i −0.0962154 0.0532155i
\(808\) 3.34982 1.42352i 0.117846 0.0500793i
\(809\) 20.5432i 0.722261i −0.932515 0.361130i \(-0.882391\pi\)
0.932515 0.361130i \(-0.117609\pi\)
\(810\) 8.49827 + 9.47520i 0.298599 + 0.332925i
\(811\) −39.6773 −1.39326 −0.696630 0.717430i \(-0.745318\pi\)
−0.696630 + 0.717430i \(0.745318\pi\)
\(812\) −3.43730 + 3.47941i −0.120625 + 0.122103i
\(813\) 26.1673 47.3113i 0.917726 1.65928i
\(814\) −0.483788 + 1.17810i −0.0169567 + 0.0412923i
\(815\) 11.6705 0.408801
\(816\) −32.8739 17.6628i −1.15082 0.618323i
\(817\) 4.98384 0.174363
\(818\) −2.91713 + 7.10367i −0.101995 + 0.248374i
\(819\) −10.0467 16.0113i −0.351059 0.559480i
\(820\) 2.74193 2.77552i 0.0957523 0.0969255i
\(821\) 32.1099 1.12064 0.560322 0.828275i \(-0.310678\pi\)
0.560322 + 0.828275i \(0.310678\pi\)
\(822\) −2.79196 3.48144i −0.0973807 0.121429i
\(823\) 44.6648i 1.55692i −0.627697 0.778458i \(-0.716002\pi\)
0.627697 0.778458i \(-0.283998\pi\)
\(824\) −15.8758 37.3588i −0.553059 1.30145i
\(825\) 4.56165 8.24762i 0.158816 0.287145i
\(826\) 6.51302 15.8602i 0.226617 0.551847i
\(827\) 13.1115i 0.455930i −0.973669 0.227965i \(-0.926793\pi\)
0.973669 0.227965i \(-0.0732072\pi\)
\(828\) 2.83240 12.7299i 0.0984326 0.442394i
\(829\) 32.9548i 1.14457i 0.820056 + 0.572283i \(0.193942\pi\)
−0.820056 + 0.572283i \(0.806058\pi\)
\(830\) 11.9839 + 4.92122i 0.415969 + 0.170818i
\(831\) −13.8382 + 25.0199i −0.480041 + 0.867931i
\(832\) −36.2876 34.9855i −1.25805 1.21291i
\(833\) 5.38646i 0.186630i
\(834\) 5.38839 4.32124i 0.186585 0.149632i
\(835\) 8.23086 0.284841
\(836\) −3.44900 + 3.49126i −0.119286 + 0.120748i
\(837\) 38.2244 2.11083i 1.32123 0.0729610i
\(838\) −16.9414 6.95702i −0.585232 0.240326i
\(839\) −9.64905 −0.333122 −0.166561 0.986031i \(-0.553266\pi\)
−0.166561 + 0.986031i \(0.553266\pi\)
\(840\) −0.505545 + 4.87283i −0.0174430 + 0.168128i
\(841\) −23.0197 −0.793782
\(842\) −43.2014 17.7407i −1.48882 0.611385i
\(843\) 22.6491 40.9504i 0.780077 1.41041i
\(844\) 12.9451 + 12.7884i 0.445588 + 0.440195i
\(845\) −26.6996 −0.918495
\(846\) −19.1373 + 3.29926i −0.657953 + 0.113431i
\(847\) 18.6106i 0.639469i
\(848\) −0.313968 25.7815i −0.0107817 0.885340i
\(849\) 46.5757 + 25.7604i 1.59847 + 0.884095i
\(850\) 7.04659 + 2.89369i 0.241696 + 0.0992529i
\(851\) 0.359706i 0.0123306i
\(852\) −1.21624 4.13177i −0.0416676 0.141552i
\(853\) 56.9045i 1.94837i 0.225746 + 0.974186i \(0.427518\pi\)
−0.225746 + 0.974186i \(0.572482\pi\)
\(854\) 1.99991 4.87010i 0.0684356 0.166651i
\(855\) 0.719024 + 1.14590i 0.0245901 + 0.0391891i
\(856\) 16.8031 + 39.5410i 0.574319 + 1.35148i
\(857\) 47.3354i 1.61695i 0.588533 + 0.808473i \(0.299706\pi\)
