Properties

Label 840.2.dd.b.577.8
Level $840$
Weight $2$
Character 840.577
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(73,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.dd (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 577.8
Character \(\chi\) \(=\) 840.577
Dual form 840.2.dd.b.313.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 - 0.258819i) q^{3} +(-1.93782 + 1.11573i) q^{5} +(2.10702 - 1.60015i) q^{7} +(0.866025 - 0.500000i) q^{9} +(2.59281 - 4.49089i) q^{11} +(-0.393426 - 0.393426i) q^{13} +(-1.58302 + 1.57925i) q^{15} +(1.10099 + 4.10895i) q^{17} +(-2.32458 - 4.02629i) q^{19} +(1.62108 - 2.09096i) q^{21} +(-3.65466 - 0.979264i) q^{23} +(2.51031 - 4.32416i) q^{25} +(0.707107 - 0.707107i) q^{27} +1.14155i q^{29} +(9.03971 + 5.21908i) q^{31} +(1.34214 - 5.00893i) q^{33} +(-2.29771 + 5.45166i) q^{35} +(1.75408 - 6.54631i) q^{37} +(-0.481847 - 0.278194i) q^{39} -3.89354i q^{41} +(8.49370 - 8.49370i) q^{43} +(-1.12034 + 1.93516i) q^{45} +(8.87026 + 2.37678i) q^{47} +(1.87906 - 6.74308i) q^{49} +(2.12695 + 3.68398i) q^{51} +(1.00442 + 3.74856i) q^{53} +(-0.0138177 + 11.5954i) q^{55} +(-3.28745 - 3.28745i) q^{57} +(-1.64769 + 2.85388i) q^{59} +(3.21272 - 1.85487i) q^{61} +(1.02466 - 2.43928i) q^{63} +(1.20135 + 0.323435i) q^{65} +(8.44346 - 2.26242i) q^{67} -3.78358 q^{69} -14.9427 q^{71} +(-10.6282 + 2.84783i) q^{73} +(1.30560 - 4.82653i) q^{75} +(-1.72296 - 13.6113i) q^{77} +(-14.8470 + 8.57194i) q^{79} +(0.500000 - 0.866025i) q^{81} +(-0.465956 - 0.465956i) q^{83} +(-6.71798 - 6.73401i) q^{85} +(0.295455 + 1.10265i) q^{87} +(-1.44086 - 2.49564i) q^{89} +(-1.45850 - 0.199417i) q^{91} +(10.0825 + 2.70159i) q^{93} +(8.99686 + 5.20864i) q^{95} +(-3.58097 + 3.58097i) q^{97} -5.18563i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{7} - 4 q^{11} - 16 q^{13} - 4 q^{15} + 4 q^{17} - 8 q^{19} + 48 q^{23} - 20 q^{25} + 24 q^{33} - 4 q^{37} + 12 q^{39} + 16 q^{43} + 4 q^{45} - 12 q^{47} + 12 q^{49} - 52 q^{53} + 56 q^{55} + 8 q^{57}+ \cdots - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.965926 0.258819i 0.557678 0.149429i
\(4\) 0 0
\(5\) −1.93782 + 1.11573i −0.866621 + 0.498968i
\(6\) 0 0
\(7\) 2.10702 1.60015i 0.796379 0.604799i
\(8\) 0 0
\(9\) 0.866025 0.500000i 0.288675 0.166667i
\(10\) 0 0
\(11\) 2.59281 4.49089i 0.781763 1.35405i −0.149151 0.988814i \(-0.547654\pi\)
0.930914 0.365238i \(-0.119013\pi\)
\(12\) 0 0
\(13\) −0.393426 0.393426i −0.109117 0.109117i 0.650440 0.759557i \(-0.274584\pi\)
−0.759557 + 0.650440i \(0.774584\pi\)
\(14\) 0 0
\(15\) −1.58302 + 1.57925i −0.408734 + 0.407762i
\(16\) 0 0
\(17\) 1.10099 + 4.10895i 0.267029 + 0.996567i 0.960997 + 0.276560i \(0.0891946\pi\)
−0.693967 + 0.720007i \(0.744139\pi\)
\(18\) 0 0
\(19\) −2.32458 4.02629i −0.533295 0.923695i −0.999244 0.0388828i \(-0.987620\pi\)
0.465948 0.884812i \(-0.345713\pi\)
\(20\) 0 0
\(21\) 1.62108 2.09096i 0.353748 0.456285i
\(22\) 0 0
\(23\) −3.65466 0.979264i −0.762050 0.204191i −0.143193 0.989695i \(-0.545737\pi\)
−0.618856 + 0.785504i \(0.712404\pi\)
\(24\) 0 0
\(25\) 2.51031 4.32416i 0.502063 0.864831i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 1.14155i 0.211980i 0.994367 + 0.105990i \(0.0338012\pi\)
−0.994367 + 0.105990i \(0.966199\pi\)
\(30\) 0 0
\(31\) 9.03971 + 5.21908i 1.62358 + 0.937374i 0.985952 + 0.167029i \(0.0534172\pi\)
0.637627 + 0.770345i \(0.279916\pi\)
\(32\) 0 0
\(33\) 1.34214 5.00893i 0.233636 0.871943i
\(34\) 0 0
\(35\) −2.29771 + 5.45166i −0.388383 + 0.921498i
\(36\) 0 0
\(37\) 1.75408 6.54631i 0.288369 1.07621i −0.657974 0.753041i \(-0.728586\pi\)
0.946342 0.323166i \(-0.104747\pi\)
\(38\) 0 0
\(39\) −0.481847 0.278194i −0.0771573 0.0445468i
\(40\) 0 0
\(41\) 3.89354i 0.608068i −0.952661 0.304034i \(-0.901666\pi\)
0.952661 0.304034i \(-0.0983337\pi\)
\(42\) 0 0
\(43\) 8.49370 8.49370i 1.29528 1.29528i 0.363799 0.931477i \(-0.381479\pi\)
0.931477 0.363799i \(-0.118521\pi\)
\(44\) 0 0
\(45\) −1.12034 + 1.93516i −0.167011 + 0.288476i
\(46\) 0 0
\(47\) 8.87026 + 2.37678i 1.29386 + 0.346689i 0.839125 0.543938i \(-0.183067\pi\)
0.454735 + 0.890627i \(0.349734\pi\)
\(48\) 0 0
\(49\) 1.87906 6.74308i 0.268438 0.963297i
\(50\) 0 0
\(51\) 2.12695 + 3.68398i 0.297832 + 0.515861i
\(52\) 0 0
\(53\) 1.00442 + 3.74856i 0.137968 + 0.514904i 0.999968 + 0.00799545i \(0.00254506\pi\)
−0.862000 + 0.506908i \(0.830788\pi\)
\(54\) 0 0
\(55\) −0.0138177 + 11.5954i −0.00186317 + 1.56352i
\(56\) 0 0
\(57\) −3.28745 3.28745i −0.435434 0.435434i
\(58\) 0 0
\(59\) −1.64769 + 2.85388i −0.214511 + 0.371544i −0.953121 0.302589i \(-0.902149\pi\)
0.738610 + 0.674133i \(0.235482\pi\)
\(60\) 0 0
\(61\) 3.21272 1.85487i 0.411347 0.237491i −0.280021 0.959994i \(-0.590342\pi\)
0.691368 + 0.722502i \(0.257008\pi\)
\(62\) 0 0
\(63\) 1.02466 2.43928i 0.129095 0.307320i
\(64\) 0 0
\(65\) 1.20135 + 0.323435i 0.149009 + 0.0401171i
\(66\) 0 0
\(67\) 8.44346 2.26242i 1.03153 0.276398i 0.296933 0.954898i \(-0.404036\pi\)
0.734600 + 0.678500i \(0.237370\pi\)
\(68\) 0 0
\(69\) −3.78358 −0.455490
\(70\) 0 0
\(71\) −14.9427 −1.77337 −0.886685 0.462373i \(-0.846998\pi\)
−0.886685 + 0.462373i \(0.846998\pi\)
\(72\) 0 0
\(73\) −10.6282 + 2.84783i −1.24394 + 0.333313i −0.819993 0.572374i \(-0.806023\pi\)
−0.423947 + 0.905687i \(0.639356\pi\)
\(74\) 0 0
\(75\) 1.30560 4.82653i 0.150758 0.557320i
\(76\) 0 0
\(77\) −1.72296 13.6113i −0.196350 1.55115i
\(78\) 0 0
