Properties

Label 840.2.da.a.89.15
Level $840$
Weight $2$
Character 840.89
Analytic conductor $6.707$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(89,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.da (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.15
Character \(\chi\) \(=\) 840.89
Dual form 840.2.da.a.689.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.395473 - 1.68630i) q^{3} +(-2.06804 + 0.850426i) q^{5} +(0.514896 + 2.59517i) q^{7} +(-2.68720 - 1.33377i) q^{9} +(0.513340 - 0.296377i) q^{11} +3.52786 q^{13} +(0.616221 + 3.82365i) q^{15} +(5.41797 - 3.12807i) q^{17} +(-0.455153 - 0.262783i) q^{19} +(4.57985 + 0.158048i) q^{21} +(3.96748 - 6.87187i) q^{23} +(3.55355 - 3.51743i) q^{25} +(-3.31185 + 4.00396i) q^{27} -2.35134i q^{29} +(4.32575 - 2.49747i) q^{31} +(-0.296768 - 0.982854i) q^{33} +(-3.27182 - 4.92901i) q^{35} +(8.71989 + 5.03443i) q^{37} +(1.39517 - 5.94902i) q^{39} -4.64103 q^{41} +3.39515i q^{43} +(6.69151 + 0.473015i) q^{45} +(-7.55190 - 4.36009i) q^{47} +(-6.46976 + 2.67248i) q^{49} +(-3.13219 - 10.3734i) q^{51} +(4.45314 + 7.71307i) q^{53} +(-0.809560 + 1.04948i) q^{55} +(-0.623131 + 0.663601i) q^{57} +(-1.45156 - 2.51417i) q^{59} +(10.2693 + 5.92900i) q^{61} +(2.07772 - 7.66049i) q^{63} +(-7.29574 + 3.00018i) q^{65} +(2.49970 - 1.44320i) q^{67} +(-10.0190 - 9.40799i) q^{69} -1.36621i q^{71} +(-6.28839 - 10.8918i) q^{73} +(-4.52610 - 7.38339i) q^{75} +(1.03346 + 1.17960i) q^{77} +(-0.276768 + 0.479377i) q^{79} +(5.44212 + 7.16822i) q^{81} -2.27731i q^{83} +(-8.54437 + 11.0765i) q^{85} +(-3.96505 - 0.929889i) q^{87} +(-1.52477 + 2.64098i) q^{89} +(1.81648 + 9.15537i) q^{91} +(-2.50077 - 8.28218i) q^{93} +(1.16475 + 0.156370i) q^{95} +1.81647 q^{97} +(-1.77475 + 0.111748i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 3 q^{3} - 3 q^{5} - q^{9} - 14 q^{15} + 5 q^{21} - 2 q^{23} + q^{25} + 6 q^{31} - 24 q^{33} + 4 q^{35} + 2 q^{39} - 3 q^{45} + 12 q^{51} + 6 q^{53} - 20 q^{57} + 18 q^{61} + 26 q^{63} - 10 q^{65}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.395473 1.68630i 0.228326 0.973585i
\(4\) 0 0
\(5\) −2.06804 + 0.850426i −0.924854 + 0.380322i
\(6\) 0 0
\(7\) 0.514896 + 2.59517i 0.194612 + 0.980880i
\(8\) 0 0
\(9\) −2.68720 1.33377i −0.895734 0.444590i
\(10\) 0 0
\(11\) 0.513340 0.296377i 0.154778 0.0893611i −0.420611 0.907241i \(-0.638184\pi\)
0.575389 + 0.817880i \(0.304851\pi\)
\(12\) 0 0
\(13\) 3.52786 0.978452 0.489226 0.872157i \(-0.337279\pi\)
0.489226 + 0.872157i \(0.337279\pi\)
\(14\) 0 0
\(15\) 0.616221 + 3.82365i 0.159108 + 0.987261i
\(16\) 0 0
\(17\) 5.41797 3.12807i 1.31405 0.758667i 0.331286 0.943530i \(-0.392518\pi\)
0.982764 + 0.184863i \(0.0591842\pi\)
\(18\) 0 0
\(19\) −0.455153 0.262783i −0.104419 0.0602865i 0.446881 0.894593i \(-0.352535\pi\)
−0.551300 + 0.834307i \(0.685868\pi\)
\(20\) 0 0
\(21\) 4.57985 + 0.158048i 0.999405 + 0.0344889i
\(22\) 0 0
\(23\) 3.96748 6.87187i 0.827276 1.43288i −0.0728907 0.997340i \(-0.523222\pi\)
0.900167 0.435545i \(-0.143444\pi\)
\(24\) 0 0
\(25\) 3.55355 3.51743i 0.710710 0.703485i
\(26\) 0 0
\(27\) −3.31185 + 4.00396i −0.637365 + 0.770562i
\(28\) 0 0
\(29\) 2.35134i 0.436632i −0.975878 0.218316i \(-0.929944\pi\)
0.975878 0.218316i \(-0.0700564\pi\)
\(30\) 0 0
\(31\) 4.32575 2.49747i 0.776927 0.448559i −0.0584133 0.998292i \(-0.518604\pi\)
0.835340 + 0.549734i \(0.185271\pi\)
\(32\) 0 0
\(33\) −0.296768 0.982854i −0.0516607 0.171093i
\(34\) 0 0
\(35\) −3.27182 4.92901i −0.553039 0.833156i
\(36\) 0 0
\(37\) 8.71989 + 5.03443i 1.43354 + 0.827656i 0.997389 0.0722170i \(-0.0230074\pi\)
0.436153 + 0.899873i \(0.356341\pi\)
\(38\) 0 0
\(39\) 1.39517 5.94902i 0.223406 0.952606i
\(40\) 0 0
\(41\) −4.64103 −0.724808 −0.362404 0.932021i \(-0.618044\pi\)
−0.362404 + 0.932021i \(0.618044\pi\)
\(42\) 0 0
\(43\) 3.39515i 0.517756i 0.965910 + 0.258878i \(0.0833528\pi\)
−0.965910 + 0.258878i \(0.916647\pi\)
\(44\) 0 0
\(45\) 6.69151 + 0.473015i 0.997511 + 0.0705129i
\(46\) 0 0
\(47\) −7.55190 4.36009i −1.10156 0.635985i −0.164928 0.986306i \(-0.552739\pi\)
−0.936630 + 0.350321i \(0.886073\pi\)
\(48\) 0 0
\(49\) −6.46976 + 2.67248i −0.924252 + 0.381783i
\(50\) 0 0
\(51\) −3.13219 10.3734i −0.438595 1.45256i
\(52\) 0 0
\(53\) 4.45314 + 7.71307i 0.611686 + 1.05947i 0.990956 + 0.134186i \(0.0428419\pi\)
−0.379270 + 0.925286i \(0.623825\pi\)
\(54\) 0 0
\(55\) −0.809560 + 1.04948i −0.109161 + 0.141511i
\(56\) 0 0
\(57\) −0.623131 + 0.663601i −0.0825357 + 0.0878961i
\(58\) 0 0
\(59\) −1.45156 2.51417i −0.188977 0.327318i 0.755932 0.654650i \(-0.227184\pi\)
−0.944909 + 0.327332i \(0.893850\pi\)
\(60\) 0 0
\(61\) 10.2693 + 5.92900i 1.31485 + 0.759130i 0.982896 0.184164i \(-0.0589578\pi\)
0.331957 + 0.943295i \(0.392291\pi\)
\(62\) 0 0
\(63\) 2.07772 7.66049i 0.261768 0.965131i
\(64\) 0 0
\(65\) −7.29574 + 3.00018i −0.904925 + 0.372127i
\(66\) 0 0
\(67\) 2.49970 1.44320i 0.305387 0.176315i −0.339474 0.940616i \(-0.610249\pi\)
0.644860 + 0.764301i \(0.276916\pi\)
\(68\) 0 0
\(69\) −10.0190 9.40799i −1.20615 1.13259i
\(70\) 0 0
\(71\) 1.36621i 0.162139i −0.996708 0.0810695i \(-0.974166\pi\)
0.996708 0.0810695i \(-0.0258336\pi\)
\(72\) 0 0
\(73\) −6.28839 10.8918i −0.736001 1.27479i −0.954283 0.298905i \(-0.903379\pi\)
0.218282 0.975886i \(-0.429955\pi\)
\(74\) 0 0
\(75\) −4.52610 7.38339i −0.522629 0.852560i
\(76\) 0 0
\(77\) 1.03346 + 1.17960i 0.117774 + 0.134428i
\(78\) 0 0
