Properties

Label 840.2.dd.a.577.11
Level $840$
Weight $2$
Character 840.577
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(73,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.dd (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 577.11
Character \(\chi\) \(=\) 840.577
Dual form 840.2.dd.a.313.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 - 0.258819i) q^{3} +(1.81110 - 1.31145i) q^{5} +(2.33376 - 1.24643i) q^{7} +(0.866025 - 0.500000i) q^{9} +(0.574500 - 0.995063i) q^{11} +(-1.27881 - 1.27881i) q^{13} +(1.40996 - 1.73551i) q^{15} +(0.691585 + 2.58103i) q^{17} +(0.176794 + 0.306216i) q^{19} +(1.93164 - 1.80798i) q^{21} +(-3.28954 - 0.881430i) q^{23} +(1.56020 - 4.75035i) q^{25} +(0.707107 - 0.707107i) q^{27} +3.41202i q^{29} +(-5.20290 - 3.00390i) q^{31} +(0.297383 - 1.10985i) q^{33} +(2.59205 - 5.31801i) q^{35} +(-2.21989 + 8.28476i) q^{37} +(-1.56621 - 0.904252i) q^{39} +4.88449i q^{41} +(3.22090 - 3.22090i) q^{43} +(0.912737 - 2.04130i) q^{45} +(0.579607 + 0.155305i) q^{47} +(3.89284 - 5.81771i) q^{49} +(1.33604 + 2.31409i) q^{51} +(0.568994 + 2.12352i) q^{53} +(-0.264496 - 2.55559i) q^{55} +(0.250024 + 0.250024i) q^{57} +(-0.873096 + 1.51225i) q^{59} +(10.3298 - 5.96392i) q^{61} +(1.39788 - 2.24632i) q^{63} +(-3.99314 - 0.638961i) q^{65} +(-4.89311 + 1.31110i) q^{67} -3.40558 q^{69} -4.35856 q^{71} +(8.13710 - 2.18033i) q^{73} +(0.277556 - 4.99229i) q^{75} +(0.100469 - 3.03831i) q^{77} +(2.36967 - 1.36813i) q^{79} +(0.500000 - 0.866025i) q^{81} +(2.18195 + 2.18195i) q^{83} +(4.63743 + 3.76754i) q^{85} +(0.883096 + 3.29576i) q^{87} +(6.61849 + 11.4636i) q^{89} +(-4.57836 - 1.39048i) q^{91} +(-5.80308 - 1.55493i) q^{93} +(0.721779 + 0.322733i) q^{95} +(-11.2876 + 11.2876i) q^{97} -1.14900i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{11} + 16 q^{13} - 4 q^{15} - 4 q^{17} + 8 q^{19} - 24 q^{23} + 28 q^{25} + 12 q^{33} - 4 q^{37} - 12 q^{39} + 16 q^{43} - 4 q^{45} + 12 q^{47} - 12 q^{49} + 20 q^{53} - 56 q^{55} + 8 q^{57}+ \cdots + 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.965926 0.258819i 0.557678 0.149429i
\(4\) 0 0
\(5\) 1.81110 1.31145i 0.809950 0.586498i
\(6\) 0 0
\(7\) 2.33376 1.24643i 0.882077 0.471105i
\(8\) 0 0
\(9\) 0.866025 0.500000i 0.288675 0.166667i
\(10\) 0 0
\(11\) 0.574500 0.995063i 0.173218 0.300023i −0.766325 0.642453i \(-0.777917\pi\)
0.939543 + 0.342430i \(0.111250\pi\)
\(12\) 0 0
\(13\) −1.27881 1.27881i −0.354677 0.354677i 0.507170 0.861846i \(-0.330692\pi\)
−0.861846 + 0.507170i \(0.830692\pi\)
\(14\) 0 0
\(15\) 1.40996 1.73551i 0.364051 0.448107i
\(16\) 0 0
\(17\) 0.691585 + 2.58103i 0.167734 + 0.625992i 0.997676 + 0.0681418i \(0.0217070\pi\)
−0.829942 + 0.557850i \(0.811626\pi\)
\(18\) 0 0
\(19\) 0.176794 + 0.306216i 0.0405593 + 0.0702507i 0.885592 0.464463i \(-0.153753\pi\)
−0.845033 + 0.534714i \(0.820419\pi\)
\(20\) 0 0
\(21\) 1.93164 1.80798i 0.421518 0.394533i
\(22\) 0 0
\(23\) −3.28954 0.881430i −0.685917 0.183791i −0.101003 0.994886i \(-0.532205\pi\)
−0.584914 + 0.811095i \(0.698872\pi\)
\(24\) 0 0
\(25\) 1.56020 4.75035i 0.312040 0.950069i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 3.41202i 0.633597i 0.948493 + 0.316798i \(0.102608\pi\)
−0.948493 + 0.316798i \(0.897392\pi\)
\(30\) 0 0
\(31\) −5.20290 3.00390i −0.934469 0.539516i −0.0462467 0.998930i \(-0.514726\pi\)
−0.888222 + 0.459414i \(0.848059\pi\)
\(32\) 0 0
\(33\) 0.297383 1.10985i 0.0517677 0.193200i
\(34\) 0 0
\(35\) 2.59205 5.31801i 0.438136 0.898908i
\(36\) 0 0
\(37\) −2.21989 + 8.28476i −0.364948 + 1.36201i 0.502542 + 0.864553i \(0.332398\pi\)
−0.867491 + 0.497453i \(0.834269\pi\)
\(38\) 0 0
\(39\) −1.56621 0.904252i −0.250794 0.144796i
\(40\) 0 0
\(41\) 4.88449i 0.762829i 0.924404 + 0.381415i \(0.124563\pi\)
−0.924404 + 0.381415i \(0.875437\pi\)
\(42\) 0 0
\(43\) 3.22090 3.22090i 0.491183 0.491183i −0.417496 0.908679i \(-0.637092\pi\)
0.908679 + 0.417496i \(0.137092\pi\)
\(44\) 0 0
\(45\) 0.912737 2.04130i 0.136063 0.304299i
\(46\) 0 0
\(47\) 0.579607 + 0.155305i 0.0845444 + 0.0226536i 0.300843 0.953674i \(-0.402732\pi\)
−0.216299 + 0.976327i \(0.569399\pi\)
\(48\) 0 0
\(49\) 3.89284 5.81771i 0.556120 0.831102i
\(50\) 0 0
\(51\) 1.33604 + 2.31409i 0.187083 + 0.324037i
\(52\) 0 0
\(53\) 0.568994 + 2.12352i 0.0781574 + 0.291687i 0.993931 0.110008i \(-0.0350877\pi\)
−0.915773 + 0.401696i \(0.868421\pi\)
\(54\) 0 0
\(55\) −0.264496 2.55559i −0.0356646 0.344596i
\(56\) 0 0
\(57\) 0.250024 + 0.250024i 0.0331165 + 0.0331165i
\(58\) 0 0
\(59\) −0.873096 + 1.51225i −0.113667 + 0.196878i −0.917246 0.398321i \(-0.869593\pi\)
0.803579 + 0.595198i \(0.202927\pi\)
\(60\) 0 0
\(61\) 10.3298 5.96392i 1.32260 0.763601i 0.338454 0.940983i \(-0.390096\pi\)
0.984142 + 0.177381i \(0.0567626\pi\)
\(62\) 0 0
\(63\) 1.39788 2.24632i 0.176116 0.283009i
\(64\) 0 0
\(65\) −3.99314 0.638961i −0.495288 0.0792533i
\(66\) 0 0
\(67\) −4.89311 + 1.31110i −0.597788 + 0.160177i −0.545010 0.838429i \(-0.683474\pi\)
−0.0527781 + 0.998606i \(0.516808\pi\)
\(68\) 0 0
\(69\) −3.40558 −0.409984
\(70\) 0 0
\(71\) −4.35856 −0.517266 −0.258633 0.965976i \(-0.583272\pi\)
−0.258633 + 0.965976i \(0.583272\pi\)
\(72\) 0 0
\(73\) 8.13710 2.18033i 0.952375 0.255188i 0.251005 0.967986i \(-0.419239\pi\)
0.701370 + 0.712797i \(0.252572\pi\)
\(74\) 0 0
\(75\) 0.277556 4.99229i 0.0320494 0.576460i
\(76\) 0 0
\(77\) 0.100469 3.03831i 0.0114496 0.346247i
\(78\) 0 0
