Properties

Label 840.2.dd.a.73.7
Level $840$
Weight $2$
Character 840.73
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(73,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.dd (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 73.7
Character \(\chi\) \(=\) 840.73
Dual form 840.2.dd.a.817.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 + 0.965926i) q^{3} +(-1.93516 + 1.12034i) q^{5} +(-1.60015 - 2.10702i) q^{7} +(-0.866025 + 0.500000i) q^{9} +(2.59281 - 4.49089i) q^{11} +(0.393426 - 0.393426i) q^{13} +(-1.58302 - 1.57925i) q^{15} +(4.10895 - 1.10099i) q^{17} +(2.32458 + 4.02629i) q^{19} +(1.62108 - 2.09096i) q^{21} +(0.979264 - 3.65466i) q^{23} +(2.48967 - 4.33607i) q^{25} +(-0.707107 - 0.707107i) q^{27} -1.14155i q^{29} +(9.03971 + 5.21908i) q^{31} +(5.00893 + 1.34214i) q^{33} +(5.45712 + 2.28471i) q^{35} +(-6.54631 - 1.75408i) q^{37} +(0.481847 + 0.278194i) q^{39} -3.89354i q^{41} +(8.49370 + 8.49370i) q^{43} +(1.11573 - 1.93782i) q^{45} +(2.37678 - 8.87026i) q^{47} +(-1.87906 + 6.74308i) q^{49} +(2.12695 + 3.68398i) q^{51} +(-3.74856 + 1.00442i) q^{53} +(0.0138177 + 11.5954i) q^{55} +(-3.28745 + 3.28745i) q^{57} +(1.64769 - 2.85388i) q^{59} +(3.21272 - 1.85487i) q^{61} +(2.43928 + 1.02466i) q^{63} +(-0.320571 + 1.20211i) q^{65} +(-2.26242 - 8.44346i) q^{67} +3.78358 q^{69} -14.9427 q^{71} +(-2.84783 - 10.6282i) q^{73} +(4.83270 + 1.28258i) q^{75} +(-13.6113 + 1.72296i) q^{77} +(14.8470 - 8.57194i) q^{79} +(0.500000 - 0.866025i) q^{81} +(0.465956 - 0.465956i) q^{83} +(-6.71798 + 6.73401i) q^{85} +(1.10265 - 0.295455i) q^{87} +(1.44086 + 2.49564i) q^{89} +(-1.45850 - 0.199417i) q^{91} +(-2.70159 + 10.0825i) q^{93} +(-9.00925 - 5.18719i) q^{95} +(3.58097 + 3.58097i) q^{97} +5.18563i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{11} + 16 q^{13} - 4 q^{15} - 4 q^{17} + 8 q^{19} - 24 q^{23} + 28 q^{25} + 12 q^{33} - 4 q^{37} - 12 q^{39} + 16 q^{43} - 4 q^{45} + 12 q^{47} - 12 q^{49} + 20 q^{53} - 56 q^{55} + 8 q^{57}+ \cdots + 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.258819 + 0.965926i 0.149429 + 0.557678i
\(4\) 0 0
\(5\) −1.93516 + 1.12034i −0.865429 + 0.501032i
\(6\) 0 0
\(7\) −1.60015 2.10702i −0.604799 0.796379i
\(8\) 0 0
\(9\) −0.866025 + 0.500000i −0.288675 + 0.166667i
\(10\) 0 0
\(11\) 2.59281 4.49089i 0.781763 1.35405i −0.149151 0.988814i \(-0.547654\pi\)
0.930914 0.365238i \(-0.119013\pi\)
\(12\) 0 0
\(13\) 0.393426 0.393426i 0.109117 0.109117i −0.650440 0.759557i \(-0.725416\pi\)
0.759557 + 0.650440i \(0.225416\pi\)
\(14\) 0 0
\(15\) −1.58302 1.57925i −0.408734 0.407762i
\(16\) 0 0
\(17\) 4.10895 1.10099i 0.996567 0.267029i 0.276560 0.960997i \(-0.410805\pi\)
0.720007 + 0.693967i \(0.244139\pi\)
\(18\) 0 0
\(19\) 2.32458 + 4.02629i 0.533295 + 0.923695i 0.999244 + 0.0388828i \(0.0123799\pi\)
−0.465948 + 0.884812i \(0.654287\pi\)
\(20\) 0 0
\(21\) 1.62108 2.09096i 0.353748 0.456285i
\(22\) 0 0
\(23\) 0.979264 3.65466i 0.204191 0.762050i −0.785504 0.618856i \(-0.787596\pi\)
0.989695 0.143193i \(-0.0457371\pi\)
\(24\) 0 0
\(25\) 2.48967 4.33607i 0.497935 0.867215i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 1.14155i 0.211980i −0.994367 0.105990i \(-0.966199\pi\)
0.994367 0.105990i \(-0.0338012\pi\)
\(30\) 0 0
\(31\) 9.03971 + 5.21908i 1.62358 + 0.937374i 0.985952 + 0.167029i \(0.0534172\pi\)
0.637627 + 0.770345i \(0.279916\pi\)
\(32\) 0 0
\(33\) 5.00893 + 1.34214i 0.871943 + 0.233636i
\(34\) 0 0
\(35\) 5.45712 + 2.28471i 0.922421 + 0.386186i
\(36\) 0 0
\(37\) −6.54631 1.75408i −1.07621 0.288369i −0.323166 0.946342i \(-0.604747\pi\)
−0.753041 + 0.657974i \(0.771414\pi\)
\(38\) 0 0
\(39\) 0.481847 + 0.278194i 0.0771573 + 0.0445468i
\(40\) 0 0
\(41\) 3.89354i 0.608068i −0.952661 0.304034i \(-0.901666\pi\)
0.952661 0.304034i \(-0.0983337\pi\)
\(42\) 0 0
\(43\) 8.49370 + 8.49370i 1.29528 + 1.29528i 0.931477 + 0.363799i \(0.118521\pi\)
0.363799 + 0.931477i \(0.381479\pi\)
\(44\) 0 0
\(45\) 1.11573 1.93782i 0.166323 0.288874i
\(46\) 0 0
\(47\) 2.37678 8.87026i 0.346689 1.29386i −0.543938 0.839125i \(-0.683067\pi\)
0.890627 0.454735i \(-0.150266\pi\)
\(48\) 0 0
\(49\) −1.87906 + 6.74308i −0.268438 + 0.963297i
\(50\) 0 0
\(51\) 2.12695 + 3.68398i 0.297832 + 0.515861i
\(52\) 0 0
\(53\) −3.74856 + 1.00442i −0.514904 + 0.137968i −0.506908 0.862000i \(-0.669212\pi\)
−0.00799545 + 0.999968i \(0.502545\pi\)
\(54\) 0 0
\(55\) 0.0138177 + 11.5954i 0.00186317 + 1.56352i
\(56\) 0 0
\(57\) −3.28745 + 3.28745i −0.435434 + 0.435434i
\(58\) 0 0
\(59\) 1.64769 2.85388i 0.214511 0.371544i −0.738610 0.674133i \(-0.764518\pi\)
0.953121 + 0.302589i \(0.0978509\pi\)
\(60\) 0 0
\(61\) 3.21272 1.85487i 0.411347 0.237491i −0.280021 0.959994i \(-0.590342\pi\)
0.691368 + 0.722502i \(0.257008\pi\)
\(62\) 0 0
\(63\) 2.43928 + 1.02466i 0.307320 + 0.129095i
\(64\) 0 0
\(65\) −0.320571 + 1.20211i −0.0397619 + 0.149104i
\(66\) 0 0
\(67\) −2.26242 8.44346i −0.276398 1.03153i −0.954898 0.296933i \(-0.904036\pi\)
0.678500 0.734600i \(-0.262630\pi\)
\(68\) 0 0
\(69\) 3.78358 0.455490
\(70\) 0 0
\(71\) −14.9427 −1.77337 −0.886685 0.462373i \(-0.846998\pi\)
−0.886685 + 0.462373i \(0.846998\pi\)
\(72\) 0 0
\(73\) −2.84783 10.6282i −0.333313 1.24394i −0.905687 0.423947i \(-0.860644\pi\)
0.572374 0.819993i \(-0.306023\pi\)
\(74\) 0 0
\(75\) 4.83270 + 1.28258i 0.558032 + 0.148100i
\(76\) 0 0
\(77\) −13.6113 + 1.72296i −1.55115 + 0.196350i
\(78\) 0 0