\(79\) −0.276768 + 0.479377i −0.0311389 + 0.0539341i −0.881175 0.472790i \(-0.843247\pi\)
0.850036 + 0.526725i \(0.176580\pi\)
\(80\) 0 0
\(81\) 5.44212 + 7.16822i 0.604680 + 0.796469i
\(82\) 0 0
\(83\) 2.27731i 0.249967i −0.992159 0.124983i \(-0.960112\pi\)
0.992159 0.124983i \(-0.0398878\pi\)
\(84\) 0 0
\(85\) −8.54437 + 11.0765i −0.926767 + 1.20142i
\(86\) 0 0
\(87\) −3.96505 0.929889i −0.425098 0.0996946i
\(88\) 0 0
\(89\) −1.52477 + 2.64098i −0.161625 + 0.279943i −0.935452 0.353454i \(-0.885007\pi\)
0.773826 + 0.633398i \(0.218340\pi\)
\(90\) 0 0
\(91\) 1.81648 + 9.15537i 0.190419 + 0.959744i
\(92\) 0 0
\(93\) −2.50077 8.28218i −0.259317 0.858822i
\(94\) 0 0
\(95\) 1.16475 + 0.156370i 0.119501 + 0.0160433i
\(96\) 0 0
\(97\) 1.81647 0.184434 0.0922172 0.995739i \(-0.470605\pi\)
0.0922172 + 0.995739i \(0.470605\pi\)
\(98\) 0 0
\(99\) −1.77475 + 0.111748i −0.178369 + 0.0112311i
\(100\) 0 0
\(101\) −3.40184 5.89216i −0.338496 0.586292i 0.645654 0.763630i \(-0.276585\pi\)
−0.984150 + 0.177338i \(0.943251\pi\)
\(102\) 0 0
\(103\) 6.52606 11.3035i 0.643031 1.11376i −0.341721 0.939801i \(-0.611010\pi\)
0.984752 0.173962i \(-0.0556569\pi\)
\(104\) 0 0
\(105\) −9.60570 + 3.56798i −0.937421 + 0.348199i
\(106\) 0 0
\(107\) −0.906956 + 1.57089i −0.0876787 + 0.151864i −0.906530 0.422142i \(-0.861278\pi\)
0.818851 + 0.574006i \(0.194612\pi\)
\(108\) 0 0
\(109\) 9.65478 + 16.7226i 0.924760 + 1.60173i 0.791947 + 0.610590i \(0.209068\pi\)
0.132813 + 0.991141i \(0.457599\pi\)
\(110\) 0 0
\(111\) 11.9380 12.7134i 1.13311 1.20670i
\(112\) 0 0
\(113\) 17.1285 1.61131 0.805656 0.592384i \(-0.201813\pi\)
0.805656 + 0.592384i \(0.201813\pi\)
\(114\) 0 0
\(115\) −2.36087 + 17.5853i −0.220152 + 1.63984i
\(116\) 0 0
\(117\) −9.48007 4.70535i −0.876433 0.435010i
\(118\) 0 0
\(119\) 10.9075 + 12.4499i 0.999892 + 1.14128i
\(120\) 0 0
\(121\) −5.32432 + 9.22199i −0.484029 + 0.838363i
\(122\) 0 0
\(123\) −1.83540 + 7.82617i −0.165493 + 0.705662i
\(124\) 0 0
\(125\) −4.35756 + 10.2962i −0.389752 + 0.920920i
\(126\) 0 0
\(127\) 5.58636i 0.495709i 0.968797 + 0.247855i \(0.0797255\pi\)
−0.968797 + 0.247855i \(0.920275\pi\)
\(128\) 0 0
\(129\) 5.72524 + 1.34269i 0.504079 + 0.118217i
\(130\) 0 0
\(131\) −4.47664 + 7.75376i −0.391125 + 0.677449i −0.992598 0.121444i \(-0.961247\pi\)
0.601473 + 0.798893i \(0.294581\pi\)
\(132\) 0 0
\(133\) 0.447608 1.31650i 0.0388126 0.114155i
\(134\) 0 0
\(135\) 3.44395 11.0968i 0.296408 0.955061i
\(136\) 0 0
\(137\) −0.822735 1.42502i −0.0702910 0.121748i 0.828738 0.559637i \(-0.189059\pi\)
−0.899029 + 0.437889i \(0.855726\pi\)
\(138\) 0 0
\(139\) 7.40264i 0.627883i −0.949442 0.313942i \(-0.898350\pi\)
0.949442 0.313942i \(-0.101650\pi\)
\(140\) 0 0
\(141\) −10.3390 + 11.0105i −0.870700 + 0.927248i
\(142\) 0 0
\(143\) 1.81099 1.04558i 0.151443 0.0874355i
\(144\) 0 0
\(145\) 1.99964 + 4.86265i 0.166061 + 0.403821i
\(146\) 0 0
\(147\) 1.94799 + 11.9668i 0.160667 + 0.987009i
\(148\) 0 0
\(149\) 15.7660 + 9.10249i 1.29160 + 0.745705i 0.978938 0.204160i \(-0.0654463\pi\)
0.312661 + 0.949865i \(0.398780\pi\)
\(150\) 0 0
\(151\) −8.90623 15.4260i −0.724779 1.25535i −0.959065 0.283186i \(-0.908609\pi\)
0.234286 0.972168i \(-0.424725\pi\)
\(152\) 0 0
\(153\) −18.7313 + 1.17943i −1.51434 + 0.0953510i
\(154\) 0 0
\(155\) −6.82188 + 8.84359i −0.547947 + 0.710334i
\(156\) 0 0
\(157\) −9.04908 15.6735i −0.722196 1.25088i −0.960118 0.279595i \(-0.909800\pi\)
0.237922 0.971284i \(-0.423534\pi\)
\(158\) 0 0
\(159\) 14.7676 4.45902i 1.17115 0.353623i
\(160\) 0 0
\(161\) 19.8765 + 6.75796i 1.56649 + 0.532602i
\(162\) 0 0
\(163\) −11.4627 6.61800i −0.897829 0.518362i −0.0213341 0.999772i \(-0.506791\pi\)
−0.876495 + 0.481410i \(0.840125\pi\)
\(164\) 0 0
\(165\) 1.44957 + 1.78020i 0.112849 + 0.138588i
\(166\) 0 0
\(167\) 13.6325i 1.05492i 0.849580 + 0.527459i \(0.176855\pi\)
−0.849580 + 0.527459i \(0.823145\pi\)
\(168\) 0 0
\(169\) −0.554220 −0.0426323
\(170\) 0 0
\(171\) 0.872598 + 1.31322i 0.0667292 + 0.100425i
\(172\) 0 0
\(173\) −9.61777 5.55282i −0.731225 0.422173i 0.0876449 0.996152i \(-0.472066\pi\)
−0.818870 + 0.573979i \(0.805399\pi\)
\(174\) 0 0
\(175\) 10.9580 + 7.41094i 0.828348 + 0.560214i
\(176\) 0 0
\(177\) −4.81370 + 1.45347i −0.361820 + 0.109250i
\(178\) 0 0
\(179\) 3.67091 2.11940i 0.274377 0.158411i −0.356498 0.934296i \(-0.616029\pi\)
0.630875 + 0.775885i \(0.282696\pi\)
\(180\) 0 0
\(181\) 8.96977i 0.666718i 0.942800 + 0.333359i \(0.108182\pi\)
−0.942800 + 0.333359i \(0.891818\pi\)
\(182\) 0 0
\(183\) 14.0593 14.9724i 1.03929 1.10679i
\(184\) 0 0
\(185\) −22.3145 2.99576i −1.64059 0.220253i
\(186\) 0 0
\(187\) 1.85417 3.21152i 0.135591 0.234850i
\(188\) 0 0
\(189\) −12.0962 6.53317i −0.879868 0.475218i
\(190\) 0 0
\(191\) −10.1558 5.86347i −0.734850 0.424266i 0.0853438 0.996352i \(-0.472801\pi\)
−0.820194 + 0.572086i \(0.806134\pi\)
\(192\) 0 0
\(193\) 17.4907 10.0983i 1.25901 0.726890i 0.286128 0.958191i \(-0.407632\pi\)
0.972882 + 0.231301i \(0.0742983\pi\)
\(194\) 0 0
\(195\) 2.17394 + 13.4893i 0.155679 + 0.965987i
\(196\) 0 0
\(197\) 11.0362 0.786296 0.393148 0.919475i \(-0.371386\pi\)
0.393148 + 0.919475i \(0.371386\pi\)
\(198\) 0 0
\(199\) −5.81284 + 3.35604i −0.412061 + 0.237904i −0.691675 0.722209i \(-0.743127\pi\)
0.279614 + 0.960113i \(0.409794\pi\)
\(200\) 0 0
\(201\) −1.44511 4.78598i −0.101930 0.337577i
\(202\) 0 0
\(203\) 6.10211 1.21069i 0.428284 0.0849741i
