L(s) = 1 | + (0.395 − 1.68i)3-s + (−2.06 + 0.850i)5-s + (0.514 + 2.59i)7-s + (−2.68 − 1.33i)9-s + (0.513 − 0.296i)11-s + 3.52·13-s + (0.616 + 3.82i)15-s + (5.41 − 3.12i)17-s + (−0.455 − 0.262i)19-s + (4.57 + 0.158i)21-s + (3.96 − 6.87i)23-s + (3.55 − 3.51i)25-s + (−3.31 + 4.00i)27-s − 2.35i·29-s + (4.32 − 2.49i)31-s + ⋯ |
L(s) = 1 | + (0.228 − 0.973i)3-s + (−0.924 + 0.380i)5-s + (0.194 + 0.980i)7-s + (−0.895 − 0.444i)9-s + (0.154 − 0.0893i)11-s + 0.978·13-s + (0.159 + 0.987i)15-s + (1.31 − 0.758i)17-s + (−0.104 − 0.0602i)19-s + (0.999 + 0.0344i)21-s + (0.827 − 1.43i)23-s + (0.710 − 0.703i)25-s + (−0.637 + 0.770i)27-s − 0.436i·29-s + (0.776 − 0.448i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.683 + 0.729i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.683 + 0.729i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37610 - 0.596707i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37610 - 0.596707i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.395 + 1.68i)T \) |
| 5 | \( 1 + (2.06 - 0.850i)T \) |
| 7 | \( 1 + (-0.514 - 2.59i)T \) |
good | 11 | \( 1 + (-0.513 + 0.296i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 3.52T + 13T^{2} \) |
| 17 | \( 1 + (-5.41 + 3.12i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.455 + 0.262i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.96 + 6.87i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.35iT - 29T^{2} \) |
| 31 | \( 1 + (-4.32 + 2.49i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-8.71 - 5.03i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 4.64T + 41T^{2} \) |
| 43 | \( 1 - 3.39iT - 43T^{2} \) |
| 47 | \( 1 + (7.55 + 4.36i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.45 - 7.71i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.45 + 2.51i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-10.2 - 5.92i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.49 + 1.44i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.36iT - 71T^{2} \) |
| 73 | \( 1 + (6.28 + 10.8i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.276 - 0.479i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 2.27iT - 83T^{2} \) |
| 89 | \( 1 + (1.52 - 2.64i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 1.81T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09523629659033311274846543959, −8.902864675212256187497886410991, −8.307277157348972997440439855123, −7.66892671985587359221593397256, −6.63078967355172095753862459408, −5.97775217355076803178635270036, −4.73730606591718990657786022533, −3.32460560780059246175263559630, −2.57864185932400795789846581887, −0.931942187139901441441631332491,
1.17392143419382049148739889641, 3.38435060310437112951341386611, 3.79390677436486275196509577938, 4.77316360247574629920869712708, 5.70495447393120712814667200970, 7.05622906801478505324649385879, 8.002021423408786593446518845857, 8.501429030353847020466177338116, 9.559735284456003763557913428871, 10.29516752534488553130032192569