\(79\) 2.36967 1.36813i 0.266609 0.153927i −0.360737 0.932668i \(-0.617475\pi\)
0.627346 + 0.778741i \(0.284141\pi\)
\(80\) 0 0
\(81\) 0.500000 0.866025i 0.0555556 0.0962250i
\(82\) 0 0
\(83\) 2.18195 + 2.18195i 0.239500 + 0.239500i 0.816643 0.577143i \(-0.195833\pi\)
−0.577143 + 0.816643i \(0.695833\pi\)
\(84\) 0 0
\(85\) 4.63743 + 3.76754i 0.503000 + 0.408647i
\(86\) 0 0
\(87\) 0.883096 + 3.29576i 0.0946779 + 0.353343i
\(88\) 0 0
\(89\) 6.61849 + 11.4636i 0.701559 + 1.21513i 0.967919 + 0.251262i \(0.0808454\pi\)
−0.266361 + 0.963873i \(0.585821\pi\)
\(90\) 0 0
\(91\) −4.57836 1.39048i −0.479942 0.145762i
\(92\) 0 0
\(93\) −5.80308 1.55493i −0.601752 0.161239i
\(94\) 0 0
\(95\) 0.721779 + 0.322733i 0.0740529 + 0.0331117i
\(96\) 0 0
\(97\) −11.2876 + 11.2876i −1.14608 + 1.14608i −0.158763 + 0.987317i \(0.550750\pi\)
−0.987317 + 0.158763i \(0.949250\pi\)
\(98\) 0 0
\(99\) 1.14900i 0.115479i
\(100\) 0 0
\(101\) 2.01637 + 1.16415i 0.200636 + 0.115837i 0.596952 0.802277i \(-0.296378\pi\)
−0.396316 + 0.918114i \(0.629712\pi\)
\(102\) 0 0
\(103\) 4.90272 18.2972i 0.483079 1.80288i −0.105478 0.994422i \(-0.533637\pi\)
0.588557 0.808455i \(-0.299696\pi\)
\(104\) 0 0
\(105\) 1.12732 5.80768i 0.110016 0.566771i
\(106\) 0 0
\(107\) 0.280829 1.04807i 0.0271488 0.101321i −0.951022 0.309123i \(-0.899964\pi\)
0.978171 + 0.207802i \(0.0666311\pi\)
\(108\) 0 0
\(109\) 9.90626 + 5.71938i 0.948848 + 0.547818i 0.892723 0.450606i \(-0.148792\pi\)
0.0561251 + 0.998424i \(0.482125\pi\)
\(110\) 0 0
\(111\) 8.57701i 0.814094i
\(112\) 0 0
\(113\) −11.7834 + 11.7834i −1.10849 + 1.10849i −0.115136 + 0.993350i \(0.536730\pi\)
−0.993350 + 0.115136i \(0.963270\pi\)
\(114\) 0 0
\(115\) −7.11365 + 2.71771i −0.663351 + 0.253427i
\(116\) 0 0
\(117\) −1.74688 0.468075i −0.161499 0.0432736i
\(118\) 0 0
\(119\) 4.83106 + 5.16149i 0.442862 + 0.473153i
\(120\) 0 0
\(121\) 4.83990 + 8.38295i 0.439991 + 0.762087i
\(122\) 0 0
\(123\) 1.26420 + 4.71805i 0.113989 + 0.425413i
\(124\) 0 0
\(125\) −3.40416 10.6495i −0.304477 0.952520i
\(126\) 0 0
\(127\) −14.3921 14.3921i −1.27709 1.27709i −0.942290 0.334798i \(-0.891332\pi\)
−0.334798 0.942290i \(-0.608668\pi\)
\(128\) 0 0
\(129\) 2.27752 3.94479i 0.200525 0.347319i
\(130\) 0 0
\(131\) −17.0132 + 9.82256i −1.48645 + 0.858201i −0.999881 0.0154420i \(-0.995084\pi\)
−0.486567 + 0.873643i \(0.661751\pi\)
\(132\) 0 0
\(133\) 0.794269 + 0.494273i 0.0688719 + 0.0428589i
\(134\) 0 0
\(135\) 0.353309 2.20798i 0.0304080 0.190033i
\(136\) 0 0
\(137\) 0.0736375 0.0197311i 0.00629128 0.00168574i −0.255672 0.966764i \(-0.582297\pi\)
0.261963 + 0.965078i \(0.415630\pi\)
\(138\) 0 0
\(139\) 8.85468 0.751044 0.375522 0.926813i \(-0.377463\pi\)
0.375522 + 0.926813i \(0.377463\pi\)
\(140\) 0 0
\(141\) 0.600054 0.0505336
\(142\) 0 0
\(143\) −2.00716 + 0.537818i −0.167848 + 0.0449746i
\(144\) 0 0
\(145\) 4.47470 + 6.17953i 0.371603 + 0.513182i
\(146\) 0 0
\(147\) 2.25446 6.62702i 0.185945 0.546588i
\(148\) 0 0
\(149\) −6.20060 + 3.57992i −0.507973 + 0.293279i −0.732000 0.681304i \(-0.761413\pi\)
0.224027 + 0.974583i \(0.428080\pi\)
\(150\) 0 0
\(151\) 1.58230 2.74062i 0.128766 0.223028i −0.794433 0.607352i \(-0.792232\pi\)
0.923199 + 0.384323i \(0.125565\pi\)
\(152\) 0 0
\(153\) 1.88945 + 1.88945i 0.152753 + 0.152753i
\(154\) 0 0
\(155\) −13.3625 + 1.38297i −1.07330 + 0.111083i
\(156\) 0 0
\(157\) −2.03270 7.58613i −0.162227 0.605439i −0.998378 0.0569392i \(-0.981866\pi\)
0.836151 0.548500i \(-0.184801\pi\)
\(158\) 0 0
\(159\) 1.09921 + 1.90389i 0.0871732 + 0.150988i
\(160\) 0 0
\(161\) −8.77562 + 2.04313i −0.691616 + 0.161021i
\(162\) 0 0
\(163\) 0.801485 + 0.214757i 0.0627771 + 0.0168211i 0.290071 0.957005i \(-0.406321\pi\)
−0.227294 + 0.973826i \(0.572988\pi\)
\(164\) 0 0
\(165\) −0.916919 2.40005i −0.0713820 0.186844i
\(166\) 0 0
\(167\) −13.9691 + 13.9691i −1.08096 + 1.08096i −0.0845414 + 0.996420i \(0.526943\pi\)
−0.996420 + 0.0845414i \(0.973057\pi\)
\(168\) 0 0
\(169\) 9.72931i 0.748409i
\(170\) 0 0
\(171\) 0.306216 + 0.176794i 0.0234169 + 0.0135198i
\(172\) 0 0
\(173\) −3.09167 + 11.5383i −0.235056 + 0.877240i 0.743068 + 0.669216i \(0.233370\pi\)
−0.978124 + 0.208024i \(0.933297\pi\)
\(174\) 0 0
\(175\) −2.27984 13.0308i −0.172339 0.985038i
\(176\) 0 0
\(177\) −0.451948 + 1.68669i −0.0339705 + 0.126780i
\(178\) 0 0
\(179\) 21.0178 + 12.1346i 1.57094 + 0.906985i 0.996053 + 0.0887556i \(0.0282890\pi\)
0.574891 + 0.818230i \(0.305044\pi\)
\(180\) 0 0
\(181\) 19.3888i 1.44116i 0.693374 + 0.720578i \(0.256124\pi\)
−0.693374 + 0.720578i \(0.743876\pi\)
\(182\) 0 0
\(183\) 8.43425 8.43425i 0.623478 0.623478i
\(184\) 0 0
\(185\) 6.84459 + 17.9158i 0.503224 + 1.31720i
\(186\) 0 0
\(187\) 2.96560 + 0.794631i 0.216866 + 0.0581092i
\(188\) 0 0
\(189\) 0.768858 2.53157i 0.0559262 0.184145i
\(190\) 0 0
\(191\) 2.77973 + 4.81464i 0.201135 + 0.348375i 0.948894 0.315594i \(-0.102204\pi\)
−0.747760 + 0.663969i \(0.768870\pi\)
\(192\) 0 0
\(193\) 0.763881 + 2.85084i 0.0549853 + 0.205208i 0.987954 0.154751i \(-0.0494574\pi\)
−0.932968 + 0.359959i \(0.882791\pi\)
\(194\) 0 0
\(195\) −4.02245 + 0.416312i −0.288054 + 0.0298127i
\(196\) 0 0
\(197\) −17.4032 17.4032i −1.23993 1.23993i −0.960029 0.279900i \(-0.909699\pi\)
−0.279900 0.960029i \(-0.590301\pi\)
\(198\) 0 0
\(199\) −4.86369 + 8.42415i −0.344778 + 0.597172i −0.985313 0.170756i \(-0.945379\pi\)
0.640536 + 0.767928i \(0.278712\pi\)
\(200\) 0 0
\(201\) −4.38704 + 2.53286i −0.309438 + 0.178654i