\(204\) 0 0
\(205\) 9.59783 3.94686i 0.670341 0.275661i
\(206\) 0 0
\(207\) −19.8269 + 13.1744i −1.37807 + 0.915685i
\(208\) 0 0
\(209\) −0.311532 −0.0215491
\(210\) 0 0
\(211\) −15.7005 −1.08087 −0.540433 0.841387i \(-0.681740\pi\)
−0.540433 + 0.841387i \(0.681740\pi\)
\(212\) 0 0
\(213\) −2.30383 0.540297i −0.157856 0.0370206i
\(214\) 0 0
\(215\) −2.88733 7.02130i −0.196914 0.478849i
\(216\) 0 0
\(217\) 8.70866 + 9.94008i 0.591182 + 0.674777i
\(218\) 0 0
\(219\) −20.8537 + 6.29669i −1.40917 + 0.425491i
\(220\) 0 0
\(221\) 19.1138 11.0354i 1.28573 0.742319i
\(222\) 0 0
\(223\) −27.7463 −1.85803 −0.929014 0.370044i \(-0.879343\pi\)
−0.929014 + 0.370044i \(0.879343\pi\)
\(224\) 0 0
\(225\) −14.2405 + 4.71242i −0.949370 + 0.314161i
\(226\) 0 0
\(227\) −19.7971 + 11.4298i −1.31398 + 0.758626i −0.982752 0.184926i \(-0.940795\pi\)
−0.331226 + 0.943552i \(0.607462\pi\)
\(228\) 0 0
\(229\) −1.64330 0.948762i −0.108593 0.0626959i 0.444720 0.895670i \(-0.353303\pi\)
−0.553313 + 0.832974i \(0.686637\pi\)
\(230\) 0 0
\(231\) 2.39786 1.27623i 0.157768 0.0839698i
\(232\) 0 0
\(233\) 0.969632 1.67945i 0.0635227 0.110025i −0.832515 0.554002i \(-0.813100\pi\)
0.896038 + 0.443978i \(0.146433\pi\)
\(234\) 0 0
\(235\) 19.3255 + 2.59449i 1.26066 + 0.169246i
\(236\) 0 0
\(237\) 0.698918 + 0.656294i 0.0453996 + 0.0426309i
\(238\) 0 0
\(239\) 27.3399i 1.76847i 0.467040 + 0.884236i \(0.345320\pi\)
−0.467040 + 0.884236i \(0.654680\pi\)
\(240\) 0 0
\(241\) −8.99319 + 5.19222i −0.579302 + 0.334460i −0.760856 0.648921i \(-0.775221\pi\)
0.181554 + 0.983381i \(0.441887\pi\)
\(242\) 0 0
\(243\) 14.2400 6.34220i 0.913494 0.406852i
\(244\) 0 0
\(245\) 11.1070 11.0288i 0.709598 0.704607i
\(246\) 0 0
\(247\) −1.60572 0.927061i −0.102169 0.0589875i
\(248\) 0 0
\(249\) −3.84022 0.900612i −0.243364 0.0570740i
\(250\) 0 0
\(251\) −28.7538 −1.81493 −0.907463 0.420131i \(-0.861984\pi\)
−0.907463 + 0.420131i \(0.861984\pi\)
\(252\) 0 0
\(253\) 4.70348i 0.295705i
\(254\) 0 0
\(255\) 15.2993 + 18.7888i 0.958078 + 1.17660i
\(256\) 0 0
\(257\) −2.89420 1.67097i −0.180535 0.104232i 0.407009 0.913424i \(-0.366572\pi\)
−0.587544 + 0.809192i \(0.699905\pi\)
\(258\) 0 0
\(259\) −8.57534 + 25.2218i −0.532846 + 1.56720i
\(260\) 0 0
\(261\) −3.13614 + 6.31852i −0.194122 + 0.391106i
\(262\) 0 0
\(263\) −9.47670 16.4141i −0.584358 1.01214i −0.994955 0.100321i \(-0.968013\pi\)
0.410597 0.911817i \(-0.365320\pi\)
\(264\) 0 0
\(265\) −15.7687 12.1638i −0.968661 0.747219i
\(266\) 0 0
\(267\) 3.85048 + 3.61565i 0.235645 + 0.221274i
\(268\) 0 0
\(269\) 0.357429 + 0.619085i 0.0217928 + 0.0377463i 0.876716 0.481008i \(-0.159729\pi\)
−0.854923 + 0.518754i \(0.826396\pi\)
\(270\) 0 0
\(271\) 16.0639 + 9.27451i 0.975814 + 0.563386i 0.901004 0.433811i \(-0.142832\pi\)
0.0748102 + 0.997198i \(0.476165\pi\)
\(272\) 0 0
\(273\) 16.1571 + 0.557571i 0.977870 + 0.0337457i
\(274\) 0 0
\(275\) 0.781696 2.85883i 0.0471380 0.172394i
\(276\) 0 0
\(277\) −23.1750 + 13.3801i −1.39245 + 0.803932i −0.993586 0.113077i \(-0.963929\pi\)
−0.398866 + 0.917009i \(0.630596\pi\)
\(278\) 0 0
\(279\) −14.9552 + 0.941663i −0.895345 + 0.0563759i
\(280\) 0 0
\(281\) 1.08018i 0.0644381i −0.999481 0.0322191i \(-0.989743\pi\)
0.999481 0.0322191i \(-0.0102574\pi\)
\(282\) 0 0
\(283\) 3.78268 + 6.55179i 0.224857 + 0.389463i 0.956276 0.292464i \(-0.0944753\pi\)
−0.731420 + 0.681928i \(0.761142\pi\)
\(284\) 0 0
\(285\) 0.724314 1.90228i 0.0429047 0.112681i
\(286\) 0 0
\(287\) −2.38965 12.0442i −0.141057 0.710950i
\(288\) 0 0
\(289\) 11.0696 19.1731i 0.651152 1.12783i
\(290\) 0 0
\(291\) 0.718364 3.06311i 0.0421112 0.179563i
\(292\) 0 0
\(293\) 1.61758i 0.0945000i 0.998883 + 0.0472500i \(0.0150458\pi\)
−0.998883 + 0.0472500i \(0.984954\pi\)
\(294\) 0 0
\(295\) 5.14000 + 3.96496i 0.299262 + 0.230849i
\(296\) 0 0
\(297\) −0.513424 + 3.03695i −0.0297919 + 0.176222i
\(298\) 0 0
\(299\) 13.9967 24.2430i 0.809450 1.40201i
\(300\) 0 0
\(301\) −8.81098 + 1.74815i −0.507857 + 0.100762i
\(302\) 0 0
\(303\) −11.2813 + 3.40633i −0.648093 + 0.195689i
\(304\) 0 0
\(305\) −26.2795 3.52808i −1.50476 0.202017i
\(306\) 0 0
\(307\) 26.5559 1.51563 0.757813 0.652472i \(-0.226268\pi\)
0.757813 + 0.652472i \(0.226268\pi\)
\(308\) 0 0
\(309\) −16.4801 15.4751i −0.937522 0.880347i
\(310\) 0 0
\(311\) −3.19106 5.52707i −0.180948 0.313411i 0.761256 0.648452i \(-0.224583\pi\)
−0.942204 + 0.335041i \(0.891250\pi\)
\(312\) 0 0
\(313\) −2.99675 + 5.19052i −0.169386 + 0.293386i −0.938204 0.346082i \(-0.887512\pi\)
0.768818 + 0.639468i \(0.220845\pi\)
\(314\) 0 0
\(315\) 2.21788 + 17.6091i 0.124963 + 0.992161i
\(316\) 0 0
\(317\) −13.3260 + 23.0812i −0.748461 + 1.29637i 0.200100 + 0.979776i \(0.435873\pi\)
−0.948560 + 0.316596i \(0.897460\pi\)
\(318\) 0 0
\(319\) −0.696882 1.20704i −0.0390179 0.0675810i
\(320\) 0 0
\(321\) 2.29032 + 2.15064i 0.127833 + 0.120037i
\(322\) 0 0
\(323\) −3.28801 −0.182950
\(324\) 0 0
\(325\) 12.5364 12.4090i 0.695395 0.688326i
\(326\) 0 0
\(327\) 32.0174 9.66752i 1.77057 0.534615i
\(328\) 0 0
\(329\) 7.42672 21.8434i 0.409448 1.20427i
\(330\) 0 0
\(331\) −2.62072 + 4.53922i −0.144048 + 0.249498i −0.929017 0.370036i \(-0.879345\pi\)
0.784970 + 0.619534i \(0.212679\pi\)
\(332\) 0 0
\(333\) −16.7174 25.1589i −0.916105 1.37870i
\(334\) 0 0
\(335\) −3.94213 + 5.11040i −0.215382 + 0.279211i
\(336\) 0 0
\(337\) 21.1800i 1.15375i 0.816834 + 0.576873i \(0.195727\pi\)