\(79\) −14.8470 + 8.57194i −1.67042 + 0.964419i −0.703021 + 0.711169i \(0.748166\pi\)
−0.967401 + 0.253250i \(0.918501\pi\)
\(80\) 0 0
\(81\) 0.500000 0.866025i 0.0555556 0.0962250i
\(82\) 0 0
\(83\) −0.465956 0.465956i −0.0511453 0.0511453i 0.681072 0.732217i \(-0.261514\pi\)
−0.732217 + 0.681072i \(0.761514\pi\)
\(84\) 0 0
\(85\) −6.71798 6.73401i −0.728668 0.730406i
\(86\) 0 0
\(87\) 0.295455 + 1.10265i 0.0316761 + 0.118217i
\(88\) 0 0
\(89\) −1.44086 2.49564i −0.152731 0.264538i 0.779500 0.626403i \(-0.215473\pi\)
−0.932231 + 0.361865i \(0.882140\pi\)
\(90\) 0 0
\(91\) −1.45850 0.199417i −0.152892 0.0209046i
\(92\) 0 0
\(93\) 10.0825 + 2.70159i 1.04550 + 0.280142i
\(94\) 0 0
\(95\) 8.99686 + 5.20864i 0.923058 + 0.534396i
\(96\) 0 0
\(97\) −3.58097 + 3.58097i −0.363593 + 0.363593i −0.865134 0.501541i \(-0.832767\pi\)
0.501541 + 0.865134i \(0.332767\pi\)
\(98\) 0 0
\(99\) 5.18563i 0.521175i
\(100\) 0 0
\(101\) 2.59340 + 1.49730i 0.258053 + 0.148987i 0.623446 0.781866i \(-0.285732\pi\)
−0.365393 + 0.930853i \(0.619065\pi\)
\(102\) 0 0
\(103\) −2.44473 + 9.12385i −0.240886 + 0.899000i 0.734520 + 0.678587i \(0.237407\pi\)
−0.975407 + 0.220413i \(0.929259\pi\)
\(104\) 0 0
\(105\) −0.808421 + 5.86058i −0.0788938 + 0.571935i
\(106\) 0 0
\(107\) −4.59341 + 17.1428i −0.444062 + 1.65726i 0.274340 + 0.961633i \(0.411540\pi\)
−0.718402 + 0.695628i \(0.755126\pi\)
\(108\) 0 0
\(109\) −1.85248 1.06953i −0.177435 0.102442i 0.408652 0.912690i \(-0.365999\pi\)
−0.586087 + 0.810248i \(0.699332\pi\)
\(110\) 0 0
\(111\) 6.77724i 0.643267i
\(112\) 0 0
\(113\) −12.5269 + 12.5269i −1.17843 + 1.17843i −0.198284 + 0.980145i \(0.563537\pi\)
−0.980145 + 0.198284i \(0.936463\pi\)
\(114\) 0 0
\(115\) 8.17468 2.17996i 0.762292 0.203282i
\(116\) 0 0
\(117\) −0.537430 0.144004i −0.0496855 0.0133132i
\(118\) 0 0
\(119\) 8.89473 + 6.89589i 0.815379 + 0.632146i
\(120\) 0 0
\(121\) −7.94537 13.7618i −0.722306 1.25107i
\(122\) 0 0
\(123\) −1.00772 3.76087i −0.0908632 0.339106i
\(124\) 0 0
\(125\) −0.0399691 + 11.1803i −0.00357494 + 0.999994i
\(126\) 0 0
\(127\) 6.02008 + 6.02008i 0.534196 + 0.534196i 0.921818 0.387622i \(-0.126704\pi\)
−0.387622 + 0.921818i \(0.626704\pi\)
\(128\) 0 0
\(129\) 6.00595 10.4026i 0.528794 0.915899i
\(130\) 0 0
\(131\) 10.5610 6.09739i 0.922719 0.532732i 0.0382172 0.999269i \(-0.487832\pi\)
0.884501 + 0.466538i \(0.154499\pi\)
\(132\) 0 0
\(133\) −11.3406 4.76381i −0.983354 0.413074i
\(134\) 0 0
\(135\) −0.581310 + 2.15918i −0.0500312 + 0.185833i
\(136\) 0 0
\(137\) 13.7278 3.67836i 1.17285 0.314263i 0.380761 0.924674i \(-0.375662\pi\)
0.792085 + 0.610411i \(0.208996\pi\)
\(138\) 0 0
\(139\) −4.95654 −0.420408 −0.210204 0.977658i \(-0.567413\pi\)
−0.210204 + 0.977658i \(0.567413\pi\)
\(140\) 0 0
\(141\) 9.18316 0.773362
\(142\) 0 0
\(143\) −2.78691 + 0.746751i −0.233053 + 0.0624465i
\(144\) 0 0
\(145\) −1.27366 2.21212i −0.105771 0.183707i
\(146\) 0 0
\(147\) 0.0697977 6.99965i 0.00575681 0.577322i
\(148\) 0 0
\(149\) −0.210154 + 0.121333i −0.0172165 + 0.00993996i −0.508584 0.861013i \(-0.669831\pi\)
0.491367 + 0.870953i \(0.336497\pi\)
\(150\) 0 0
\(151\) −4.21957 + 7.30851i −0.343384 + 0.594758i −0.985059 0.172219i \(-0.944906\pi\)
0.641675 + 0.766977i \(0.278240\pi\)
\(152\) 0 0
\(153\) 3.00796 + 3.00796i 0.243179 + 0.243179i
\(154\) 0 0
\(155\) −23.3404 0.0278136i −1.87475 0.00223404i
\(156\) 0 0
\(157\) −1.10519 4.12461i −0.0882034 0.329180i 0.907698 0.419624i \(-0.137838\pi\)
−0.995902 + 0.0904442i \(0.971171\pi\)
\(158\) 0 0
\(159\) 1.94040 + 3.36086i 0.153883 + 0.266534i
\(160\) 0 0
\(161\) −9.26741 + 3.78467i −0.730374 + 0.298274i
\(162\) 0 0
\(163\) 12.6898 + 3.40022i 0.993941 + 0.266326i 0.718905 0.695108i \(-0.244644\pi\)
0.275036 + 0.961434i \(0.411310\pi\)
\(164\) 0 0
\(165\) 2.98777 + 11.2039i 0.232597 + 0.872221i
\(166\) 0 0
\(167\) −2.07382 + 2.07382i −0.160477 + 0.160477i −0.782778 0.622301i \(-0.786198\pi\)
0.622301 + 0.782778i \(0.286198\pi\)
\(168\) 0 0
\(169\) 12.6904i 0.976187i
\(170\) 0 0
\(171\) −4.02629 2.32458i −0.307898 0.177765i
\(172\) 0 0
\(173\) −2.81896 + 10.5205i −0.214322 + 0.799860i 0.772082 + 0.635523i \(0.219215\pi\)
−0.986404 + 0.164338i \(0.947451\pi\)
\(174\) 0 0
\(175\) −1.63001 13.1280i −0.123217 0.992380i
\(176\) 0 0
\(177\) −0.852907 + 3.18309i −0.0641084 + 0.239256i
\(178\) 0 0
\(179\) −15.7767 9.10869i −1.17921 0.680816i −0.223376 0.974732i \(-0.571708\pi\)
−0.955831 + 0.293917i \(0.905041\pi\)
\(180\) 0 0
\(181\) 13.2224i 0.982812i 0.870931 + 0.491406i \(0.163517\pi\)
−0.870931 + 0.491406i \(0.836483\pi\)
\(182\) 0 0
\(183\) 2.62318 2.62318i 0.193911 0.193911i
\(184\) 0 0
\(185\) 3.90479 + 14.6427i 0.287086 + 1.07655i
\(186\) 0 0
\(187\) 21.3075 + 5.70932i 1.55816 + 0.417507i
\(188\) 0 0
\(189\) 0.358413 2.62136i 0.0260707 0.190676i
\(190\) 0 0
\(191\) −1.40402 2.43183i −0.101591 0.175961i 0.810749 0.585394i \(-0.199060\pi\)
−0.912340 + 0.409433i \(0.865727\pi\)
\(192\) 0 0
\(193\) 3.67092 + 13.7001i 0.264239 + 0.986153i 0.962715 + 0.270519i \(0.0871953\pi\)
−0.698476 + 0.715634i \(0.746138\pi\)
\(194\) 0 0
\(195\) 1.24412 + 0.00148256i 0.0890935 + 0.000106168i
\(196\) 0 0
\(197\) −5.51870 5.51870i −0.393191 0.393191i 0.482632 0.875823i \(-0.339681\pi\)
−0.875823 + 0.482632i \(0.839681\pi\)
\(198\) 0 0
\(199\) 4.12786 7.14966i 0.292616 0.506826i −0.681811 0.731528i \(-0.738808\pi\)
0.974428 + 0.224702i \(0.0721408\pi\)
\(200\) 0 0
\(201\) 7.57020 4.37066i 0.533961 0.308282i