\(202\) 0 0
\(203\) 4.25284 + 7.96283i 0.298491 + 0.558881i
\(204\) 0 0
\(205\) 6.40576 + 8.84632i 0.447398 + 0.617854i
\(206\) 0 0
\(207\) −3.28954 + 0.881430i −0.228639 + 0.0612636i
\(208\) 0 0
\(209\) 0.406272 0.0281024
\(210\) 0 0
\(211\) −18.3816 −1.26544 −0.632720 0.774381i \(-0.718061\pi\)
−0.632720 + 0.774381i \(0.718061\pi\)
\(212\) 0 0
\(213\) −4.21005 + 1.12808i −0.288468 + 0.0772947i
\(214\) 0 0
\(215\) 1.60934 10.0574i 0.109756 0.685912i
\(216\) 0 0
\(217\) −15.8864 0.525327i −1.07844 0.0356615i
\(218\) 0 0
\(219\) 7.29552 4.21207i 0.492986 0.284625i
\(220\) 0 0
\(221\) 2.41623 4.18504i 0.162533 0.281516i
\(222\) 0 0
\(223\) −11.4869 11.4869i −0.769218 0.769218i 0.208751 0.977969i \(-0.433060\pi\)
−0.977969 + 0.208751i \(0.933060\pi\)
\(224\) 0 0
\(225\) −1.02400 4.89402i −0.0682668 0.326268i
\(226\) 0 0
\(227\) 6.70018 + 25.0054i 0.444707 + 1.65967i 0.716710 + 0.697371i \(0.245647\pi\)
−0.272003 + 0.962296i \(0.587686\pi\)
\(228\) 0 0
\(229\) 7.75451 + 13.4312i 0.512433 + 0.887559i 0.999896 + 0.0144160i \(0.00458891\pi\)
−0.487463 + 0.873143i \(0.662078\pi\)
\(230\) 0 0
\(231\) −0.689325 2.96078i −0.0453543 0.194805i
\(232\) 0 0
\(233\) −19.2121 5.14787i −1.25863 0.337248i −0.432963 0.901412i \(-0.642532\pi\)
−0.825663 + 0.564164i \(0.809199\pi\)
\(234\) 0 0
\(235\) 1.25340 0.478852i 0.0817631 0.0312368i
\(236\) 0 0
\(237\) 1.93483 1.93483i 0.125681 0.125681i
\(238\) 0 0
\(239\) 14.1939i 0.918125i −0.888404 0.459063i \(-0.848185\pi\)
0.888404 0.459063i \(-0.151815\pi\)
\(240\) 0 0
\(241\) 4.48239 + 2.58791i 0.288736 + 0.166702i 0.637372 0.770556i \(-0.280022\pi\)
−0.348635 + 0.937258i \(0.613355\pi\)
\(242\) 0 0
\(243\) 0.258819 0.965926i 0.0166032 0.0619642i
\(244\) 0 0
\(245\) −0.579303 15.6418i −0.0370103 0.999315i
\(246\) 0 0
\(247\) 0.165506 0.617675i 0.0105309 0.0393017i
\(248\) 0 0
\(249\) 2.67233 + 1.54287i 0.169352 + 0.0977753i
\(250\) 0 0
\(251\) 21.6309i 1.36533i 0.730732 + 0.682665i \(0.239179\pi\)
−0.730732 + 0.682665i \(0.760821\pi\)
\(252\) 0 0
\(253\) −2.76692 + 2.76692i −0.173955 + 0.173955i
\(254\) 0 0
\(255\) 5.45452 + 2.43891i 0.341575 + 0.152730i
\(256\) 0 0
\(257\) 11.5570 + 3.09670i 0.720908 + 0.193167i 0.600577 0.799567i \(-0.294938\pi\)
0.120331 + 0.992734i \(0.461604\pi\)
\(258\) 0 0
\(259\) 5.14565 + 22.1015i 0.319735 + 1.37332i
\(260\) 0 0
\(261\) 1.70601 + 2.95490i 0.105599 + 0.182904i
\(262\) 0 0
\(263\) −4.32005 16.1226i −0.266385 0.994164i −0.961397 0.275165i \(-0.911267\pi\)
0.695012 0.718999i \(-0.255399\pi\)
\(264\) 0 0
\(265\) 3.81539 + 3.09970i 0.234378 + 0.190413i
\(266\) 0 0
\(267\) 9.35996 + 9.35996i 0.572820 + 0.572820i
\(268\) 0 0
\(269\) 8.12029 14.0648i 0.495103 0.857543i −0.504881 0.863189i \(-0.668464\pi\)
0.999984 + 0.00564562i \(0.00179707\pi\)
\(270\) 0 0
\(271\) 8.94550 5.16469i 0.543400 0.313732i −0.203055 0.979167i \(-0.565087\pi\)
0.746456 + 0.665435i \(0.231754\pi\)
\(272\) 0 0
\(273\) −4.78224 0.158137i −0.289434 0.00957089i
\(274\) 0 0
\(275\) −3.83056 4.28157i −0.230991 0.258188i
\(276\) 0 0
\(277\) −17.9539 + 4.81074i −1.07875 + 0.289049i −0.754082 0.656780i \(-0.771918\pi\)
−0.324665 + 0.945829i \(0.605251\pi\)
\(278\) 0 0
\(279\) −6.00779 −0.359677
\(280\) 0 0
\(281\) −29.8039 −1.77795 −0.888976 0.457953i \(-0.848583\pi\)
−0.888976 + 0.457953i \(0.848583\pi\)
\(282\) 0 0
\(283\) −16.4542 + 4.40890i −0.978102 + 0.262082i −0.712245 0.701931i \(-0.752322\pi\)
−0.265857 + 0.964012i \(0.585655\pi\)
\(284\) 0 0
\(285\) 0.780714 + 0.124926i 0.0462455 + 0.00739996i
\(286\) 0 0
\(287\) 6.08816 + 11.3992i 0.359373 + 0.672874i
\(288\) 0 0
\(289\) 8.53900 4.92999i 0.502294 0.290000i
\(290\) 0 0
\(291\) −7.98152 + 13.8244i −0.467885 + 0.810401i
\(292\) 0 0
\(293\) 5.94968 + 5.94968i 0.347584 + 0.347584i 0.859209 0.511625i \(-0.170956\pi\)
−0.511625 + 0.859209i \(0.670956\pi\)
\(294\) 0 0
\(295\) 0.401968 + 3.88386i 0.0234035 + 0.226127i
\(296\) 0 0
\(297\) −0.297383 1.10985i −0.0172559 0.0643999i
\(298\) 0 0
\(299\) 3.07950 + 5.33386i 0.178092 + 0.308465i
\(300\) 0 0
\(301\) 3.50218 11.5314i 0.201863 0.664660i
\(302\) 0 0
\(303\) 2.24897 + 0.602609i 0.129200 + 0.0346190i
\(304\) 0 0
\(305\) 10.8870 24.3483i 0.623387 1.39418i
\(306\) 0 0
\(307\) −7.93464 + 7.93464i −0.452854 + 0.452854i −0.896301 0.443447i \(-0.853756\pi\)
0.443447 + 0.896301i \(0.353756\pi\)
\(308\) 0 0
\(309\) 18.9427i 1.07761i
\(310\) 0 0
\(311\) 16.3412 + 9.43457i 0.926622 + 0.534985i 0.885742 0.464179i \(-0.153650\pi\)
0.0408802 + 0.999164i \(0.486984\pi\)
\(312\) 0 0
\(313\) 2.93749 10.9629i 0.166037 0.619658i −0.831869 0.554972i \(-0.812729\pi\)
0.997906 0.0646855i \(-0.0206044\pi\)
\(314\) 0 0
\(315\) −0.414226 5.90156i −0.0233390 0.332515i
\(316\) 0 0
\(317\) 5.40379 20.1672i 0.303507 1.13270i −0.630716 0.776014i \(-0.717239\pi\)
0.934223 0.356690i \(-0.116095\pi\)
\(318\) 0 0
\(319\) 3.39518 + 1.96021i 0.190093 + 0.109750i
\(320\) 0 0
\(321\) 1.08504i 0.0605611i
\(322\) 0 0
\(323\) −0.668085 + 0.668085i −0.0371732 + 0.0371732i
\(324\) 0 0
\(325\) −8.06996 + 4.07958i −0.447641 + 0.226294i
\(326\) 0 0
\(327\) 11.0490 + 2.96057i 0.611011 + 0.163720i
\(328\) 0 0
\(329\) 1.54624 0.359993i 0.0852469 0.0198471i
\(330\) 0 0
\(331\) 6.68130 + 11.5723i 0.367237 + 0.636074i 0.989133 0.147027i \(-0.0469703\pi\)
−0.621895 + 0.783101i \(0.713637\pi\)
\(332\) 0 0
\(333\) 2.21989 + 8.28476i 0.121649 + 0.454002i
\(334\) 0 0
