Properties

Label 840.2.dd.b.73.12
Level $840$
Weight $2$
Character 840.73
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(73,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.dd (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 73.12
Character \(\chi\) \(=\) 840.73
Dual form 840.2.dd.b.817.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 + 0.965926i) q^{3} +(2.04130 - 0.912737i) q^{5} +(-1.24643 - 2.33376i) q^{7} +(-0.866025 + 0.500000i) q^{9} +(0.574500 - 0.995063i) q^{11} +(1.27881 - 1.27881i) q^{13} +(1.40996 + 1.73551i) q^{15} +(2.58103 - 0.691585i) q^{17} +(-0.176794 - 0.306216i) q^{19} +(1.93164 - 1.80798i) q^{21} +(0.881430 - 3.28954i) q^{23} +(3.33382 - 3.72634i) q^{25} +(-0.707107 - 0.707107i) q^{27} -3.41202i q^{29} +(-5.20290 - 3.00390i) q^{31} +(1.10985 + 0.297383i) q^{33} +(-4.67444 - 3.62624i) q^{35} +(8.28476 + 2.21989i) q^{37} +(1.56621 + 0.904252i) q^{39} +4.88449i q^{41} +(3.22090 + 3.22090i) q^{43} +(-1.31145 + 1.81110i) q^{45} +(0.155305 - 0.579607i) q^{47} +(-3.89284 + 5.81771i) q^{49} +(1.33604 + 2.31409i) q^{51} +(-2.12352 + 0.568994i) q^{53} +(0.264496 - 2.55559i) q^{55} +(0.250024 - 0.250024i) q^{57} +(0.873096 - 1.51225i) q^{59} +(10.3298 - 5.96392i) q^{61} +(2.24632 + 1.39788i) q^{63} +(1.44321 - 3.77764i) q^{65} +(1.31110 + 4.89311i) q^{67} +3.40558 q^{69} -4.35856 q^{71} +(2.18033 + 8.13710i) q^{73} +(4.46223 + 2.25577i) q^{75} +(-3.03831 - 0.100469i) q^{77} +(-2.36967 + 1.36813i) q^{79} +(0.500000 - 0.866025i) q^{81} +(-2.18195 + 2.18195i) q^{83} +(4.63743 - 3.76754i) q^{85} +(3.29576 - 0.883096i) q^{87} +(-6.61849 - 11.4636i) q^{89} +(-4.57836 - 1.39048i) q^{91} +(1.55493 - 5.80308i) q^{93} +(-0.640384 - 0.463712i) q^{95} +(11.2876 + 11.2876i) q^{97} +1.14900i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{7} - 4 q^{11} - 16 q^{13} - 4 q^{15} + 4 q^{17} - 8 q^{19} + 48 q^{23} - 20 q^{25} + 24 q^{33} - 4 q^{37} + 12 q^{39} + 16 q^{43} + 4 q^{45} - 12 q^{47} + 12 q^{49} - 52 q^{53} + 56 q^{55} + 8 q^{57}+ \cdots - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.258819 + 0.965926i 0.149429 + 0.557678i
\(4\) 0 0
\(5\) 2.04130 0.912737i 0.912898 0.408189i
\(6\) 0 0
\(7\) −1.24643 2.33376i −0.471105 0.882077i
\(8\) 0 0
\(9\) −0.866025 + 0.500000i −0.288675 + 0.166667i
\(10\) 0 0
\(11\) 0.574500 0.995063i 0.173218 0.300023i −0.766325 0.642453i \(-0.777917\pi\)
0.939543 + 0.342430i \(0.111250\pi\)
\(12\) 0 0
\(13\) 1.27881 1.27881i 0.354677 0.354677i −0.507170 0.861846i \(-0.669308\pi\)
0.861846 + 0.507170i \(0.169308\pi\)
\(14\) 0 0
\(15\) 1.40996 + 1.73551i 0.364051 + 0.448107i
\(16\) 0 0
\(17\) 2.58103 0.691585i 0.625992 0.167734i 0.0681418 0.997676i \(-0.478293\pi\)
0.557850 + 0.829942i \(0.311626\pi\)
\(18\) 0 0
\(19\) −0.176794 0.306216i −0.0405593 0.0702507i 0.845033 0.534714i \(-0.179581\pi\)
−0.885592 + 0.464463i \(0.846247\pi\)
\(20\) 0 0
\(21\) 1.93164 1.80798i 0.421518 0.394533i
\(22\) 0 0
\(23\) 0.881430 3.28954i 0.183791 0.685917i −0.811095 0.584914i \(-0.801128\pi\)
0.994886 0.101003i \(-0.0322051\pi\)
\(24\) 0 0
\(25\) 3.33382 3.72634i 0.666764 0.745269i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 3.41202i 0.633597i −0.948493 0.316798i \(-0.897392\pi\)
0.948493 0.316798i \(-0.102608\pi\)
\(30\) 0 0
\(31\) −5.20290 3.00390i −0.934469 0.539516i −0.0462467 0.998930i \(-0.514726\pi\)
−0.888222 + 0.459414i \(0.848059\pi\)
\(32\) 0 0
\(33\) 1.10985 + 0.297383i 0.193200 + 0.0517677i
\(34\) 0 0
\(35\) −4.67444 3.62624i −0.790125 0.612946i
\(36\) 0 0
\(37\) 8.28476 + 2.21989i 1.36201 + 0.364948i 0.864553 0.502542i \(-0.167602\pi\)
0.497453 + 0.867491i \(0.334269\pi\)
\(38\) 0 0
\(39\) 1.56621 + 0.904252i 0.250794 + 0.144796i
\(40\) 0 0
\(41\) 4.88449i 0.762829i 0.924404 + 0.381415i \(0.124563\pi\)
−0.924404 + 0.381415i \(0.875437\pi\)
\(42\) 0 0
\(43\) 3.22090 + 3.22090i 0.491183 + 0.491183i 0.908679 0.417496i \(-0.137092\pi\)
−0.417496 + 0.908679i \(0.637092\pi\)
\(44\) 0 0
\(45\) −1.31145 + 1.81110i −0.195499 + 0.269983i
\(46\) 0 0
\(47\) 0.155305 0.579607i 0.0226536 0.0845444i −0.953674 0.300843i \(-0.902732\pi\)
0.976327 + 0.216299i \(0.0693986\pi\)
\(48\) 0 0
\(49\) −3.89284 + 5.81771i −0.556120 + 0.831102i
\(50\) 0 0
\(51\) 1.33604 + 2.31409i 0.187083 + 0.324037i
\(52\) 0 0
\(53\) −2.12352 + 0.568994i −0.291687 + 0.0781574i −0.401696 0.915773i \(-0.631579\pi\)
0.110008 + 0.993931i \(0.464912\pi\)
\(54\) 0 0
\(55\) 0.264496 2.55559i 0.0356646 0.344596i
\(56\) 0 0
\(57\) 0.250024 0.250024i 0.0331165 0.0331165i
\(58\) 0 0
\(59\) 0.873096 1.51225i 0.113667 0.196878i −0.803579 0.595198i \(-0.797073\pi\)
0.917246 + 0.398321i \(0.130407\pi\)
\(60\) 0 0
\(61\) 10.3298 5.96392i 1.32260 0.763601i 0.338454 0.940983i \(-0.390096\pi\)
0.984142 + 0.177381i \(0.0567626\pi\)
\(62\) 0 0
\(63\) 2.24632 + 1.39788i 0.283009 + 0.176116i
\(64\) 0 0
\(65\) 1.44321 3.77764i 0.179009 0.468559i
\(66\) 0 0
\(67\) 1.31110 + 4.89311i 0.160177 + 0.597788i 0.998606 + 0.0527781i \(0.0168076\pi\)
−0.838429 + 0.545010i \(0.816526\pi\)
\(68\) 0 0
\(69\) 3.40558 0.409984
\(70\) 0 0
\(71\) −4.35856 −0.517266 −0.258633 0.965976i \(-0.583272\pi\)
−0.258633 + 0.965976i \(0.583272\pi\)
\(72\) 0 0
\(73\) 2.18033 + 8.13710i 0.255188 + 0.952375i 0.967986 + 0.251005i \(0.0807612\pi\)
−0.712797 + 0.701370i \(0.752572\pi\)
\(74\) 0 0
\(75\) 4.46223 + 2.25577i 0.515254 + 0.260474i
\(76\) 0 0
\(77\) −3.03831 0.100469i −0.346247 0.0114496i
\(78\) 0 0