\(202\) 0 0
\(203\) 1.82665 + 2.40527i 0.128205 + 0.168817i
\(204\) 0 0
\(205\) 4.34412 + 7.54499i 0.303406 + 0.526965i
\(206\) 0 0
\(207\) −3.65466 + 0.979264i −0.254017 + 0.0680635i
\(208\) 0 0
\(209\) −24.1088 −1.66764
\(210\) 0 0
\(211\) −15.1499 −1.04296 −0.521480 0.853263i \(-0.674620\pi\)
−0.521480 + 0.853263i \(0.674620\pi\)
\(212\) 0 0
\(213\) −14.4335 + 3.86745i −0.988969 + 0.264993i
\(214\) 0 0
\(215\) −6.98264 + 25.9359i −0.476212 + 1.76881i
\(216\) 0 0
\(217\) 27.3981 3.46816i 1.85991 0.235434i
\(218\) 0 0
\(219\) −9.52901 + 5.50158i −0.643911 + 0.371762i
\(220\) 0 0
\(221\) 1.18341 2.04973i 0.0796048 0.137880i
\(222\) 0 0
\(223\) 19.8934 + 19.8934i 1.33216 + 1.33216i 0.903433 + 0.428729i \(0.141038\pi\)
0.428729 + 0.903433i \(0.358962\pi\)
\(224\) 0 0
\(225\) 0.0119165 4.99999i 0.000794433 0.333332i
\(226\) 0 0
\(227\) −3.10675 11.5946i −0.206202 0.769558i −0.989080 0.147382i \(-0.952915\pi\)
0.782877 0.622176i \(-0.213751\pi\)
\(228\) 0 0
\(229\) −9.20168 15.9378i −0.608064 1.05320i −0.991559 0.129655i \(-0.958613\pi\)
0.383495 0.923543i \(-0.374720\pi\)
\(230\) 0 0
\(231\) −5.18711 12.7015i −0.341287 0.835700i
\(232\) 0 0
\(233\) 11.4185 + 3.05959i 0.748053 + 0.200440i 0.612654 0.790351i \(-0.290102\pi\)
0.135399 + 0.990791i \(0.456768\pi\)
\(234\) 0 0
\(235\) −19.8408 + 5.29100i −1.29427 + 0.345147i
\(236\) 0 0
\(237\) −12.1226 + 12.1226i −0.787445 + 0.787445i
\(238\) 0 0
\(239\) 5.47505i 0.354151i 0.984197 + 0.177076i \(0.0566637\pi\)
−0.984197 + 0.177076i \(0.943336\pi\)
\(240\) 0 0
\(241\) 5.95534 + 3.43832i 0.383617 + 0.221481i 0.679391 0.733777i \(-0.262244\pi\)
−0.295774 + 0.955258i \(0.595577\pi\)
\(242\) 0 0
\(243\) 0.258819 0.965926i 0.0166032 0.0619642i
\(244\) 0 0
\(245\) 3.88214 + 15.1634i 0.248021 + 0.968755i
\(246\) 0 0
\(247\) −0.669498 + 2.49860i −0.0425991 + 0.158982i
\(248\) 0 0
\(249\) −0.570677 0.329481i −0.0361652 0.0208800i
\(250\) 0 0
\(251\) 1.79547i 0.113329i 0.998393 + 0.0566646i \(0.0180466\pi\)
−0.998393 + 0.0566646i \(0.981953\pi\)
\(252\) 0 0
\(253\) −13.8736 + 13.8736i −0.872227 + 0.872227i
\(254\) 0 0
\(255\) −8.23197 4.76582i −0.515506 0.298447i
\(256\) 0 0
\(257\) −17.6785 4.73693i −1.10275 0.295481i −0.338867 0.940834i \(-0.610044\pi\)
−0.763885 + 0.645353i \(0.776710\pi\)
\(258\) 0 0
\(259\) −6.77918 16.6000i −0.421238 1.03147i
\(260\) 0 0
\(261\) 0.570775 + 0.988611i 0.0353301 + 0.0611935i
\(262\) 0 0
\(263\) −2.57434 9.60757i −0.158741 0.592428i −0.998756 0.0498654i \(-0.984121\pi\)
0.840015 0.542563i \(-0.182546\pi\)
\(264\) 0 0
\(265\) −6.12875 6.14338i −0.376486 0.377385i
\(266\) 0 0
\(267\) −2.03769 2.03769i −0.124704 0.124704i
\(268\) 0 0
\(269\) −12.7900 + 22.1530i −0.779823 + 1.35069i 0.152221 + 0.988347i \(0.451358\pi\)
−0.932044 + 0.362346i \(0.881976\pi\)
\(270\) 0 0
\(271\) −7.57164 + 4.37149i −0.459945 + 0.265549i −0.712021 0.702158i \(-0.752220\pi\)
0.252076 + 0.967707i \(0.418887\pi\)
\(272\) 0 0
\(273\) −1.46041 + 0.184865i −0.0883882 + 0.0111885i
\(274\) 0 0
\(275\) −12.9105 22.4853i −0.778533 1.35591i
\(276\) 0 0
\(277\) −5.21230 + 1.39663i −0.313177 + 0.0839155i −0.411984 0.911191i \(-0.635164\pi\)
0.0988070 + 0.995107i \(0.468497\pi\)
\(278\) 0 0
\(279\) 10.4382 0.624916
\(280\) 0 0
\(281\) 0.500607 0.0298637 0.0149319 0.999889i \(-0.495247\pi\)
0.0149319 + 0.999889i \(0.495247\pi\)
\(282\) 0 0
\(283\) 2.82905 0.758042i 0.168170 0.0450609i −0.173752 0.984789i \(-0.555589\pi\)
0.341921 + 0.939729i \(0.388922\pi\)
\(284\) 0 0
\(285\) 10.0384 + 2.70261i 0.594623 + 0.160089i
\(286\) 0 0
\(287\) −6.23023 8.20376i −0.367759 0.484253i
\(288\) 0 0
\(289\) −0.948865 + 0.547827i −0.0558156 + 0.0322251i
\(290\) 0 0
\(291\) −2.53213 + 4.38578i −0.148436 + 0.257099i
\(292\) 0 0
\(293\) 7.44336 + 7.44336i 0.434846 + 0.434846i 0.890273 0.455427i \(-0.150513\pi\)
−0.455427 + 0.890273i \(0.650513\pi\)
\(294\) 0 0
\(295\) 0.00878090 7.36869i 0.000511244 0.429021i
\(296\) 0 0
\(297\) −1.34214 5.00893i −0.0778788 0.290648i
\(298\) 0 0
\(299\) 1.05257 + 1.82311i 0.0608718 + 0.105433i
\(300\) 0 0
\(301\) 4.30523 31.4875i 0.248149 1.81491i
\(302\) 0 0
\(303\) 2.89256 + 0.775060i 0.166173 + 0.0445261i
\(304\) 0 0
\(305\) −4.15616 + 7.17892i −0.237981 + 0.411064i
\(306\) 0 0
\(307\) −9.68865 + 9.68865i −0.552960 + 0.552960i −0.927294 0.374334i \(-0.877871\pi\)
0.374334 + 0.927294i \(0.377871\pi\)
\(308\) 0 0
\(309\) 9.44571i 0.537347i
\(310\) 0 0
\(311\) 9.90068 + 5.71616i 0.561416 + 0.324134i 0.753714 0.657203i \(-0.228261\pi\)
−0.192298 + 0.981337i \(0.561594\pi\)
\(312\) 0 0
\(313\) −3.94369 + 14.7181i −0.222911 + 0.831914i 0.760320 + 0.649549i \(0.225042\pi\)
−0.983231 + 0.182366i \(0.941625\pi\)
\(314\) 0 0
\(315\) 0.735956 + 5.87013i 0.0414664 + 0.330744i
\(316\) 0 0
\(317\) 2.63416 9.83081i 0.147949 0.552153i −0.851657 0.524099i \(-0.824402\pi\)
0.999606 0.0280544i \(-0.00893118\pi\)
\(318\) 0 0
\(319\) 5.12657 + 2.95983i 0.287033 + 0.165718i
\(320\) 0 0
\(321\) 17.7476i 0.990573i
\(322\) 0 0
\(323\) 13.9845 13.9845i 0.778118 0.778118i
\(324\) 0 0
\(325\) −2.68886 + 0.713614i −0.149151 + 0.0395842i
\(326\) 0 0
\(327\) −2.06617 0.553630i −0.114260 0.0306158i
\(328\) 0 0
\(329\) 22.4930 9.18579i 1.24008 0.506429i
\(330\) 0 0
\(331\) −0.188793 0.326998i −0.0103770 0.0179735i 0.860790 0.508960i \(-0.169970\pi\)
−0.871167 + 0.490986i \(0.836636\pi\)
\(332\) 0 0
\(333\) −1.75408 6.54631i −0.0961229 0.358736i
\(334\) 0 0