\(335\) −7.14248 + 8.79162i −0.390236 + 0.480337i
\(336\) 0 0
\(337\) −21.6983 21.6983i −1.18198 1.18198i −0.979230 0.202752i \(-0.935011\pi\)
−0.202752 0.979230i \(-0.564989\pi\)
\(338\) 0 0
\(339\) −8.33210 + 14.4316i −0.452537 + 0.783818i
\(340\) 0 0
\(341\) −5.97813 + 3.45148i −0.323734 + 0.186908i
\(342\) 0 0
\(343\) 1.83358 18.4293i 0.0990042 0.995087i
\(344\) 0 0
\(345\) −6.16787 + 4.46625i −0.332067 + 0.240455i
\(346\) 0 0
\(347\) 17.4004 4.66241i 0.934100 0.250291i 0.240498 0.970650i \(-0.422689\pi\)
0.693602 + 0.720358i \(0.256023\pi\)
\(348\) 0 0
\(349\) −3.70297 −0.198216 −0.0991078 0.995077i \(-0.531599\pi\)
−0.0991078 + 0.995077i \(0.531599\pi\)
\(350\) 0 0
\(351\) −1.80850 −0.0965308
\(352\) 0 0
\(353\) 19.1753 5.13800i 1.02060 0.273468i 0.290546 0.956861i \(-0.406163\pi\)
0.730051 + 0.683393i \(0.239496\pi\)
\(354\) 0 0
\(355\) −7.89381 + 5.71604i −0.418960 + 0.303376i
\(356\) 0 0
\(357\) 6.00234 + 3.73525i 0.317677 + 0.197690i
\(358\) 0 0
\(359\) 27.3891 15.8131i 1.44554 0.834583i 0.447328 0.894370i \(-0.352376\pi\)
0.998211 + 0.0597871i \(0.0190422\pi\)
\(360\) 0 0
\(361\) 9.43749 16.3462i 0.496710 0.860327i
\(362\) 0 0
\(363\) 6.84465 + 6.84465i 0.359251 + 0.359251i
\(364\) 0 0
\(365\) 11.8777 14.6202i 0.621709 0.765256i
\(366\) 0 0
\(367\) 5.61560 + 20.9577i 0.293132 + 1.09398i 0.942690 + 0.333671i \(0.108287\pi\)
−0.649558 + 0.760312i \(0.725046\pi\)
\(368\) 0 0
\(369\) 2.44224 + 4.23009i 0.127138 + 0.220210i
\(370\) 0 0
\(371\) 3.97470 + 4.24656i 0.206356 + 0.220470i
\(372\) 0 0
\(373\) −21.9555 5.88296i −1.13681 0.304608i −0.359144 0.933282i \(-0.616931\pi\)
−0.777669 + 0.628674i \(0.783598\pi\)
\(374\) 0 0
\(375\) −6.04446 9.40556i −0.312134 0.485701i
\(376\) 0 0
\(377\) 4.36331 4.36331i 0.224722 0.224722i
\(378\) 0 0
\(379\) 19.0895i 0.980562i 0.871564 + 0.490281i \(0.163106\pi\)
−0.871564 + 0.490281i \(0.836894\pi\)
\(380\) 0 0
\(381\) −17.6266 10.1767i −0.903038 0.521369i
\(382\) 0 0
\(383\) 8.54737 31.8992i 0.436750 1.62997i −0.300093 0.953910i \(-0.597018\pi\)
0.736843 0.676064i \(-0.236316\pi\)
\(384\) 0 0
\(385\) −3.80263 5.63445i −0.193800 0.287158i
\(386\) 0 0
\(387\) 1.17893 4.39984i 0.0599285 0.223656i
\(388\) 0 0
\(389\) −16.0286 9.25414i −0.812684 0.469204i 0.0352028 0.999380i \(-0.488792\pi\)
−0.847887 + 0.530177i \(0.822126\pi\)
\(390\) 0 0
\(391\) 9.09999i 0.460206i
\(392\) 0 0
\(393\) −13.8912 + 13.8912i −0.700718 + 0.700718i
\(394\) 0 0
\(395\) 2.49749 5.58554i 0.125662 0.281039i
\(396\) 0 0
\(397\) 15.2128 + 4.07627i 0.763511 + 0.204582i 0.619503 0.784994i \(-0.287334\pi\)
0.144008 + 0.989577i \(0.454001\pi\)
\(398\) 0 0
\(399\) 0.895132 + 0.271859i 0.0448127 + 0.0136100i
\(400\) 0 0
\(401\) −1.82724 3.16487i −0.0912479 0.158046i 0.816789 0.576937i \(-0.195752\pi\)
−0.908036 + 0.418891i \(0.862419\pi\)
\(402\) 0 0
\(403\) 2.81210 + 10.4949i 0.140081 + 0.522788i
\(404\) 0 0
\(405\) −0.230197 2.22419i −0.0114386 0.110521i
\(406\) 0 0
\(407\) 6.96853 + 6.96853i 0.345417 + 0.345417i
\(408\) 0 0
\(409\) 14.0063 24.2597i 0.692568 1.19956i −0.278426 0.960458i \(-0.589813\pi\)
0.970994 0.239105i \(-0.0768540\pi\)
\(410\) 0 0
\(411\) 0.0660216 0.0381176i 0.00325661 0.00188020i
\(412\) 0 0
\(413\) −0.152689 + 4.61747i −0.00751331 + 0.227211i
\(414\) 0 0
\(415\) 6.81324 + 1.09022i 0.334449 + 0.0535167i
\(416\) 0 0
\(417\) 8.55297 2.29176i 0.418841 0.112228i
\(418\) 0 0
\(419\) −32.1069 −1.56852 −0.784262 0.620430i \(-0.786958\pi\)
−0.784262 + 0.620430i \(0.786958\pi\)
\(420\) 0 0
\(421\) 30.9292 1.50740 0.753699 0.657219i \(-0.228267\pi\)
0.753699 + 0.657219i \(0.228267\pi\)
\(422\) 0 0
\(423\) 0.579607 0.155305i 0.0281815 0.00755120i
\(424\) 0 0
\(425\) 13.3398 + 0.741651i 0.647075 + 0.0359754i
\(426\) 0 0
\(427\) 16.6737 26.7937i 0.806896 1.29664i
\(428\) 0 0
\(429\) −1.79957 + 1.03899i −0.0868843 + 0.0501627i
\(430\) 0 0
\(431\) 18.9761 32.8675i 0.914045 1.58317i 0.105751 0.994393i \(-0.466275\pi\)
0.808294 0.588779i \(-0.200391\pi\)
\(432\) 0 0
\(433\) −3.92665 3.92665i −0.188703 0.188703i 0.606432 0.795135i \(-0.292600\pi\)
−0.795135 + 0.606432i \(0.792600\pi\)
\(434\) 0 0
\(435\) 5.92160 + 4.81083i 0.283919 + 0.230662i
\(436\) 0 0
\(437\) −0.311663 1.16314i −0.0149088 0.0556406i
\(438\) 0 0
\(439\) 10.3981 + 18.0101i 0.496275 + 0.859574i 0.999991 0.00429550i \(-0.00136730\pi\)
−0.503715 + 0.863870i \(0.668034\pi\)
\(440\) 0 0
\(441\) 0.462441 6.98471i 0.0220210 0.332605i
\(442\) 0 0
\(443\) 3.63941 + 0.975177i 0.172914 + 0.0463321i 0.344237 0.938883i \(-0.388138\pi\)
−0.171323 + 0.985215i \(0.554804\pi\)
\(444\) 0 0
\(445\) 27.0207 + 12.0819i 1.28090 + 0.572736i
\(446\) 0 0
\(447\) −5.06277 + 5.06277i −0.239461 + 0.239461i
\(448\) 0 0
\(449\) 18.7981i 0.887135i −0.896241 0.443568i \(-0.853713\pi\)
0.896241 0.443568i \(-0.146287\pi\)
\(450\) 0 0
\(451\) 4.86037 + 2.80614i 0.228866 + 0.132136i
\(452\) 0 0
\(453\) 0.819057 3.05676i 0.0384827 0.143619i
\(454\) 0 0
\(455\) −10.1154 + 3.48598i −0.474219 + 0.163425i
\(456\) 0 0
\(457\) −1.91387 + 7.14267i −0.0895272 + 0.334120i −0.996133 0.0878586i \(-0.971998\pi\)
0.906606 + 0.421979i \(0.138664\pi\)
\(458\) 0 0
\(459\) 2.31409 + 1.33604i 0.108012 + 0.0623610i
\(460\) 0 0
\(461\) 17.6657i 0.822772i −0.911461 0.411386i \(-0.865045\pi\)
0.911461 0.411386i \(-0.134955\pi\)
\(462\) 0 0
\(463\) 15.6126 15.6126i 0.725579 0.725579i −0.244157 0.969736i \(-0.578511\pi\)
0.969736 + 0.244157i \(0.0785111\pi\)
\(464\) 0 0