\(79\) −2.36967 + 1.36813i −0.266609 + 0.153927i −0.627346 0.778741i \(-0.715859\pi\)
0.360737 + 0.932668i \(0.382525\pi\)
\(80\) 0 0
\(81\) 0.500000 0.866025i 0.0555556 0.0962250i
\(82\) 0 0
\(83\) −2.18195 + 2.18195i −0.239500 + 0.239500i −0.816643 0.577143i \(-0.804167\pi\)
0.577143 + 0.816643i \(0.304167\pi\)
\(84\) 0 0
\(85\) 4.63743 3.76754i 0.503000 0.408647i
\(86\) 0 0
\(87\) 3.29576 0.883096i 0.353343 0.0946779i
\(88\) 0 0
\(89\) −6.61849 11.4636i −0.701559 1.21513i −0.967919 0.251262i \(-0.919155\pi\)
0.266361 0.963873i \(-0.414179\pi\)
\(90\) 0 0
\(91\) −4.57836 1.39048i −0.479942 0.145762i
\(92\) 0 0
\(93\) 1.55493 5.80308i 0.161239 0.601752i
\(94\) 0 0
\(95\) −0.640384 0.463712i −0.0657020 0.0475759i
\(96\) 0 0
\(97\) 11.2876 + 11.2876i 1.14608 + 1.14608i 0.987317 + 0.158763i \(0.0507505\pi\)
0.158763 + 0.987317i \(0.449250\pi\)
\(98\) 0 0
\(99\) 1.14900i 0.115479i
\(100\) 0 0
\(101\) 2.01637 + 1.16415i 0.200636 + 0.115837i 0.596952 0.802277i \(-0.296378\pi\)
−0.396316 + 0.918114i \(0.629712\pi\)
\(102\) 0 0
\(103\) 18.2972 + 4.90272i 1.80288 + 0.483079i 0.994422 0.105478i \(-0.0336372\pi\)
0.808455 + 0.588557i \(0.200304\pi\)
\(104\) 0 0
\(105\) 2.29284 5.45370i 0.223759 0.532227i
\(106\) 0 0
\(107\) −1.04807 0.280829i −0.101321 0.0271488i 0.207802 0.978171i \(-0.433369\pi\)
−0.309123 + 0.951022i \(0.600036\pi\)
\(108\) 0 0
\(109\) −9.90626 5.71938i −0.948848 0.547818i −0.0561251 0.998424i \(-0.517875\pi\)
−0.892723 + 0.450606i \(0.851208\pi\)
\(110\) 0 0
\(111\) 8.57701i 0.814094i
\(112\) 0 0
\(113\) −11.7834 11.7834i −1.10849 1.10849i −0.993350 0.115136i \(-0.963270\pi\)
−0.115136 0.993350i \(-0.536730\pi\)
\(114\) 0 0
\(115\) −1.20322 7.51946i −0.112201 0.701193i
\(116\) 0 0
\(117\) −0.468075 + 1.74688i −0.0432736 + 0.161499i
\(118\) 0 0
\(119\) −4.83106 5.16149i −0.442862 0.473153i
\(120\) 0 0
\(121\) 4.83990 + 8.38295i 0.439991 + 0.762087i
\(122\) 0 0
\(123\) −4.71805 + 1.26420i −0.425413 + 0.113989i
\(124\) 0 0
\(125\) 3.40416 10.6495i 0.304477 0.952520i
\(126\) 0 0
\(127\) −14.3921 + 14.3921i −1.27709 + 1.27709i −0.334798 + 0.942290i \(0.608668\pi\)
−0.942290 + 0.334798i \(0.891332\pi\)
\(128\) 0 0
\(129\) −2.27752 + 3.94479i −0.200525 + 0.347319i
\(130\) 0 0
\(131\) −17.0132 + 9.82256i −1.48645 + 0.858201i −0.999881 0.0154420i \(-0.995084\pi\)
−0.486567 + 0.873643i \(0.661751\pi\)
\(132\) 0 0
\(133\) −0.494273 + 0.794269i −0.0428589 + 0.0688719i
\(134\) 0 0
\(135\) −2.08882 0.798015i −0.179777 0.0686822i
\(136\) 0 0
\(137\) −0.0197311 0.0736375i −0.00168574 0.00629128i 0.965078 0.261963i \(-0.0843699\pi\)
−0.966764 + 0.255672i \(0.917703\pi\)
\(138\) 0 0
\(139\) −8.85468 −0.751044 −0.375522 0.926813i \(-0.622537\pi\)
−0.375522 + 0.926813i \(0.622537\pi\)
\(140\) 0 0
\(141\) 0.600054 0.0505336
\(142\) 0 0
\(143\) −0.537818 2.00716i −0.0449746 0.167848i
\(144\) 0 0
\(145\) −3.11428 6.96497i −0.258627 0.578409i
\(146\) 0 0
\(147\) −6.62702 2.25446i −0.546588 0.185945i
\(148\) 0 0
\(149\) 6.20060 3.57992i 0.507973 0.293279i −0.224027 0.974583i \(-0.571920\pi\)
0.732000 + 0.681304i \(0.238587\pi\)
\(150\) 0 0
\(151\) 1.58230 2.74062i 0.128766 0.223028i −0.794433 0.607352i \(-0.792232\pi\)
0.923199 + 0.384323i \(0.125565\pi\)
\(152\) 0 0
\(153\) −1.88945 + 1.88945i −0.152753 + 0.152753i
\(154\) 0 0
\(155\) −13.3625 1.38297i −1.07330 0.111083i
\(156\) 0 0
\(157\) −7.58613 + 2.03270i −0.605439 + 0.162227i −0.548500 0.836151i \(-0.684801\pi\)
−0.0569392 + 0.998378i \(0.518134\pi\)
\(158\) 0 0
\(159\) −1.09921 1.90389i −0.0871732 0.150988i
\(160\) 0 0
\(161\) −8.77562 + 2.04313i −0.691616 + 0.161021i
\(162\) 0 0
\(163\) −0.214757 + 0.801485i −0.0168211 + 0.0627771i −0.973826 0.227294i \(-0.927012\pi\)
0.957005 + 0.290071i \(0.0936789\pi\)
\(164\) 0 0
\(165\) 2.53697 0.405952i 0.197503 0.0316033i
\(166\) 0 0
\(167\) 13.9691 + 13.9691i 1.08096 + 1.08096i 0.996420 + 0.0845414i \(0.0269425\pi\)
0.0845414 + 0.996420i \(0.473057\pi\)
\(168\) 0 0
\(169\) 9.72931i 0.748409i
\(170\) 0 0
\(171\) 0.306216 + 0.176794i 0.0234169 + 0.0135198i
\(172\) 0 0
\(173\) −11.5383 3.09167i −0.877240 0.235056i −0.208024 0.978124i \(-0.566703\pi\)
−0.669216 + 0.743068i \(0.733370\pi\)
\(174\) 0 0
\(175\) −12.8517 3.13571i −0.971501 0.237037i
\(176\) 0 0
\(177\) 1.68669 + 0.451948i 0.126780 + 0.0339705i
\(178\) 0 0
\(179\) −21.0178 12.1346i −1.57094 0.906985i −0.996053 0.0887556i \(-0.971711\pi\)
−0.574891 0.818230i \(-0.694956\pi\)
\(180\) 0 0
\(181\) 19.3888i 1.44116i 0.693374 + 0.720578i \(0.256124\pi\)
−0.693374 + 0.720578i \(0.743876\pi\)
\(182\) 0 0
\(183\) 8.43425 + 8.43425i 0.623478 + 0.623478i
\(184\) 0 0
\(185\) 18.9379 3.03034i 1.39234 0.222795i
\(186\) 0 0
\(187\) 0.794631 2.96560i 0.0581092 0.216866i
\(188\) 0 0
\(189\) −0.768858 + 2.53157i −0.0559262 + 0.184145i
\(190\) 0 0
\(191\) 2.77973 + 4.81464i 0.201135 + 0.348375i 0.948894 0.315594i \(-0.102204\pi\)
−0.747760 + 0.663969i \(0.768870\pi\)
\(192\) 0 0
\(193\) −2.85084 + 0.763881i −0.205208 + 0.0549853i −0.359959 0.932968i \(-0.617209\pi\)
0.154751 + 0.987954i \(0.450543\pi\)
\(194\) 0 0
\(195\) 4.02245 + 0.416312i 0.288054 + 0.0298127i
\(196\) 0 0
\(197\) −17.4032 + 17.4032i −1.23993 + 1.23993i −0.279900 + 0.960029i \(0.590301\pi\)
−0.960029 + 0.279900i \(0.909699\pi\)
\(198\) 0 0
\(199\) 4.86369 8.42415i 0.344778 0.597172i −0.640536 0.767928i \(-0.721288\pi\)
0.985313 + 0.170756i \(0.0546210\pi\)
\(200\) 0 0
\(201\) −4.38704 + 2.53286i −0.309438 + 0.178654i