\(335\) −13.8377 + 13.8048i −0.756034 + 0.754234i
\(336\) 0 0
\(337\) 3.98808 + 3.98808i 0.217244 + 0.217244i 0.807336 0.590092i \(-0.200908\pi\)
−0.590092 + 0.807336i \(0.700908\pi\)
\(338\) 0 0
\(339\) −8.85783 + 15.3422i −0.481091 + 0.833275i
\(340\) 0 0
\(341\) 46.8765 27.0642i 2.53851 1.46561i
\(342\) 0 0
\(343\) −6.83069 17.2146i −0.368823 0.929500i
\(344\) 0 0
\(345\) 7.33192 4.22144i 0.394737 0.227275i
\(346\) 0 0
\(347\) 23.0111 6.16581i 1.23530 0.330998i 0.418660 0.908143i \(-0.362500\pi\)
0.816641 + 0.577145i \(0.195833\pi\)
\(348\) 0 0
\(349\) −19.6652 −1.05265 −0.526326 0.850283i \(-0.676431\pi\)
−0.526326 + 0.850283i \(0.676431\pi\)
\(350\) 0 0
\(351\) −0.556389 −0.0296978
\(352\) 0 0
\(353\) 32.4454 8.69371i 1.72689 0.462720i 0.747430 0.664341i \(-0.231288\pi\)
0.979464 + 0.201621i \(0.0646210\pi\)
\(354\) 0 0
\(355\) 28.9563 16.6719i 1.53684 0.884855i
\(356\) 0 0
\(357\) 10.3764 + 4.35880i 0.549179 + 0.230692i
\(358\) 0 0
\(359\) −0.716930 + 0.413919i −0.0378381 + 0.0218458i −0.518800 0.854896i \(-0.673621\pi\)
0.480962 + 0.876742i \(0.340288\pi\)
\(360\) 0 0
\(361\) −1.30735 + 2.26440i −0.0688078 + 0.119179i
\(362\) 0 0
\(363\) −11.2364 11.2364i −0.589760 0.589760i
\(364\) 0 0
\(365\) 17.4182 17.3768i 0.911712 0.909542i
\(366\) 0 0
\(367\) 2.42925 + 9.06608i 0.126806 + 0.473246i 0.999898 0.0143102i \(-0.00455523\pi\)
−0.873092 + 0.487556i \(0.837889\pi\)
\(368\) 0 0
\(369\) −1.94677 3.37190i −0.101345 0.175534i
\(370\) 0 0
\(371\) 8.11458 + 6.29106i 0.421288 + 0.326615i
\(372\) 0 0
\(373\) 20.3624 + 5.45608i 1.05432 + 0.282505i 0.744037 0.668138i \(-0.232909\pi\)
0.310286 + 0.950643i \(0.399575\pi\)
\(374\) 0 0
\(375\) 2.85506 + 10.8097i 0.147435 + 0.558208i
\(376\) 0 0
\(377\) 0.449116 0.449116i 0.0231306 0.0231306i
\(378\) 0 0
\(379\) 17.2469i 0.885915i −0.896543 0.442958i \(-0.853929\pi\)
0.896543 0.442958i \(-0.146071\pi\)
\(380\) 0 0
\(381\) 7.37306 + 4.25684i 0.377734 + 0.218085i
\(382\) 0 0
\(383\) 0.310019 1.15701i 0.0158413 0.0591204i −0.957553 0.288258i \(-0.906924\pi\)
0.973394 + 0.229138i \(0.0735906\pi\)
\(384\) 0 0
\(385\) 18.5252 + 24.4539i 0.944133 + 1.24628i
\(386\) 0 0
\(387\) 3.10891 11.6026i 0.158035 0.589794i
\(388\) 0 0
\(389\) −16.3871 9.46111i −0.830860 0.479697i 0.0232869 0.999729i \(-0.492587\pi\)
−0.854147 + 0.520031i \(0.825920\pi\)
\(390\) 0 0
\(391\) 16.0950i 0.813958i
\(392\) 0 0
\(393\) 8.62302 8.62302i 0.434974 0.434974i
\(394\) 0 0
\(395\) 19.2070 33.1761i 0.966409 1.66927i
\(396\) 0 0
\(397\) 8.54635 + 2.28999i 0.428929 + 0.114931i 0.466823 0.884351i \(-0.345398\pi\)
−0.0378944 + 0.999282i \(0.512065\pi\)
\(398\) 0 0
\(399\) −12.1871 1.66632i −0.610120 0.0834204i
\(400\) 0 0
\(401\) −1.29046 2.23514i −0.0644426 0.111618i 0.832004 0.554770i \(-0.187194\pi\)
−0.896447 + 0.443152i \(0.853860\pi\)
\(402\) 0 0
\(403\) −1.50314 5.60978i −0.0748766 0.279443i
\(404\) 0 0
\(405\) −0.00266461 + 2.23607i −0.000132406 + 0.111111i
\(406\) 0 0
\(407\) −24.8507 24.8507i −1.23180 1.23180i
\(408\) 0 0
\(409\) −13.9599 + 24.1793i −0.690273 + 1.19559i 0.281476 + 0.959568i \(0.409176\pi\)
−0.971748 + 0.236019i \(0.924157\pi\)
\(410\) 0 0
\(411\) 12.3080 7.10604i 0.607110 0.350515i
\(412\) 0 0
\(413\) 1.09492 + 8.64973i 0.0538772 + 0.425625i
\(414\) 0 0
\(415\) 1.42282 + 0.383061i 0.0698434 + 0.0188037i
\(416\) 0 0
\(417\) −4.78765 + 1.28285i −0.234452 + 0.0628213i
\(418\) 0 0
\(419\) 13.4480 0.656980 0.328490 0.944508i \(-0.393460\pi\)
0.328490 + 0.944508i \(0.393460\pi\)
\(420\) 0 0
\(421\) −15.1153 −0.736676 −0.368338 0.929692i \(-0.620073\pi\)
−0.368338 + 0.929692i \(0.620073\pi\)
\(422\) 0 0
\(423\) 8.87026 2.37678i 0.431287 0.115563i
\(424\) 0 0
\(425\) 20.5316 + 5.55390i 0.995928 + 0.269404i
\(426\) 0 0
\(427\) 3.80121 9.04907i 0.183954 0.437915i
\(428\) 0 0
\(429\) −2.49868 + 1.44261i −0.120637 + 0.0696500i
\(430\) 0 0
\(431\) 17.9055 31.0133i 0.862479 1.49386i −0.00705073 0.999975i \(-0.502244\pi\)
0.869529 0.493881i \(-0.164422\pi\)
\(432\) 0 0
\(433\) −11.7831 11.7831i −0.566261 0.566261i 0.364818 0.931079i \(-0.381131\pi\)
−0.931079 + 0.364818i \(0.881131\pi\)
\(434\) 0 0
\(435\) −1.80280 1.80710i −0.0864375 0.0866437i
\(436\) 0 0
\(437\) 4.55275 + 16.9911i 0.217788 + 0.812795i
\(438\) 0 0
\(439\) 19.3867 + 33.5788i 0.925279 + 1.60263i 0.791112 + 0.611671i \(0.209502\pi\)
0.134167 + 0.990959i \(0.457164\pi\)
\(440\) 0 0
\(441\) −1.74422 6.77921i −0.0830583 0.322820i
\(442\) 0 0
\(443\) −11.3631 3.04474i −0.539878 0.144660i −0.0214319 0.999770i \(-0.506823\pi\)
−0.518446 + 0.855111i \(0.673489\pi\)
\(444\) 0 0
\(445\) 5.57659 + 3.22851i 0.264356 + 0.153046i
\(446\) 0 0
\(447\) −0.171590 + 0.171590i −0.00811595 + 0.00811595i
\(448\) 0 0
\(449\) 8.88927i 0.419511i 0.977754 + 0.209755i \(0.0672668\pi\)
−0.977754 + 0.209755i \(0.932733\pi\)
\(450\) 0 0
\(451\) −17.4854 10.0952i −0.823357 0.475365i
\(452\) 0 0
\(453\) −2.18421 + 8.15158i −0.102623 + 0.382995i
\(454\) 0 0
\(455\) 3.04880 1.24085i 0.142930 0.0581718i
\(456\) 0 0
\(457\) −4.57271 + 17.0656i −0.213902 + 0.798295i 0.772648 + 0.634835i \(0.218932\pi\)
−0.986550 + 0.163460i \(0.947735\pi\)
\(458\) 0 0
\(459\) 3.68398 + 2.12695i 0.171954 + 0.0992775i
\(460\) 0 0
\(461\) 17.7227i 0.825427i 0.910861 + 0.412713i \(0.135419\pi\)
−0.910861 + 0.412713i \(0.864581\pi\)
\(462\) 0 0
\(463\) −6.25998 + 6.25998i −0.290926 + 0.290926i −0.837446 0.546520i \(-0.815952\pi\)
0.546520 + 0.837446i \(0.315952\pi\)