\(79\) 14.8470 8.57194i 1.67042 0.964419i 0.703021 0.711169i \(-0.251834\pi\)
0.967401 0.253250i \(-0.0814995\pi\)
\(80\) 0 0
\(81\) 0.500000 0.866025i 0.0555556 0.0962250i
\(82\) 0 0
\(83\) 0.465956 0.465956i 0.0511453 0.0511453i −0.681072 0.732217i \(-0.738486\pi\)
0.732217 + 0.681072i \(0.238486\pi\)
\(84\) 0 0
\(85\) −6.71798 + 6.73401i −0.728668 + 0.730406i
\(86\) 0 0
\(87\) 1.10265 0.295455i 0.118217 0.0316761i
\(88\) 0 0
\(89\) 1.44086 + 2.49564i 0.152731 + 0.264538i 0.932231 0.361865i \(-0.117860\pi\)
−0.779500 + 0.626403i \(0.784527\pi\)
\(90\) 0 0
\(91\) −1.45850 0.199417i −0.152892 0.0209046i
\(92\) 0 0
\(93\) −2.70159 + 10.0825i −0.280142 + 1.04550i
\(94\) 0 0
\(95\) −9.00925 5.18719i −0.924329 0.532194i
\(96\) 0 0
\(97\) 3.58097 + 3.58097i 0.363593 + 0.363593i 0.865134 0.501541i \(-0.167233\pi\)
−0.501541 + 0.865134i \(0.667233\pi\)
\(98\) 0 0
\(99\) 5.18563i 0.521175i
\(100\) 0 0
\(101\) 2.59340 + 1.49730i 0.258053 + 0.148987i 0.623446 0.781866i \(-0.285732\pi\)
−0.365393 + 0.930853i \(0.619065\pi\)
\(102\) 0 0
\(103\) −9.12385 2.44473i −0.899000 0.240886i −0.220413 0.975407i \(-0.570741\pi\)
−0.678587 + 0.734520i \(0.737407\pi\)
\(104\) 0 0
\(105\) −0.794451 + 5.86249i −0.0775305 + 0.572121i
\(106\) 0 0
\(107\) 17.1428 + 4.59341i 1.65726 + 0.444062i 0.961633 0.274340i \(-0.0884595\pi\)
0.695628 + 0.718402i \(0.255126\pi\)
\(108\) 0 0
\(109\) 1.85248 + 1.06953i 0.177435 + 0.102442i 0.586087 0.810248i \(-0.300668\pi\)
−0.408652 + 0.912690i \(0.634001\pi\)
\(110\) 0 0
\(111\) 6.77724i 0.643267i
\(112\) 0 0
\(113\) −12.5269 12.5269i −1.17843 1.17843i −0.980145 0.198284i \(-0.936463\pi\)
−0.198284 0.980145i \(-0.563537\pi\)
\(114\) 0 0
\(115\) 2.19944 + 8.16946i 0.205099 + 0.761806i
\(116\) 0 0
\(117\) −0.144004 + 0.537430i −0.0133132 + 0.0496855i
\(118\) 0 0
\(119\) −8.89473 6.89589i −0.815379 0.632146i
\(120\) 0 0
\(121\) −7.94537 13.7618i −0.722306 1.25107i
\(122\) 0 0
\(123\) 3.76087 1.00772i 0.339106 0.0908632i
\(124\) 0 0
\(125\) 0.0399691 + 11.1803i 0.00357494 + 0.999994i
\(126\) 0 0
\(127\) 6.02008 6.02008i 0.534196 0.534196i −0.387622 0.921818i \(-0.626704\pi\)
0.921818 + 0.387622i \(0.126704\pi\)
\(128\) 0 0
\(129\) −6.00595 + 10.4026i −0.528794 + 0.915899i
\(130\) 0 0
\(131\) 10.5610 6.09739i 0.922719 0.532732i 0.0382172 0.999269i \(-0.487832\pi\)
0.884501 + 0.466538i \(0.154499\pi\)
\(132\) 0 0
\(133\) 4.76381 11.3406i 0.413074 0.983354i
\(134\) 0 0
\(135\) 2.16056 + 0.576163i 0.185952 + 0.0495882i
\(136\) 0 0
\(137\) −3.67836 13.7278i −0.314263 1.17285i −0.924674 0.380761i \(-0.875662\pi\)
0.610411 0.792085i \(-0.291004\pi\)
\(138\) 0 0
\(139\) 4.95654 0.420408 0.210204 0.977658i \(-0.432587\pi\)
0.210204 + 0.977658i \(0.432587\pi\)
\(140\) 0 0
\(141\) 9.18316 0.773362
\(142\) 0 0
\(143\) −0.746751 2.78691i −0.0624465 0.233053i
\(144\) 0 0
\(145\) 1.27892 + 2.20908i 0.106209 + 0.183454i
\(146\) 0 0
\(147\) −6.99965 0.0697977i −0.577322 0.00575681i
\(148\) 0 0
\(149\) 0.210154 0.121333i 0.0172165 0.00993996i −0.491367 0.870953i \(-0.663503\pi\)
0.508584 + 0.861013i \(0.330169\pi\)
\(150\) 0 0
\(151\) −4.21957 + 7.30851i −0.343384 + 0.594758i −0.985059 0.172219i \(-0.944906\pi\)
0.641675 + 0.766977i \(0.278240\pi\)
\(152\) 0 0
\(153\) −3.00796 + 3.00796i −0.243179 + 0.243179i
\(154\) 0 0
\(155\) −23.3404 + 0.0278136i −1.87475 + 0.00223404i
\(156\) 0 0
\(157\) −4.12461 + 1.10519i −0.329180 + 0.0882034i −0.419624 0.907698i \(-0.637838\pi\)
0.0904442 + 0.995902i \(0.471171\pi\)
\(158\) 0 0
\(159\) −1.94040 3.36086i −0.153883 0.266534i
\(160\) 0 0
\(161\) −9.26741 + 3.78467i −0.730374 + 0.298274i
\(162\) 0 0
\(163\) −3.40022 + 12.6898i −0.266326 + 0.993941i 0.695108 + 0.718905i \(0.255356\pi\)
−0.961434 + 0.275036i \(0.911310\pi\)
\(164\) 0 0
\(165\) −11.1967 + 3.01446i −0.871664 + 0.234675i
\(166\) 0 0
\(167\) 2.07382 + 2.07382i 0.160477 + 0.160477i 0.782778 0.622301i \(-0.213802\pi\)
−0.622301 + 0.782778i \(0.713802\pi\)
\(168\) 0 0
\(169\) 12.6904i 0.976187i
\(170\) 0 0
\(171\) −4.02629 2.32458i −0.307898 0.177765i
\(172\) 0 0
\(173\) −10.5205 2.81896i −0.799860 0.214322i −0.164338 0.986404i \(-0.552549\pi\)
−0.635523 + 0.772082i \(0.719215\pi\)
\(174\) 0 0
\(175\) −13.1200 + 1.69256i −0.991781 + 0.127946i
\(176\) 0 0
\(177\) 3.18309 + 0.852907i 0.239256 + 0.0641084i
\(178\) 0 0
\(179\) 15.7767 + 9.10869i 1.17921 + 0.680816i 0.955831 0.293917i \(-0.0949589\pi\)
0.223376 + 0.974732i \(0.428292\pi\)
\(180\) 0 0
\(181\) 13.2224i 0.982812i 0.870931 + 0.491406i \(0.163517\pi\)
−0.870931 + 0.491406i \(0.836483\pi\)
\(182\) 0 0
\(183\) 2.62318 + 2.62318i 0.193911 + 0.193911i
\(184\) 0 0
\(185\) 14.6333 3.93968i 1.07586 0.289651i
\(186\) 0 0
\(187\) 5.70932 21.3075i 0.417507 1.55816i
\(188\) 0 0
\(189\) −0.358413 + 2.62136i −0.0260707 + 0.190676i
\(190\) 0 0
\(191\) −1.40402 2.43183i −0.101591 0.175961i 0.810749 0.585394i \(-0.199060\pi\)
−0.912340 + 0.409433i \(0.865727\pi\)
\(192\) 0 0
\(193\) −13.7001 + 3.67092i −0.986153 + 0.264239i −0.715634 0.698476i \(-0.753862\pi\)
−0.270519 + 0.962715i \(0.587195\pi\)
\(194\) 0 0
\(195\) −1.24412 + 0.00148256i −0.0890935 + 0.000106168i
\(196\) 0 0
\(197\) −5.51870 + 5.51870i −0.393191 + 0.393191i −0.875823 0.482632i \(-0.839681\pi\)
0.482632 + 0.875823i \(0.339681\pi\)
\(198\) 0 0
\(199\) −4.12786 + 7.14966i −0.292616 + 0.506826i −0.974428 0.224702i \(-0.927859\pi\)
0.681811 + 0.731528i \(0.261192\pi\)
\(200\) 0 0
\(201\) 7.57020 4.37066i 0.533961 0.308282i