\(202\) 0 0
\(203\) −7.96283 + 4.25284i −0.558881 + 0.298491i
\(204\) 0 0
\(205\) 4.45826 + 9.97071i 0.311378 + 0.696385i
\(206\) 0 0
\(207\) 0.881430 + 3.28954i 0.0612636 + 0.228639i
\(208\) 0 0
\(209\) −0.406272 −0.0281024
\(210\) 0 0
\(211\) −18.3816 −1.26544 −0.632720 0.774381i \(-0.718061\pi\)
−0.632720 + 0.774381i \(0.718061\pi\)
\(212\) 0 0
\(213\) −1.12808 4.21005i −0.0772947 0.288468i
\(214\) 0 0
\(215\) 9.51467 + 3.63500i 0.648895 + 0.247905i
\(216\) 0 0
\(217\) −0.525327 + 15.8864i −0.0356615 + 1.07844i
\(218\) 0 0
\(219\) −7.29552 + 4.21207i −0.492986 + 0.284625i
\(220\) 0 0
\(221\) 2.41623 4.18504i 0.162533 0.281516i
\(222\) 0 0
\(223\) 11.4869 11.4869i 0.769218 0.769218i −0.208751 0.977969i \(-0.566940\pi\)
0.977969 + 0.208751i \(0.0669398\pi\)
\(224\) 0 0
\(225\) −1.02400 + 4.89402i −0.0682668 + 0.326268i
\(226\) 0 0
\(227\) 25.0054 6.70018i 1.65967 0.444707i 0.697371 0.716710i \(-0.254353\pi\)
0.962296 + 0.272003i \(0.0876862\pi\)
\(228\) 0 0
\(229\) −7.75451 13.4312i −0.512433 0.887559i −0.999896 0.0144160i \(-0.995411\pi\)
0.487463 0.873143i \(-0.337922\pi\)
\(230\) 0 0
\(231\) −0.689325 2.96078i −0.0453543 0.194805i
\(232\) 0 0
\(233\) 5.14787 19.2121i 0.337248 1.25863i −0.564164 0.825663i \(-0.690801\pi\)
0.901412 0.432963i \(-0.142532\pi\)
\(234\) 0 0
\(235\) −0.212004 1.32491i −0.0138296 0.0864273i
\(236\) 0 0
\(237\) −1.93483 1.93483i −0.125681 0.125681i
\(238\) 0 0
\(239\) 14.1939i 0.918125i 0.888404 + 0.459063i \(0.151815\pi\)
−0.888404 + 0.459063i \(0.848185\pi\)
\(240\) 0 0
\(241\) 4.48239 + 2.58791i 0.288736 + 0.166702i 0.637372 0.770556i \(-0.280022\pi\)
−0.348635 + 0.937258i \(0.613355\pi\)
\(242\) 0 0
\(243\) 0.965926 + 0.258819i 0.0619642 + 0.0166032i
\(244\) 0 0
\(245\) −2.63641 + 15.4288i −0.168434 + 0.985713i
\(246\) 0 0
\(247\) −0.617675 0.165506i −0.0393017 0.0105309i
\(248\) 0 0
\(249\) −2.67233 1.54287i −0.169352 0.0977753i
\(250\) 0 0
\(251\) 21.6309i 1.36533i 0.730732 + 0.682665i \(0.239179\pi\)
−0.730732 + 0.682665i \(0.760821\pi\)
\(252\) 0 0
\(253\) −2.76692 2.76692i −0.173955 0.173955i
\(254\) 0 0
\(255\) 4.83942 + 3.50430i 0.303056 + 0.219448i
\(256\) 0 0
\(257\) 3.09670 11.5570i 0.193167 0.720908i −0.799567 0.600577i \(-0.794938\pi\)
0.992734 0.120331i \(-0.0383957\pi\)
\(258\) 0 0
\(259\) −5.14565 22.1015i −0.319735 1.37332i
\(260\) 0 0
\(261\) 1.70601 + 2.95490i 0.105599 + 0.182904i
\(262\) 0 0
\(263\) 16.1226 4.32005i 0.994164 0.266385i 0.275165 0.961397i \(-0.411267\pi\)
0.718999 + 0.695012i \(0.244601\pi\)
\(264\) 0 0
\(265\) −3.81539 + 3.09970i −0.234378 + 0.190413i
\(266\) 0 0
\(267\) 9.35996 9.35996i 0.572820 0.572820i
\(268\) 0 0
\(269\) −8.12029 + 14.0648i −0.495103 + 0.857543i −0.999984 0.00564562i \(-0.998203\pi\)
0.504881 + 0.863189i \(0.331536\pi\)
\(270\) 0 0
\(271\) 8.94550 5.16469i 0.543400 0.313732i −0.203055 0.979167i \(-0.565087\pi\)
0.746456 + 0.665435i \(0.231754\pi\)
\(272\) 0 0
\(273\) 0.158137 4.78224i 0.00957089 0.289434i
\(274\) 0 0
\(275\) −1.79267 5.45814i −0.108102 0.329139i
\(276\) 0 0
\(277\) 4.81074 + 17.9539i 0.289049 + 1.07875i 0.945829 + 0.324665i \(0.105251\pi\)
−0.656780 + 0.754082i \(0.728082\pi\)
\(278\) 0 0
\(279\) 6.00779 0.359677
\(280\) 0 0
\(281\) −29.8039 −1.77795 −0.888976 0.457953i \(-0.848583\pi\)
−0.888976 + 0.457953i \(0.848583\pi\)
\(282\) 0 0
\(283\) −4.40890 16.4542i −0.262082 0.978102i −0.964012 0.265857i \(-0.914345\pi\)
0.701931 0.712245i \(-0.252322\pi\)
\(284\) 0 0
\(285\) 0.282168 0.738581i 0.0167142 0.0437498i
\(286\) 0 0
\(287\) 11.3992 6.08816i 0.672874 0.359373i
\(288\) 0 0
\(289\) −8.53900 + 4.92999i −0.502294 + 0.290000i
\(290\) 0 0
\(291\) −7.98152 + 13.8244i −0.467885 + 0.810401i
\(292\) 0 0
\(293\) −5.94968 + 5.94968i −0.347584 + 0.347584i −0.859209 0.511625i \(-0.829044\pi\)
0.511625 + 0.859209i \(0.329044\pi\)
\(294\) 0 0
\(295\) 0.401968 3.88386i 0.0234035 0.226127i
\(296\) 0 0
\(297\) −1.10985 + 0.297383i −0.0643999 + 0.0172559i
\(298\) 0 0
\(299\) −3.07950 5.33386i −0.178092 0.308465i
\(300\) 0 0
\(301\) 3.50218 11.5314i 0.201863 0.664660i
\(302\) 0 0
\(303\) −0.602609 + 2.24897i −0.0346190 + 0.129200i
\(304\) 0 0
\(305\) 15.6428 21.6026i 0.895702 1.23696i
\(306\) 0 0
\(307\) 7.93464 + 7.93464i 0.452854 + 0.452854i 0.896301 0.443447i \(-0.146244\pi\)
−0.443447 + 0.896301i \(0.646244\pi\)
\(308\) 0 0
\(309\) 18.9427i 1.07761i
\(310\) 0 0
\(311\) 16.3412 + 9.43457i 0.926622 + 0.534985i 0.885742 0.464179i \(-0.153650\pi\)
0.0408802 + 0.999164i \(0.486984\pi\)
\(312\) 0 0
\(313\) 10.9629 + 2.93749i 0.619658 + 0.166037i 0.554972 0.831869i \(-0.312729\pi\)
0.0646855 + 0.997906i \(0.479396\pi\)
\(314\) 0 0
\(315\) 5.86130 + 0.803196i 0.330247 + 0.0452549i
\(316\) 0 0
\(317\) −20.1672 5.40379i −1.13270 0.303507i −0.356690 0.934223i \(-0.616095\pi\)
−0.776014 + 0.630716i \(0.782761\pi\)
\(318\) 0 0
\(319\) −3.39518 1.96021i −0.190093 0.109750i
\(320\) 0 0
\(321\) 1.08504i 0.0605611i
\(322\) 0 0
\(323\) −0.668085 0.668085i −0.0371732 0.0371732i
\(324\) 0 0
\(325\) −0.501961 9.02858i −0.0278438 0.500815i
\(326\) 0 0
\(327\) 2.96057 11.0490i 0.163720 0.611011i
\(328\) 0 0
\(329\) −1.54624 + 0.359993i −0.0852469 + 0.0198471i
\(330\) 0 0
\(331\) 6.68130 + 11.5723i 0.367237 + 0.636074i 0.989133 0.147027i \(-0.0469703\pi\)
−0.621895 + 0.783101i \(0.713637\pi\)
\(332\) 0 0
\(333\) −8.28476 + 2.21989i −0.454002 + 0.121649i
\(334\) 0 0
\(335\) 7.14248 + 8.79162i 0.390236 + 0.480337i