\(464\) 0 0
\(465\) −22.5523 + 6.01408i −1.04584 + 0.278896i
\(466\) 0 0
\(467\) 19.2991 + 5.17117i 0.893054 + 0.239293i 0.676031 0.736873i \(-0.263699\pi\)
0.217023 + 0.976166i \(0.430365\pi\)
\(468\) 0 0
\(469\) 14.1703 18.2777i 0.654325 0.843987i
\(470\) 0 0
\(471\) −2.13505 3.69802i −0.0983781 0.170396i
\(472\) 0 0
\(473\) −16.1216 60.1668i −0.741274 2.76647i
\(474\) 0 0
\(475\) −23.2457 0.0554017i −1.06659 0.00254200i
\(476\) 0 0
\(477\) 2.74413 + 2.74413i 0.125645 + 0.125645i
\(478\) 0 0
\(479\) 8.60064 14.8967i 0.392973 0.680650i −0.599867 0.800100i \(-0.704780\pi\)
0.992840 + 0.119450i \(0.0381131\pi\)
\(480\) 0 0
\(481\) −3.26559 + 1.88539i −0.148898 + 0.0859664i
\(482\) 0 0
\(483\) −7.97209 + 6.05429i −0.362742 + 0.275480i
\(484\) 0 0
\(485\) 2.94391 10.9347i 0.133676 0.496518i
\(486\) 0 0
\(487\) 34.9724 9.37082i 1.58475 0.424632i 0.644357 0.764725i \(-0.277125\pi\)
0.940392 + 0.340092i \(0.110458\pi\)
\(488\) 0 0
\(489\) 13.1374 0.594095
\(490\) 0 0
\(491\) −17.4962 −0.789592 −0.394796 0.918769i \(-0.629185\pi\)
−0.394796 + 0.918769i \(0.629185\pi\)
\(492\) 0 0
\(493\) −4.69057 + 1.25683i −0.211253 + 0.0566050i
\(494\) 0 0
\(495\) 5.78574 + 10.0488i 0.260050 + 0.451661i
\(496\) 0 0
\(497\) −31.4845 + 23.9105i −1.41227 + 1.07253i
\(498\) 0 0
\(499\) −1.03820 + 0.599404i −0.0464761 + 0.0268330i −0.523058 0.852297i \(-0.675209\pi\)
0.476582 + 0.879130i \(0.341876\pi\)
\(500\) 0 0
\(501\) −1.46641 + 2.53990i −0.0655146 + 0.113475i
\(502\) 0 0
\(503\) −11.2555 11.2555i −0.501856 0.501856i 0.410158 0.912014i \(-0.365473\pi\)
−0.912014 + 0.410158i \(0.865473\pi\)
\(504\) 0 0
\(505\) −6.69613 0.00797945i −0.297974 0.000355081i
\(506\) 0 0
\(507\) −3.28453 12.2580i −0.145871 0.544398i
\(508\) 0 0
\(509\) −15.8833 27.5106i −0.704013 1.21939i −0.967047 0.254600i \(-0.918056\pi\)
0.263034 0.964787i \(-0.415277\pi\)
\(510\) 0 0
\(511\) −17.8369 + 23.0071i −0.789060 + 1.01778i
\(512\) 0 0
\(513\) −4.49074 1.20329i −0.198271 0.0531266i
\(514\) 0 0
\(515\) −5.44226 20.4081i −0.239815 0.899286i
\(516\) 0 0
\(517\) 33.6728 33.6728i 1.48093 1.48093i
\(518\) 0 0
\(519\) 10.8916i 0.478090i
\(520\) 0 0
\(521\) 19.9889 + 11.5406i 0.875729 + 0.505602i 0.869248 0.494377i \(-0.164604\pi\)
0.00648104 + 0.999979i \(0.497937\pi\)
\(522\) 0 0
\(523\) −2.09691 + 7.82579i −0.0916917 + 0.342198i −0.996497 0.0836272i \(-0.973349\pi\)
0.904805 + 0.425825i \(0.140016\pi\)
\(524\) 0 0
\(525\) −4.97223 12.2587i −0.217006 0.535016i
\(526\) 0 0
\(527\) −11.4923 + 42.8899i −0.500613 + 1.86831i
\(528\) 0 0
\(529\) −7.52099 4.34224i −0.326999 0.188793i
\(530\) 0 0
\(531\) 3.29538i 0.143007i
\(532\) 0 0
\(533\) −1.53182 + 1.53182i −0.0663505 + 0.0663505i
\(534\) 0 0
\(535\) −10.2255 38.3448i −0.442086 1.65779i
\(536\) 0 0
\(537\) −17.5966 4.71501i −0.759351 0.203468i
\(538\) 0 0
\(539\) −25.4103 25.9222i −1.09450 1.11655i
\(540\) 0 0
\(541\) 12.5563 + 21.7482i 0.539838 + 0.935026i 0.998912 + 0.0466286i \(0.0148477\pi\)
−0.459075 + 0.888398i \(0.651819\pi\)
\(542\) 0 0
\(543\) 3.42220 + 12.7718i 0.146861 + 0.548092i
\(544\) 0 0
\(545\) 4.78308 + 0.00569976i 0.204885 + 0.000244151i
\(546\) 0 0
\(547\) 22.2969 + 22.2969i 0.953346 + 0.953346i 0.998959 0.0456133i \(-0.0145242\pi\)
−0.0456133 + 0.998959i \(0.514524\pi\)
\(548\) 0 0
\(549\) 1.85487 3.21272i 0.0791638 0.137116i
\(550\) 0 0
\(551\) 4.59621 2.65362i 0.195805 0.113048i
\(552\) 0 0
\(553\) −17.5666 + 41.8187i −0.747009 + 1.77831i
\(554\) 0 0
\(555\) 7.56154 + 13.1331i 0.320969 + 0.557468i
\(556\) 0 0
\(557\) 8.41446 2.25465i 0.356532 0.0955325i −0.0761070 0.997100i \(-0.524249\pi\)
0.432639 + 0.901567i \(0.357582\pi\)
\(558\) 0 0
\(559\) −6.68329 −0.282673
\(560\) 0 0
\(561\) 22.0591 0.931337
\(562\) 0 0
\(563\) 43.3368 11.6121i 1.82643 0.489390i 0.828883 0.559422i \(-0.188977\pi\)
0.997545 + 0.0700327i \(0.0223104\pi\)
\(564\) 0 0
\(565\) 10.2983 38.2514i 0.433253 1.60925i
\(566\) 0 0
\(567\) −0.332258 2.62481i −0.0139535 0.110231i
\(568\) 0 0
\(569\) 27.3249 15.7761i 1.14552 0.661367i 0.197730 0.980257i \(-0.436643\pi\)
0.947792 + 0.318890i \(0.103310\pi\)
\(570\) 0 0
\(571\) −15.5660 + 26.9610i −0.651415 + 1.12828i 0.331365 + 0.943503i \(0.392491\pi\)
−0.982780 + 0.184781i \(0.940842\pi\)
\(572\) 0 0
\(573\) −1.98558 1.98558i −0.0829489 0.0829489i
\(574\) 0 0
\(575\) −13.4088 + 13.3451i −0.559187 + 0.556528i
\(576\) 0 0
\(577\) 9.60444 + 35.8443i 0.399838 + 1.49222i 0.813381 + 0.581731i \(0.197624\pi\)
−0.413543 + 0.910485i \(0.635709\pi\)
\(578\) 0 0
\(579\) 7.09168 + 12.2831i 0.294720 + 0.510470i
\(580\) 0 0
\(581\) −1.72738 0.236181i −0.0716636 0.00979842i
\(582\) 0 0
\(583\) 19.4386 + 5.20856i 0.805065 + 0.215717i
\(584\) 0 0
\(585\) 1.20211 0.320571i 0.0497013 0.0132540i
\(586\) 0 0
\(587\) −0.794072 + 0.794072i −0.0327749 + 0.0327749i −0.723304 0.690529i \(-0.757378\pi\)
0.690529 + 0.723304i \(0.257378\pi\)
\(588\) 0 0
\(589\) 48.5287i 1.99959i
\(590\) 0 0
\(591\) −6.75901 3.90231i −0.278028 0.160520i
\(592\) 0 0
\(593\) −5.73471 + 21.4022i −0.235496 + 0.878884i 0.742428 + 0.669926i \(0.233674\pi\)
−0.977925 + 0.208958i \(0.932993\pi\)
\(594\) 0 0
\(595\) −24.9303 3.43894i −1.02204 0.140983i
\(596\) 0 0
\(597\) 2.13674 7.97441i 0.0874508 0.326371i
\(598\) 0 0
\(599\) 39.6891 + 22.9145i 1.62165 + 0.936261i 0.986479 + 0.163891i \(0.0524044\pi\)
0.635173 + 0.772370i \(0.280929\pi\)
\(600\) 0 0
\(601\) 0.0299652i 0.00122231i −1.00000 0.000611153i \(-0.999805\pi\)