\(202\) 0 0
\(203\) −2.40527 + 1.82665i −0.168817 + 0.128205i
\(204\) 0 0
\(205\) 4.36209 + 7.53461i 0.304662 + 0.526240i
\(206\) 0 0
\(207\) 0.979264 + 3.65466i 0.0680635 + 0.254017i
\(208\) 0 0
\(209\) 24.1088 1.66764
\(210\) 0 0
\(211\) −15.1499 −1.04296 −0.521480 0.853263i \(-0.674620\pi\)
−0.521480 + 0.853263i \(0.674620\pi\)
\(212\) 0 0
\(213\) −3.86745 14.4335i −0.264993 0.988969i
\(214\) 0 0
\(215\) −25.9525 6.92081i −1.76994 0.471995i
\(216\) 0 0
\(217\) −3.46816 27.3981i −0.235434 1.85991i
\(218\) 0 0
\(219\) 9.52901 5.50158i 0.643911 0.371762i
\(220\) 0 0
\(221\) 1.18341 2.04973i 0.0796048 0.137880i
\(222\) 0 0
\(223\) −19.8934 + 19.8934i −1.33216 + 1.33216i −0.428729 + 0.903433i \(0.641038\pi\)
−0.903433 + 0.428729i \(0.858962\pi\)
\(224\) 0 0
\(225\) 0.0119165 + 4.99999i 0.000794433 + 0.333332i
\(226\) 0 0
\(227\) −11.5946 + 3.10675i −0.769558 + 0.206202i −0.622176 0.782877i \(-0.713751\pi\)
−0.147382 + 0.989080i \(0.547085\pi\)
\(228\) 0 0
\(229\) 9.20168 + 15.9378i 0.608064 + 1.05320i 0.991559 + 0.129655i \(0.0413871\pi\)
−0.383495 + 0.923543i \(0.625280\pi\)
\(230\) 0 0
\(231\) −5.18711 12.7015i −0.341287 0.835700i
\(232\) 0 0
\(233\) −3.05959 + 11.4185i −0.200440 + 0.748053i 0.790351 + 0.612654i \(0.209898\pi\)
−0.990791 + 0.135399i \(0.956768\pi\)
\(234\) 0 0
\(235\) 5.33827 + 19.8281i 0.348230 + 1.29345i
\(236\) 0 0
\(237\) 12.1226 + 12.1226i 0.787445 + 0.787445i
\(238\) 0 0
\(239\) 5.47505i 0.354151i −0.984197 0.177076i \(-0.943336\pi\)
0.984197 0.177076i \(-0.0566637\pi\)
\(240\) 0 0
\(241\) 5.95534 + 3.43832i 0.383617 + 0.221481i 0.679391 0.733777i \(-0.262244\pi\)
−0.295774 + 0.955258i \(0.595577\pi\)
\(242\) 0 0
\(243\) 0.965926 + 0.258819i 0.0619642 + 0.0166032i
\(244\) 0 0
\(245\) −3.91826 15.1541i −0.250329 0.968161i
\(246\) 0 0
\(247\) 2.49860 + 0.669498i 0.158982 + 0.0425991i
\(248\) 0 0
\(249\) 0.570677 + 0.329481i 0.0361652 + 0.0208800i
\(250\) 0 0
\(251\) 1.79547i 0.113329i 0.998393 + 0.0566646i \(0.0180466\pi\)
−0.998393 + 0.0566646i \(0.981953\pi\)
\(252\) 0 0
\(253\) −13.8736 13.8736i −0.872227 0.872227i
\(254\) 0 0
\(255\) −8.24330 4.74618i −0.516216 0.297218i
\(256\) 0 0
\(257\) −4.73693 + 17.6785i −0.295481 + 1.10275i 0.645353 + 0.763885i \(0.276710\pi\)
−0.940834 + 0.338867i \(0.889956\pi\)
\(258\) 0 0
\(259\) 6.77918 + 16.6000i 0.421238 + 1.03147i
\(260\) 0 0
\(261\) 0.570775 + 0.988611i 0.0353301 + 0.0611935i
\(262\) 0 0
\(263\) 9.60757 2.57434i 0.592428 0.158741i 0.0498654 0.998756i \(-0.484121\pi\)
0.542563 + 0.840015i \(0.317454\pi\)
\(264\) 0 0
\(265\) 6.12875 6.14338i 0.376486 0.377385i
\(266\) 0 0
\(267\) −2.03769 + 2.03769i −0.124704 + 0.124704i
\(268\) 0 0
\(269\) 12.7900 22.1530i 0.779823 1.35069i −0.152221 0.988347i \(-0.548642\pi\)
0.932044 0.362346i \(-0.118024\pi\)
\(270\) 0 0
\(271\) −7.57164 + 4.37149i −0.459945 + 0.265549i −0.712021 0.702158i \(-0.752220\pi\)
0.252076 + 0.967707i \(0.418887\pi\)
\(272\) 0 0
\(273\) −0.184865 1.46041i −0.0111885 0.0883882i
\(274\) 0 0
\(275\) −13.0175 22.4235i −0.784988 1.35219i
\(276\) 0 0
\(277\) 1.39663 + 5.21230i 0.0839155 + 0.313177i 0.995107 0.0988070i \(-0.0315026\pi\)
−0.911191 + 0.411984i \(0.864836\pi\)
\(278\) 0 0
\(279\) −10.4382 −0.624916
\(280\) 0 0
\(281\) 0.500607 0.0298637 0.0149319 0.999889i \(-0.495247\pi\)
0.0149319 + 0.999889i \(0.495247\pi\)
\(282\) 0 0
\(283\) 0.758042 + 2.82905i 0.0450609 + 0.168170i 0.984789 0.173752i \(-0.0555890\pi\)
−0.939729 + 0.341921i \(0.888922\pi\)
\(284\) 0 0
\(285\) 2.67867 10.0448i 0.158671 0.595003i
\(286\) 0 0
\(287\) −8.20376 + 6.23023i −0.484253 + 0.367759i
\(288\) 0 0
\(289\) 0.948865 0.547827i 0.0558156 0.0322251i
\(290\) 0 0
\(291\) −2.53213 + 4.38578i −0.148436 + 0.257099i
\(292\) 0 0
\(293\) −7.44336 + 7.44336i −0.434846 + 0.434846i −0.890273 0.455427i \(-0.849487\pi\)
0.455427 + 0.890273i \(0.349487\pi\)
\(294\) 0 0
\(295\) 0.00878090 + 7.36869i 0.000511244 + 0.429021i
\(296\) 0 0
\(297\) −5.00893 + 1.34214i −0.290648 + 0.0778788i
\(298\) 0 0
\(299\) −1.05257 1.82311i −0.0608718 0.105433i
\(300\) 0 0
\(301\) 4.30523 31.4875i 0.248149 1.81491i
\(302\) 0 0
\(303\) −0.775060 + 2.89256i −0.0445261 + 0.166173i
\(304\) 0 0
\(305\) −4.13904 + 7.18880i −0.237001 + 0.411630i
\(306\) 0 0
\(307\) 9.68865 + 9.68865i 0.552960 + 0.552960i 0.927294 0.374334i \(-0.122129\pi\)
−0.374334 + 0.927294i \(0.622129\pi\)
\(308\) 0 0
\(309\) 9.44571i 0.537347i
\(310\) 0 0
\(311\) 9.90068 + 5.71616i 0.561416 + 0.324134i 0.753714 0.657203i \(-0.228261\pi\)
−0.192298 + 0.981337i \(0.561594\pi\)
\(312\) 0 0
\(313\) −14.7181 3.94369i −0.831914 0.222911i −0.182366 0.983231i \(-0.558375\pi\)
−0.649549 + 0.760320i \(0.725042\pi\)
\(314\) 0 0
\(315\) −5.86835 + 0.749944i −0.330644 + 0.0422546i
\(316\) 0 0
\(317\) −9.83081 2.63416i −0.552153 0.147949i −0.0280544 0.999606i \(-0.508931\pi\)
−0.524099 + 0.851657i \(0.675598\pi\)
\(318\) 0 0
\(319\) −5.12657 2.95983i −0.287033 0.165718i
\(320\) 0 0
\(321\) 17.7476i 0.990573i
\(322\) 0 0
\(323\) 13.9845 + 13.9845i 0.778118 + 0.778118i
\(324\) 0 0
\(325\) −0.726422 2.68543i −0.0402947 0.148961i
\(326\) 0 0
\(327\) −0.553630 + 2.06617i −0.0306158 + 0.114260i
\(328\) 0 0
\(329\) −22.4930 + 9.18579i −1.24008 + 0.506429i
\(330\) 0 0
\(331\) −0.188793 0.326998i −0.0103770 0.0179735i 0.860790 0.508960i \(-0.169970\pi\)
−0.871167 + 0.490986i \(0.836636\pi\)
\(332\) 0 0
\(333\) 6.54631 1.75408i 0.358736 0.0961229i