\(336\) 0 0
\(337\) −21.6983 + 21.6983i −1.18198 + 1.18198i −0.202752 + 0.979230i \(0.564989\pi\)
−0.979230 + 0.202752i \(0.935011\pi\)
\(338\) 0 0
\(339\) 8.33210 14.4316i 0.452537 0.783818i
\(340\) 0 0
\(341\) −5.97813 + 3.45148i −0.323734 + 0.186908i
\(342\) 0 0
\(343\) 18.4293 + 1.83358i 0.995087 + 0.0990042i
\(344\) 0 0
\(345\) 6.95182 3.10840i 0.374273 0.167351i
\(346\) 0 0
\(347\) −4.66241 17.4004i −0.250291 0.934100i −0.970650 0.240498i \(-0.922689\pi\)
0.720358 0.693602i \(-0.243977\pi\)
\(348\) 0 0
\(349\) 3.70297 0.198216 0.0991078 0.995077i \(-0.468401\pi\)
0.0991078 + 0.995077i \(0.468401\pi\)
\(350\) 0 0
\(351\) −1.80850 −0.0965308
\(352\) 0 0
\(353\) 5.13800 + 19.1753i 0.273468 + 1.02060i 0.956861 + 0.290546i \(0.0938370\pi\)
−0.683393 + 0.730051i \(0.739496\pi\)
\(354\) 0 0
\(355\) −8.89714 + 3.97822i −0.472211 + 0.211142i
\(356\) 0 0
\(357\) 3.73525 6.00234i 0.197690 0.317677i
\(358\) 0 0
\(359\) −27.3891 + 15.8131i −1.44554 + 0.834583i −0.998211 0.0597871i \(-0.980958\pi\)
−0.447328 + 0.894370i \(0.647624\pi\)
\(360\) 0 0
\(361\) 9.43749 16.3462i 0.496710 0.860327i
\(362\) 0 0
\(363\) −6.84465 + 6.84465i −0.359251 + 0.359251i
\(364\) 0 0
\(365\) 11.8777 + 14.6202i 0.621709 + 0.765256i
\(366\) 0 0
\(367\) 20.9577 5.61560i 1.09398 0.293132i 0.333671 0.942690i \(-0.391713\pi\)
0.760312 + 0.649558i \(0.225046\pi\)
\(368\) 0 0
\(369\) −2.44224 4.23009i −0.127138 0.220210i
\(370\) 0 0
\(371\) 3.97470 + 4.24656i 0.206356 + 0.220470i
\(372\) 0 0
\(373\) 5.88296 21.9555i 0.304608 1.13681i −0.628674 0.777669i \(-0.716402\pi\)
0.933282 0.359144i \(-0.116931\pi\)
\(374\) 0 0
\(375\) 11.1677 + 0.531873i 0.576697 + 0.0274658i
\(376\) 0 0
\(377\) −4.36331 4.36331i −0.224722 0.224722i
\(378\) 0 0
\(379\) 19.0895i 0.980562i −0.871564 0.490281i \(-0.836894\pi\)
0.871564 0.490281i \(-0.163106\pi\)
\(380\) 0 0
\(381\) −17.6266 10.1767i −0.903038 0.521369i
\(382\) 0 0
\(383\) 31.8992 + 8.54737i 1.62997 + 0.436750i 0.953910 0.300093i \(-0.0970178\pi\)
0.676064 + 0.736843i \(0.263684\pi\)
\(384\) 0 0
\(385\) −6.29380 + 2.56809i −0.320762 + 0.130882i
\(386\) 0 0
\(387\) −4.39984 1.17893i −0.223656 0.0599285i
\(388\) 0 0
\(389\) 16.0286 + 9.25414i 0.812684 + 0.469204i 0.847887 0.530177i \(-0.177874\pi\)
−0.0352028 + 0.999380i \(0.511208\pi\)
\(390\) 0 0
\(391\) 9.09999i 0.460206i
\(392\) 0 0
\(393\) −13.8912 13.8912i −0.700718 0.700718i
\(394\) 0 0
\(395\) −3.58847 + 4.95566i −0.180556 + 0.249346i
\(396\) 0 0
\(397\) 4.07627 15.2128i 0.204582 0.763511i −0.784994 0.619503i \(-0.787334\pi\)
0.989577 0.144008i \(-0.0459991\pi\)
\(398\) 0 0
\(399\) −0.895132 0.271859i −0.0448127 0.0136100i
\(400\) 0 0
\(401\) −1.82724 3.16487i −0.0912479 0.158046i 0.816789 0.576937i \(-0.195752\pi\)
−0.908036 + 0.418891i \(0.862419\pi\)
\(402\) 0 0
\(403\) −10.4949 + 2.81210i −0.522788 + 0.140081i
\(404\) 0 0
\(405\) 0.230197 2.22419i 0.0114386 0.110521i
\(406\) 0 0
\(407\) 6.96853 6.96853i 0.345417 0.345417i
\(408\) 0 0
\(409\) −14.0063 + 24.2597i −0.692568 + 1.19956i 0.278426 + 0.960458i \(0.410187\pi\)
−0.970994 + 0.239105i \(0.923146\pi\)
\(410\) 0 0
\(411\) 0.0660216 0.0381176i 0.00325661 0.00188020i
\(412\) 0 0
\(413\) −4.61747 0.152689i −0.227211 0.00751331i
\(414\) 0 0
\(415\) −2.46246 + 6.44555i −0.120878 + 0.316400i
\(416\) 0 0
\(417\) −2.29176 8.55297i −0.112228 0.418841i
\(418\) 0 0
\(419\) 32.1069 1.56852 0.784262 0.620430i \(-0.213042\pi\)
0.784262 + 0.620430i \(0.213042\pi\)
\(420\) 0 0
\(421\) 30.9292 1.50740 0.753699 0.657219i \(-0.228267\pi\)
0.753699 + 0.657219i \(0.228267\pi\)
\(422\) 0 0
\(423\) 0.155305 + 0.579607i 0.00755120 + 0.0281815i
\(424\) 0 0
\(425\) 6.02761 11.9234i 0.292382 0.578371i
\(426\) 0 0
\(427\) −26.7937 16.6737i −1.29664 0.806896i
\(428\) 0 0
\(429\) 1.79957 1.03899i 0.0868843 0.0501627i
\(430\) 0 0
\(431\) 18.9761 32.8675i 0.914045 1.58317i 0.105751 0.994393i \(-0.466275\pi\)
0.808294 0.588779i \(-0.200391\pi\)
\(432\) 0 0
\(433\) 3.92665 3.92665i 0.188703 0.188703i −0.606432 0.795135i \(-0.707400\pi\)
0.795135 + 0.606432i \(0.207400\pi\)
\(434\) 0 0
\(435\) 5.92160 4.81083i 0.283919 0.230662i
\(436\) 0 0
\(437\) −1.16314 + 0.311663i −0.0556406 + 0.0149088i
\(438\) 0 0
\(439\) −10.3981 18.0101i −0.496275 0.859574i 0.503715 0.863870i \(-0.331966\pi\)
−0.999991 + 0.00429550i \(0.998633\pi\)
\(440\) 0 0
\(441\) 0.462441 6.98471i 0.0220210 0.332605i
\(442\) 0 0
\(443\) −0.975177 + 3.63941i −0.0463321 + 0.172914i −0.985215 0.171323i \(-0.945196\pi\)
0.938883 + 0.344237i \(0.111862\pi\)
\(444\) 0 0
\(445\) −23.9736 17.3596i −1.13646 0.822926i
\(446\) 0 0
\(447\) 5.06277 + 5.06277i 0.239461 + 0.239461i
\(448\) 0 0
\(449\) 18.7981i 0.887135i 0.896241 + 0.443568i \(0.146287\pi\)
−0.896241 + 0.443568i \(0.853713\pi\)
\(450\) 0 0
\(451\) 4.86037 + 2.80614i 0.228866 + 0.132136i
\(452\) 0 0
\(453\) 3.05676 + 0.819057i 0.143619 + 0.0384827i
\(454\) 0 0
\(455\) −10.6150 + 1.34044i −0.497637 + 0.0628410i
\(456\) 0 0
\(457\) 7.14267 + 1.91387i 0.334120 + 0.0895272i 0.421979 0.906606i \(-0.361336\pi\)
−0.0878586 + 0.996133i \(0.528002\pi\)
\(458\) 0 0
\(459\) −2.31409 1.33604i −0.108012 0.0623610i
\(460\) 0 0
\(461\) 17.6657i 0.822772i −0.911461 0.411386i \(-0.865045\pi\)
0.911461 0.411386i \(-0.134955\pi\)
\(462\) 0 0
\(463\) 15.6126 + 15.6126i 0.725579 + 0.725579i 0.969736 0.244157i \(-0.0785111\pi\)
−0.244157 + 0.969736i \(0.578511\pi\)
\(464\) 0 0