1.00000 0.000611153i \(-0.000194536\pi\)
\(602\) 0 0
\(603\) 6.18104 6.18104i 0.251712 0.251712i
\(604\) 0 0
\(605\) 30.7511 + 17.8030i 1.25021 + 0.723796i
\(606\) 0 0
\(607\) −12.1749 3.26225i −0.494163 0.132410i 0.00312691 0.999995i \(-0.499005\pi\)
−0.497290 + 0.867585i \(0.665671\pi\)
\(608\) 0 0
\(609\) 2.38693 + 1.85054i 0.0967235 + 0.0749876i
\(610\) 0 0
\(611\) −2.55471 4.42488i −0.103352 0.179011i
\(612\) 0 0
\(613\) −5.42761 20.2561i −0.219219 0.818137i −0.984639 0.174605i \(-0.944135\pi\)
0.765420 0.643532i \(-0.222532\pi\)
\(614\) 0 0
\(615\) 6.14888 + 6.16356i 0.247947 + 0.248539i
\(616\) 0 0
\(617\) −25.1514 25.1514i −1.01256 1.01256i −0.999920 0.0126383i \(-0.995977\pi\)
−0.0126383 0.999920i \(-0.504023\pi\)
\(618\) 0 0
\(619\) −13.7908 + 23.8864i −0.554299 + 0.960074i 0.443659 + 0.896196i \(0.353680\pi\)
−0.997958 + 0.0638784i \(0.979653\pi\)
\(620\) 0 0
\(621\) −3.27668 + 1.89179i −0.131489 + 0.0759150i
\(622\) 0 0
\(623\) −7.02932 2.95278i −0.281624 0.118301i
\(624\) 0 0
\(625\) −12.3967 21.7100i −0.495866 0.868399i
\(626\) 0 0
\(627\) −23.2873 + 6.23982i −0.930006 + 0.249194i
\(628\) 0 0
\(629\) 28.8297 1.14951
\(630\) 0 0
\(631\) 21.2866 0.847405 0.423702 0.905801i \(-0.360730\pi\)
0.423702 + 0.905801i \(0.360730\pi\)
\(632\) 0 0
\(633\) −14.6337 + 3.92108i −0.581636 + 0.155849i
\(634\) 0 0
\(635\) −18.3826 4.94909i −0.729492 0.196399i
\(636\) 0 0
\(637\) −3.39218 + 1.91363i −0.134403 + 0.0758209i
\(638\) 0 0
\(639\) −12.9407 + 7.47134i −0.511928 + 0.295562i
\(640\) 0 0
\(641\) −9.64037 + 16.6976i −0.380772 + 0.659516i −0.991173 0.132577i \(-0.957675\pi\)
0.610401 + 0.792093i \(0.291008\pi\)
\(642\) 0 0
\(643\) 12.7834 + 12.7834i 0.504128 + 0.504128i 0.912718 0.408590i \(-0.133979\pi\)
−0.408590 + 0.912718i \(0.633979\pi\)
\(644\) 0 0
\(645\) −0.0320070 + 26.8594i −0.00126028 + 1.05759i
\(646\) 0 0
\(647\) 8.38484 + 31.2927i 0.329642 + 1.23024i 0.909562 + 0.415568i \(0.136417\pi\)
−0.579920 + 0.814673i \(0.696916\pi\)
\(648\) 0 0
\(649\) 8.54430 + 14.7992i 0.335393 + 0.580918i
\(650\) 0 0
\(651\) 25.5669 10.4411i 1.00205 0.409220i
\(652\) 0 0
\(653\) −13.3047 3.56499i −0.520653 0.139509i −0.0110846 0.999939i \(-0.503528\pi\)
−0.509569 + 0.860430i \(0.670195\pi\)
\(654\) 0 0
\(655\) −13.6623 + 23.5988i −0.533831 + 0.922083i
\(656\) 0 0
\(657\) −7.78040 + 7.78040i −0.303542 + 0.303542i
\(658\) 0 0
\(659\) 15.7465i 0.613398i −0.951807 0.306699i \(-0.900775\pi\)
0.951807 0.306699i \(-0.0992245\pi\)
\(660\) 0 0
\(661\) −40.3367 23.2884i −1.56892 0.905814i −0.996296 0.0859933i \(-0.972594\pi\)
−0.572620 0.819821i \(-0.694073\pi\)
\(662\) 0 0
\(663\) 0.612579 2.28617i 0.0237906 0.0887877i
\(664\) 0 0
\(665\) 27.2912 3.42158i 1.05831 0.132683i
\(666\) 0 0
\(667\) 1.11788 4.17198i 0.0432844 0.161540i
\(668\) 0 0
\(669\) 24.3644 + 14.0668i 0.941981 + 0.543853i
\(670\) 0 0
\(671\) 19.2373i 0.742647i
\(672\) 0 0
\(673\) −8.53678 + 8.53678i −0.329069 + 0.329069i −0.852232 0.523164i \(-0.824752\pi\)
0.523164 + 0.852232i \(0.324752\pi\)
\(674\) 0 0
\(675\) −1.28258 4.83270i −0.0493666 0.186011i
\(676\) 0 0
\(677\) −32.1586 8.61686i −1.23595 0.331173i −0.419059 0.907959i \(-0.637640\pi\)
−0.816895 + 0.576786i \(0.804307\pi\)
\(678\) 0 0
\(679\) −1.81510 + 13.2753i −0.0696571 + 0.509458i
\(680\) 0 0
\(681\) −6.00178 10.3954i −0.229989 0.398352i
\(682\) 0 0
\(683\) −7.99086 29.8223i −0.305762 1.14112i −0.932288 0.361718i \(-0.882190\pi\)
0.626526 0.779401i \(-0.284476\pi\)
\(684\) 0 0
\(685\) −22.4980 + 22.4445i −0.859605 + 0.857559i
\(686\) 0 0
\(687\) −13.0131 13.0131i −0.496483 0.496483i
\(688\) 0 0
\(689\) 1.07961 1.86995i 0.0411300 0.0712393i
\(690\) 0 0
\(691\) −1.74803 + 1.00923i −0.0664984 + 0.0383929i −0.532881 0.846190i \(-0.678890\pi\)
0.466382 + 0.884583i \(0.345557\pi\)
\(692\) 0 0
\(693\) −8.29776 10.9262i −0.315206 0.415053i
\(694\) 0 0
\(695\) 9.60490 5.53014i 0.364335 0.209770i
\(696\) 0 0
\(697\) 15.9984 4.28675i 0.605981 0.162372i
\(698\) 0 0
\(699\) 11.8213 0.447124
\(700\) 0 0
\(701\) −40.9294 −1.54588 −0.772942 0.634477i \(-0.781216\pi\)
−0.772942 + 0.634477i \(0.781216\pi\)
\(702\) 0 0
\(703\) −30.4349 + 8.15499i −1.14787 + 0.307571i
\(704\) 0 0
\(705\) −17.7953 + 10.2459i −0.670211 + 0.385883i
\(706\) 0 0
\(707\) 7.86025 0.994980i 0.295615 0.0374201i
\(708\) 0 0
\(709\) 4.41817 2.55083i 0.165928 0.0957985i −0.414736 0.909942i \(-0.636126\pi\)
0.580664 + 0.814143i \(0.302793\pi\)
\(710\) 0 0
\(711\) −8.57194 + 14.8470i −0.321473 + 0.556807i
\(712\) 0 0
\(713\) −27.9262 27.9262i −1.04585 1.04585i
\(714\) 0 0
\(715\) 4.56738 4.55650i 0.170810 0.170404i
\(716\) 0 0
\(717\) 1.41705 + 5.28849i 0.0529206 + 0.197502i
\(718\) 0 0
\(719\) −13.6654 23.6692i −0.509633 0.882710i −0.999938 0.0111593i \(-0.996448\pi\)
0.490305 0.871551i \(-0.336886\pi\)
\(720\) 0 0
\(721\) 9.44841 + 23.1361i 0.351877 + 0.861632i
\(722\) 0 0
\(723\) 6.64232 + 1.77980i 0.247030 + 0.0661916i
\(724\) 0 0
\(725\) 4.93624 + 2.86565i 0.183327 + 0.106427i
\(726\) 0 0
\(727\) −20.4882 + 20.4882i −0.759865 + 0.759865i −0.976298 0.216433i \(-0.930558\pi\)
0.216433 + 0.976298i \(0.430558\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 44.2517 + 25.5487i 1.63671 + 0.944953i
\(732\) 0 0
\(733\) −0.267095 + 0.996813i −0.00986538 + 0.0368181i −0.970683 0.240363i \(-0.922734\pi\)
0.960818 + 0.277181i \(0.0894002\pi\)
\(734\) 0 0
\(735\) 7.67444 + 13.6420i 0.283076 + 0.503191i