\(334\) 0 0
\(335\) 13.8377 + 13.8048i 0.756034 + 0.754234i
\(336\) 0 0
\(337\) 3.98808 3.98808i 0.217244 0.217244i −0.590092 0.807336i \(-0.700908\pi\)
0.807336 + 0.590092i \(0.200908\pi\)
\(338\) 0 0
\(339\) 8.85783 15.3422i 0.481091 0.833275i
\(340\) 0 0
\(341\) 46.8765 27.0642i 2.53851 1.46561i
\(342\) 0 0
\(343\) 17.2146 6.83069i 0.929500 0.368823i
\(344\) 0 0
\(345\) −7.32183 + 4.23890i −0.394194 + 0.228215i
\(346\) 0 0
\(347\) −6.16581 23.0111i −0.330998 1.23530i −0.908143 0.418660i \(-0.862500\pi\)
0.577145 0.816641i \(-0.304167\pi\)
\(348\) 0 0
\(349\) 19.6652 1.05265 0.526326 0.850283i \(-0.323569\pi\)
0.526326 + 0.850283i \(0.323569\pi\)
\(350\) 0 0
\(351\) −0.556389 −0.0296978
\(352\) 0 0
\(353\) 8.69371 + 32.4454i 0.462720 + 1.72689i 0.664341 + 0.747430i \(0.268712\pi\)
−0.201621 + 0.979464i \(0.564621\pi\)
\(354\) 0 0
\(355\) 28.9165 16.7409i 1.53473 0.888515i
\(356\) 0 0
\(357\) 4.35880 10.3764i 0.230692 0.549179i
\(358\) 0 0
\(359\) 0.716930 0.413919i 0.0378381 0.0218458i −0.480962 0.876742i \(-0.659712\pi\)
0.518800 + 0.854896i \(0.326379\pi\)
\(360\) 0 0
\(361\) −1.30735 + 2.26440i −0.0688078 + 0.119179i
\(362\) 0 0
\(363\) 11.2364 11.2364i 0.589760 0.589760i
\(364\) 0 0
\(365\) 17.4182 + 17.3768i 0.911712 + 0.909542i
\(366\) 0 0
\(367\) 9.06608 2.42925i 0.473246 0.126806i −0.0143102 0.999898i \(-0.504555\pi\)
0.487556 + 0.873092i \(0.337889\pi\)
\(368\) 0 0
\(369\) 1.94677 + 3.37190i 0.101345 + 0.175534i
\(370\) 0 0
\(371\) 8.11458 + 6.29106i 0.421288 + 0.326615i
\(372\) 0 0
\(373\) −5.45608 + 20.3624i −0.282505 + 1.05432i 0.668138 + 0.744037i \(0.267091\pi\)
−0.950643 + 0.310286i \(0.899575\pi\)
\(374\) 0 0
\(375\) −10.7890 + 2.93227i −0.557140 + 0.151422i
\(376\) 0 0
\(377\) −0.449116 0.449116i −0.0231306 0.0231306i
\(378\) 0 0
\(379\) 17.2469i 0.885915i 0.896543 + 0.442958i \(0.146071\pi\)
−0.896543 + 0.442958i \(0.853929\pi\)
\(380\) 0 0
\(381\) 7.37306 + 4.25684i 0.377734 + 0.218085i
\(382\) 0 0
\(383\) 1.15701 + 0.310019i 0.0591204 + 0.0158413i 0.288258 0.957553i \(-0.406924\pi\)
−0.229138 + 0.973394i \(0.573591\pi\)
\(384\) 0 0
\(385\) 24.4096 18.5835i 1.24403 0.947101i
\(386\) 0 0
\(387\) −11.6026 3.10891i −0.589794 0.158035i
\(388\) 0 0
\(389\) 16.3871 + 9.46111i 0.830860 + 0.479697i 0.854147 0.520031i \(-0.174080\pi\)
−0.0232869 + 0.999729i \(0.507413\pi\)
\(390\) 0 0
\(391\) 16.0950i 0.813958i
\(392\) 0 0
\(393\) 8.62302 + 8.62302i 0.434974 + 0.434974i
\(394\) 0 0
\(395\) −19.1279 + 33.2218i −0.962427 + 1.67157i
\(396\) 0 0
\(397\) 2.28999 8.54635i 0.114931 0.428929i −0.884351 0.466823i \(-0.845398\pi\)
0.999282 + 0.0378944i \(0.0120651\pi\)
\(398\) 0 0
\(399\) 12.1871 + 1.66632i 0.610120 + 0.0834204i
\(400\) 0 0
\(401\) −1.29046 2.23514i −0.0644426 0.111618i 0.832004 0.554770i \(-0.187194\pi\)
−0.896447 + 0.443152i \(0.853860\pi\)
\(402\) 0 0
\(403\) 5.60978 1.50314i 0.279443 0.0748766i
\(404\) 0 0
\(405\) 0.00266461 + 2.23607i 0.000132406 + 0.111111i
\(406\) 0 0
\(407\) −24.8507 + 24.8507i −1.23180 + 1.23180i
\(408\) 0 0
\(409\) 13.9599 24.1793i 0.690273 1.19559i −0.281476 0.959568i \(-0.590824\pi\)
0.971748 0.236019i \(-0.0758428\pi\)
\(410\) 0 0
\(411\) 12.3080 7.10604i 0.607110 0.350515i
\(412\) 0 0
\(413\) −8.64973 + 1.09492i −0.425625 + 0.0538772i
\(414\) 0 0
\(415\) −0.379669 + 1.42373i −0.0186372 + 0.0698881i
\(416\) 0 0
\(417\) 1.28285 + 4.78765i 0.0628213 + 0.234452i
\(418\) 0 0
\(419\) −13.4480 −0.656980 −0.328490 0.944508i \(-0.606540\pi\)
−0.328490 + 0.944508i \(0.606540\pi\)
\(420\) 0 0
\(421\) −15.1153 −0.736676 −0.368338 0.929692i \(-0.620073\pi\)
−0.368338 + 0.929692i \(0.620073\pi\)
\(422\) 0 0
\(423\) 2.37678 + 8.87026i 0.115563 + 0.431287i
\(424\) 0 0
\(425\) 5.45597 20.5578i 0.264653 0.997201i
\(426\) 0 0
\(427\) −9.04907 3.80121i −0.437915 0.183954i
\(428\) 0 0
\(429\) 2.49868 1.44261i 0.120637 0.0696500i
\(430\) 0 0
\(431\) 17.9055 31.0133i 0.862479 1.49386i −0.00705073 0.999975i \(-0.502244\pi\)
0.869529 0.493881i \(-0.164422\pi\)
\(432\) 0 0
\(433\) 11.7831 11.7831i 0.566261 0.566261i −0.364818 0.931079i \(-0.618869\pi\)
0.931079 + 0.364818i \(0.118869\pi\)
\(434\) 0 0
\(435\) −1.80280 + 1.80710i −0.0864375 + 0.0866437i
\(436\) 0 0
\(437\) 16.9911 4.55275i 0.812795 0.217788i
\(438\) 0 0
\(439\) −19.3867 33.5788i −0.925279 1.60263i −0.791112 0.611671i \(-0.790498\pi\)
−0.134167 0.990959i \(-0.542836\pi\)
\(440\) 0 0
\(441\) −1.74422 6.77921i −0.0830583 0.322820i
\(442\) 0 0
\(443\) 3.04474 11.3631i 0.144660 0.539878i −0.855111 0.518446i \(-0.826511\pi\)
0.999770 0.0214319i \(-0.00682251\pi\)
\(444\) 0 0
\(445\) −5.58427 3.21521i −0.264720 0.152416i
\(446\) 0 0
\(447\) 0.171590 + 0.171590i 0.00811595 + 0.00811595i
\(448\) 0 0
\(449\) 8.88927i 0.419511i −0.977754 0.209755i \(-0.932733\pi\)
0.977754 0.209755i \(-0.0672668\pi\)
\(450\) 0 0
\(451\) −17.4854 10.0952i −0.823357 0.475365i
\(452\) 0 0
\(453\) −8.15158 2.18421i −0.382995 0.102623i
\(454\) 0 0
\(455\) 3.04584 1.24811i 0.142791 0.0585123i
\(456\) 0 0
\(457\) 17.0656 + 4.57271i 0.798295 + 0.213902i 0.634835 0.772648i \(-0.281068\pi\)
0.163460 + 0.986550i \(0.447735\pi\)
\(458\) 0 0
\(459\) −3.68398 2.12695i −0.171954 0.0992775i
\(460\) 0 0
\(461\) 17.7227i 0.825427i 0.910861 + 0.412713i \(0.135419\pi\)
−0.910861 + 0.412713i \(0.864581\pi\)
\(462\) 0 0
\(463\) −6.25998 6.25998i −0.290926 0.290926i 0.546520 0.837446i \(-0.315952\pi\)
−0.837446 + 0.546520i \(0.815952\pi\)