−0.816834 + 0.576873i \(0.804273\pi\)
\(338\) 0 0
\(339\) 6.77384 28.8837i 0.367905 1.56875i
\(340\) 0 0
\(341\) 1.48039 2.56410i 0.0801674 0.138854i
\(342\) 0 0
\(343\) −10.2668 15.4141i −0.554354 0.832281i
\(344\) 0 0
\(345\) 28.7205 + 10.9356i 1.54626 + 0.588755i
\(346\) 0 0
\(347\) −6.35632 11.0095i −0.341225 0.591019i 0.643435 0.765501i \(-0.277509\pi\)
−0.984661 + 0.174481i \(0.944175\pi\)
\(348\) 0 0
\(349\) 21.0822i 1.12851i −0.825602 0.564253i \(-0.809164\pi\)
0.825602 0.564253i \(-0.190836\pi\)
\(350\) 0 0
\(351\) −11.6837 + 14.1254i −0.623631 + 0.753957i
\(352\) 0 0
\(353\) 31.8624 18.3958i 1.69587 0.979109i 0.746264 0.665650i \(-0.231846\pi\)
0.949602 0.313458i \(-0.101488\pi\)
\(354\) 0 0
\(355\) 1.16186 + 2.82537i 0.0616651 + 0.149955i
\(356\) 0 0
\(357\) 25.3079 13.4698i 1.33943 0.712896i
\(358\) 0 0
\(359\) 20.1910 + 11.6573i 1.06564 + 0.615248i 0.926987 0.375093i \(-0.122389\pi\)
0.138653 + 0.990341i \(0.455723\pi\)
\(360\) 0 0
\(361\) −9.36189 16.2153i −0.492731 0.853435i
\(362\) 0 0
\(363\) 13.4454 + 12.6254i 0.705701 + 0.662664i
\(364\) 0 0
\(365\) 22.2673 + 17.1769i 1.16552 + 0.899078i
\(366\) 0 0
\(367\) −10.9958 19.0453i −0.573977 0.994158i −0.996152 0.0876432i \(-0.972066\pi\)
0.422175 0.906514i \(-0.361267\pi\)
\(368\) 0 0
\(369\) 12.4714 + 6.19007i 0.649235 + 0.322242i
\(370\) 0 0
\(371\) −17.7238 + 15.5281i −0.920173 + 0.806178i
\(372\) 0 0
\(373\) 1.06098 + 0.612559i 0.0549356 + 0.0317171i 0.527216 0.849731i \(-0.323236\pi\)
−0.472281 + 0.881448i \(0.656569\pi\)
\(374\) 0 0
\(375\) 15.6392 + 11.4200i 0.807603 + 0.589727i
\(376\) 0 0
\(377\) 8.29518i 0.427223i
\(378\) 0 0
\(379\) 22.9103 1.17683 0.588413 0.808561i \(-0.299753\pi\)
0.588413 + 0.808561i \(0.299753\pi\)
\(380\) 0 0
\(381\) 9.42026 + 2.20925i 0.482615 + 0.113183i
\(382\) 0 0
\(383\) 27.2371 + 15.7253i 1.39175 + 0.803527i 0.993509 0.113754i \(-0.0362875\pi\)
0.398241 + 0.917281i \(0.369621\pi\)
\(384\) 0 0
\(385\) −3.14041 1.56057i −0.160050 0.0795340i
\(386\) 0 0
\(387\) 4.52835 9.12346i 0.230189 0.463772i
\(388\) 0 0
\(389\) −1.33122 + 0.768581i −0.0674956 + 0.0389686i −0.533368 0.845883i \(-0.679074\pi\)
0.465872 + 0.884852i \(0.345741\pi\)
\(390\) 0 0
\(391\) 49.6421i 2.51051i
\(392\) 0 0
\(393\) 11.3048 + 10.6153i 0.570250 + 0.535473i
\(394\) 0 0
\(395\) 0.164692 1.22674i 0.00828657 0.0617240i
\(396\) 0 0
\(397\) 7.62473 13.2064i 0.382674 0.662812i −0.608769 0.793347i \(-0.708336\pi\)
0.991444 + 0.130536i \(0.0416698\pi\)
\(398\) 0 0
\(399\) −2.04300 1.27544i −0.102278 0.0638520i
\(400\) 0 0
\(401\) −0.445950 0.257469i −0.0222697 0.0128574i 0.488824 0.872383i \(-0.337426\pi\)
−0.511094 + 0.859525i \(0.670759\pi\)
\(402\) 0 0
\(403\) 15.2606 8.81072i 0.760185 0.438893i
\(404\) 0 0
\(405\) −17.3505 10.1960i −0.862155 0.506644i
\(406\) 0 0
\(407\) 5.96836 0.295841
\(408\) 0 0
\(409\) −3.75167 + 2.16603i −0.185508 + 0.107103i −0.589878 0.807492i \(-0.700824\pi\)
0.404370 + 0.914596i \(0.367491\pi\)
\(410\) 0 0
\(411\) −2.72838 + 0.823821i −0.134581 + 0.0406361i
\(412\) 0 0
\(413\) 5.77730 5.06157i 0.284282 0.249064i
\(414\) 0 0
\(415\) 1.93668 + 4.70955i 0.0950679 + 0.231183i
\(416\) 0 0
\(417\) −12.4831 2.92754i −0.611298 0.143362i
\(418\) 0 0
\(419\) −17.5359 −0.856685 −0.428342 0.903617i \(-0.640902\pi\)
−0.428342 + 0.903617i \(0.640902\pi\)
\(420\) 0 0
\(421\) −26.3274 −1.28312 −0.641558 0.767074i \(-0.721712\pi\)
−0.641558 + 0.767074i \(0.721712\pi\)
\(422\) 0 0
\(423\) 14.4781 + 21.7890i 0.703951 + 1.05942i
\(424\) 0 0
\(425\) 8.25028 30.1730i 0.400197 1.46361i
\(426\) 0 0
\(427\) −10.0991 + 29.7034i −0.488729 + 1.43745i
\(428\) 0 0
\(429\) −1.04696 3.46737i −0.0505475 0.167406i
\(430\) 0 0
\(431\) −8.92848 + 5.15486i −0.430070 + 0.248301i −0.699376 0.714754i \(-0.746539\pi\)
0.269306 + 0.963055i \(0.413206\pi\)
\(432\) 0 0
\(433\) −6.23911 −0.299832 −0.149916 0.988699i \(-0.547900\pi\)
−0.149916 + 0.988699i \(0.547900\pi\)
\(434\) 0 0
\(435\) 8.99068 1.44894i 0.431070 0.0694715i
\(436\) 0 0
\(437\) −3.61162 + 2.08517i −0.172767 + 0.0997473i
\(438\) 0 0
\(439\) −5.64405 3.25859i −0.269376 0.155524i 0.359228 0.933250i \(-0.383040\pi\)
−0.628604 + 0.777726i \(0.716373\pi\)
\(440\) 0 0
\(441\) 20.9500 + 1.44767i 0.997621 + 0.0689368i
\(442\) 0 0
\(443\) 1.13138 1.95961i 0.0537537 0.0931041i −0.837897 0.545829i \(-0.816215\pi\)
0.891650 + 0.452725i \(0.149548\pi\)
\(444\) 0 0
\(445\) 0.907322 6.75835i 0.0430112 0.320376i
\(446\) 0 0
\(447\) 21.5845 22.9863i 1.02091 1.08722i
\(448\) 0 0
\(449\) 17.1418i 0.808972i 0.914544 + 0.404486i \(0.132550\pi\)
−0.914544 + 0.404486i \(0.867450\pi\)
\(450\) 0 0
\(451\) −2.38243 + 1.37550i −0.112184 + 0.0647696i
\(452\) 0 0
\(453\) −29.5351 + 8.91798i −1.38768 + 0.419003i
\(454\) 0 0
\(455\) −11.5425 17.3889i −0.541122 0.815202i
\(456\) 0 0
\(457\) 13.1545 + 7.59478i 0.615343 + 0.355269i 0.775054 0.631895i \(-0.217723\pi\)
−0.159710 + 0.987164i \(0.551056\pi\)
\(458\) 0 0
\(459\) −5.41885 + 32.0530i −0.252930 + 1.49611i
\(460\) 0 0
\(461\) 15.2352 0.709572 0.354786 0.934948i \(-0.384554\pi\)
0.354786 + 0.934948i \(0.384554\pi\)
\(462\) 0 0
\(463\) 33.7527i 1.56862i 0.620369 + 0.784310i \(0.286983\pi\)
−0.620369 + 0.784310i \(0.713017\pi\)
\(464\) 0 0
\(465\) 12.2151 + 15.0011i 0.566460 + 0.695661i
\(466\) 0 0
\(467\) 7.08763 + 4.09205i 0.327976 + 0.189357i 0.654942 0.755679i \(-0.272693\pi\)
−0.326966 + 0.945036i \(0.606026\pi\)