−0.588533 + 0.808473i \(0.700294\pi\)
\(858\) −65.5174 + 52.5419i −2.23673 + 1.79375i
\(859\) −50.9077 −1.73695 −0.868474 0.495735i \(-0.834899\pi\)
−0.868474 + 0.495735i \(0.834899\pi\)
\(860\) −15.7251 15.5347i −0.536221 0.529730i
\(861\) 2.95669 + 1.63531i 0.100764 + 0.0557312i
\(862\) −12.9220 + 31.4671i −0.440125 + 1.07177i
\(863\) −28.4324 −0.967852 −0.483926 0.875109i \(-0.660790\pi\)
−0.483926 + 0.875109i \(0.660790\pi\)
\(864\) −9.31079 + 27.8803i −0.316760 + 0.948506i
\(865\) 17.9203 0.609310
\(866\) −5.96269 + 14.5201i −0.202620 + 0.493412i
\(867\) −18.2092 10.0713i −0.618417 0.342039i
\(868\) 10.4825 + 10.3556i 0.355798 + 0.351491i
\(869\) 27.3617 0.928183
\(870\) 4.67307 3.74759i 0.158432 0.127055i
\(871\) 20.3528i 0.689628i
\(872\) −9.83448 23.1424i −0.333037 0.783701i
\(873\) 9.73112 + 15.5084i 0.329349 + 0.524880i
\(874\) 0.526538 1.28220i 0.0178104 0.0433711i
\(875\) 1.00000i 0.0338062i
\(876\) 15.3059 + 51.9967i 0.517138 + 1.75681i
\(877\) 44.7606i 1.51146i −0.654883 0.755730i \(-0.727282\pi\)
0.654883 0.755730i \(-0.272718\pi\)
\(878\) 20.1136 + 8.25966i 0.678800 + 0.278750i
\(879\) 23.9525 + 13.2478i 0.807897 + 0.446837i
\(880\) 21.7646 0.265050i 0.733686 0.00893484i
\(881\) 32.3358i 1.08942i −0.838625 0.544710i \(-0.816640\pi\)
0.838625 0.544710i \(-0.183360\pi\)
\(882\) −4.18096 + 0.720796i −0.140780 + 0.0242705i
\(883\) 38.2272 1.28645 0.643223 0.765679i \(-0.277597\pi\)
0.643223 + 0.765679i \(0.277597\pi\)
\(884\) −48.2881 47.7036i −1.62410 1.60445i
\(885\) −10.1632 + 18.3755i −0.341633 + 0.617684i
\(886\) −9.86028 4.04914i −0.331263 0.136033i
\(887\) 5.25939 0.176593 0.0882965 0.996094i \(-0.471858\pi\)
0.0882965 + 0.996094i \(0.471858\pi\)
\(888\) −0.0836646 + 0.806423i −0.00280760 + 0.0270618i
\(889\) 5.57578 0.187006
\(890\) −1.45593 0.597880i −0.0488030 0.0200410i
\(891\) 44.0976 + 21.3040i 1.47733 + 0.713710i
\(892\) −10.3672 + 10.4942i −0.347120 + 0.351373i
\(893\) −2.06404 −0.0690705
\(894\) −42.2774 + 33.9046i −1.41397 + 1.13394i
\(895\) 3.42976i 0.114644i
\(896\) −10.3579 + 4.55132i −0.346032 + 0.152049i
\(897\) 11.4804 20.7570i 0.383320 0.693055i
\(898\) 13.0128 + 5.34374i 0.434244 + 0.178323i
\(899\) 18.0170i 0.600900i
\(900\) 1.30313 5.85678i 0.0434377 0.195226i
\(901\) 34.7203i 1.15670i
\(902\) 5.70262 13.8868i 0.189876 0.462379i
\(903\) 9.26505 16.7515i 0.308321 0.557456i
\(904\) −9.15975 21.5547i −0.304649 0.716897i
\(905\) 20.0077i 0.665079i
\(906\) −7.89400 9.84345i −0.262261 0.327027i
\(907\) 5.86289 0.194674 0.0973370 0.995251i \(-0.468968\pi\)
0.0973370 + 0.995251i \(0.468968\pi\)
\(908\) 16.9032 17.1103i 0.560952 0.567825i