\(464\) 0 0
\(465\) −6.06781 22.5379i −0.281388 1.04517i
\(466\) 0 0
\(467\) 5.17117 19.2991i 0.239293 0.893054i −0.736873 0.676031i \(-0.763699\pi\)
0.976166 0.217023i \(-0.0696347\pi\)
\(468\) 0 0
\(469\) −14.1703 + 18.2777i −0.654325 + 0.843987i
\(470\) 0 0
\(471\) −2.13505 3.69802i −0.0983781 0.170396i
\(472\) 0 0
\(473\) 60.1668 16.1216i 2.76647 0.741274i
\(474\) 0 0
\(475\) 23.2457 0.0554017i 1.06659 0.00254200i
\(476\) 0 0
\(477\) 2.74413 2.74413i 0.125645 0.125645i
\(478\) 0 0
\(479\) −8.60064 + 14.8967i −0.392973 + 0.680650i −0.992840 0.119450i \(-0.961887\pi\)
0.599867 + 0.800100i \(0.295220\pi\)
\(480\) 0 0
\(481\) −3.26559 + 1.88539i −0.148898 + 0.0859664i
\(482\) 0 0
\(483\) −6.05429 7.97209i −0.275480 0.362742i
\(484\) 0 0
\(485\) −10.9417 2.91784i −0.496835 0.132492i
\(486\) 0 0
\(487\) −9.37082 34.9724i −0.424632 1.58475i −0.764725 0.644357i \(-0.777125\pi\)
0.340092 0.940392i \(-0.389542\pi\)
\(488\) 0 0
\(489\) −13.1374 −0.594095
\(490\) 0 0
\(491\) −17.4962 −0.789592 −0.394796 0.918769i \(-0.629185\pi\)
−0.394796 + 0.918769i \(0.629185\pi\)
\(492\) 0 0
\(493\) −1.25683 4.69057i −0.0566050 0.211253i
\(494\) 0 0
\(495\) −5.80967 10.0350i −0.261125 0.451040i
\(496\) 0 0
\(497\) 23.9105 + 31.4845i 1.07253 + 1.41227i
\(498\) 0 0
\(499\) 1.03820 0.599404i 0.0464761 0.0268330i −0.476582 0.879130i \(-0.658124\pi\)
0.523058 + 0.852297i \(0.324791\pi\)
\(500\) 0 0
\(501\) −1.46641 + 2.53990i −0.0655146 + 0.113475i
\(502\) 0 0
\(503\) 11.2555 11.2555i 0.501856 0.501856i −0.410158 0.912014i \(-0.634527\pi\)
0.912014 + 0.410158i \(0.134527\pi\)
\(504\) 0 0
\(505\) −6.69613 + 0.00797945i −0.297974 + 0.000355081i
\(506\) 0 0
\(507\) −12.2580 + 3.28453i −0.544398 + 0.145871i
\(508\) 0 0
\(509\) 15.8833 + 27.5106i 0.704013 + 1.21939i 0.967047 + 0.254600i \(0.0819437\pi\)
−0.263034 + 0.964787i \(0.584723\pi\)
\(510\) 0 0
\(511\) −17.8369 + 23.0071i −0.789060 + 1.01778i
\(512\) 0 0
\(513\) 1.20329 4.49074i 0.0531266 0.198271i
\(514\) 0 0
\(515\) 20.3950 5.49089i 0.898712 0.241957i
\(516\) 0 0
\(517\) −33.6728 33.6728i −1.48093 1.48093i
\(518\) 0 0
\(519\) 10.8916i 0.478090i
\(520\) 0 0
\(521\) 19.9889 + 11.5406i 0.875729 + 0.505602i 0.869248 0.494377i \(-0.164604\pi\)
0.00648104 + 0.999979i \(0.497937\pi\)
\(522\) 0 0
\(523\) −7.82579 2.09691i −0.342198 0.0916917i 0.0836272 0.996497i \(-0.473349\pi\)
−0.425825 + 0.904805i \(0.640016\pi\)
\(524\) 0 0
\(525\) −5.03060 12.2349i −0.219554 0.533975i
\(526\) 0 0
\(527\) 42.8899 + 11.4923i 1.86831 + 0.500613i
\(528\) 0 0
\(529\) 7.52099 + 4.34224i 0.326999 + 0.188793i
\(530\) 0 0
\(531\) 3.29538i 0.143007i
\(532\) 0 0
\(533\) −1.53182 1.53182i −0.0663505 0.0663505i
\(534\) 0 0
\(535\) −38.3203 + 10.3168i −1.65673 + 0.446036i
\(536\) 0 0
\(537\) −4.71501 + 17.5966i −0.203468 + 0.759351i
\(538\) 0 0
\(539\) 25.4103 + 25.9222i 1.09450 + 1.11655i
\(540\) 0 0
\(541\) 12.5563 + 21.7482i 0.539838 + 0.935026i 0.998912 + 0.0466286i \(0.0148477\pi\)
−0.459075 + 0.888398i \(0.651819\pi\)
\(542\) 0 0
\(543\) −12.7718 + 3.42220i −0.548092 + 0.146861i
\(544\) 0 0
\(545\) −4.78308 + 0.00569976i −0.204885 + 0.000244151i
\(546\) 0 0
\(547\) 22.2969 22.2969i 0.953346 0.953346i −0.0456133 0.998959i \(-0.514524\pi\)
0.998959 + 0.0456133i \(0.0145242\pi\)
\(548\) 0 0
\(549\) −1.85487 + 3.21272i −0.0791638 + 0.137116i
\(550\) 0 0
\(551\) 4.59621 2.65362i 0.195805 0.113048i
\(552\) 0 0
\(553\) −41.8187 17.5666i −1.77831 0.747009i
\(554\) 0 0
\(555\) 7.59282 + 13.1150i 0.322297 + 0.556702i
\(556\) 0 0
\(557\) −2.25465 8.41446i −0.0955325 0.356532i 0.901567 0.432639i \(-0.142418\pi\)
−0.997100 + 0.0761070i \(0.975751\pi\)
\(558\) 0 0
\(559\) 6.68329 0.282673
\(560\) 0 0
\(561\) 22.0591 0.931337
\(562\) 0 0
\(563\) 11.6121 + 43.3368i 0.489390 + 1.82643i 0.559422 + 0.828883i \(0.311023\pi\)
−0.0700327 + 0.997545i \(0.522310\pi\)
\(564\) 0 0
\(565\) 38.2758 + 10.2071i 1.61028 + 0.429416i
\(566\) 0 0
\(567\) −2.62481 + 0.332258i −0.110231 + 0.0139535i
\(568\) 0 0
\(569\) −27.3249 + 15.7761i −1.14552 + 0.661367i −0.947792 0.318890i \(-0.896690\pi\)
−0.197730 + 0.980257i \(0.563357\pi\)
\(570\) 0 0
\(571\) −15.5660 + 26.9610i −0.651415 + 1.12828i 0.331365 + 0.943503i \(0.392491\pi\)
−0.982780 + 0.184781i \(0.940842\pi\)
\(572\) 0 0
\(573\) 1.98558 1.98558i 0.0829489 0.0829489i
\(574\) 0 0
\(575\) −13.4088 13.3451i −0.559187 0.556528i
\(576\) 0 0
\(577\) 35.8443 9.60444i 1.49222 0.399838i 0.581731 0.813381i \(-0.302376\pi\)
0.910485 + 0.413543i \(0.135709\pi\)
\(578\) 0 0
\(579\) −7.09168 12.2831i −0.294720 0.510470i
\(580\) 0 0
\(581\) −1.72738 0.236181i −0.0716636 0.00979842i
\(582\) 0 0
\(583\) −5.20856 + 19.4386i −0.215717 + 0.805065i
\(584\) 0 0
\(585\) −0.323435 1.20135i −0.0133724 0.0496696i
\(586\) 0 0
\(587\) 0.794072 + 0.794072i 0.0327749 + 0.0327749i 0.723304 0.690529i \(-0.242622\pi\)
−0.690529 + 0.723304i \(0.742622\pi\)
\(588\) 0 0
\(589\) 48.5287i 1.99959i
\(590\) 0 0
\(591\) −6.75901 3.90231i −0.278028 0.160520i
\(592\) 0 0
\(593\) −21.4022 5.73471i −0.878884 0.235496i −0.208958 0.977925i \(-0.567007\pi\)
−0.669926 + 0.742428i \(0.733674\pi\)
\(594\) 0 0
\(595\) 24.9385 + 3.37952i 1.02238 + 0.138547i
\(596\) 0 0
\(597\) −7.97441 2.13674i −0.326371 0.0874508i
\(598\) 0 0
\(599\) −39.6891 22.9145i −1.62165 0.936261i −0.986479 0.163891i \(-0.947596\pi\)
−0.635173 0.772370i \(-0.719071\pi\)
\(600\) 0 0
\(601\) 0.0299652i 0.00122231i −1.00000 0.000611153i \(-0.999805\pi\)