\(468\) 0 0
\(469\) 5.03243 + 5.74403i 0.232376 + 0.265235i
\(470\) 0 0
\(471\) −30.0088 + 9.06103i −1.38273 + 0.417510i
\(472\) 0 0
\(473\) 1.00625 + 1.74287i 0.0462672 + 0.0801372i
\(474\) 0 0
\(475\) −2.54173 + 0.667156i −0.116623 + 0.0306112i
\(476\) 0 0
\(477\) −1.67904 26.6661i −0.0768781 1.22095i
\(478\) 0 0
\(479\) 19.6019 + 33.9515i 0.895635 + 1.55129i 0.833017 + 0.553248i \(0.186612\pi\)
0.0626186 + 0.998038i \(0.480055\pi\)
\(480\) 0 0
\(481\) 30.7625 + 17.7608i 1.40265 + 0.809821i
\(482\) 0 0
\(483\) 19.2565 30.8451i 0.876203 1.40350i
\(484\) 0 0
\(485\) −3.75652 + 1.54477i −0.170575 + 0.0701445i
\(486\) 0 0
\(487\) 20.1905 11.6570i 0.914920 0.528229i 0.0329090 0.999458i \(-0.489523\pi\)
0.882011 + 0.471229i \(0.156190\pi\)
\(488\) 0 0
\(489\) −15.6931 + 16.7123i −0.709667 + 0.755757i
\(490\) 0 0
\(491\) 26.3868i 1.19082i −0.803423 0.595409i \(-0.796990\pi\)
0.803423 0.595409i \(-0.203010\pi\)
\(492\) 0 0
\(493\) −7.35513 12.7395i −0.331259 0.573757i
\(494\) 0 0
\(495\) 3.57521 1.74039i 0.160694 0.0782248i
\(496\) 0 0
\(497\) 3.54553 0.703455i 0.159039 0.0315543i
\(498\) 0 0
\(499\) 13.6823 23.6984i 0.612502 1.06088i −0.378316 0.925677i \(-0.623497\pi\)
0.990817 0.135207i \(-0.0431701\pi\)
\(500\) 0 0
\(501\) 22.9885 + 5.39130i 1.02705 + 0.240865i
\(502\) 0 0
\(503\) 2.37035i 0.105689i 0.998603 + 0.0528444i \(0.0168287\pi\)
−0.998603 + 0.0528444i \(0.983171\pi\)
\(504\) 0 0
\(505\) 12.0460 + 9.29219i 0.536039 + 0.413497i
\(506\) 0 0
\(507\) −0.219179 + 0.934581i −0.00973408 + 0.0415062i
\(508\) 0 0
\(509\) −8.37336 + 14.5031i −0.371143 + 0.642838i −0.989742 0.142869i \(-0.954367\pi\)
0.618599 + 0.785707i \(0.287701\pi\)
\(510\) 0 0
\(511\) 25.0282 21.9276i 1.10718 0.970019i
\(512\) 0 0
\(513\) 2.55957 0.952117i 0.113008 0.0420370i
\(514\) 0 0
\(515\) −3.88336 + 28.9259i −0.171121 + 1.27463i
\(516\) 0 0
\(517\) −5.16893 −0.227329
\(518\) 0 0
\(519\) −13.1673 + 14.0224i −0.577979 + 0.615517i
\(520\) 0 0
\(521\) −12.1895 21.1128i −0.534030 0.924967i −0.999210 0.0397506i \(-0.987344\pi\)
0.465180 0.885216i \(-0.345990\pi\)
\(522\) 0 0
\(523\) −5.52273 + 9.56564i −0.241492 + 0.418276i −0.961139 0.276063i \(-0.910970\pi\)
0.719647 + 0.694340i \(0.244303\pi\)
\(524\) 0 0
\(525\) 16.8306 15.5476i 0.734550 0.678555i
\(526\) 0 0
\(527\) 15.6245 27.0624i 0.680614 1.17886i
\(528\) 0 0
\(529\) −19.9818 34.6094i −0.868772 1.50476i
\(530\) 0 0
\(531\) 0.547306 + 8.69214i 0.0237510 + 0.377207i
\(532\) 0 0
\(533\) −16.3729 −0.709189
\(534\) 0 0
\(535\) 0.539688 4.01996i 0.0233328 0.173798i
\(536\) 0 0
\(537\) −2.12220 7.02841i −0.0915795 0.303298i
\(538\) 0 0
\(539\) −2.52913 + 3.28938i −0.108937 + 0.141684i
\(540\) 0 0
\(541\) 4.48534 7.76883i 0.192840 0.334008i −0.753351 0.657619i \(-0.771564\pi\)
0.946190 + 0.323611i \(0.104897\pi\)
\(542\) 0 0
\(543\) 15.1257 + 3.54730i 0.649106 + 0.152229i
\(544\) 0 0
\(545\) −34.1877 26.3722i −1.46444 1.12966i
\(546\) 0 0
\(547\) 13.0695i 0.558813i 0.960173 + 0.279407i \(0.0901378\pi\)
−0.960173 + 0.279407i \(0.909862\pi\)
\(548\) 0 0
\(549\) −19.6878 29.6293i −0.840257 1.26455i
\(550\) 0 0
\(551\) −0.617891 + 1.07022i −0.0263230 + 0.0455929i
\(552\) 0 0
\(553\) −1.38657 0.471430i −0.0589629 0.0200473i
\(554\) 0 0
\(555\) −13.8765 + 36.4441i −0.589025 + 1.54697i
\(556\) 0 0
\(557\) 7.31816 + 12.6754i 0.310080 + 0.537075i 0.978380 0.206818i \(-0.0663107\pi\)
−0.668299 + 0.743893i \(0.732977\pi\)
\(558\) 0 0
\(559\) 11.9776i 0.506599i
\(560\) 0 0
\(561\) −4.68231 4.39676i −0.197687 0.185631i
\(562\) 0 0
\(563\) −22.7880 + 13.1567i −0.960400 + 0.554487i −0.896296 0.443456i \(-0.853752\pi\)
−0.0641038 + 0.997943i \(0.520419\pi\)
\(564\) 0 0
\(565\) −35.4223 + 14.5665i −1.49023 + 0.612818i
\(566\) 0 0
\(567\) −15.8006 + 17.8141i −0.663562 + 0.748121i
\(568\) 0 0
\(569\) −7.61500 4.39652i −0.319237 0.184312i 0.331815 0.943344i \(-0.392339\pi\)
−0.651053 + 0.759033i \(0.725672\pi\)
\(570\) 0 0
\(571\) −5.57694 9.65955i −0.233388 0.404240i 0.725415 0.688312i \(-0.241648\pi\)
−0.958803 + 0.284072i \(0.908315\pi\)
\(572\) 0 0
\(573\) −13.9039 + 14.8069i −0.580844 + 0.618568i
\(574\) 0 0
\(575\) −10.0727 38.3749i −0.420060 1.60034i
\(576\) 0 0
\(577\) −18.0251 31.2204i −0.750394 1.29972i −0.947632 0.319365i \(-0.896530\pi\)
0.197238 0.980356i \(-0.436803\pi\)
\(578\) 0 0
\(579\) −10.1116 33.4882i −0.420224 1.39172i
\(580\) 0 0
\(581\) 5.90998 1.17258i 0.245187 0.0486466i
\(582\) 0 0
\(583\) 4.57196 + 2.63962i 0.189351 + 0.109322i
\(584\) 0 0
\(585\) 23.6067 + 1.66873i 0.976016 + 0.0689935i
\(586\) 0 0
\(587\) 24.6334i 1.01673i 0.861142 + 0.508364i \(0.169749\pi\)
−0.861142 + 0.508364i \(0.830251\pi\)
\(588\) 0 0
\(589\) −2.62517 −0.108168
\(590\) 0 0
\(591\) 4.36451 18.6103i 0.179532 0.765525i
\(592\) 0 0
\(593\) 10.2968 + 5.94488i 0.422841 + 0.244127i 0.696292 0.717759i \(-0.254832\pi\)
−0.273451 + 0.961886i \(0.588165\pi\)
\(594\) 0 0
\(595\) −33.1449 16.4708i −1.35881 0.675236i
\(596\) 0 0
\(597\) 3.36047 + 11.1294i 0.137535 + 0.455496i
\(598\) 0 0
\(599\) 13.6545 7.88342i 0.557907 0.322108i −0.194398 0.980923i \(-0.562275\pi\)
0.752305 + 0.658815i \(0.228942\pi\)
\(600\) 0 0
\(601\) 0.994055i 0.0405483i −0.999794 0.0202742i \(-0.993546\pi\)
0.999794 0.0202742i \(-0.00645391\pi\)
\(602\) 0 0
\(603\) −8.64209 + 0.544154i −0.351933 + 0.0221597i
\(604\) 0 0
\(605\) 3.16826 23.5994i 0.128808 0.959451i
\(606\) 0 0