\(465\) −2.12261 13.2651i −0.0984336 0.615154i
\(466\) 0 0
\(467\) 8.03502 29.9871i 0.371816 1.38764i −0.486125 0.873889i \(-0.661590\pi\)
0.857941 0.513748i \(-0.171743\pi\)
\(468\) 0 0
\(469\) 9.78513 9.15870i 0.451835 0.422910i
\(470\) 0 0
\(471\) −3.92687 6.80153i −0.180941 0.313398i
\(472\) 0 0
\(473\) 5.05541 1.35459i 0.232448 0.0622842i
\(474\) 0 0
\(475\) −1.73046 0.362074i −0.0793991 0.0166131i
\(476\) 0 0
\(477\) 1.55452 1.55452i 0.0711767 0.0711767i
\(478\) 0 0
\(479\) −1.26060 + 2.18342i −0.0575982 + 0.0997630i −0.893387 0.449288i \(-0.851678\pi\)
0.835789 + 0.549051i \(0.185011\pi\)
\(480\) 0 0
\(481\) 13.4334 7.75578i 0.612511 0.353633i
\(482\) 0 0
\(483\) −4.24481 7.94780i −0.193146 0.361637i
\(484\) 0 0
\(485\) 33.3439 + 12.7387i 1.51407 + 0.578437i
\(486\) 0 0
\(487\) 9.61849 + 35.8967i 0.435855 + 1.62663i 0.739011 + 0.673693i \(0.235293\pi\)
−0.303156 + 0.952941i \(0.598040\pi\)
\(488\) 0 0
\(489\) −0.829758 −0.0375230
\(490\) 0 0
\(491\) −2.60684 −0.117645 −0.0588225 0.998268i \(-0.518735\pi\)
−0.0588225 + 0.998268i \(0.518735\pi\)
\(492\) 0 0
\(493\) −2.35970 8.80654i −0.106276 0.396627i
\(494\) 0 0
\(495\) 1.04873 + 2.34545i 0.0471371 + 0.105420i
\(496\) 0 0
\(497\) 5.43263 + 10.1718i 0.243687 + 0.456269i
\(498\) 0 0
\(499\) −15.1839 + 8.76642i −0.679724 + 0.392439i −0.799751 0.600332i \(-0.795035\pi\)
0.120027 + 0.992771i \(0.461702\pi\)
\(500\) 0 0
\(501\) −9.87765 + 17.1086i −0.441301 + 0.764355i
\(502\) 0 0
\(503\) 14.7170 14.7170i 0.656199 0.656199i −0.298280 0.954478i \(-0.596413\pi\)
0.954478 + 0.298280i \(0.0964129\pi\)
\(504\) 0 0
\(505\) 5.17858 + 0.535967i 0.230444 + 0.0238502i
\(506\) 0 0
\(507\) −9.39780 + 2.51813i −0.417371 + 0.111834i
\(508\) 0 0
\(509\) −5.13342 8.89134i −0.227535 0.394102i 0.729542 0.683936i \(-0.239733\pi\)
−0.957077 + 0.289834i \(0.906400\pi\)
\(510\) 0 0
\(511\) 16.2724 15.2307i 0.719848 0.673765i
\(512\) 0 0
\(513\) −0.0915152 + 0.341539i −0.00404049 + 0.0150793i
\(514\) 0 0
\(515\) 41.8250 6.69261i 1.84303 0.294912i
\(516\) 0 0
\(517\) −0.487523 0.487523i −0.0214412 0.0214412i
\(518\) 0 0
\(519\) 11.9453i 0.524341i
\(520\) 0 0
\(521\) 19.2739 + 11.1278i 0.844404 + 0.487517i 0.858759 0.512380i \(-0.171236\pi\)
−0.0143550 + 0.999897i \(0.504570\pi\)
\(522\) 0 0
\(523\) 17.6948 + 4.74130i 0.773738 + 0.207323i 0.624022 0.781407i \(-0.285497\pi\)
0.149716 + 0.988729i \(0.452164\pi\)
\(524\) 0 0
\(525\) −0.297412 13.2254i −0.0129801 0.577204i
\(526\) 0 0
\(527\) −15.5063 4.15490i −0.675465 0.180990i
\(528\) 0 0
\(529\) 9.87443 + 5.70100i 0.429323 + 0.247870i
\(530\) 0 0
\(531\) 1.74619i 0.0757783i
\(532\) 0 0
\(533\) 6.24631 + 6.24631i 0.270558 + 0.270558i
\(534\) 0 0
\(535\) −2.39575 + 0.383355i −0.103577 + 0.0165739i
\(536\) 0 0
\(537\) 6.28135 23.4423i 0.271060 1.01161i
\(538\) 0 0
\(539\) 3.55256 + 7.21590i 0.153019 + 0.310811i
\(540\) 0 0
\(541\) 4.99183 + 8.64610i 0.214615 + 0.371725i 0.953154 0.302487i \(-0.0978169\pi\)
−0.738538 + 0.674212i \(0.764484\pi\)
\(542\) 0 0
\(543\) −18.7281 + 5.01819i −0.803701 + 0.215351i
\(544\) 0 0
\(545\) −25.4420 2.63317i −1.08981 0.112793i
\(546\) 0 0
\(547\) −5.18970 + 5.18970i −0.221895 + 0.221895i −0.809296 0.587401i \(-0.800151\pi\)
0.587401 + 0.809296i \(0.300151\pi\)
\(548\) 0 0
\(549\) −5.96392 + 10.3298i −0.254534 + 0.440866i
\(550\) 0 0
\(551\) −1.04482 + 0.603224i −0.0445106 + 0.0256982i
\(552\) 0 0
\(553\) 6.14651 + 3.82497i 0.261376 + 0.162654i
\(554\) 0 0
\(555\) 7.82856 + 17.5083i 0.332304 + 0.743185i
\(556\) 0 0
\(557\) 4.08292 + 15.2377i 0.172999 + 0.645640i 0.996884 + 0.0788833i \(0.0251354\pi\)
−0.823885 + 0.566757i \(0.808198\pi\)
\(558\) 0 0
\(559\) 8.23782 0.348423
\(560\) 0 0
\(561\) 3.07022 0.129625
\(562\) 0 0
\(563\) 7.27022 + 27.1328i 0.306403 + 1.14351i 0.931731 + 0.363150i \(0.118299\pi\)
−0.625327 + 0.780362i \(0.715035\pi\)
\(564\) 0 0
\(565\) −34.8085 13.2983i −1.46441 0.559463i
\(566\) 0 0
\(567\) −2.64431 0.0874408i −0.111050 0.00367217i
\(568\) 0 0
\(569\) 14.1303 8.15812i 0.592372 0.342006i −0.173663 0.984805i \(-0.555560\pi\)
0.766035 + 0.642799i \(0.222227\pi\)
\(570\) 0 0
\(571\) 8.17973 14.1677i 0.342311 0.592900i −0.642550 0.766243i \(-0.722124\pi\)
0.984861 + 0.173343i \(0.0554570\pi\)
\(572\) 0 0
\(573\) −3.93114 + 3.93114i −0.164226 + 0.164226i
\(574\) 0 0
\(575\) −9.31943 14.2512i −0.388647 0.594318i
\(576\) 0 0
\(577\) −22.5413 + 6.03993i −0.938408 + 0.251446i −0.695436 0.718588i \(-0.744789\pi\)
−0.242972 + 0.970033i \(0.578122\pi\)
\(578\) 0 0
\(579\) −1.47570 2.55599i −0.0613282 0.106223i
\(580\) 0 0
\(581\) 7.81176 + 2.37249i 0.324087 + 0.0984276i
\(582\) 0 0
\(583\) −0.653774 + 2.43992i −0.0270766 + 0.101051i
\(584\) 0 0
\(585\) 0.638961 + 3.99314i 0.0264178 + 0.165096i
\(586\) 0 0
\(587\) −3.39180 3.39180i −0.139995 0.139995i 0.633636 0.773631i \(-0.281562\pi\)
−0.773631 + 0.633636i \(0.781562\pi\)
\(588\) 0 0
\(589\) 2.12428i 0.0875295i
\(590\) 0 0
\(591\) −21.3145 12.3059i −0.876762 0.506199i
\(592\) 0 0
\(593\) 15.3609 + 4.11594i 0.630796 + 0.169021i 0.560031 0.828472i \(-0.310789\pi\)
0.0707654 + 0.997493i \(0.477456\pi\)
\(594\) 0 0
\(595\) −14.5727 6.12666i −0.597424 0.251169i
\(596\) 0 0
\(597\) 9.39592 + 2.51763i 0.384549 + 0.103040i
\(598\) 0 0
\(599\) 26.4226 + 15.2551i 1.07960 + 0.623307i 0.930788 0.365559i \(-0.119122\pi\)
0.148811 + 0.988866i \(0.452455\pi\)
\(600\) 0 0
\(601\) 41.7609i 1.70346i 0.523980 + 0.851731i \(0.324447\pi\)