1.00000 0.000611153i \(-0.000194536\pi\)
\(602\) 0 0
\(603\) 6.18104 + 6.18104i 0.251712 + 0.251712i
\(604\) 0 0
\(605\) 30.7934 + 17.7297i 1.25193 + 0.720815i
\(606\) 0 0
\(607\) −3.26225 + 12.1749i −0.132410 + 0.494163i −0.999995 0.00312691i \(-0.999005\pi\)
0.867585 + 0.497290i \(0.165671\pi\)
\(608\) 0 0
\(609\) −2.38693 1.85054i −0.0967235 0.0749876i
\(610\) 0 0
\(611\) −2.55471 4.42488i −0.103352 0.179011i
\(612\) 0 0
\(613\) 20.2561 5.42761i 0.818137 0.219219i 0.174605 0.984639i \(-0.444135\pi\)
0.643532 + 0.765420i \(0.277468\pi\)
\(614\) 0 0
\(615\) −6.14888 + 6.16356i −0.247947 + 0.248539i
\(616\) 0 0
\(617\) −25.1514 + 25.1514i −1.01256 + 1.01256i −0.0126383 + 0.999920i \(0.504023\pi\)
−0.999920 + 0.0126383i \(0.995977\pi\)
\(618\) 0 0
\(619\) 13.7908 23.8864i 0.554299 0.960074i −0.443659 0.896196i \(-0.646320\pi\)
0.997958 0.0638784i \(-0.0203470\pi\)
\(620\) 0 0
\(621\) −3.27668 + 1.89179i −0.131489 + 0.0759150i
\(622\) 0 0
\(623\) 2.95278 7.02932i 0.118301 0.281624i
\(624\) 0 0
\(625\) −12.6031 21.5908i −0.504122 0.863632i
\(626\) 0 0
\(627\) 6.23982 + 23.2873i 0.249194 + 0.930006i
\(628\) 0 0
\(629\) −28.8297 −1.14951
\(630\) 0 0
\(631\) 21.2866 0.847405 0.423702 0.905801i \(-0.360730\pi\)
0.423702 + 0.905801i \(0.360730\pi\)
\(632\) 0 0
\(633\) −3.92108 14.6337i −0.155849 0.581636i
\(634\) 0 0
\(635\) −4.90527 + 18.3944i −0.194660 + 0.729958i
\(636\) 0 0
\(637\) 1.91363 + 3.39218i 0.0758209 + 0.134403i
\(638\) 0 0
\(639\) 12.9407 7.47134i 0.511928 0.295562i
\(640\) 0 0
\(641\) −9.64037 + 16.6976i −0.380772 + 0.659516i −0.991173 0.132577i \(-0.957675\pi\)
0.610401 + 0.792093i \(0.291008\pi\)
\(642\) 0 0
\(643\) −12.7834 + 12.7834i −0.504128 + 0.504128i −0.912718 0.408590i \(-0.866021\pi\)
0.408590 + 0.912718i \(0.366021\pi\)
\(644\) 0 0
\(645\) −0.0320070 26.8594i −0.00126028 1.05759i
\(646\) 0 0
\(647\) 31.2927 8.38484i 1.23024 0.329642i 0.415568 0.909562i \(-0.363583\pi\)
0.814673 + 0.579920i \(0.196916\pi\)
\(648\) 0 0
\(649\) −8.54430 14.7992i −0.335393 0.580918i
\(650\) 0 0
\(651\) 25.5669 10.4411i 1.00205 0.409220i
\(652\) 0 0
\(653\) 3.56499 13.3047i 0.139509 0.520653i −0.860430 0.509569i \(-0.829805\pi\)
0.999939 0.0110846i \(-0.00352841\pi\)
\(654\) 0 0
\(655\) −13.6060 + 23.6313i −0.531632 + 0.923353i
\(656\) 0 0
\(657\) 7.78040 + 7.78040i 0.303542 + 0.303542i
\(658\) 0 0
\(659\) 15.7465i 0.613398i 0.951807 + 0.306699i \(0.0992245\pi\)
−0.951807 + 0.306699i \(0.900775\pi\)
\(660\) 0 0
\(661\) −40.3367 23.2884i −1.56892 0.905814i −0.996296 0.0859933i \(-0.972594\pi\)
−0.572620 0.819821i \(-0.694073\pi\)
\(662\) 0 0
\(663\) 2.28617 + 0.612579i 0.0887877 + 0.0237906i
\(664\) 0 0
\(665\) 3.48661 + 27.2829i 0.135205 + 1.05799i
\(666\) 0 0
\(667\) −4.17198 1.11788i −0.161540 0.0432844i
\(668\) 0 0
\(669\) −24.3644 14.0668i −0.941981 0.543853i
\(670\) 0 0
\(671\) 19.2373i 0.742647i
\(672\) 0 0
\(673\) −8.53678 8.53678i −0.329069 0.329069i 0.523164 0.852232i \(-0.324752\pi\)
−0.852232 + 0.523164i \(0.824752\pi\)
\(674\) 0 0
\(675\) −4.82653 + 1.30560i −0.185773 + 0.0502526i
\(676\) 0 0
\(677\) −8.61686 + 32.1586i −0.331173 + 1.23595i 0.576786 + 0.816895i \(0.304307\pi\)
−0.907959 + 0.419059i \(0.862360\pi\)
\(678\) 0 0
\(679\) 1.81510 13.2753i 0.0696571 0.509458i
\(680\) 0 0
\(681\) −6.00178 10.3954i −0.229989 0.398352i
\(682\) 0 0
\(683\) 29.8223 7.99086i 1.14112 0.305762i 0.361718 0.932288i \(-0.382190\pi\)
0.779401 + 0.626526i \(0.215524\pi\)
\(684\) 0 0
\(685\) 22.4980 + 22.4445i 0.859605 + 0.857559i
\(686\) 0 0
\(687\) −13.0131 + 13.0131i −0.496483 + 0.496483i
\(688\) 0 0
\(689\) −1.07961 + 1.86995i −0.0411300 + 0.0712393i
\(690\) 0 0
\(691\) −1.74803 + 1.00923i −0.0664984 + 0.0383929i −0.532881 0.846190i \(-0.678890\pi\)
0.466382 + 0.884583i \(0.345557\pi\)
\(692\) 0 0
\(693\) 10.9262 8.29776i 0.415053 0.315206i
\(694\) 0 0
\(695\) −9.59169 + 5.55302i −0.363834 + 0.210638i
\(696\) 0 0
\(697\) −4.28675 15.9984i −0.162372 0.605981i
\(698\) 0 0
\(699\) −11.8213 −0.447124
\(700\) 0 0
\(701\) −40.9294 −1.54588 −0.772942 0.634477i \(-0.781216\pi\)
−0.772942 + 0.634477i \(0.781216\pi\)
\(702\) 0 0
\(703\) −8.15499 30.4349i −0.307571 1.14787i
\(704\) 0 0
\(705\) −17.7709 + 10.2883i −0.669290 + 0.387479i
\(706\) 0 0
\(707\) −0.994980 7.86025i −0.0374201 0.295615i
\(708\) 0 0
\(709\) −4.41817 + 2.55083i −0.165928 + 0.0957985i −0.580664 0.814143i \(-0.697207\pi\)
0.414736 + 0.909942i \(0.363874\pi\)
\(710\) 0 0
\(711\) −8.57194 + 14.8470i −0.321473 + 0.556807i
\(712\) 0 0
\(713\) 27.9262 27.9262i 1.04585 1.04585i
\(714\) 0 0
\(715\) 4.56738 + 4.55650i 0.170810 + 0.170404i
\(716\) 0 0
\(717\) 5.28849 1.41705i 0.197502 0.0529206i
\(718\) 0 0
\(719\) 13.6654 + 23.6692i 0.509633 + 0.882710i 0.999938 + 0.0111593i \(0.00355218\pi\)
−0.490305 + 0.871551i \(0.663114\pi\)
\(720\) 0 0
\(721\) 9.44841 + 23.1361i 0.351877 + 0.861632i
\(722\) 0 0
\(723\) −1.77980 + 6.64232i −0.0661916 + 0.247030i
\(724\) 0 0
\(725\) −4.94984 2.84209i −0.183833 0.105552i
\(726\) 0 0
\(727\) 20.4882 + 20.4882i 0.759865 + 0.759865i 0.976298 0.216433i \(-0.0694422\pi\)
−0.216433 + 0.976298i \(0.569442\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 44.2517 + 25.5487i 1.63671 + 0.944953i
\(732\) 0 0
\(733\) −0.996813 0.267095i −0.0368181 0.00986538i 0.240363 0.970683i \(-0.422734\pi\)
−0.277181 + 0.960818i \(0.589400\pi\)
\(734\) 0 0
\(735\) 13.6236 7.70693i 0.502515 0.284274i