\(909\) −2.05189 3.27008i −0.0680569 0.108462i
\(910\) −3.38487 + 8.24269i −0.112207 + 0.273242i
\(911\) −23.4750 −0.777760 −0.388880 0.921288i \(-0.627138\pi\)
−0.388880 + 0.921288i \(0.627138\pi\)
\(912\) −1.47867 + 2.75209i −0.0489637 + 0.0911309i
\(913\) 49.8480 1.64973
\(914\) 7.95284 19.3664i 0.263057 0.640584i
\(915\) −3.12076 + 5.64244i −0.103169 + 0.186533i
\(916\) 1.87488 1.89785i 0.0619477 0.0627067i
\(917\) −13.1854 −0.435420
\(918\) −12.9943 + 37.3885i −0.428876 + 1.23401i
\(919\) 7.89412i 0.260403i −0.991488 0.130201i \(-0.958438\pi\)
0.991488 0.130201i \(-0.0415624\pi\)
\(920\) −5.65799 + 2.40439i −0.186538 + 0.0792703i
\(921\) 21.5809 + 11.9361i 0.711114 + 0.393308i
\(922\) −0.569149 + 1.38597i −0.0187439 + 0.0456443i
\(923\) 7.83399i 0.257859i
\(924\) 5.32295 + 18.0830i 0.175112 + 0.594886i
\(925\) 0.165494i 0.00544141i
\(926\) 7.28013 + 2.98959i 0.239240 + 0.0982442i
\(927\) −36.4695 + 22.8836i −1.19781 + 0.751597i
\(928\) 12.8597 + 5.09877i 0.422142 + 0.167375i
\(929\) 4.83035i 0.158479i 0.996856 + 0.0792393i \(0.0252491\pi\)
−0.996856 + 0.0792393i \(0.974751\pi\)
\(930\) −11.2904 14.0786i −0.370226 0.461655i
\(931\) −0.450936 −0.0147788
\(932\) 22.9345 23.2155i 0.751245 0.760450i
\(933\) −50.5615 27.9649i −1.65531 0.915530i
\(934\) −18.7598 7.70374i −0.613840 0.252074i
\(935\) 29.3108 0.958565
\(936\) −30.5657 + 43.8647i −0.999072 + 1.43376i
\(937\) −15.8234 −0.516927 −0.258463 0.966021i \(-0.583216\pi\)
−0.258463 + 0.966021i \(0.583216\pi\)
\(938\) −4.22578 1.73532i −0.137977 0.0566603i
\(939\) −17.5668 9.71598i −0.573271 0.317069i
\(940\) 6.51249 + 6.43366i 0.212414 + 0.209843i
\(941\) 21.5116 0.701258 0.350629 0.936514i \(-0.385968\pi\)
0.350629 + 0.936514i \(0.385968\pi\)
\(942\) 37.0251 + 46.1685i 1.20634 + 1.50425i
\(943\) 4.24002i 0.138074i
\(944\) −48.4910 + 0.590524i −1.57825 + 0.0192199i
\(945\) 5.18825 0.286506i 0.168774 0.00932004i
\(946\) −78.6772 32.3089i −2.55802 1.05045i
\(947\) 2.56085i 0.0832165i −0.999134 0.0416083i \(-0.986752\pi\)
0.999134 0.0416083i \(-0.0132481\pi\)
\(948\) 16.7096 4.91868i 0.542702 0.159751i
\(949\) 98.5878i 3.20030i
\(950\) 0.242250 0.589917i 0.00785963 0.0191394i
\(951\) −47.0046 25.9977i −1.52423 0.843032i
\(952\) −14.0217 + 5.95857i −0.454445 + 0.193118i
\(953\) 37.7653i 1.22334i 0.791114 + 0.611669i \(0.209501\pi\)
−0.791114 + 0.611669i \(0.790499\pi\)
\(954\) −26.9499 + 4.64615i −0.872534 + 0.150425i
\(955\) 19.7644 0.639562
\(956\) −7.75720 7.66331i −0.250886 0.247849i
\(957\) 11.1554 20.1693i 0.360602 0.651981i
\(958\) 10.7072 26.0737i 0.345933 0.842402i
\(959\) −1.82188 −0.0588316
\(960\) 13.2438 4.07438i 0.427443 0.131500i