\(607\) 1.59944 2.77031i 0.0649193 0.112444i −0.831739 0.555167i \(-0.812654\pi\)
0.896658 + 0.442723i \(0.145988\pi\)
\(608\) 0 0
\(609\) 0.371624 10.7688i 0.0150590 0.436372i
\(610\) 0 0
\(611\) −26.6420 15.3818i −1.07782 0.622281i
\(612\) 0 0
\(613\) 27.5714 15.9183i 1.11360 0.642935i 0.173838 0.984774i \(-0.444383\pi\)
0.939759 + 0.341839i \(0.111050\pi\)
\(614\) 0 0
\(615\) −2.85990 17.7457i −0.115322 0.715575i
\(616\) 0 0
\(617\) −37.2314 −1.49888 −0.749441 0.662071i \(-0.769678\pi\)
−0.749441 + 0.662071i \(0.769678\pi\)
\(618\) 0 0
\(619\) 13.9665 8.06355i 0.561360 0.324102i −0.192331 0.981330i \(-0.561605\pi\)
0.753691 + 0.657229i \(0.228271\pi\)
\(620\) 0 0
\(621\) 14.3750 + 38.6442i 0.576849 + 1.55074i
\(622\) 0 0
\(623\) −7.63888 2.59720i −0.306045 0.104055i
\(624\) 0 0
\(625\) 0.255434 24.9987i 0.0102173 0.999948i
\(626\) 0 0
\(627\) −0.123202 + 0.525335i −0.00492022 + 0.0209799i
\(628\) 0 0
\(629\) 62.9921 2.51166
\(630\) 0 0
\(631\) 43.3819 1.72701 0.863503 0.504344i \(-0.168266\pi\)
0.863503 + 0.504344i \(0.168266\pi\)
\(632\) 0 0
\(633\) −6.20912 + 26.4757i −0.246790 + 1.05232i
\(634\) 0 0
\(635\) −4.75079 11.5528i −0.188529 0.458458i
\(636\) 0 0
\(637\) −22.8244 + 9.42813i −0.904336 + 0.373556i
\(638\) 0 0
\(639\) −1.82221 + 3.67128i −0.0720853 + 0.145233i
\(640\) 0 0
\(641\) −5.95145 + 3.43607i −0.235068 + 0.135717i −0.612908 0.790154i \(-0.710000\pi\)
0.377840 + 0.925871i \(0.376667\pi\)
\(642\) 0 0
\(643\) −5.95431 −0.234815 −0.117408 0.993084i \(-0.537458\pi\)
−0.117408 + 0.993084i \(0.537458\pi\)
\(644\) 0 0
\(645\) −12.9819 + 2.09216i −0.511160 + 0.0823789i
\(646\) 0 0
\(647\) 10.4558 6.03666i 0.411060 0.237325i −0.280185 0.959946i \(-0.590396\pi\)
0.691245 + 0.722621i \(0.257063\pi\)
\(648\) 0 0
\(649\) −1.49029 0.860418i −0.0584989 0.0337744i
\(650\) 0 0
\(651\) 20.2060 10.7544i 0.791935 0.421497i
\(652\) 0 0
\(653\) −20.6425 + 35.7539i −0.807804 + 1.39916i 0.106578 + 0.994304i \(0.466010\pi\)
−0.914382 + 0.404853i \(0.867323\pi\)
\(654\) 0 0
\(655\) 2.66384 19.8421i 0.104085 0.775295i
\(656\) 0 0
\(657\) 2.37102 + 37.6558i 0.0925023 + 1.46909i
\(658\) 0 0
\(659\) 20.0620i 0.781506i 0.920496 + 0.390753i \(0.127785\pi\)
−0.920496 + 0.390753i \(0.872215\pi\)
\(660\) 0 0
\(661\) −19.2634 + 11.1217i −0.749260 + 0.432585i −0.825426 0.564510i \(-0.809065\pi\)
0.0761667 + 0.997095i \(0.475732\pi\)
\(662\) 0 0
\(663\) −11.0499 36.5958i −0.429144 1.42126i
\(664\) 0 0
\(665\) 0.193919 + 3.10324i 0.00751988 + 0.120338i
\(666\) 0 0
\(667\) −16.1581 9.32887i −0.625644 0.361215i
\(668\) 0 0
\(669\) −10.9729 + 46.7885i −0.424237 + 1.80895i
\(670\) 0 0
\(671\) 7.02888 0.271347
\(672\) 0 0
\(673\) 12.6052i 0.485896i 0.970039 + 0.242948i \(0.0781144\pi\)
−0.970039 + 0.242948i \(0.921886\pi\)
\(674\) 0 0
\(675\) 2.31480 + 25.8774i 0.0890968 + 0.996023i
\(676\) 0 0
\(677\) 3.45389 + 1.99410i 0.132744 + 0.0766396i 0.564901 0.825159i \(-0.308914\pi\)
−0.432158 + 0.901798i \(0.642248\pi\)
\(678\) 0 0
\(679\) 0.935293 + 4.71404i 0.0358932 + 0.180908i
\(680\) 0 0
\(681\) 11.4449 + 37.9040i 0.438571 + 1.45248i
\(682\) 0 0
\(683\) 4.40559 + 7.63071i 0.168575 + 0.291981i 0.937919 0.346854i \(-0.112750\pi\)
−0.769344 + 0.638835i \(0.779417\pi\)
\(684\) 0 0
\(685\) 2.91332 + 2.24732i 0.111312 + 0.0858655i
\(686\) 0 0
\(687\) −2.24978 + 2.39589i −0.0858343 + 0.0914089i
\(688\) 0 0
\(689\) 15.7101 + 27.2106i 0.598506 + 1.03664i
\(690\) 0 0
\(691\) −25.3128 14.6144i −0.962946 0.555957i −0.0658672 0.997828i \(-0.520981\pi\)
−0.897078 + 0.441872i \(0.854315\pi\)
\(692\) 0 0
\(693\) −1.20382 4.54823i −0.0457292 0.172773i
\(694\) 0 0
\(695\) 6.29540 + 15.3089i 0.238798 + 0.580701i
\(696\) 0 0
\(697\) −25.1450 + 14.5175i −0.952434 + 0.549888i
\(698\) 0 0
\(699\) −2.44859 2.29927i −0.0926143 0.0869662i
\(700\) 0 0
\(701\) 5.79384i 0.218830i 0.993996 + 0.109415i \(0.0348978\pi\)
−0.993996 + 0.109415i \(0.965102\pi\)
\(702\) 0 0
\(703\) −2.64593 4.58288i −0.0997930 0.172847i
\(704\) 0 0
\(705\) 12.0178 31.5626i 0.452617 1.18872i
\(706\) 0 0
\(707\) 13.5395 11.8622i 0.509207 0.446124i
\(708\) 0 0
\(709\) 8.80248 15.2463i 0.330584 0.572589i −0.652042 0.758183i \(-0.726088\pi\)
0.982627 + 0.185594i \(0.0594209\pi\)
\(710\) 0 0
\(711\) 1.38311 0.919038i 0.0518707 0.0344666i
\(712\) 0 0
\(713\) 39.6346i 1.48433i
\(714\) 0 0
\(715\) −2.85601 + 3.70241i −0.106809 + 0.138462i
\(716\) 0 0
\(717\) 46.1032 + 10.8122i 1.72176 + 0.403788i
\(718\) 0 0
\(719\) 15.5919 27.0059i 0.581479 1.00715i −0.413826 0.910356i \(-0.635808\pi\)
0.995304 0.0967945i \(-0.0308590\pi\)
\(720\) 0 0
\(721\) 32.6946 + 11.1161i 1.21761 + 0.413985i
\(722\) 0 0
\(723\) 5.19907 + 17.2186i 0.193356 + 0.640366i
\(724\) 0 0
\(725\) −8.27065 8.35559i −0.307164 0.310319i
\(726\) 0 0
\(727\) −10.1468 −0.376323 −0.188162 0.982138i \(-0.560253\pi\)
−0.188162 + 0.982138i \(0.560253\pi\)
\(728\) 0 0
\(729\) −5.06333 26.5210i −0.187531 0.982259i
\(730\) 0 0
\(731\) 10.6203 + 18.3948i 0.392804 + 0.680357i
\(732\) 0 0
\(733\) −10.3136 + 17.8637i −0.380942 + 0.659810i −0.991197 0.132394i \(-0.957733\pi\)
0.610255 + 0.792205i \(0.291067\pi\)
\(734\) 0 0
\(735\) −14.2054 23.0913i −0.523975 0.851734i
\(736\) 0 0
\(737\) 0.855464 1.48171i 0.0315114 0.0545794i
\(738\) 0 0
\(739\) 5.78547 + 10.0207i 0.212822 + 0.368619i 0.952597 0.304236i \(-0.0984012\pi\)
−0.739775 + 0.672855i \(0.765068\pi\)
\(740\) 0 0
\(741\) −2.19832 + 2.34109i −0.0807572 + 0.0860021i