−0.523980 + 0.851731i \(0.675553\pi\)
\(602\) 0 0
\(603\) −3.58200 3.58200i −0.145871 0.145871i
\(604\) 0 0
\(605\) 17.5311 + 12.6946i 0.712742 + 0.516108i
\(606\) 0 0
\(607\) −3.41028 + 12.7273i −0.138419 + 0.516587i 0.861541 + 0.507687i \(0.169500\pi\)
−0.999960 + 0.00889954i \(0.997167\pi\)
\(608\) 0 0
\(609\) −6.16886 6.59079i −0.249975 0.267072i
\(610\) 0 0
\(611\) −0.542600 0.939810i −0.0219512 0.0380206i
\(612\) 0 0
\(613\) −25.8110 + 6.91603i −1.04250 + 0.279336i −0.739147 0.673544i \(-0.764771\pi\)
−0.303348 + 0.952880i \(0.598105\pi\)
\(614\) 0 0
\(615\) −8.47709 + 6.88696i −0.341829 + 0.277709i
\(616\) 0 0
\(617\) −10.6207 + 10.6207i −0.427574 + 0.427574i −0.887801 0.460227i \(-0.847768\pi\)
0.460227 + 0.887801i \(0.347768\pi\)
\(618\) 0 0
\(619\) 11.2987 19.5699i 0.454132 0.786579i −0.544506 0.838757i \(-0.683283\pi\)
0.998638 + 0.0521778i \(0.0166162\pi\)
\(620\) 0 0
\(621\) −2.94932 + 1.70279i −0.118352 + 0.0683307i
\(622\) 0 0
\(623\) −18.5037 + 29.7344i −0.741335 + 1.19128i
\(624\) 0 0
\(625\) −2.77128 24.8459i −0.110851 0.993837i
\(626\) 0 0
\(627\) −0.105151 0.392429i −0.00419932 0.0156721i
\(628\) 0 0
\(629\) 22.9185 0.913819
\(630\) 0 0
\(631\) 7.18933 0.286203 0.143101 0.989708i \(-0.454293\pi\)
0.143101 + 0.989708i \(0.454293\pi\)
\(632\) 0 0
\(633\) −4.75750 17.7552i −0.189094 0.705707i
\(634\) 0 0
\(635\) −16.2423 + 42.5147i −0.644558 + 1.68714i
\(636\) 0 0
\(637\) 2.46154 + 12.4179i 0.0975298 + 0.492015i
\(638\) 0 0
\(639\) 3.77463 2.17928i 0.149322 0.0862110i
\(640\) 0 0
\(641\) 4.87266 8.43969i 0.192458 0.333348i −0.753606 0.657326i \(-0.771687\pi\)
0.946064 + 0.323979i \(0.105021\pi\)
\(642\) 0 0
\(643\) −3.24259 + 3.24259i −0.127875 + 0.127875i −0.768148 0.640273i \(-0.778821\pi\)
0.640273 + 0.768148i \(0.278821\pi\)
\(644\) 0 0
\(645\) −1.04856 + 10.1313i −0.0412869 + 0.398919i
\(646\) 0 0
\(647\) −10.0163 + 2.68385i −0.393780 + 0.105513i −0.450275 0.892890i \(-0.648674\pi\)
0.0564952 + 0.998403i \(0.482007\pi\)
\(648\) 0 0
\(649\) −1.00319 1.73757i −0.0393786 0.0682057i
\(650\) 0 0
\(651\) −15.4811 + 3.60429i −0.606752 + 0.141263i
\(652\) 0 0
\(653\) 1.88910 7.05023i 0.0739263 0.275897i −0.919061 0.394114i \(-0.871051\pi\)
0.992988 + 0.118218i \(0.0377180\pi\)
\(654\) 0 0
\(655\) −25.7636 + 35.5794i −1.00667 + 1.39020i
\(656\) 0 0
\(657\) −5.95677 5.95677i −0.232396 0.232396i
\(658\) 0 0
\(659\) 11.8101i 0.460057i 0.973184 + 0.230028i \(0.0738819\pi\)
−0.973184 + 0.230028i \(0.926118\pi\)
\(660\) 0 0
\(661\) −35.2128 20.3301i −1.36962 0.790750i −0.378740 0.925503i \(-0.623643\pi\)
−0.990879 + 0.134753i \(0.956976\pi\)
\(662\) 0 0
\(663\) 4.66781 + 1.25073i 0.181283 + 0.0485745i
\(664\) 0 0
\(665\) −0.284000 + 2.07248i −0.0110130 + 0.0803675i
\(666\) 0 0
\(667\) −11.2240 3.00746i −0.434594 0.116449i
\(668\) 0 0
\(669\) 14.0685 + 8.12245i 0.543919 + 0.314032i
\(670\) 0 0
\(671\) 13.7051i 0.529079i
\(672\) 0 0
\(673\) −9.97751 9.97751i −0.384605 0.384605i 0.488153 0.872758i \(-0.337671\pi\)
−0.872758 + 0.488153i \(0.837671\pi\)
\(674\) 0 0
\(675\) −4.99229 + 0.277556i −0.192153 + 0.0106831i
\(676\) 0 0
\(677\) −0.711353 + 2.65481i −0.0273395 + 0.102033i −0.978247 0.207442i \(-0.933486\pi\)
0.950908 + 0.309474i \(0.100153\pi\)
\(678\) 0 0
\(679\) 12.2733 40.4116i 0.471007 1.55085i
\(680\) 0 0
\(681\) 12.9438 + 22.4192i 0.496006 + 0.859107i
\(682\) 0 0
\(683\) −45.6962 + 12.2443i −1.74852 + 0.468513i −0.984308 0.176458i \(-0.943536\pi\)
−0.764207 + 0.644971i \(0.776869\pi\)
\(684\) 0 0
\(685\) −0.107489 0.132307i −0.00410694 0.00505519i
\(686\) 0 0
\(687\) 10.9665 10.9665i 0.418400 0.418400i
\(688\) 0 0
\(689\) −1.98793 + 3.44320i −0.0757341 + 0.131175i
\(690\) 0 0
\(691\) −27.4191 + 15.8304i −1.04307 + 0.602219i −0.920702 0.390266i \(-0.872383\pi\)
−0.122371 + 0.992484i \(0.539050\pi\)
\(692\) 0 0
\(693\) 2.68149 1.43214i 0.101861 0.0544027i
\(694\) 0 0
\(695\) −18.0751 + 8.08200i −0.685627 + 0.306568i
\(696\) 0 0
\(697\) 3.37804 + 12.6070i 0.127952 + 0.477525i
\(698\) 0 0
\(699\) 19.8898 0.752302
\(700\) 0 0
\(701\) −2.81268 −0.106233 −0.0531167 0.998588i \(-0.516916\pi\)
−0.0531167 + 0.998588i \(0.516916\pi\)
\(702\) 0 0
\(703\) −0.784927 2.92939i −0.0296041 0.110484i
\(704\) 0 0
\(705\) 1.22489 0.547691i 0.0461320 0.0206272i
\(706\) 0 0
\(707\) 0.203589 6.15674i 0.00765674 0.231548i
\(708\) 0 0
\(709\) 12.3526 7.13175i 0.463910 0.267839i −0.249777 0.968303i \(-0.580357\pi\)
0.713687 + 0.700465i \(0.247024\pi\)
\(710\) 0 0
\(711\) 1.36813 2.36967i 0.0513090 0.0888697i
\(712\) 0 0
\(713\) −14.4674 + 14.4674i −0.541810 + 0.541810i
\(714\) 0 0
\(715\) −2.92986 3.60634i −0.109571 0.134870i
\(716\) 0 0
\(717\) −13.7102 + 3.67364i −0.512018 + 0.137195i
\(718\) 0 0
\(719\) 10.6678 + 18.4772i 0.397843 + 0.689084i 0.993459 0.114185i \(-0.0364257\pi\)
−0.595617 + 0.803269i \(0.703092\pi\)
\(720\) 0 0
\(721\) −11.3644 48.8121i −0.423231 1.81786i
\(722\) 0 0
\(723\) −1.33960 + 4.99946i −0.0498203 + 0.185932i
\(724\) 0 0
\(725\) −12.7144 11.3751i −0.472200 0.422460i
\(726\) 0 0
\(727\) 23.3102 + 23.3102i 0.864529 + 0.864529i 0.991860 0.127331i \(-0.0406411\pi\)
−0.127331 + 0.991860i \(0.540641\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 10.5408 + 6.08572i 0.389865 + 0.225089i
\(732\) 0 0
\(733\) −17.7238 4.74908i −0.654644 0.175411i −0.0838162 0.996481i \(-0.526711\pi\)
−0.570828 + 0.821070i \(0.693378\pi\)
\(734\) 0 0
\(735\) −15.5855 + 1.44670i −0.574879 + 0.0533624i