\(736\) 0 0
\(737\) 11.7321 43.7846i 0.432156 1.61283i
\(738\) 0 0
\(739\) 39.9751 + 23.0797i 1.47051 + 0.848999i 0.999452 0.0331038i \(-0.0105392\pi\)
0.471057 + 0.882103i \(0.343873\pi\)
\(740\) 0 0
\(741\) 2.58674i 0.0950263i
\(742\) 0 0
\(743\) 3.40540 3.40540i 0.124932 0.124932i −0.641876 0.766808i \(-0.721844\pi\)
0.766808 + 0.641876i \(0.221844\pi\)
\(744\) 0 0
\(745\) 0.271868 0.469596i 0.00996047 0.0172047i
\(746\) 0 0
\(747\) −0.636508 0.170552i −0.0232886 0.00624016i
\(748\) 0 0
\(749\) 17.7526 + 43.4704i 0.648668 + 1.58837i
\(750\) 0 0
\(751\) −22.2521 38.5417i −0.811990 1.40641i −0.911469 0.411368i \(-0.865051\pi\)
0.0994790 0.995040i \(-0.468282\pi\)
\(752\) 0 0
\(753\) 0.464703 + 1.73429i 0.0169347 + 0.0632012i
\(754\) 0 0
\(755\) 0.0224870 18.8705i 0.000818386 0.686767i
\(756\) 0 0
\(757\) 5.48138 + 5.48138i 0.199224 + 0.199224i 0.799667 0.600443i \(-0.205009\pi\)
−0.600443 + 0.799667i \(0.705009\pi\)
\(758\) 0 0
\(759\) −9.81013 + 16.9916i −0.356085 + 0.616758i
\(760\) 0 0
\(761\) −34.6531 + 20.0070i −1.25617 + 0.725253i −0.972329 0.233617i \(-0.924944\pi\)
−0.283846 + 0.958870i \(0.591610\pi\)
\(762\) 0 0
\(763\) −5.61462 + 0.710719i −0.203263 + 0.0257298i
\(764\) 0 0
\(765\) −9.18495 2.47284i −0.332083 0.0894056i
\(766\) 0 0
\(767\) 1.77104 0.474548i 0.0639484 0.0171349i
\(768\) 0 0
\(769\) 36.9229 1.33147 0.665737 0.746187i \(-0.268117\pi\)
0.665737 + 0.746187i \(0.268117\pi\)
\(770\) 0 0
\(771\) −18.3021 −0.659133
\(772\) 0 0
\(773\) 2.97774 0.797882i 0.107102 0.0286978i −0.204870 0.978789i \(-0.565677\pi\)
0.311972 + 0.950091i \(0.399011\pi\)
\(774\) 0 0
\(775\) 45.2606 25.9876i 1.62581 0.933502i
\(776\) 0 0
\(777\) −10.8446 14.2798i −0.389047 0.512284i
\(778\) 0 0
\(779\) −15.6765 + 9.05084i −0.561670 + 0.324280i
\(780\) 0 0
\(781\) −38.7436 + 67.1059i −1.38636 + 2.40124i
\(782\) 0 0
\(783\) 0.807198 + 0.807198i 0.0288469 + 0.0288469i
\(784\) 0 0
\(785\) 6.74358 + 6.75967i 0.240689 + 0.241263i
\(786\) 0 0
\(787\) −8.36596 31.2222i −0.298214 1.11295i −0.938631 0.344923i \(-0.887905\pi\)
0.640416 0.768028i \(-0.278762\pi\)
\(788\) 0 0
\(789\) −4.97324 8.61391i −0.177052 0.306663i
\(790\) 0 0
\(791\) −6.34953 + 46.4392i −0.225763 + 1.65119i
\(792\) 0 0
\(793\) −1.99372 0.534216i −0.0707992 0.0189706i
\(794\) 0 0
\(795\) −7.50994 4.34781i −0.266350 0.154201i
\(796\) 0 0
\(797\) −28.9968 + 28.9968i −1.02712 + 1.02712i −0.0274969 + 0.999622i \(0.508754\pi\)
−0.999622 + 0.0274969i \(0.991246\pi\)
\(798\) 0 0
\(799\) 39.0643i 1.38199i
\(800\) 0 0
\(801\) −2.49564 1.44086i −0.0881793 0.0509103i
\(802\) 0 0
\(803\) −14.7678 + 55.1140i −0.521143 + 1.94493i
\(804\) 0 0
\(805\) 13.7359 17.6739i 0.484128 0.622923i
\(806\) 0 0
\(807\) −6.62061 + 24.7085i −0.233057 + 0.869779i
\(808\) 0 0
\(809\) 12.2910 + 7.09622i 0.432129 + 0.249490i 0.700253 0.713894i \(-0.253070\pi\)
−0.268124 + 0.963384i \(0.586404\pi\)
\(810\) 0 0
\(811\) 33.7867i 1.18641i 0.805051 + 0.593206i \(0.202138\pi\)
−0.805051 + 0.593206i \(0.797862\pi\)
\(812\) 0 0
\(813\) −6.18222 + 6.18222i −0.216820 + 0.216820i
\(814\) 0 0
\(815\) −28.3843 + 7.56930i −0.994257 + 0.265141i
\(816\) 0 0
\(817\) −53.9424 14.4538i −1.88720 0.505675i
\(818\) 0 0
\(819\) −1.36280 + 0.556548i −0.0476202 + 0.0194474i
\(820\) 0 0
\(821\) −22.8091 39.5065i −0.796043 1.37879i −0.922175 0.386773i \(-0.873590\pi\)
0.126132 0.992013i \(-0.459744\pi\)
\(822\) 0 0
\(823\) −9.73381 36.3271i −0.339299 1.26628i −0.899132 0.437677i \(-0.855801\pi\)
0.559833 0.828606i \(-0.310865\pi\)
\(824\) 0 0
\(825\) −18.2902 18.3776i −0.636784 0.639826i
\(826\) 0 0
\(827\) 2.49357 + 2.49357i 0.0867099 + 0.0867099i 0.749131 0.662421i \(-0.230471\pi\)
−0.662421 + 0.749131i \(0.730471\pi\)
\(828\) 0 0
\(829\) 13.0725 22.6422i 0.454026 0.786397i −0.544605 0.838692i \(-0.683321\pi\)
0.998632 + 0.0522958i \(0.0166539\pi\)
\(830\) 0 0
\(831\) −4.67322 + 2.69809i −0.162112 + 0.0935956i
\(832\) 0 0
\(833\) 29.7758 + 0.296912i 1.03167 + 0.0102874i
\(834\) 0 0
\(835\) 1.70488 6.33252i 0.0590000 0.219146i
\(836\) 0 0
\(837\) 10.0825 2.70159i 0.348502 0.0933807i
\(838\) 0 0
\(839\) 45.3900 1.56704 0.783518 0.621369i \(-0.213423\pi\)
0.783518 + 0.621369i \(0.213423\pi\)
\(840\) 0 0
\(841\) 27.6969 0.955064
\(842\) 0 0
\(843\) 0.483550 0.129567i 0.0166543 0.00446251i
\(844\) 0 0
\(845\) 14.1590 + 24.5918i 0.487086 + 0.845984i
\(846\) 0 0
\(847\) −38.7619 16.2826i −1.33187 0.559476i
\(848\) 0 0
\(849\) 2.53646 1.46442i 0.0870510 0.0502589i
\(850\) 0 0
\(851\) −12.8211 + 22.2068i −0.439503 + 0.761241i
\(852\) 0 0
\(853\) 13.3034 + 13.3034i 0.455499 + 0.455499i 0.897175 0.441676i \(-0.145616\pi\)
−0.441676 + 0.897175i \(0.645616\pi\)
\(854\) 0 0
\(855\) 10.3958 + 0.0123882i 0.355530 + 0.000423667i
\(856\) 0 0
\(857\) −12.9662 48.3905i −0.442917 1.65299i −0.721379 0.692540i \(-0.756492\pi\)
0.278463 0.960447i \(-0.410175\pi\)
\(858\) 0 0
\(859\) −7.52733 13.0377i −0.256829 0.444841i 0.708561 0.705649i \(-0.249344\pi\)
−0.965391 + 0.260808i \(0.916011\pi\)
\(860\) 0 0
\(861\) −8.14123 6.31172i −0.277452 0.215103i
\(862\) 0 0
\(863\) 37.6350 + 10.0843i 1.28111 + 0.343272i 0.834277 0.551345i \(-0.185885\pi\)
0.446833 + 0.894618i \(0.352552\pi\)
\(864\) 0 0
\(865\) −6.27536 23.5321i −0.213369 0.800115i
\(866\) 0 0
\(867\) −0.774745 + 0.774745i −0.0263117 + 0.0263117i
\(868\) 0 0
\(869\) 88.9018i 3.01579i
\(870\) 0 0
\(871\) −4.21198 2.43179i −0.142717 0.0823979i
\(872\) 0 0