\(742\) 0 0
\(743\) −38.5409 −1.41393 −0.706965 0.707249i \(-0.749936\pi\)
−0.706965 + 0.707249i \(0.749936\pi\)
\(744\) 0 0
\(745\) −40.3456 5.41648i −1.47815 0.198444i
\(746\) 0 0
\(747\) −3.03740 + 6.11958i −0.111133 + 0.223904i
\(748\) 0 0
\(749\) −4.54372 1.54485i −0.166024 0.0564477i
\(750\) 0 0
\(751\) −18.1972 + 31.5186i −0.664027 + 1.15013i 0.315521 + 0.948919i \(0.397821\pi\)
−0.979548 + 0.201210i \(0.935513\pi\)
\(752\) 0 0
\(753\) −11.3714 + 48.4876i −0.414395 + 1.76698i
\(754\) 0 0
\(755\) 31.5371 + 24.3275i 1.14775 + 0.885369i
\(756\) 0 0
\(757\) 42.1451i 1.53179i −0.642966 0.765895i \(-0.722296\pi\)
0.642966 0.765895i \(-0.277704\pi\)
\(758\) 0 0
\(759\) −7.93147 1.86010i −0.287894 0.0675173i
\(760\) 0 0
\(761\) −14.5480 + 25.1979i −0.527365 + 0.913423i 0.472126 + 0.881531i \(0.343487\pi\)
−0.999491 + 0.0318920i \(0.989847\pi\)
\(762\) 0 0
\(763\) −38.4266 + 33.6661i −1.39114 + 1.21880i
\(764\) 0 0
\(765\) 37.7340 18.3687i 1.36428 0.664121i
\(766\) 0 0
\(767\) −5.12089 8.86965i −0.184905 0.320264i
\(768\) 0 0
\(769\) 38.1763i 1.37667i 0.725392 + 0.688336i \(0.241658\pi\)
−0.725392 + 0.688336i \(0.758342\pi\)
\(770\) 0 0
\(771\) −3.96232 + 4.21966i −0.142700 + 0.151967i
\(772\) 0 0
\(773\) −37.7469 + 21.7932i −1.35766 + 0.783846i −0.989308 0.145840i \(-0.953411\pi\)
−0.368353 + 0.929686i \(0.620078\pi\)
\(774\) 0 0
\(775\) 6.58709 24.0904i 0.236615 0.865352i
\(776\) 0 0
\(777\) 39.1401 + 24.4351i 1.40414 + 0.876605i
\(778\) 0 0
\(779\) 2.11238 + 1.21958i 0.0756840 + 0.0436962i
\(780\) 0 0
\(781\) −0.404913 0.701329i −0.0144889 0.0250955i
\(782\) 0 0
\(783\) 9.41465 + 7.78727i 0.336452 + 0.278294i
\(784\) 0 0
\(785\) 32.0430 + 24.7177i 1.14366 + 0.882214i
\(786\) 0 0
\(787\) −25.9626 44.9685i −0.925465 1.60295i −0.790811 0.612061i \(-0.790341\pi\)
−0.134655 0.990893i \(-0.542993\pi\)
\(788\) 0 0
\(789\) −31.4269 + 9.48921i −1.11883 + 0.337825i
\(790\) 0 0
\(791\) 8.81939 + 44.4512i 0.313581 + 1.58050i
\(792\) 0 0
\(793\) 36.2287 + 20.9167i 1.28652 + 0.742772i
\(794\) 0 0
\(795\) −26.7479 + 21.7802i −0.948652 + 0.772464i
\(796\) 0 0
\(797\) 5.63812i 0.199712i 0.995002 + 0.0998562i \(0.0318383\pi\)
−0.995002 + 0.0998562i \(0.968162\pi\)
\(798\) 0 0
\(799\) −54.5546 −1.93000
\(800\) 0 0
\(801\) 7.61983 5.06316i 0.269233 0.178898i
\(802\) 0 0
\(803\) −6.45617 3.72747i −0.227833 0.131540i
\(804\) 0 0
\(805\) −46.8524 + 2.92778i −1.65133 + 0.103191i
\(806\) 0 0
\(807\) 1.18532 0.357901i 0.0417251 0.0125987i
\(808\) 0 0
\(809\) −16.3536 + 9.44177i −0.574963 + 0.331955i −0.759129 0.650940i \(-0.774375\pi\)
0.184166 + 0.982895i \(0.441042\pi\)
\(810\) 0 0
\(811\) 3.44239i 0.120879i 0.998172 + 0.0604393i \(0.0192502\pi\)
−0.998172 + 0.0604393i \(0.980750\pi\)
\(812\) 0 0
\(813\) 21.9924 23.4208i 0.771308 0.821402i
\(814\) 0 0
\(815\) 29.3334 + 3.93807i 1.02751 + 0.137945i
\(816\) 0 0
\(817\) 0.892188 1.54532i 0.0312137 0.0540637i
\(818\) 0 0
\(819\) 7.32990 27.0251i 0.256128 0.944334i
\(820\) 0 0
\(821\) −27.7709 16.0336i −0.969213 0.559575i −0.0702166 0.997532i \(-0.522369\pi\)
−0.898996 + 0.437956i \(0.855702\pi\)
\(822\) 0 0
\(823\) −37.8755 + 21.8675i −1.32026 + 0.762251i −0.983770 0.179436i \(-0.942573\pi\)
−0.336489 + 0.941688i \(0.609239\pi\)
\(824\) 0 0
\(825\) −4.51170 2.44876i −0.157077 0.0852549i
\(826\) 0 0
\(827\) 23.6034 0.820771 0.410386 0.911912i \(-0.365394\pi\)
0.410386 + 0.911912i \(0.365394\pi\)
\(828\) 0 0
\(829\) −9.47048 + 5.46778i −0.328923 + 0.189904i −0.655363 0.755314i \(-0.727484\pi\)
0.326440 + 0.945218i \(0.394151\pi\)
\(830\) 0 0
\(831\) 13.3978 + 44.3715i 0.464763 + 1.53923i
\(832\) 0 0
\(833\) −26.6933 + 34.7173i −0.924867 + 1.20288i
\(834\) 0 0
\(835\) −11.5935 28.1926i −0.401209 0.975645i
\(836\) 0 0
\(837\) −4.32645 + 25.5913i −0.149544 + 0.884566i
\(838\) 0 0
\(839\) 13.6819 0.472352 0.236176 0.971710i \(-0.424106\pi\)
0.236176 + 0.971710i \(0.424106\pi\)
\(840\) 0 0
\(841\) 23.4712 0.809352
\(842\) 0 0
\(843\) −1.82151 0.427182i −0.0627360 0.0147129i
\(844\) 0 0
\(845\) 1.14615 0.471324i 0.0394287 0.0162140i
\(846\) 0 0
\(847\) −26.6741 9.06912i −0.916532 0.311619i
\(848\) 0 0
\(849\) 12.5442 3.78767i 0.430516 0.129992i
\(850\) 0 0
\(851\) 69.1920 39.9480i 2.37187 1.36940i
\(852\) 0 0
\(853\) 41.0320 1.40491 0.702455 0.711728i \(-0.252087\pi\)
0.702455 + 0.711728i \(0.252087\pi\)
\(854\) 0 0
\(855\) −2.92136 1.97371i −0.0999085 0.0674994i
\(856\) 0 0
\(857\) 23.0360 13.2998i 0.786894 0.454313i −0.0519741 0.998648i \(-0.516551\pi\)
0.838868 + 0.544335i \(0.183218\pi\)
\(858\) 0 0
\(859\) −9.72479 5.61461i −0.331805 0.191568i 0.324837 0.945770i \(-0.394691\pi\)
−0.656642 + 0.754202i \(0.728024\pi\)
\(860\) 0 0
\(861\) −21.2552 0.733506i −0.724377 0.0249978i
\(862\) 0 0
\(863\) 2.21291 3.83288i 0.0753284 0.130473i −0.825901 0.563816i \(-0.809333\pi\)
0.901229 + 0.433343i \(0.142666\pi\)
\(864\) 0 0
\(865\) 24.6122 + 3.30423i 0.836839 + 0.112347i
\(866\) 0 0
\(867\) −27.9538 26.2490i −0.949361 0.891464i
\(868\) 0 0
\(869\) 0.328111i 0.0111304i
\(870\) 0 0
\(871\) 8.81858 5.09141i 0.298806 0.172516i
\(872\) 0 0
\(873\) −4.88122 2.42275i −0.165204 0.0819977i
\(874\) 0 0
\(875\) −28.9640 6.00711i −0.979163 0.203077i
\(876\) 0 0
\(877\) 2.20861 + 1.27514i 0.0745796 + 0.0430585i 0.536826 0.843693i \(-0.319623\pi\)
−0.462246 + 0.886751i \(0.652956\pi\)
\(878\) 0 0
\(879\) 2.72772 + 0.639709i 0.0920038 + 0.0215768i
\(880\) 0 0