\(465\) −12.5492 + 4.79431i −0.581955 + 0.222331i
\(466\) 0 0
\(467\) 29.9871 + 8.03502i 1.38764 + 0.371816i 0.873889 0.486125i \(-0.161590\pi\)
0.513748 + 0.857941i \(0.328257\pi\)
\(468\) 0 0
\(469\) −9.78513 + 9.15870i −0.451835 + 0.422910i
\(470\) 0 0
\(471\) −3.92687 6.80153i −0.180941 0.313398i
\(472\) 0 0
\(473\) −1.35459 5.05541i −0.0622842 0.232448i
\(474\) 0 0
\(475\) 1.73046 0.362074i 0.0793991 0.0166131i
\(476\) 0 0
\(477\) 1.55452 + 1.55452i 0.0711767 + 0.0711767i
\(478\) 0 0
\(479\) 1.26060 2.18342i 0.0575982 0.0997630i −0.835789 0.549051i \(-0.814989\pi\)
0.893387 + 0.449288i \(0.148322\pi\)
\(480\) 0 0
\(481\) 13.4334 7.75578i 0.612511 0.353633i
\(482\) 0 0
\(483\) −7.94780 + 4.24481i −0.361637 + 0.193146i
\(484\) 0 0
\(485\) −5.63989 + 35.2461i −0.256094 + 1.60044i
\(486\) 0 0
\(487\) −35.8967 + 9.61849i −1.62663 + 0.435855i −0.952941 0.303156i \(-0.901960\pi\)
−0.673693 + 0.739011i \(0.735293\pi\)
\(488\) 0 0
\(489\) 0.829758 0.0375230
\(490\) 0 0
\(491\) −2.60684 −0.117645 −0.0588225 0.998268i \(-0.518735\pi\)
−0.0588225 + 0.998268i \(0.518735\pi\)
\(492\) 0 0
\(493\) −8.80654 + 2.35970i −0.396627 + 0.106276i
\(494\) 0 0
\(495\) −1.50686 2.08096i −0.0677281 0.0935321i
\(496\) 0 0
\(497\) −10.1718 + 5.43263i −0.456269 + 0.243687i
\(498\) 0 0
\(499\) 15.1839 8.76642i 0.679724 0.392439i −0.120027 0.992771i \(-0.538298\pi\)
0.799751 + 0.600332i \(0.204965\pi\)
\(500\) 0 0
\(501\) −9.87765 + 17.1086i −0.441301 + 0.764355i
\(502\) 0 0
\(503\) −14.7170 14.7170i −0.656199 0.656199i 0.298280 0.954478i \(-0.403587\pi\)
−0.954478 + 0.298280i \(0.903587\pi\)
\(504\) 0 0
\(505\) 5.17858 0.535967i 0.230444 0.0238502i
\(506\) 0 0
\(507\) −2.51813 9.39780i −0.111834 0.417371i
\(508\) 0 0
\(509\) 5.13342 + 8.89134i 0.227535 + 0.394102i 0.957077 0.289834i \(-0.0936001\pi\)
−0.729542 + 0.683936i \(0.760267\pi\)
\(510\) 0 0
\(511\) 16.2724 15.2307i 0.719848 0.673765i
\(512\) 0 0
\(513\) 0.341539 + 0.0915152i 0.0150793 + 0.00404049i
\(514\) 0 0
\(515\) −15.1165 39.5678i −0.666114 1.74357i
\(516\) 0 0
\(517\) 0.487523 0.487523i 0.0214412 0.0214412i
\(518\) 0 0
\(519\) 11.9453i 0.524341i
\(520\) 0 0
\(521\) 19.2739 + 11.1278i 0.844404 + 0.487517i 0.858759 0.512380i \(-0.171236\pi\)
−0.0143550 + 0.999897i \(0.504570\pi\)
\(522\) 0 0
\(523\) 4.74130 17.6948i 0.207323 0.773738i −0.781407 0.624022i \(-0.785497\pi\)
0.988729 0.149716i \(-0.0478359\pi\)
\(524\) 0 0
\(525\) −5.57478 11.9967i −0.243303 0.523581i
\(526\) 0 0
\(527\) 4.15490 15.5063i 0.180990 0.675465i
\(528\) 0 0
\(529\) −9.87443 5.70100i −0.429323 0.247870i
\(530\) 0 0
\(531\) 1.74619i 0.0757783i
\(532\) 0 0
\(533\) 6.24631 6.24631i 0.270558 0.270558i
\(534\) 0 0
\(535\) −0.865880 2.26646i −0.0374352 0.0979875i
\(536\) 0 0
\(537\) 23.4423 + 6.28135i 1.01161 + 0.271060i
\(538\) 0 0
\(539\) −3.55256 7.21590i −0.153019 0.310811i
\(540\) 0 0
\(541\) 4.99183 + 8.64610i 0.214615 + 0.371725i 0.953154 0.302487i \(-0.0978169\pi\)
−0.738538 + 0.674212i \(0.764484\pi\)
\(542\) 0 0
\(543\) 5.01819 + 18.7281i 0.215351 + 0.803701i
\(544\) 0 0
\(545\) 25.4420 2.63317i 1.08981 0.112793i
\(546\) 0 0
\(547\) −5.18970 5.18970i −0.221895 0.221895i 0.587401 0.809296i \(-0.300151\pi\)
−0.809296 + 0.587401i \(0.800151\pi\)
\(548\) 0 0
\(549\) 5.96392 10.3298i 0.254534 0.440866i
\(550\) 0 0
\(551\) −1.04482 + 0.603224i −0.0445106 + 0.0256982i
\(552\) 0 0
\(553\) 3.82497 6.14651i 0.162654 0.261376i
\(554\) 0 0
\(555\) 11.2483 + 15.5339i 0.477465 + 0.659376i
\(556\) 0 0
\(557\) −15.2377 + 4.08292i −0.645640 + 0.172999i −0.566757 0.823885i \(-0.691802\pi\)
−0.0788833 + 0.996884i \(0.525135\pi\)
\(558\) 0 0
\(559\) −8.23782 −0.348423
\(560\) 0 0
\(561\) 3.07022 0.129625
\(562\) 0 0
\(563\) 27.1328 7.27022i 1.14351 0.306403i 0.363150 0.931731i \(-0.381701\pi\)
0.780362 + 0.625327i \(0.215035\pi\)
\(564\) 0 0
\(565\) −5.88761 + 36.7942i −0.247694 + 1.54794i
\(566\) 0 0
\(567\) 0.0874408 2.64431i 0.00367217 0.111050i
\(568\) 0 0
\(569\) −14.1303 + 8.15812i −0.592372 + 0.342006i −0.766035 0.642799i \(-0.777773\pi\)
0.173663 + 0.984805i \(0.444440\pi\)
\(570\) 0 0
\(571\) 8.17973 14.1677i 0.342311 0.592900i −0.642550 0.766243i \(-0.722124\pi\)
0.984861 + 0.173343i \(0.0554570\pi\)
\(572\) 0 0
\(573\) 3.93114 + 3.93114i 0.164226 + 0.164226i
\(574\) 0 0
\(575\) −9.31943 + 14.2512i −0.388647 + 0.594318i
\(576\) 0 0
\(577\) −6.03993 22.5413i −0.251446 0.938408i −0.970033 0.242972i \(-0.921878\pi\)
0.718588 0.695436i \(-0.244789\pi\)
\(578\) 0 0
\(579\) 1.47570 + 2.55599i 0.0613282 + 0.106223i
\(580\) 0 0
\(581\) 7.81176 + 2.37249i 0.324087 + 0.0984276i
\(582\) 0 0
\(583\) 2.43992 + 0.653774i 0.101051 + 0.0270766i
\(584\) 0 0
\(585\) −3.77764 + 1.44321i −0.156186 + 0.0596695i
\(586\) 0 0
\(587\) 3.39180 3.39180i 0.139995 0.139995i −0.633636 0.773631i \(-0.718438\pi\)
0.773631 + 0.633636i \(0.218438\pi\)
\(588\) 0 0
\(589\) 2.12428i 0.0875295i
\(590\) 0 0
\(591\) −21.3145 12.3059i −0.876762 0.506199i
\(592\) 0 0
\(593\) 4.11594 15.3609i 0.169021 0.630796i −0.828472 0.560031i \(-0.810789\pi\)
0.997493 0.0707654i \(-0.0225442\pi\)
\(594\) 0 0
\(595\) 15.5186 + 3.01230i 0.636200 + 0.123492i
\(596\) 0 0
\(597\) −2.51763 + 9.39592i −0.103040 + 0.384549i
\(598\) 0 0
\(599\) −26.4226 15.2551i −1.07960 0.623307i −0.148811 0.988866i \(-0.547545\pi\)
−0.930788 + 0.365559i \(0.880878\pi\)
\(600\) 0 0
\(601\) 41.7609i 1.70346i 0.523980 + 0.851731i \(0.324447\pi\)