\(736\) 0 0
\(737\) −43.7846 11.7321i −1.61283 0.432156i
\(738\) 0 0
\(739\) −39.9751 23.0797i −1.47051 0.848999i −0.471057 0.882103i \(-0.656127\pi\)
−0.999452 + 0.0331038i \(0.989461\pi\)
\(740\) 0 0
\(741\) 2.58674i 0.0950263i
\(742\) 0 0
\(743\) 3.40540 + 3.40540i 0.124932 + 0.124932i 0.766808 0.641876i \(-0.221844\pi\)
−0.641876 + 0.766808i \(0.721844\pi\)
\(744\) 0 0
\(745\) −0.270748 + 0.470243i −0.00991944 + 0.0172284i
\(746\) 0 0
\(747\) −0.170552 + 0.636508i −0.00624016 + 0.0232886i
\(748\) 0 0
\(749\) −17.7526 43.4704i −0.648668 1.58837i
\(750\) 0 0
\(751\) −22.2521 38.5417i −0.811990 1.40641i −0.911469 0.411368i \(-0.865051\pi\)
0.0994790 0.995040i \(-0.468282\pi\)
\(752\) 0 0
\(753\) −1.73429 + 0.464703i −0.0632012 + 0.0169347i
\(754\) 0 0
\(755\) −0.0224870 18.8705i −0.000818386 0.686767i
\(756\) 0 0
\(757\) 5.48138 5.48138i 0.199224 0.199224i −0.600443 0.799667i \(-0.705009\pi\)
0.799667 + 0.600443i \(0.205009\pi\)
\(758\) 0 0
\(759\) 9.81013 16.9916i 0.356085 0.616758i
\(760\) 0 0
\(761\) −34.6531 + 20.0070i −1.25617 + 0.725253i −0.972329 0.233617i \(-0.924944\pi\)
−0.283846 + 0.958870i \(0.591610\pi\)
\(762\) 0 0
\(763\) −0.710719 5.61462i −0.0257298 0.203263i
\(764\) 0 0
\(765\) 2.45094 9.19082i 0.0886139 0.332295i
\(766\) 0 0
\(767\) −0.474548 1.77104i −0.0171349 0.0639484i
\(768\) 0 0
\(769\) −36.9229 −1.33147 −0.665737 0.746187i \(-0.731883\pi\)
−0.665737 + 0.746187i \(0.731883\pi\)
\(770\) 0 0
\(771\) −18.3021 −0.659133
\(772\) 0 0
\(773\) 0.797882 + 2.97774i 0.0286978 + 0.107102i 0.978789 0.204870i \(-0.0656772\pi\)
−0.950091 + 0.311972i \(0.899011\pi\)
\(774\) 0 0
\(775\) 45.1362 26.2030i 1.62134 0.941241i
\(776\) 0 0
\(777\) −14.2798 + 10.8446i −0.512284 + 0.389047i
\(778\) 0 0
\(779\) 15.6765 9.05084i 0.561670 0.324280i
\(780\) 0 0
\(781\) −38.7436 + 67.1059i −1.38636 + 2.40124i
\(782\) 0 0
\(783\) −0.807198 + 0.807198i −0.0288469 + 0.0288469i
\(784\) 0 0
\(785\) 6.74358 6.75967i 0.240689 0.241263i
\(786\) 0 0
\(787\) −31.2222 + 8.36596i −1.11295 + 0.298214i −0.768028 0.640416i \(-0.778762\pi\)
−0.344923 + 0.938631i \(0.612095\pi\)
\(788\) 0 0
\(789\) 4.97324 + 8.61391i 0.177052 + 0.306663i
\(790\) 0 0
\(791\) −6.34953 + 46.4392i −0.225763 + 1.65119i
\(792\) 0 0
\(793\) 0.534216 1.99372i 0.0189706 0.0707992i
\(794\) 0 0
\(795\) 7.52028 + 4.32990i 0.266717 + 0.153566i
\(796\) 0 0
\(797\) 28.9968 + 28.9968i 1.02712 + 1.02712i 0.999622 + 0.0274969i \(0.00875365\pi\)
0.0274969 + 0.999622i \(0.491246\pi\)
\(798\) 0 0
\(799\) 39.0643i 1.38199i
\(800\) 0 0
\(801\) −2.49564 1.44086i −0.0881793 0.0509103i
\(802\) 0 0
\(803\) −55.1140 14.7678i −1.94493 0.521143i
\(804\) 0 0
\(805\) 13.6938 17.7066i 0.482643 0.624075i
\(806\) 0 0
\(807\) 24.7085 + 6.62061i 0.869779 + 0.233057i
\(808\) 0 0
\(809\) −12.2910 7.09622i −0.432129 0.249490i 0.268124 0.963384i \(-0.413596\pi\)
−0.700253 + 0.713894i \(0.746930\pi\)
\(810\) 0 0
\(811\) 33.7867i 1.18641i 0.805051 + 0.593206i \(0.202138\pi\)
−0.805051 + 0.593206i \(0.797862\pi\)
\(812\) 0 0
\(813\) −6.18222 6.18222i −0.216820 0.216820i
\(814\) 0 0
\(815\) −7.63692 28.3661i −0.267510 0.993622i
\(816\) 0 0
\(817\) −14.4538 + 53.9424i −0.505675 + 1.88720i
\(818\) 0 0
\(819\) 1.36280 0.556548i 0.0476202 0.0194474i
\(820\) 0 0
\(821\) −22.8091 39.5065i −0.796043 1.37879i −0.922175 0.386773i \(-0.873590\pi\)
0.126132 0.992013i \(-0.459744\pi\)
\(822\) 0 0
\(823\) 36.3271 9.73381i 1.26628 0.339299i 0.437677 0.899132i \(-0.355801\pi\)
0.828606 + 0.559833i \(0.189135\pi\)
\(824\) 0 0
\(825\) 18.2902 18.3776i 0.636784 0.639826i
\(826\) 0 0
\(827\) 2.49357 2.49357i 0.0867099 0.0867099i −0.662421 0.749131i \(-0.730471\pi\)
0.749131 + 0.662421i \(0.230471\pi\)
\(828\) 0 0
\(829\) −13.0725 + 22.6422i −0.454026 + 0.786397i −0.998632 0.0522958i \(-0.983346\pi\)
0.544605 + 0.838692i \(0.316679\pi\)
\(830\) 0 0
\(831\) −4.67322 + 2.69809i −0.162112 + 0.0935956i
\(832\) 0 0
\(833\) −0.296912 + 29.7758i −0.0102874 + 1.03167i
\(834\) 0 0
\(835\) −6.33657 1.68979i −0.219286 0.0584775i
\(836\) 0 0
\(837\) −2.70159 10.0825i −0.0933807 0.348502i
\(838\) 0 0
\(839\) −45.3900 −1.56704 −0.783518 0.621369i \(-0.786577\pi\)
−0.783518 + 0.621369i \(0.786577\pi\)
\(840\) 0 0
\(841\) 27.6969 0.955064
\(842\) 0 0
\(843\) 0.129567 + 0.483550i 0.00446251 + 0.0166543i
\(844\) 0 0
\(845\) −14.2176 24.5580i −0.489101 0.844821i
\(846\) 0 0
\(847\) −16.2826 + 38.7619i −0.559476 + 1.33187i
\(848\) 0 0
\(849\) −2.53646 + 1.46442i −0.0870510 + 0.0502589i
\(850\) 0 0
\(851\) −12.8211 + 22.2068i −0.439503 + 0.761241i
\(852\) 0 0
\(853\) −13.3034 + 13.3034i −0.455499 + 0.455499i −0.897175 0.441676i \(-0.854384\pi\)
0.441676 + 0.897175i \(0.354384\pi\)
\(854\) 0 0
\(855\) 10.3958 0.0123882i 0.355530 0.000423667i
\(856\) 0 0
\(857\) −48.3905 + 12.9662i −1.65299 + 0.442917i −0.960447 0.278463i \(-0.910175\pi\)
−0.692540 + 0.721379i \(0.743508\pi\)
\(858\) 0 0
\(859\) 7.52733 + 13.0377i 0.256829 + 0.444841i 0.965391 0.260808i \(-0.0839889\pi\)
−0.708561 + 0.705649i \(0.750656\pi\)
\(860\) 0 0
\(861\) −8.14123 6.31172i −0.277452 0.215103i
\(862\) 0 0
\(863\) −10.0843 + 37.6350i −0.343272 + 1.28111i 0.551345 + 0.834277i \(0.314115\pi\)
−0.894618 + 0.446833i \(0.852552\pi\)
\(864\) 0 0
\(865\) 23.5171 6.33143i 0.799604 0.215275i
\(866\) 0 0
\(867\) 0.774745 + 0.774745i 0.0263117 + 0.0263117i
\(868\) 0 0
\(869\) 88.9018i 3.01579i
\(870\) 0 0