\(736\) 0 0
\(737\) 5.62218 + 1.50646i 0.207096 + 0.0554911i
\(738\) 0 0
\(739\) 15.4768 + 8.93552i 0.569322 + 0.328698i 0.756879 0.653555i \(-0.226723\pi\)
−0.187556 + 0.982254i \(0.560057\pi\)
\(740\) 0 0
\(741\) 0.639464i 0.0234913i
\(742\) 0 0
\(743\) −33.6457 33.6457i −1.23434 1.23434i −0.962280 0.272061i \(-0.912295\pi\)
−0.272061 0.962280i \(-0.587705\pi\)
\(744\) 0 0
\(745\) 9.38977 12.9672i 0.344015 0.475082i
\(746\) 0 0
\(747\) 0.798647 2.98059i 0.0292210 0.109054i
\(748\) 0 0
\(749\) 0.650955 + 2.79597i 0.0237854 + 0.102163i
\(750\) 0 0
\(751\) −16.9005 29.2726i −0.616709 1.06817i −0.990082 0.140491i \(-0.955132\pi\)
0.373373 0.927681i \(-0.378201\pi\)
\(752\) 0 0
\(753\) −20.8938 + 5.59849i −0.761414 + 0.204020i
\(754\) 0 0
\(755\) 0.728479 7.03865i 0.0265121 0.256163i
\(756\) 0 0
\(757\) 38.6362 38.6362i 1.40426 1.40426i 0.618367 0.785889i \(-0.287794\pi\)
0.785889 0.618367i \(-0.212206\pi\)
\(758\) 0 0
\(759\) 1.95651 3.38877i 0.0710167 0.123005i
\(760\) 0 0
\(761\) −1.25087 + 0.722188i −0.0453439 + 0.0261793i −0.522501 0.852639i \(-0.675001\pi\)
0.477157 + 0.878818i \(0.341667\pi\)
\(762\) 0 0
\(763\) −1.00022 + 30.2476i −0.0362102 + 1.09504i
\(764\) 0 0
\(765\) −2.13236 + 5.58150i −0.0770957 + 0.201799i
\(766\) 0 0
\(767\) −0.817350 3.05039i −0.0295128 0.110143i
\(768\) 0 0
\(769\) −19.4505 −0.701404 −0.350702 0.936487i \(-0.614057\pi\)
−0.350702 + 0.936487i \(0.614057\pi\)
\(770\) 0 0
\(771\) 11.9647 0.430899
\(772\) 0 0
\(773\) 6.48908 + 24.2176i 0.233396 + 0.871046i 0.978865 + 0.204506i \(0.0655588\pi\)
−0.745469 + 0.666540i \(0.767775\pi\)
\(774\) 0 0
\(775\) −28.5391 + 9.37335i −1.02515 + 0.336701i
\(776\) 0 0
\(777\) 20.0167 10.6906i 0.718094 0.383524i
\(778\) 0 0
\(779\) 1.49571 0.863547i 0.0535893 0.0309398i
\(780\) 0 0
\(781\) −2.50399 + 4.33704i −0.0895999 + 0.155192i
\(782\) 0 0
\(783\) −2.41266 + 2.41266i −0.0862216 + 0.0862216i
\(784\) 0 0
\(785\) −13.6302 + 11.0735i −0.486484 + 0.395230i
\(786\) 0 0
\(787\) −20.3102 + 5.44211i −0.723982 + 0.193990i −0.601948 0.798536i \(-0.705608\pi\)
−0.122034 + 0.992526i \(0.538942\pi\)
\(788\) 0 0
\(789\) 8.34569 + 14.4552i 0.297114 + 0.514617i
\(790\) 0 0
\(791\) −12.8124 + 42.1866i −0.455557 + 1.49998i
\(792\) 0 0
\(793\) 5.58312 20.8365i 0.198263 0.739926i
\(794\) 0 0
\(795\) −3.98158 2.88313i −0.141212 0.102254i
\(796\) 0 0
\(797\) −35.0360 35.0360i −1.24104 1.24104i −0.959570 0.281469i \(-0.909178\pi\)
−0.281469 0.959570i \(-0.590822\pi\)
\(798\) 0 0
\(799\) 1.60339i 0.0567239i
\(800\) 0 0
\(801\) 11.4636 + 6.61849i 0.405045 + 0.233853i
\(802\) 0 0
\(803\) 9.34952 + 2.50520i 0.329937 + 0.0884065i
\(804\) 0 0
\(805\) −16.0489 + 12.1805i −0.565648 + 0.429306i
\(806\) 0 0
\(807\) −15.6872 4.20337i −0.552215 0.147966i
\(808\) 0 0
\(809\) 19.5041 + 11.2607i 0.685726 + 0.395904i 0.802009 0.597312i \(-0.203765\pi\)
−0.116283 + 0.993216i \(0.537098\pi\)
\(810\) 0 0
\(811\) 30.3063i 1.06420i −0.846682 0.532099i \(-0.821403\pi\)
0.846682 0.532099i \(-0.178597\pi\)
\(812\) 0 0
\(813\) 7.30397 + 7.30397i 0.256161 + 0.256161i
\(814\) 0 0
\(815\) 0.293161 + 1.83209i 0.0102690 + 0.0641753i
\(816\) 0 0
\(817\) 0.416856 1.55573i 0.0145839 0.0544280i
\(818\) 0 0
\(819\) 4.66022 1.08499i 0.162841 0.0379125i
\(820\) 0 0
\(821\) 3.85389 + 6.67513i 0.134502 + 0.232964i 0.925407 0.378975i \(-0.123723\pi\)
−0.790905 + 0.611939i \(0.790390\pi\)
\(822\) 0 0
\(823\) −20.2458 + 5.42483i −0.705723 + 0.189098i −0.593792 0.804618i \(-0.702370\pi\)
−0.111930 + 0.993716i \(0.535703\pi\)
\(824\) 0 0
\(825\) 4.80819 3.14425i 0.167400 0.109469i
\(826\) 0 0
\(827\) 10.1627 10.1627i 0.353391 0.353391i −0.507979 0.861370i \(-0.669607\pi\)
0.861370 + 0.507979i \(0.169607\pi\)
\(828\) 0 0
\(829\) −5.76151 + 9.97922i −0.200105 + 0.346593i −0.948562 0.316591i \(-0.897462\pi\)
0.748457 + 0.663184i \(0.230795\pi\)
\(830\) 0 0
\(831\) −16.0971 + 9.29364i −0.558400 + 0.322393i
\(832\) 0 0
\(833\) −6.02410 + 17.7079i −0.208723 + 0.613544i
\(834\) 0 0
\(835\) 41.2653 + 15.7650i 1.42804 + 0.545571i
\(836\) 0 0
\(837\) 1.55493 + 5.80308i 0.0537463 + 0.200584i
\(838\) 0 0
\(839\) −15.2304 −0.525813 −0.262907 0.964821i \(-0.584681\pi\)
−0.262907 + 0.964821i \(0.584681\pi\)
\(840\) 0 0
\(841\) 17.3581 0.598555
\(842\) 0 0
\(843\) −7.71382 28.7884i −0.265678 0.991524i
\(844\) 0 0
\(845\) 8.88031 + 19.8605i 0.305492 + 0.683221i
\(846\) 0 0
\(847\) 13.5312 21.7439i 0.464937 0.747129i
\(848\) 0 0
\(849\) 14.7525 8.51734i 0.506303 0.292314i
\(850\) 0 0
\(851\) 14.6049 25.2964i 0.500648 0.867148i
\(852\) 0 0
\(853\) −7.93430 + 7.93430i −0.271665 + 0.271665i −0.829770 0.558105i \(-0.811529\pi\)
0.558105 + 0.829770i \(0.311529\pi\)
\(854\) 0 0
\(855\) 0.786445 + 0.0813947i 0.0268959 + 0.00278364i
\(856\) 0 0
\(857\) 22.8907 6.13354i 0.781930 0.209518i 0.154295 0.988025i \(-0.450689\pi\)
0.627636 + 0.778507i \(0.284023\pi\)
\(858\) 0 0
\(859\) 20.5470 + 35.5885i 0.701055 + 1.21426i 0.968096 + 0.250578i \(0.0806208\pi\)
−0.267041 + 0.963685i \(0.586046\pi\)
\(860\) 0 0
\(861\) 8.83104 + 9.43506i 0.300961 + 0.321546i
\(862\) 0 0
\(863\) 4.23539 15.8067i 0.144174 0.538066i −0.855616 0.517611i \(-0.826822\pi\)
0.999791 0.0204557i \(-0.00651171\pi\)
\(864\) 0 0
\(865\) −26.3750 + 4.22039i −0.896777 + 0.143497i
\(866\) 0 0
\(867\) −6.97206 6.97206i −0.236784 0.236784i
\(868\) 0 0
\(869\) 3.14397i 0.106652i
\(870\) 0 0
\(871\) 7.93398 + 4.58069i 0.268833 + 0.155211i
\(872\) 0 0