−0.523980 + 0.851731i \(0.675553\pi\)
\(602\) 0 0
\(603\) −3.58200 + 3.58200i −0.145871 + 0.145871i
\(604\) 0 0
\(605\) 19.7594 + 8.83512i 0.803333 + 0.359199i
\(606\) 0 0
\(607\) −12.7273 3.41028i −0.516587 0.138419i −0.00889954 0.999960i \(-0.502833\pi\)
−0.507687 + 0.861541i \(0.669500\pi\)
\(608\) 0 0
\(609\) 6.16886 + 6.59079i 0.249975 + 0.267072i
\(610\) 0 0
\(611\) −0.542600 0.939810i −0.0219512 0.0380206i
\(612\) 0 0
\(613\) 6.91603 + 25.8110i 0.279336 + 1.04250i 0.952880 + 0.303348i \(0.0981045\pi\)
−0.673544 + 0.739147i \(0.735229\pi\)
\(614\) 0 0
\(615\) 8.47709 + 6.88696i 0.341829 + 0.277709i
\(616\) 0 0
\(617\) −10.6207 10.6207i −0.427574 0.427574i 0.460227 0.887801i \(-0.347768\pi\)
−0.887801 + 0.460227i \(0.847768\pi\)
\(618\) 0 0
\(619\) −11.2987 + 19.5699i −0.454132 + 0.786579i −0.998638 0.0521778i \(-0.983384\pi\)
0.544506 + 0.838757i \(0.316717\pi\)
\(620\) 0 0
\(621\) −2.94932 + 1.70279i −0.118352 + 0.0683307i
\(622\) 0 0
\(623\) 29.7344 + 18.5037i 1.19128 + 0.741335i
\(624\) 0 0
\(625\) −20.1316 14.8230i −0.805263 0.592918i
\(626\) 0 0
\(627\) 0.392429 0.105151i 0.0156721 0.00419932i
\(628\) 0 0
\(629\) −22.9185 −0.913819
\(630\) 0 0
\(631\) 7.18933 0.286203 0.143101 0.989708i \(-0.454293\pi\)
0.143101 + 0.989708i \(0.454293\pi\)
\(632\) 0 0
\(633\) −17.7552 + 4.75750i −0.705707 + 0.189094i
\(634\) 0 0
\(635\) −44.9400 7.19105i −1.78339 0.285368i
\(636\) 0 0
\(637\) −12.4179 + 2.46154i −0.492015 + 0.0975298i
\(638\) 0 0
\(639\) −3.77463 + 2.17928i −0.149322 + 0.0862110i
\(640\) 0 0
\(641\) 4.87266 8.43969i 0.192458 0.333348i −0.753606 0.657326i \(-0.771687\pi\)
0.946064 + 0.323979i \(0.105021\pi\)
\(642\) 0 0
\(643\) 3.24259 + 3.24259i 0.127875 + 0.127875i 0.768148 0.640273i \(-0.221179\pi\)
−0.640273 + 0.768148i \(0.721179\pi\)
\(644\) 0 0
\(645\) −1.04856 10.1313i −0.0412869 0.398919i
\(646\) 0 0
\(647\) −2.68385 10.0163i −0.105513 0.393780i 0.892890 0.450275i \(-0.148674\pi\)
−0.998403 + 0.0564952i \(0.982007\pi\)
\(648\) 0 0
\(649\) 1.00319 + 1.73757i 0.0393786 + 0.0682057i
\(650\) 0 0
\(651\) −15.4811 + 3.60429i −0.606752 + 0.141263i
\(652\) 0 0
\(653\) −7.05023 1.88910i −0.275897 0.0739263i 0.118218 0.992988i \(-0.462282\pi\)
−0.394114 + 0.919061i \(0.628949\pi\)
\(654\) 0 0
\(655\) −17.9308 + 40.1016i −0.700616 + 1.56690i
\(656\) 0 0
\(657\) 5.95677 5.95677i 0.232396 0.232396i
\(658\) 0 0
\(659\) 11.8101i 0.460057i −0.973184 0.230028i \(-0.926118\pi\)
0.973184 0.230028i \(-0.0738819\pi\)
\(660\) 0 0
\(661\) −35.2128 20.3301i −1.36962 0.790750i −0.378740 0.925503i \(-0.623643\pi\)
−0.990879 + 0.134753i \(0.956976\pi\)
\(662\) 0 0
\(663\) 1.25073 4.66781i 0.0485745 0.181283i
\(664\) 0 0
\(665\) 2.08672 0.146465i 0.0809195 0.00567967i
\(666\) 0 0
\(667\) 3.00746 11.2240i 0.116449 0.434594i
\(668\) 0 0
\(669\) −14.0685 8.12245i −0.543919 0.314032i
\(670\) 0 0
\(671\) 13.7051i 0.529079i
\(672\) 0 0
\(673\) −9.97751 + 9.97751i −0.384605 + 0.384605i −0.872758 0.488153i \(-0.837671\pi\)
0.488153 + 0.872758i \(0.337671\pi\)
\(674\) 0 0
\(675\) −2.25577 4.46223i −0.0868248 0.171751i
\(676\) 0 0
\(677\) −2.65481 0.711353i −0.102033 0.0273395i 0.207442 0.978247i \(-0.433486\pi\)
−0.309474 + 0.950908i \(0.600153\pi\)
\(678\) 0 0
\(679\) −12.2733 + 40.4116i −0.471007 + 1.55085i
\(680\) 0 0
\(681\) 12.9438 + 22.4192i 0.496006 + 0.859107i
\(682\) 0 0
\(683\) 12.2443 + 45.6962i 0.468513 + 1.74852i 0.644971 + 0.764207i \(0.276869\pi\)
−0.176458 + 0.984308i \(0.556464\pi\)
\(684\) 0 0
\(685\) 0.107489 0.132307i 0.00410694 0.00505519i
\(686\) 0 0
\(687\) 10.9665 + 10.9665i 0.418400 + 0.418400i
\(688\) 0 0
\(689\) 1.98793 3.44320i 0.0757341 0.131175i
\(690\) 0 0
\(691\) −27.4191 + 15.8304i −1.04307 + 0.602219i −0.920702 0.390266i \(-0.872383\pi\)
−0.122371 + 0.992484i \(0.539050\pi\)
\(692\) 0 0
\(693\) −1.43214 2.68149i −0.0544027 0.101861i
\(694\) 0 0
\(695\) 16.0368 11.6125i 0.608309 0.440486i
\(696\) 0 0
\(697\) −12.6070 + 3.37804i −0.477525 + 0.127952i
\(698\) 0 0
\(699\) −19.8898 −0.752302
\(700\) 0 0
\(701\) −2.81268 −0.106233 −0.0531167 0.998588i \(-0.516916\pi\)
−0.0531167 + 0.998588i \(0.516916\pi\)
\(702\) 0 0
\(703\) −2.92939 + 0.784927i −0.110484 + 0.0296041i
\(704\) 0 0
\(705\) 1.08676 0.786940i 0.0409297 0.0296379i
\(706\) 0 0
\(707\) 6.15674 + 0.203589i 0.231548 + 0.00765674i
\(708\) 0 0
\(709\) −12.3526 + 7.13175i −0.463910 + 0.267839i −0.713687 0.700465i \(-0.752976\pi\)
0.249777 + 0.968303i \(0.419643\pi\)
\(710\) 0 0
\(711\) 1.36813 2.36967i 0.0513090 0.0888697i
\(712\) 0 0
\(713\) 14.4674 + 14.4674i 0.541810 + 0.541810i
\(714\) 0 0
\(715\) −2.92986 + 3.60634i −0.109571 + 0.134870i
\(716\) 0 0
\(717\) −3.67364 13.7102i −0.137195 0.512018i
\(718\) 0 0
\(719\) −10.6678 18.4772i −0.397843 0.689084i 0.595617 0.803269i \(-0.296908\pi\)
−0.993459 + 0.114185i \(0.963574\pi\)
\(720\) 0 0
\(721\) −11.3644 48.8121i −0.423231 1.81786i
\(722\) 0 0
\(723\) 4.99946 + 1.33960i 0.185932 + 0.0498203i
\(724\) 0 0
\(725\) 16.2083 + 5.32343i 0.601961 + 0.197707i
\(726\) 0 0
\(727\) −23.3102 + 23.3102i −0.864529 + 0.864529i −0.991860 0.127331i \(-0.959359\pi\)
0.127331 + 0.991860i \(0.459359\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 10.5408 + 6.08572i 0.389865 + 0.225089i
\(732\) 0 0
\(733\) −4.74908 + 17.7238i −0.175411 + 0.654644i 0.821070 + 0.570828i \(0.193378\pi\)
−0.996481 + 0.0838162i \(0.973289\pi\)
\(734\) 0 0
\(735\) −4.60795 14.9588i −0.169967 0.551765i
\(736\) 0 0