\(873\) −1.31073 + 4.89170i −0.0443614 + 0.165559i
\(874\) 0 0
\(875\) 17.8059 + 23.6210i 0.601948 + 0.798536i
\(876\) 0 0
\(877\) −5.15707 + 19.2465i −0.174142 + 0.649907i 0.822554 + 0.568687i \(0.192548\pi\)
−0.996696 + 0.0812200i \(0.974118\pi\)
\(878\) 0 0
\(879\) 9.11622 + 5.26325i 0.307482 + 0.177525i
\(880\) 0 0
\(881\) 44.5448i 1.50075i −0.661011 0.750376i \(-0.729872\pi\)
0.661011 0.750376i \(-0.270128\pi\)
\(882\) 0 0
\(883\) 13.8261 13.8261i 0.465285 0.465285i −0.435098 0.900383i \(-0.643286\pi\)
0.900383 + 0.435098i \(0.143286\pi\)
\(884\) 0 0
\(885\) −1.89867 7.11988i −0.0638232 0.239332i
\(886\) 0 0
\(887\) −40.0248 10.7246i −1.34390 0.360097i −0.486021 0.873947i \(-0.661552\pi\)
−0.857880 + 0.513850i \(0.828219\pi\)
\(888\) 0 0
\(889\) 22.3174 + 3.05142i 0.748503 + 0.102341i
\(890\) 0 0
\(891\) −2.59281 4.49089i −0.0868625 0.150450i
\(892\) 0 0
\(893\) −11.0500 41.2392i −0.369775 1.38002i
\(894\) 0 0
\(895\) 40.7353 + 0.0485422i 1.36163 + 0.00162259i
\(896\) 0 0
\(897\) 1.48856 + 1.48856i 0.0497016 + 0.0497016i
\(898\) 0 0
\(899\) −5.95784 + 10.3193i −0.198705 + 0.344167i
\(900\) 0 0
\(901\) −14.2968 + 8.25425i −0.476295 + 0.274989i
\(902\) 0 0
\(903\) −3.99105 31.5289i −0.132814 1.04922i
\(904\) 0 0
\(905\) −14.7526 25.6226i −0.490391 0.851725i
\(906\) 0 0
\(907\) 11.0421 2.95871i 0.366646 0.0982424i −0.0707922 0.997491i \(-0.522553\pi\)
0.437438 + 0.899249i \(0.355886\pi\)
\(908\) 0 0
\(909\) 2.99460 0.0993247
\(910\) 0 0
\(911\) 27.9017 0.924425 0.462213 0.886769i \(-0.347056\pi\)
0.462213 + 0.886769i \(0.347056\pi\)
\(912\) 0 0
\(913\) −3.30069 + 0.884418i −0.109237 + 0.0292700i
\(914\) 0 0
\(915\) −2.15651 + 8.01000i −0.0712919 + 0.264802i
\(916\) 0 0
\(917\) 12.4955 29.7465i 0.412638 0.982315i
\(918\) 0 0
\(919\) −21.5990 + 12.4702i −0.712485 + 0.411353i −0.811980 0.583685i \(-0.801610\pi\)
0.0994956 + 0.995038i \(0.468277\pi\)
\(920\) 0 0
\(921\) −6.85091 + 11.8661i −0.225745 + 0.391002i
\(922\) 0 0
\(923\) 5.87885 + 5.87885i 0.193505 + 0.193505i
\(924\) 0 0
\(925\) −23.9040 24.0182i −0.785958 0.789713i
\(926\) 0 0
\(927\) 2.44473 + 9.12385i 0.0802954 + 0.299667i
\(928\) 0 0
\(929\) −15.5688 26.9659i −0.510796 0.884724i −0.999922 0.0125108i \(-0.996018\pi\)
0.489126 0.872213i \(-0.337316\pi\)
\(930\) 0 0
\(931\) −31.5176 + 8.10918i −1.03295 + 0.265768i
\(932\) 0 0
\(933\) 11.0428 + 2.95890i 0.361524 + 0.0968701i
\(934\) 0 0
\(935\) −47.6602 + 12.7097i −1.55865 + 0.415650i
\(936\) 0 0
\(937\) 34.9737 34.9737i 1.14254 1.14254i 0.154558 0.987984i \(-0.450605\pi\)
0.987984 0.154558i \(-0.0493955\pi\)
\(938\) 0 0
\(939\) 15.2373i 0.497249i
\(940\) 0 0
\(941\) 4.51417 + 2.60626i 0.147158 + 0.0849615i 0.571771 0.820413i \(-0.306257\pi\)
−0.424613 + 0.905375i \(0.639590\pi\)
\(942\) 0 0
\(943\) −3.81280 + 14.2296i −0.124162 + 0.463378i
\(944\) 0 0
\(945\) 2.23018 + 5.47963i 0.0725477 + 0.178252i
\(946\) 0 0
\(947\) −7.24905 + 27.0538i −0.235562 + 0.879131i 0.742332 + 0.670032i \(0.233720\pi\)
−0.977895 + 0.209099i \(0.932947\pi\)
\(948\) 0 0
\(949\) 5.30184 + 3.06102i 0.172105 + 0.0993648i
\(950\) 0 0
\(951\) 10.1776i 0.330032i
\(952\) 0 0
\(953\) 14.6336 14.6336i 0.474028 0.474028i −0.429187 0.903216i \(-0.641200\pi\)
0.903216 + 0.429187i \(0.141200\pi\)
\(954\) 0 0
\(955\) 5.43400 + 3.14596i 0.175840 + 0.101801i
\(956\) 0 0
\(957\) 5.71794 + 1.53212i 0.184835 + 0.0495264i
\(958\) 0 0
\(959\) 23.0389 29.7169i 0.743963 0.959608i
\(960\) 0 0
\(961\) 38.9775 + 67.5110i 1.25734 + 2.17778i
\(962\) 0 0
\(963\) 4.59341 + 17.1428i 0.148021 + 0.552420i
\(964\) 0 0
\(965\) −22.3991 22.4526i −0.721053 0.722774i
\(966\) 0 0
\(967\) 6.52152 + 6.52152i 0.209718 + 0.209718i 0.804148 0.594430i \(-0.202622\pi\)
−0.594430 + 0.804148i \(0.702622\pi\)
\(968\) 0 0
\(969\) 9.88853 17.1274i 0.317665 0.550213i
\(970\) 0 0
\(971\) −29.0356 + 16.7637i −0.931797 + 0.537973i −0.887379 0.461040i \(-0.847476\pi\)
−0.0444174 + 0.999013i \(0.514143\pi\)
\(972\) 0 0
\(973\) −10.4435 + 7.93119i −0.334804 + 0.254262i
\(974\) 0 0
\(975\) −2.41254 + 1.38523i −0.0772632 + 0.0443628i
\(976\) 0 0
\(977\) −11.5077 + 3.08347i −0.368163 + 0.0986489i −0.438157 0.898899i \(-0.644369\pi\)
0.0699943 + 0.997547i \(0.477702\pi\)
\(978\) 0 0
\(979\) −14.9435 −0.477597
\(980\) 0 0
\(981\) −2.13906 −0.0682950
\(982\) 0 0
\(983\) −18.6418 + 4.99506i −0.594582 + 0.159318i −0.543546 0.839379i \(-0.682919\pi\)
−0.0510354 + 0.998697i \(0.516252\pi\)
\(984\) 0 0
\(985\) 16.8516 + 4.53691i 0.536938 + 0.144558i
\(986\) 0 0
\(987\) 19.3491 14.6944i 0.615889 0.467728i
\(988\) 0 0
\(989\) −39.3592 + 22.7240i −1.25155 + 0.722582i
\(990\) 0 0
\(991\) 3.68266 6.37856i 0.116984 0.202622i −0.801587 0.597878i \(-0.796011\pi\)
0.918571 + 0.395256i \(0.129344\pi\)
\(992\) 0 0
\(993\) −0.266993 0.266993i −0.00847277 0.00847277i
\(994\) 0 0
\(995\) −0.0219983 + 18.4603i −0.000697392 + 0.585232i
\(996\) 0 0
\(997\) 2.28479 + 8.52696i 0.0723601 + 0.270051i 0.992622 0.121252i \(-0.0386909\pi\)
−0.920262 + 0.391303i \(0.872024\pi\)
\(998\) 0 0
\(999\) −3.38862 5.86926i −0.107211 0.185695i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.dd.b.577.8 yes 48
5.3 odd 4 840.2.dd.a.73.7 48
7.5 odd 6 840.2.dd.a.817.7 yes 48
35.33 even 12 inner 840.2.dd.b.313.8 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.dd.a.73.7 48 5.3 odd 4
840.2.dd.a.817.7 yes 48 7.5 odd 6
840.2.dd.b.313.8 yes 48 35.33 even 12 inner
840.2.dd.b.577.8 yes 48 1.1 even 1 trivial