\(873\) −15.4191 4.13154i −0.521858 0.139831i
\(874\) 0 0
\(875\) −29.0964 + 5.32934i −0.983636 + 0.180165i
\(876\) 0 0
\(877\) −44.3226 11.8762i −1.49667 0.401031i −0.584685 0.811261i \(-0.698782\pi\)
−0.911982 + 0.410230i \(0.865448\pi\)
\(878\) 0 0
\(879\) −7.28684 4.20706i −0.245779 0.141901i
\(880\) 0 0
\(881\) 4.45125i 0.149967i 0.997185 + 0.0749833i \(0.0238903\pi\)
−0.997185 + 0.0749833i \(0.976110\pi\)
\(882\) 0 0
\(883\) −4.19508 4.19508i −0.141176 0.141176i 0.632987 0.774162i \(-0.281829\pi\)
−0.774162 + 0.632987i \(0.781829\pi\)
\(884\) 0 0
\(885\) 3.85556 0.616946i 0.129603 0.0207384i
\(886\) 0 0
\(887\) 2.57545 9.61172i 0.0864752 0.322730i −0.909114 0.416547i \(-0.863240\pi\)
0.995589 + 0.0938170i \(0.0299069\pi\)
\(888\) 0 0
\(889\) 51.5262 + 15.6489i 1.72813 + 0.524847i
\(890\) 0 0
\(891\) −0.574500 0.995063i −0.0192465 0.0333359i
\(892\) 0 0
\(893\) −0.204942 + 0.0549140i −0.00685812 + 0.00183763i
\(894\) 0 0
\(895\) −53.9794 5.58671i −1.80433 0.186743i
\(896\) 0 0
\(897\) 4.35508 4.35508i 0.145412 0.145412i
\(898\) 0 0
\(899\) −10.2494 + 17.7524i −0.341835 + 0.592076i
\(900\) 0 0
\(901\) −5.08735 + 2.93719i −0.169484 + 0.0978518i
\(902\) 0 0
\(903\) 12.0449 + 0.398297i 0.400830 + 0.0132545i
\(904\) 0 0
\(905\) 17.6969 + 39.5783i 0.588264 + 1.31563i
\(906\) 0 0
\(907\) 0.610881 + 2.27984i 0.0202840 + 0.0757007i 0.975326 0.220770i \(-0.0708570\pi\)
−0.955042 + 0.296471i \(0.904190\pi\)
\(908\) 0 0
\(909\) −2.32830 −0.0772249
\(910\) 0 0
\(911\) −8.72272 −0.288997 −0.144498 0.989505i \(-0.546157\pi\)
−0.144498 + 0.989505i \(0.546157\pi\)
\(912\) 0 0
\(913\) 0.917645 + 3.42470i 0.0303696 + 0.113341i
\(914\) 0 0
\(915\) 24.9151 + 9.51859i 0.823668 + 0.314675i
\(916\) 0 0
\(917\) 44.1291 + 27.4615i 1.45727 + 0.906859i
\(918\) 0 0
\(919\) −15.7670 + 9.10309i −0.520106 + 0.300283i −0.736978 0.675917i \(-0.763748\pi\)
0.216872 + 0.976200i \(0.430415\pi\)
\(920\) 0 0
\(921\) −5.61064 + 9.71792i −0.184877 + 0.320216i
\(922\) 0 0
\(923\) −5.57375 + 5.57375i −0.183462 + 0.183462i
\(924\) 0 0
\(925\) 35.8920 23.4711i 1.18012 0.771726i
\(926\) 0 0
\(927\) −18.2972 + 4.90272i −0.600959 + 0.161026i
\(928\) 0 0
\(929\) −18.4222 31.9082i −0.604414 1.04688i −0.992144 0.125103i \(-0.960074\pi\)
0.387730 0.921773i \(-0.373259\pi\)
\(930\) 0 0
\(931\) 2.46971 + 0.163513i 0.0809413 + 0.00535893i
\(932\) 0 0
\(933\) −4.88369 + 18.2262i −0.159885 + 0.596699i
\(934\) 0 0
\(935\) −1.08474 6.77898i −0.0354747 0.221696i
\(936\) 0 0
\(937\) 27.4546 + 27.4546i 0.896902 + 0.896902i 0.995161 0.0982591i \(-0.0313274\pi\)
−0.0982591 + 0.995161i \(0.531327\pi\)
\(938\) 0 0
\(939\) 11.3496i 0.370380i
\(940\) 0 0
\(941\) −32.1092 18.5382i −1.04673 0.604329i −0.124997 0.992157i \(-0.539892\pi\)
−0.921732 + 0.387828i \(0.873225\pi\)
\(942\) 0 0
\(943\) 16.0677 + 4.30533i 0.523237 + 0.140201i
\(944\) 0 0
\(945\) 0.741190 + 5.86947i 0.0241109 + 0.190934i
\(946\) 0 0
\(947\) −33.1548 8.88381i −1.07739 0.288685i −0.323862 0.946104i \(-0.604981\pi\)
−0.753525 + 0.657419i \(0.771648\pi\)
\(948\) 0 0
\(949\) 13.1940 + 7.61755i 0.428295 + 0.247276i
\(950\) 0 0
\(951\) 20.8786i 0.677036i
\(952\) 0 0
\(953\) −30.0574 30.0574i −0.973655 0.973655i 0.0260068 0.999662i \(-0.491721\pi\)
−0.999662 + 0.0260068i \(0.991721\pi\)
\(954\) 0 0
\(955\) 10.0688 + 7.29097i 0.325818 + 0.235930i
\(956\) 0 0
\(957\) 1.01468 3.78683i 0.0327999 0.122411i
\(958\) 0 0
\(959\) −0.147259 + 0.137831i −0.00475523 + 0.00445081i
\(960\) 0 0
\(961\) 2.54680 + 4.41118i 0.0821547 + 0.142296i
\(962\) 0 0
\(963\) 1.04807 0.280829i 0.0337736 0.00904960i
\(964\) 0 0
\(965\) −5.12220 + 4.16138i −0.164890 + 0.133960i
\(966\) 0 0
\(967\) −37.5319 + 37.5319i −1.20694 + 1.20694i −0.234931 + 0.972012i \(0.575486\pi\)
−0.972012 + 0.234931i \(0.924514\pi\)
\(968\) 0 0
\(969\) 0.472407 0.818233i 0.0151759 0.0262854i
\(970\) 0 0
\(971\) −33.5821 + 19.3886i −1.07770 + 0.622210i −0.930275 0.366863i \(-0.880432\pi\)
−0.147425 + 0.989073i \(0.547098\pi\)
\(972\) 0 0
\(973\) 11.0367 + 20.6647i 0.353821 + 0.662479i
\(974\) 0 0
\(975\) 8.59102 2.82162i 0.275133 0.0903643i
\(976\) 0 0
\(977\) −14.5355 54.2472i −0.465031 1.73552i −0.656785 0.754078i \(-0.728084\pi\)
0.191754 0.981443i \(-0.438582\pi\)
\(978\) 0 0
\(979\) −15.2093 −0.486091
\(980\) 0 0
\(981\) 11.4388 0.365212
\(982\) 0 0
\(983\) −13.0010 48.5203i −0.414667 1.54756i −0.785503 0.618858i \(-0.787596\pi\)
0.370836 0.928698i \(-0.379071\pi\)
\(984\) 0 0
\(985\) −19.6407 + 51.4098i −0.625804 + 1.63805i
\(986\) 0 0
\(987\) −0.747923 1.40038i −0.0238066 0.0445745i
\(988\) 0 0
\(989\) 13.4343 7.75629i 0.427186 0.246636i
\(990\) 0 0
\(991\) 3.53895 6.12964i 0.112418 0.194714i −0.804326 0.594188i \(-0.797474\pi\)
0.916745 + 0.399473i \(0.130807\pi\)
\(992\) 0 0
\(993\) −9.44878 + 9.44878i −0.299848 + 0.299848i
\(994\) 0 0
\(995\) 2.23921 21.6355i 0.0709877 0.685891i
\(996\) 0 0
\(997\) 12.3630 3.31265i 0.391540 0.104913i −0.0576775 0.998335i \(-0.518370\pi\)
0.449217 + 0.893422i \(0.351703\pi\)
\(998\) 0 0
\(999\) −4.28851 7.42791i −0.135682 0.235009i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.dd.b.73.12 yes 48
5.2 odd 4 840.2.dd.a.577.11 yes 48
7.5 odd 6 840.2.dd.a.313.11 48
35.12 even 12 inner 840.2.dd.b.817.12 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.dd.a.313.11 48 7.5 odd 6
840.2.dd.a.577.11 yes 48 5.2 odd 4
840.2.dd.b.73.12 yes 48 1.1 even 1 trivial
840.2.dd.b.817.12 yes 48 35.12 even 12 inner