\(737\) −1.50646 + 5.62218i −0.0554911 + 0.207096i
\(738\) 0 0
\(739\) −15.4768 8.93552i −0.569322 0.328698i 0.187556 0.982254i \(-0.439943\pi\)
−0.756879 + 0.653555i \(0.773277\pi\)
\(740\) 0 0
\(741\) 0.639464i 0.0234913i
\(742\) 0 0
\(743\) −33.6457 + 33.6457i −1.23434 + 1.23434i −0.272061 + 0.962280i \(0.587705\pi\)
−0.962280 + 0.272061i \(0.912295\pi\)
\(744\) 0 0
\(745\) −6.53506 + 14.6154i −0.239426 + 0.535467i
\(746\) 0 0
\(747\) 2.98059 + 0.798647i 0.109054 + 0.0292210i
\(748\) 0 0
\(749\) −0.650955 2.79597i −0.0237854 0.102163i
\(750\) 0 0
\(751\) −16.9005 29.2726i −0.616709 1.06817i −0.990082 0.140491i \(-0.955132\pi\)
0.373373 0.927681i \(-0.378201\pi\)
\(752\) 0 0
\(753\) 5.59849 + 20.8938i 0.204020 + 0.761414i
\(754\) 0 0
\(755\) −0.728479 7.03865i −0.0265121 0.256163i
\(756\) 0 0
\(757\) 38.6362 + 38.6362i 1.40426 + 1.40426i 0.785889 + 0.618367i \(0.212206\pi\)
0.618367 + 0.785889i \(0.287794\pi\)
\(758\) 0 0
\(759\) −1.95651 + 3.38877i −0.0710167 + 0.123005i
\(760\) 0 0
\(761\) −1.25087 + 0.722188i −0.0453439 + 0.0261793i −0.522501 0.852639i \(-0.675001\pi\)
0.477157 + 0.878818i \(0.341667\pi\)
\(762\) 0 0
\(763\) 30.2476 + 1.00022i 1.09504 + 0.0362102i
\(764\) 0 0
\(765\) 5.89990 + 0.944070i 0.213311 + 0.0341329i
\(766\) 0 0
\(767\) 3.05039 0.817350i 0.110143 0.0295128i
\(768\) 0 0
\(769\) 19.4505 0.701404 0.350702 0.936487i \(-0.385943\pi\)
0.350702 + 0.936487i \(0.385943\pi\)
\(770\) 0 0
\(771\) 11.9647 0.430899
\(772\) 0 0
\(773\) 24.2176 6.48908i 0.871046 0.233396i 0.204506 0.978865i \(-0.434441\pi\)
0.666540 + 0.745469i \(0.267775\pi\)
\(774\) 0 0
\(775\) −22.3871 + 20.0289i −0.804169 + 0.719460i
\(776\) 0 0
\(777\) 10.6906 + 20.0167i 0.383524 + 0.718094i
\(778\) 0 0
\(779\) −1.49571 + 0.863547i −0.0535893 + 0.0309398i
\(780\) 0 0
\(781\) −2.50399 + 4.33704i −0.0895999 + 0.155192i
\(782\) 0 0
\(783\) 2.41266 + 2.41266i 0.0862216 + 0.0862216i
\(784\) 0 0
\(785\) −13.6302 11.0735i −0.486484 0.395230i
\(786\) 0 0
\(787\) −5.44211 20.3102i −0.193990 0.723982i −0.992526 0.122034i \(-0.961058\pi\)
0.798536 0.601948i \(-0.205608\pi\)
\(788\) 0 0
\(789\) −8.34569 14.4552i −0.297114 0.514617i
\(790\) 0 0
\(791\) −12.8124 + 42.1866i −0.455557 + 1.49998i
\(792\) 0 0
\(793\) −20.8365 5.58312i −0.739926 0.198263i
\(794\) 0 0
\(795\) 4.48765 + 2.00659i 0.159161 + 0.0711663i
\(796\) 0 0
\(797\) 35.0360 35.0360i 1.24104 1.24104i 0.281469 0.959570i \(-0.409178\pi\)
0.959570 0.281469i \(-0.0908217\pi\)
\(798\) 0 0
\(799\) 1.60339i 0.0567239i
\(800\) 0 0
\(801\) 11.4636 + 6.61849i 0.405045 + 0.233853i
\(802\) 0 0
\(803\) 2.50520 9.34952i 0.0884065 0.329937i
\(804\) 0 0
\(805\) −13.2141 + 15.2091i −0.465736 + 0.536051i
\(806\) 0 0
\(807\) 4.20337 15.6872i 0.147966 0.552215i
\(808\) 0 0
\(809\) −19.5041 11.2607i −0.685726 0.395904i 0.116283 0.993216i \(-0.462902\pi\)
−0.802009 + 0.597312i \(0.796235\pi\)
\(810\) 0 0
\(811\) 30.3063i 1.06420i −0.846682 0.532099i \(-0.821403\pi\)
0.846682 0.532099i \(-0.178597\pi\)
\(812\) 0 0
\(813\) 7.30397 7.30397i 0.256161 0.256161i
\(814\) 0 0
\(815\) 1.73322 0.662159i 0.0607119 0.0231944i
\(816\) 0 0
\(817\) 1.55573 + 0.416856i 0.0544280 + 0.0145839i
\(818\) 0 0
\(819\) −4.66022 + 1.08499i −0.162841 + 0.0379125i
\(820\) 0 0
\(821\) 3.85389 + 6.67513i 0.134502 + 0.232964i 0.925407 0.378975i \(-0.123723\pi\)
−0.790905 + 0.611939i \(0.790390\pi\)
\(822\) 0 0
\(823\) 5.42483 + 20.2458i 0.189098 + 0.705723i 0.993716 + 0.111930i \(0.0357033\pi\)
−0.804618 + 0.593792i \(0.797630\pi\)
\(824\) 0 0
\(825\) −4.80819 3.14425i −0.167400 0.109469i
\(826\) 0 0
\(827\) 10.1627 + 10.1627i 0.353391 + 0.353391i 0.861370 0.507979i \(-0.169607\pi\)
−0.507979 + 0.861370i \(0.669607\pi\)
\(828\) 0 0
\(829\) 5.76151 9.97922i 0.200105 0.346593i −0.748457 0.663184i \(-0.769205\pi\)
0.948562 + 0.316591i \(0.102538\pi\)
\(830\) 0 0
\(831\) −16.0971 + 9.29364i −0.558400 + 0.322393i
\(832\) 0 0
\(833\) 17.7079 + 6.02410i 0.613544 + 0.208723i
\(834\) 0 0
\(835\) −6.97972 + 43.6193i −0.241543 + 1.50951i
\(836\) 0 0
\(837\) −5.80308 + 1.55493i −0.200584 + 0.0537463i
\(838\) 0 0
\(839\) 15.2304 0.525813 0.262907 0.964821i \(-0.415319\pi\)
0.262907 + 0.964821i \(0.415319\pi\)
\(840\) 0 0
\(841\) 17.3581 0.598555
\(842\) 0 0
\(843\) −28.7884 + 7.71382i −0.991524 + 0.265678i
\(844\) 0 0
\(845\) −12.7595 17.6208i −0.438940 0.606174i
\(846\) 0 0
\(847\) 21.7439 + 13.5312i 0.747129 + 0.464937i
\(848\) 0 0
\(849\) −14.7525 + 8.51734i −0.506303 + 0.292314i
\(850\) 0 0
\(851\) 14.6049 25.2964i 0.500648 0.867148i
\(852\) 0 0
\(853\) 7.93430 + 7.93430i 0.271665 + 0.271665i 0.829770 0.558105i \(-0.188471\pi\)
−0.558105 + 0.829770i \(0.688471\pi\)
\(854\) 0 0
\(855\) 0.786445 0.0813947i 0.0268959 0.00278364i
\(856\) 0 0
\(857\) 6.13354 + 22.8907i 0.209518 + 0.781930i 0.988025 + 0.154295i \(0.0493105\pi\)
−0.778507 + 0.627636i \(0.784023\pi\)
\(858\) 0 0
\(859\) −20.5470 35.5885i −0.701055 1.21426i −0.968096 0.250578i \(-0.919379\pi\)
0.267041 0.963685i \(-0.413954\pi\)
\(860\) 0 0
\(861\) 8.83104 + 9.43506i 0.300961 + 0.321546i
\(862\) 0 0
\(863\) −15.8067 4.23539i −0.538066 0.144174i −0.0204557 0.999791i \(-0.506512\pi\)
−0.517611 + 0.855616i \(0.673178\pi\)
\(864\) 0 0
\(865\) 9.53254 + 24.9516i 0.324116 + 0.848381i
\(866\) 0 0
\(867\) 6.97206 6.97206i 0.236784 0.236784i
\(868\) 0 0
\(869\) 3.14397i 0.106652i
\(870\) 0 0
\(871\) 7.93398 + 4.58069i 0.268833 + 0.155211i
\(872\) 0 0