\(881\) −7.69117 −0.259122 −0.129561 0.991571i \(-0.541357\pi\)
−0.129561 + 0.991571i \(0.541357\pi\)
\(882\) 0 0
\(883\) 1.64604i 0.0553937i −0.999616 0.0276968i \(-0.991183\pi\)
0.999616 0.0276968i \(-0.00881730\pi\)
\(884\) 0 0
\(885\) 8.71883 7.09954i 0.293080 0.238648i
\(886\) 0 0
\(887\) 2.13570 + 1.23305i 0.0717097 + 0.0414016i 0.535426 0.844582i \(-0.320151\pi\)
−0.463716 + 0.885984i \(0.653484\pi\)
\(888\) 0 0
\(889\) −14.4975 + 2.87639i −0.486231 + 0.0964712i
\(890\) 0 0
\(891\) 4.91816 + 2.06682i 0.164764 + 0.0692409i
\(892\) 0 0
\(893\) 2.29152 + 3.96902i 0.0766827 + 0.132818i
\(894\) 0 0
\(895\) −5.78918 + 7.50483i −0.193511 + 0.250859i
\(896\) 0 0
\(897\) −35.3456 33.1900i −1.18016 1.10818i
\(898\) 0 0
\(899\) −5.87239 10.1713i −0.195855 0.339231i
\(900\) 0 0
\(901\) 48.2540 + 27.8595i 1.60757 + 0.928133i
\(902\) 0 0
\(903\) −0.536597 + 15.5493i −0.0178568 + 0.517448i
\(904\) 0 0
\(905\) −7.62813 18.5498i −0.253568 0.616616i
\(906\) 0 0
\(907\) 25.5604 14.7573i 0.848718 0.490008i −0.0114999 0.999934i \(-0.503661\pi\)
0.860218 + 0.509926i \(0.170327\pi\)
\(908\) 0 0
\(909\) 1.28265 + 20.3707i 0.0425429 + 0.675654i
\(910\) 0 0
\(911\) 41.8480i 1.38649i −0.720704 0.693243i \(-0.756181\pi\)
0.720704 0.693243i \(-0.243819\pi\)
\(912\) 0 0
\(913\) −0.674941 1.16903i −0.0223373 0.0386893i
\(914\) 0 0
\(915\) −16.3422 + 42.9198i −0.540257 + 1.41889i
\(916\) 0 0
\(917\) −22.4273 7.62523i −0.740614 0.251807i
\(918\) 0 0
\(919\) −21.5197 + 37.2732i −0.709869 + 1.22953i 0.255036 + 0.966932i \(0.417913\pi\)
−0.964905 + 0.262598i \(0.915421\pi\)
\(920\) 0 0
\(921\) 10.5021 44.7812i 0.346057 1.47559i
\(922\) 0 0
\(923\) 4.81978i 0.158645i
\(924\) 0 0
\(925\) 48.6948 12.7815i 1.60108 0.420252i
\(926\) 0 0
\(927\) −32.6130 + 21.6704i −1.07115 + 0.711751i
\(928\) 0 0
\(929\) −9.42759 + 16.3291i −0.309309 + 0.535739i −0.978211 0.207611i \(-0.933431\pi\)
0.668902 + 0.743350i \(0.266765\pi\)
\(930\) 0 0
\(931\) 3.64702 + 0.483755i 0.119526 + 0.0158544i
\(932\) 0 0
\(933\) −10.5823 + 3.19527i −0.346448 + 0.104608i
\(934\) 0 0
\(935\) −1.10334 + 8.21839i −0.0360829 + 0.268770i
\(936\) 0 0
\(937\) 6.81064 0.222494 0.111247 0.993793i \(-0.464516\pi\)
0.111247 + 0.993793i \(0.464516\pi\)
\(938\) 0 0
\(939\) 7.56764 + 7.10612i 0.246961 + 0.231900i
\(940\) 0 0
\(941\) 14.0242 + 24.2907i 0.457177 + 0.791853i 0.998810 0.0487612i \(-0.0155273\pi\)
−0.541634 + 0.840615i \(0.682194\pi\)
\(942\) 0 0
\(943\) −18.4132 + 31.8926i −0.599616 + 1.03857i
\(944\) 0 0
\(945\) 30.5713 + 3.22392i 0.994486 + 0.104874i
\(946\) 0 0
\(947\) 16.0004 27.7135i 0.519944 0.900569i −0.479787 0.877385i \(-0.659286\pi\)
0.999731 0.0231843i \(-0.00738045\pi\)
\(948\) 0 0
\(949\) −22.1846 38.4248i −0.720141 1.24732i
\(950\) 0 0
\(951\) 33.6518 + 31.5996i 1.09123 + 1.02469i
\(952\) 0 0
\(953\) −31.8127 −1.03051 −0.515257 0.857036i \(-0.672304\pi\)
−0.515257 + 0.857036i \(0.672304\pi\)
\(954\) 0 0
\(955\) 25.9891 + 3.48909i 0.840987 + 0.112904i
\(956\) 0 0
\(957\) −2.31102 + 0.697802i −0.0747047 + 0.0225567i
\(958\) 0 0
\(959\) 3.27454 2.86887i 0.105740 0.0926407i
\(960\) 0 0
\(961\) −3.02529 + 5.23995i −0.0975899 + 0.169031i
\(962\) 0 0
\(963\) 4.53238 3.01164i 0.146054 0.0970488i
\(964\) 0 0
\(965\) −27.5836 + 35.7582i −0.887948 + 1.15110i
\(966\) 0 0
\(967\) 20.9713i 0.674393i 0.941434 + 0.337196i \(0.109479\pi\)
−0.941434 + 0.337196i \(0.890521\pi\)
\(968\) 0 0
\(969\) −1.30032 + 5.54456i −0.0417722 + 0.178117i
\(970\) 0 0
\(971\) −18.3558 + 31.7932i −0.589066 + 1.02029i 0.405289 + 0.914189i \(0.367171\pi\)
−0.994355 + 0.106104i \(0.966162\pi\)
\(972\) 0 0
\(973\) 19.2111 3.81159i 0.615878 0.122194i
\(974\) 0 0
\(975\) −15.9674 26.0475i −0.511367 0.834189i
\(976\) 0 0
\(977\) 10.3346 + 17.9001i 0.330634 + 0.572676i 0.982636 0.185542i \(-0.0594040\pi\)
−0.652002 + 0.758217i \(0.726071\pi\)
\(978\) 0 0
\(979\) 1.80763i 0.0577721i
\(980\) 0 0
\(981\) −3.64030 57.8142i −0.116226 1.84586i
\(982\) 0 0
\(983\) −9.22542 + 5.32630i −0.294245 + 0.169883i −0.639855 0.768496i \(-0.721006\pi\)
0.345609 + 0.938378i \(0.387672\pi\)
\(984\) 0 0
\(985\) −22.8232 + 9.38546i −0.727209 + 0.299046i
\(986\) 0 0
\(987\) −33.8975 21.1621i −1.07897 0.673598i
\(988\) 0 0
\(989\) 23.3311 + 13.4702i 0.741885 + 0.428327i
\(990\) 0 0
\(991\) −19.0847 33.0557i −0.606246 1.05005i −0.991853 0.127386i \(-0.959341\pi\)
0.385607 0.922663i \(-0.373992\pi\)
\(992\) 0 0
\(993\) 6.61805 + 6.21445i 0.210018 + 0.197210i
\(994\) 0 0
\(995\) 9.16709 11.8838i 0.290616 0.376742i
\(996\) 0 0
\(997\) 20.1518 + 34.9040i 0.638215 + 1.10542i 0.985824 + 0.167781i \(0.0536603\pi\)
−0.347609 + 0.937640i \(0.613006\pi\)
\(998\) 0 0
\(999\) −49.0366 + 18.2408i −1.55145 + 0.577113i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.da.a.89.15 48
3.2 odd 2 840.2.da.b.89.1 yes 48
5.4 even 2 840.2.da.b.89.10 yes 48
7.3 odd 6 inner 840.2.da.a.689.24 yes 48
15.14 odd 2 inner 840.2.da.a.89.24 yes 48
21.17 even 6 840.2.da.b.689.10 yes 48
35.24 odd 6 840.2.da.b.689.1 yes 48
105.59 even 6 inner 840.2.da.a.689.15 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.da.a.89.15 48 1.1 even 1 trivial
840.2.da.a.89.24 yes 48 15.14 odd 2 inner
840.2.da.a.689.15 yes 48 105.59 even 6 inner
840.2.da.a.689.24 yes 48 7.3 odd 6 inner
840.2.da.b.89.1 yes 48 3.2 odd 2
840.2.da.b.89.10 yes 48 5.4 even 2
840.2.da.b.689.1 yes 48 35.24 odd 6
840.2.da.b.689.10 yes 48 21.17 even 6