\(871\) −4.21198 2.43179i −0.142717 0.0823979i
\(872\) 0 0
\(873\) −4.89170 1.31073i −0.165559 0.0443614i
\(874\) 0 0
\(875\) 23.4931 17.9743i 0.794211 0.607642i
\(876\) 0 0
\(877\) 19.2465 + 5.15707i 0.649907 + 0.174142i 0.568687 0.822554i \(-0.307452\pi\)
0.0812200 + 0.996696i \(0.474118\pi\)
\(878\) 0 0
\(879\) −9.11622 5.26325i −0.307482 0.177525i
\(880\) 0 0
\(881\) 44.5448i 1.50075i −0.661011 0.750376i \(-0.729872\pi\)
0.661011 0.750376i \(-0.270128\pi\)
\(882\) 0 0
\(883\) 13.8261 + 13.8261i 0.465285 + 0.465285i 0.900383 0.435098i \(-0.143286\pi\)
−0.435098 + 0.900383i \(0.643286\pi\)
\(884\) 0 0
\(885\) −7.11533 + 1.91564i −0.239179 + 0.0643935i
\(886\) 0 0
\(887\) −10.7246 + 40.0248i −0.360097 + 1.34390i 0.513850 + 0.857880i \(0.328219\pi\)
−0.873947 + 0.486021i \(0.838448\pi\)
\(888\) 0 0
\(889\) −22.3174 3.05142i −0.748503 0.102341i
\(890\) 0 0
\(891\) −2.59281 4.49089i −0.0868625 0.150450i
\(892\) 0 0
\(893\) 41.2392 11.0500i 1.38002 0.369775i
\(894\) 0 0
\(895\) −40.7353 + 0.0485422i −1.36163 + 0.00162259i
\(896\) 0 0
\(897\) 1.48856 1.48856i 0.0497016 0.0497016i
\(898\) 0 0
\(899\) 5.95784 10.3193i 0.198705 0.344167i
\(900\) 0 0
\(901\) −14.2968 + 8.25425i −0.476295 + 0.274989i
\(902\) 0 0
\(903\) 31.5289 3.99105i 1.04922 0.132814i
\(904\) 0 0
\(905\) −14.8136 25.5874i −0.492420 0.850554i
\(906\) 0 0
\(907\) −2.95871 11.0421i −0.0982424 0.366646i 0.899249 0.437438i \(-0.144114\pi\)
−0.997491 + 0.0707922i \(0.977447\pi\)
\(908\) 0 0
\(909\) −2.99460 −0.0993247
\(910\) 0 0
\(911\) 27.9017 0.924425 0.462213 0.886769i \(-0.347056\pi\)
0.462213 + 0.886769i \(0.347056\pi\)
\(912\) 0 0
\(913\) −0.884418 3.30069i −0.0292700 0.109237i
\(914\) 0 0
\(915\) −8.01511 2.13741i −0.264971 0.0706606i
\(916\) 0 0
\(917\) −29.7465 12.4955i −0.982315 0.412638i
\(918\) 0 0
\(919\) 21.5990 12.4702i 0.712485 0.411353i −0.0994956 0.995038i \(-0.531723\pi\)
0.811980 + 0.583685i \(0.198390\pi\)
\(920\) 0 0
\(921\) −6.85091 + 11.8661i −0.225745 + 0.391002i
\(922\) 0 0
\(923\) −5.87885 + 5.87885i −0.193505 + 0.193505i
\(924\) 0 0
\(925\) −23.9040 + 24.0182i −0.785958 + 0.789713i
\(926\) 0 0
\(927\) 9.12385 2.44473i 0.299667 0.0802954i
\(928\) 0 0
\(929\) 15.5688 + 26.9659i 0.510796 + 0.884724i 0.999922 + 0.0125108i \(0.00398242\pi\)
−0.489126 + 0.872213i \(0.662684\pi\)
\(930\) 0 0
\(931\) −31.5176 + 8.10918i −1.03295 + 0.265768i
\(932\) 0 0
\(933\) −2.95890 + 11.0428i −0.0968701 + 0.361524i
\(934\) 0 0
\(935\) 12.8232 + 47.6297i 0.419364 + 1.55766i
\(936\) 0 0
\(937\) −34.9737 34.9737i −1.14254 1.14254i −0.987984 0.154558i \(-0.950605\pi\)
−0.154558 0.987984i \(-0.549395\pi\)
\(938\) 0 0
\(939\) 15.2373i 0.497249i
\(940\) 0 0
\(941\) 4.51417 + 2.60626i 0.147158 + 0.0849615i 0.571771 0.820413i \(-0.306257\pi\)
−0.424613 + 0.905375i \(0.639590\pi\)
\(942\) 0 0
\(943\) −14.2296 3.81280i −0.463378 0.124162i
\(944\) 0 0
\(945\) −2.24323 5.47430i −0.0729724 0.178079i
\(946\) 0 0
\(947\) 27.0538 + 7.24905i 0.879131 + 0.235562i 0.670032 0.742332i \(-0.266280\pi\)
0.209099 + 0.977895i \(0.432947\pi\)
\(948\) 0 0
\(949\) −5.30184 3.06102i −0.172105 0.0993648i
\(950\) 0 0
\(951\) 10.1776i 0.330032i
\(952\) 0 0
\(953\) 14.6336 + 14.6336i 0.474028 + 0.474028i 0.903216 0.429187i \(-0.141200\pi\)
−0.429187 + 0.903216i \(0.641200\pi\)
\(954\) 0 0
\(955\) 5.44148 + 3.13300i 0.176082 + 0.101381i
\(956\) 0 0
\(957\) 1.53212 5.71794i 0.0495264 0.184835i
\(958\) 0 0
\(959\) −23.0389 + 29.7169i −0.743963 + 0.959608i
\(960\) 0 0
\(961\) 38.9775 + 67.5110i 1.25734 + 2.17778i
\(962\) 0 0
\(963\) −17.1428 + 4.59341i −0.552420 + 0.148021i
\(964\) 0 0
\(965\) 22.3991 22.4526i 0.721053 0.722774i
\(966\) 0 0
\(967\) 6.52152 6.52152i 0.209718 0.209718i −0.594430 0.804148i \(-0.702622\pi\)
0.804148 + 0.594430i \(0.202622\pi\)
\(968\) 0 0
\(969\) −9.88853 + 17.1274i −0.317665 + 0.550213i
\(970\) 0 0
\(971\) −29.0356 + 16.7637i −0.931797 + 0.537973i −0.887379 0.461040i \(-0.847476\pi\)
−0.0444174 + 0.999013i \(0.514143\pi\)
\(972\) 0 0
\(973\) −7.93119 10.4435i −0.254262 0.334804i
\(974\) 0 0
\(975\) 2.40591 1.39671i 0.0770509 0.0447305i
\(976\) 0 0
\(977\) 3.08347 + 11.5077i 0.0986489 + 0.368163i 0.997547 0.0699943i \(-0.0222981\pi\)
−0.898899 + 0.438157i \(0.855631\pi\)
\(978\) 0 0
\(979\) 14.9435 0.477597
\(980\) 0 0
\(981\) −2.13906 −0.0682950
\(982\) 0 0
\(983\) −4.99506 18.6418i −0.159318 0.594582i −0.998697 0.0510354i \(-0.983748\pi\)
0.839379 0.543546i \(-0.182919\pi\)
\(984\) 0 0
\(985\) 4.49674 16.8624i 0.143278 0.537281i
\(986\) 0 0
\(987\) −14.6944 19.3491i −0.467728 0.615889i
\(988\) 0 0
\(989\) 39.3592 22.7240i 1.25155 0.722582i
\(990\) 0 0
\(991\) 3.68266 6.37856i 0.116984 0.202622i −0.801587 0.597878i \(-0.796011\pi\)
0.918571 + 0.395256i \(0.129344\pi\)
\(992\) 0 0
\(993\) 0.266993 0.266993i 0.00847277 0.00847277i
\(994\) 0 0
\(995\) −0.0219983 18.4603i −0.000697392 0.585232i
\(996\) 0 0
\(997\) 8.52696 2.28479i 0.270051 0.0723601i −0.121252 0.992622i \(-0.538691\pi\)
0.391303 + 0.920262i \(0.372024\pi\)
\(998\) 0 0
\(999\) 3.38862 + 5.86926i 0.107211 + 0.185695i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.dd.a.73.7 48
5.2 odd 4 840.2.dd.b.577.8 yes 48
7.5 odd 6 840.2.dd.b.313.8 yes 48
35.12 even 12 inner 840.2.dd.a.817.7 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.dd.a.73.7 48 1.1 even 1 trivial
840.2.dd.a.817.7 yes 48 35.12 even 12 inner
840.2.dd.b.313.8 yes 48 7.5 odd 6
840.2.dd.b.577.8 yes 48 5.2 odd 4