\(873\) −4.13154 + 15.4191i −0.139831 + 0.521858i
\(874\) 0 0
\(875\) −21.2183 20.6103i −0.717309 0.696755i
\(876\) 0 0
\(877\) 11.8762 44.3226i 0.401031 1.49667i −0.410230 0.911982i \(-0.634552\pi\)
0.811261 0.584685i \(-0.198782\pi\)
\(878\) 0 0
\(879\) 7.28684 + 4.20706i 0.245779 + 0.141901i
\(880\) 0 0
\(881\) 4.45125i 0.149967i 0.997185 + 0.0749833i \(0.0238903\pi\)
−0.997185 + 0.0749833i \(0.976110\pi\)
\(882\) 0 0
\(883\) −4.19508 + 4.19508i −0.141176 + 0.141176i −0.774162 0.632987i \(-0.781829\pi\)
0.632987 + 0.774162i \(0.281829\pi\)
\(884\) 0 0
\(885\) 1.39349 + 3.64748i 0.0468416 + 0.122609i
\(886\) 0 0
\(887\) 9.61172 + 2.57545i 0.322730 + 0.0864752i 0.416547 0.909114i \(-0.363240\pi\)
−0.0938170 + 0.995589i \(0.529907\pi\)
\(888\) 0 0
\(889\) −51.5262 15.6489i −1.72813 0.524847i
\(890\) 0 0
\(891\) −0.574500 0.995063i −0.0192465 0.0333359i
\(892\) 0 0
\(893\) 0.0549140 + 0.204942i 0.00183763 + 0.00685812i
\(894\) 0 0
\(895\) 53.9794 5.58671i 1.80433 0.186743i
\(896\) 0 0
\(897\) 4.35508 + 4.35508i 0.145412 + 0.145412i
\(898\) 0 0
\(899\) 10.2494 17.7524i 0.341835 0.592076i
\(900\) 0 0
\(901\) −5.08735 + 2.93719i −0.169484 + 0.0978518i
\(902\) 0 0
\(903\) 0.398297 12.0449i 0.0132545 0.400830i
\(904\) 0 0
\(905\) 25.4274 + 35.1151i 0.845236 + 1.16727i
\(906\) 0 0
\(907\) −2.27984 + 0.610881i −0.0757007 + 0.0202840i −0.296471 0.955042i \(-0.595810\pi\)
0.220770 + 0.975326i \(0.429143\pi\)
\(908\) 0 0
\(909\) 2.32830 0.0772249
\(910\) 0 0
\(911\) −8.72272 −0.288997 −0.144498 0.989505i \(-0.546157\pi\)
−0.144498 + 0.989505i \(0.546157\pi\)
\(912\) 0 0
\(913\) 3.42470 0.917645i 0.113341 0.0303696i
\(914\) 0 0
\(915\) 4.21421 26.3364i 0.139318 0.870655i
\(916\) 0 0
\(917\) −27.4615 + 44.1291i −0.906859 + 1.45727i
\(918\) 0 0
\(919\) 15.7670 9.10309i 0.520106 0.300283i −0.216872 0.976200i \(-0.569585\pi\)
0.736978 + 0.675917i \(0.236252\pi\)
\(920\) 0 0
\(921\) −5.61064 + 9.71792i −0.184877 + 0.320216i
\(922\) 0 0
\(923\) 5.57375 + 5.57375i 0.183462 + 0.183462i
\(924\) 0 0
\(925\) 35.8920 + 23.4711i 1.18012 + 0.771726i
\(926\) 0 0
\(927\) −4.90272 18.2972i −0.161026 0.600959i
\(928\) 0 0
\(929\) 18.4222 + 31.9082i 0.604414 + 1.04688i 0.992144 + 0.125103i \(0.0399260\pi\)
−0.387730 + 0.921773i \(0.626741\pi\)
\(930\) 0 0
\(931\) 2.46971 + 0.163513i 0.0809413 + 0.00535893i
\(932\) 0 0
\(933\) 18.2262 + 4.88369i 0.596699 + 0.159885i
\(934\) 0 0
\(935\) 6.41314 2.45008i 0.209732 0.0801262i
\(936\) 0 0
\(937\) −27.4546 + 27.4546i −0.896902 + 0.896902i −0.995161 0.0982591i \(-0.968673\pi\)
0.0982591 + 0.995161i \(0.468673\pi\)
\(938\) 0 0
\(939\) 11.3496i 0.370380i
\(940\) 0 0
\(941\) −32.1092 18.5382i −1.04673 0.604329i −0.124997 0.992157i \(-0.539892\pi\)
−0.921732 + 0.387828i \(0.873225\pi\)
\(942\) 0 0
\(943\) 4.30533 16.0677i 0.140201 0.523237i
\(944\) 0 0
\(945\) −1.92755 5.59326i −0.0627031 0.181949i
\(946\) 0 0
\(947\) 8.88381 33.1548i 0.288685 1.07739i −0.657419 0.753525i \(-0.728352\pi\)
0.946104 0.323862i \(-0.104981\pi\)
\(948\) 0 0
\(949\) −13.1940 7.61755i −0.428295 0.247276i
\(950\) 0 0
\(951\) 20.8786i 0.677036i
\(952\) 0 0
\(953\) −30.0574 + 30.0574i −0.973655 + 0.973655i −0.999662 0.0260068i \(-0.991721\pi\)
0.0260068 + 0.999662i \(0.491721\pi\)
\(954\) 0 0
\(955\) 11.3486 + 5.07434i 0.367230 + 0.164202i
\(956\) 0 0
\(957\) 3.78683 + 1.01468i 0.122411 + 0.0327999i
\(958\) 0 0
\(959\) 0.147259 0.137831i 0.00475523 0.00445081i
\(960\) 0 0
\(961\) 2.54680 + 4.41118i 0.0821547 + 0.142296i
\(962\) 0 0
\(963\) −0.280829 1.04807i −0.00904960 0.0337736i
\(964\) 0 0
\(965\) 5.12220 + 4.16138i 0.164890 + 0.133960i
\(966\) 0 0
\(967\) −37.5319 37.5319i −1.20694 1.20694i −0.972012 0.234931i \(-0.924514\pi\)
−0.234931 0.972012i \(-0.575486\pi\)
\(968\) 0 0
\(969\) −0.472407 + 0.818233i −0.0151759 + 0.0262854i
\(970\) 0 0
\(971\) −33.5821 + 19.3886i −1.07770 + 0.622210i −0.930275 0.366863i \(-0.880432\pi\)
−0.147425 + 0.989073i \(0.547098\pi\)
\(972\) 0 0
\(973\) 20.6647 11.0367i 0.662479 0.353821i
\(974\) 0 0
\(975\) −6.73911 + 6.02923i −0.215824 + 0.193090i
\(976\) 0 0
\(977\) 54.2472 14.5355i 1.73552 0.465031i 0.754078 0.656785i \(-0.228084\pi\)
0.981443 + 0.191754i \(0.0614175\pi\)
\(978\) 0 0
\(979\) 15.2093 0.486091
\(980\) 0 0
\(981\) 11.4388 0.365212
\(982\) 0 0
\(983\) −48.5203 + 13.0010i −1.54756 + 0.414667i −0.928698 0.370836i \(-0.879071\pi\)
−0.618858 + 0.785503i \(0.712404\pi\)
\(984\) 0 0
\(985\) −54.3426 8.69560i −1.73150 0.277065i
\(986\) 0 0
\(987\) 1.40038 0.747923i 0.0445745 0.0238066i
\(988\) 0 0
\(989\) −13.4343 + 7.75629i −0.427186 + 0.246636i
\(990\) 0 0
\(991\) 3.53895 6.12964i 0.112418 0.194714i −0.804326 0.594188i \(-0.797474\pi\)
0.916745 + 0.399473i \(0.130807\pi\)
\(992\) 0 0
\(993\) 9.44878 + 9.44878i 0.299848 + 0.299848i
\(994\) 0 0
\(995\) 2.23921 + 21.6355i 0.0709877 + 0.685891i
\(996\) 0 0
\(997\) 3.31265 + 12.3630i 0.104913 + 0.391540i 0.998335 0.0576775i \(-0.0183695\pi\)
−0.893422 + 0.449217i \(0.851703\pi\)
\(998\) 0 0
\(999\) 4.28851 + 7.42791i 0.135682 + 0.235009i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.dd.a.577.11 yes 48
5.3 odd 4 840.2.dd.b.73.12 yes 48
7.5 odd 6 840.2.dd.b.817.12 yes 48
35.33 even 12 inner 840.2.dd.a.313.11 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.dd.a.313.11 48 35.33 even 12 inner
840.2.dd.a.577.11 yes 48 1.1 even 1 trivial
840.2.dd.b.73.12 yes 48 5.3 odd 4
840.2.dd.b.817.12 yes 48 7.5 odd 6