\(961\) −23.2799 −0.750966
\(962\) −0.560176 + 1.36411i −0.0180608 + 0.0439808i
\(963\) 38.5997 24.2203i 1.24386 0.780489i
\(964\) 9.99108 + 9.87015i 0.321791 + 0.317896i
\(965\) 8.55215 0.275303
\(966\) −3.33085 4.15342i −0.107168 0.133634i
\(967\) 35.3522i 1.13685i 0.822735 + 0.568425i \(0.192447\pi\)
−0.822735 + 0.568425i \(0.807553\pi\)
\(968\) 48.4459 20.5873i 1.55711 0.661701i
\(969\) −2.03618 + 3.68149i −0.0654116 + 0.118266i
\(970\) 3.27856 7.98381i 0.105268 0.256345i
\(971\) 14.4815i 0.464734i −0.972628 0.232367i \(-0.925353\pi\)
0.972628 0.232367i \(-0.0746470\pi\)
\(972\) 30.7598 + 5.08297i 0.986620 + 0.163036i
\(973\) 2.81981i 0.0903988i
\(974\) −57.5919 23.6502i −1.84536 0.757801i
\(975\) 5.28191 9.54988i 0.169157 0.305841i
\(976\) −14.8898 + 0.181329i −0.476612 + 0.00580420i
\(977\) 29.2774i 0.936667i 0.883552 + 0.468333i \(0.155145\pi\)
−0.883552 + 0.468333i \(0.844855\pi\)
\(978\) 22.3013 17.8846i 0.713118 0.571888i
\(979\) −6.05605 −0.193552
\(980\) 1.42280 + 1.40558i 0.0454496 + 0.0448995i
\(981\) −22.5915 + 14.1756i −0.721292 + 0.452592i
\(982\) −49.9394 20.5077i −1.59363 0.654427i
\(983\) 24.6216 0.785307 0.392653 0.919687i \(-0.371557\pi\)
0.392653 + 0.919687i \(0.371557\pi\)
\(984\) 0.986192 9.50566i 0.0314386 0.303029i
\(985\) 7.82139 0.249210
\(986\) 17.2322 + 7.07644i 0.548786 + 0.225360i
\(987\) −3.83709 + 6.93759i −0.122136 + 0.220826i
\(988\) −3.99358 + 4.04251i −0.127053 + 0.128609i
\(989\) 24.0223 0.763866
\(990\) −3.92226 22.7510i −0.124658 0.723074i
\(991\) 29.1715i 0.926663i −0.886185 0.463331i \(-0.846654\pi\)
0.886185 0.463331i \(-0.153346\pi\)
\(992\) 15.3611 38.7427i 0.487715 1.23008i
\(993\) 36.4635 + 20.1675i 1.15713 + 0.639996i
\(994\) −1.62654 0.667942i −0.0515908 0.0211858i
\(995\) 9.39557i 0.297860i
\(996\) 30.4418 8.96091i 0.964584 0.283937i
\(997\) 36.6193i 1.15975i −0.814707 0.579873i \(-0.803102\pi\)
0.814707 0.579873i \(-0.196898\pi\)
\(998\) 5.67363 13.8162i 0.179596 0.437343i
\(999\) 0.858624 0.0474150i 0.0271656 0.00150014i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.e.c.491.31 44
3.2 odd 2 840.2.e.d.491.14 yes 44
4.3 odd 2 3360.2.e.d.911.9 44
8.3 odd 2 840.2.e.d.491.13 yes 44
8.5 even 2 3360.2.e.c.911.9 44
12.11 even 2 3360.2.e.c.911.10 44
24.5 odd 2 3360.2.e.d.911.10 44
24.11 even 2 inner 840.2.e.c.491.32 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.e.c.491.31 44 1.1 even 1 trivial
840.2.e.c.491.32 yes 44 24.11 even 2 inner
840.2.e.d.491.13 yes 44 8.3 odd 2
840.2.e.d.491.14 yes 44 3.2 odd 2
3360.2.e.c.911.9 44 8.5 even 2
3360.2.e.c.911.10 44 12.11 even 2
3360.2.e.d.911.9 44 4.3 odd 2
3360.2.e.d.911.10 44 24.5 odd 2