Properties

Label 840.2.cp.b.521.9
Level $840$
Weight $2$
Character 840.521
Analytic conductor $6.707$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(521,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.cp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.9
Character \(\chi\) \(=\) 840.521
Dual form 840.2.cp.b.761.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0468355 - 1.73142i) q^{3} +(0.500000 + 0.866025i) q^{5} +(0.719245 + 2.54611i) q^{7} +(-2.99561 - 0.162184i) q^{9} +(-1.50258 - 0.867515i) q^{11} -4.52010i q^{13} +(1.52287 - 0.825148i) q^{15} +(1.11074 - 1.92386i) q^{17} +(6.20617 - 3.58314i) q^{19} +(4.44207 - 1.12607i) q^{21} +(5.12760 - 2.96042i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(-0.421109 + 5.17906i) q^{27} -9.11607i q^{29} +(5.76540 + 3.32866i) q^{31} +(-1.57240 + 2.56096i) q^{33} +(-1.84538 + 1.89594i) q^{35} +(0.687757 + 1.19123i) q^{37} +(-7.82619 - 0.211701i) q^{39} -3.20604 q^{41} +9.02575 q^{43} +(-1.35735 - 2.67537i) q^{45} +(0.561320 + 0.972234i) q^{47} +(-5.96537 + 3.66256i) q^{49} +(-3.27898 - 2.01326i) q^{51} +(-6.60510 - 3.81346i) q^{53} -1.73503i q^{55} +(-5.91323 - 10.9133i) q^{57} +(0.244352 - 0.423231i) q^{59} +(7.58163 - 4.37726i) q^{61} +(-1.74164 - 7.74382i) q^{63} +(3.91452 - 2.26005i) q^{65} +(-7.12780 + 12.3457i) q^{67} +(-4.88558 - 9.01668i) q^{69} -7.93299i q^{71} +(-1.22652 - 0.708133i) q^{73} +(1.47603 + 0.906269i) q^{75} +(1.12807 - 4.44969i) q^{77} +(3.04459 + 5.27338i) q^{79} +(8.94739 + 0.971678i) q^{81} -15.6055 q^{83} +2.22148 q^{85} +(-15.7837 - 0.426955i) q^{87} +(2.27711 + 3.94408i) q^{89} +(11.5087 - 3.25106i) q^{91} +(6.03332 - 9.82642i) q^{93} +(6.20617 + 3.58314i) q^{95} +6.94223i q^{97} +(4.36045 + 2.84243i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{5} - 2 q^{7} + 8 q^{9} + 6 q^{19} - 14 q^{21} + 24 q^{23} - 16 q^{25} + 24 q^{27} + 42 q^{31} + 18 q^{33} + 2 q^{35} + 6 q^{37} + 12 q^{39} + 44 q^{41} - 20 q^{43} + 10 q^{45} + 4 q^{47} + 16 q^{49}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0468355 1.73142i 0.0270405 0.999634i
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0.719245 + 2.54611i 0.271849 + 0.962340i
\(8\) 0 0
\(9\) −2.99561 0.162184i −0.998538 0.0540612i
\(10\) 0 0
\(11\) −1.50258 0.867515i −0.453045 0.261566i 0.256070 0.966658i \(-0.417572\pi\)
−0.709115 + 0.705093i \(0.750905\pi\)
\(12\) 0 0
\(13\) 4.52010i 1.25365i −0.779160 0.626826i \(-0.784354\pi\)
0.779160 0.626826i \(-0.215646\pi\)
\(14\) 0 0
\(15\) 1.52287 0.825148i 0.393203 0.213052i
\(16\) 0 0
\(17\) 1.11074 1.92386i 0.269394 0.466604i −0.699312 0.714817i \(-0.746510\pi\)
0.968705 + 0.248213i \(0.0798433\pi\)
\(18\) 0 0
\(19\) 6.20617 3.58314i 1.42379 0.822028i 0.427173 0.904170i \(-0.359510\pi\)
0.996621 + 0.0821424i \(0.0261762\pi\)
\(20\) 0 0
\(21\) 4.44207 1.12607i 0.969339 0.245728i
\(22\) 0 0
\(23\) 5.12760 2.96042i 1.06918 0.617291i 0.141222 0.989978i \(-0.454897\pi\)
0.927957 + 0.372687i \(0.121563\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) −0.421109 + 5.17906i −0.0810424 + 0.996711i
\(28\) 0 0
\(29\) 9.11607i 1.69281i −0.532539 0.846405i \(-0.678762\pi\)
0.532539 0.846405i \(-0.321238\pi\)
\(30\) 0 0
\(31\) 5.76540 + 3.32866i 1.03550 + 0.597845i 0.918555 0.395294i \(-0.129357\pi\)
0.116943 + 0.993139i \(0.462691\pi\)
\(32\) 0 0
\(33\) −1.57240 + 2.56096i −0.273720 + 0.445806i
\(34\) 0 0
\(35\) −1.84538 + 1.89594i −0.311925 + 0.320472i
\(36\) 0 0
\(37\) 0.687757 + 1.19123i 0.113067 + 0.195837i 0.917005 0.398875i \(-0.130599\pi\)
−0.803939 + 0.594712i \(0.797266\pi\)
\(38\) 0 0
\(39\) −7.82619 0.211701i −1.25319 0.0338993i
\(40\) 0 0
\(41\) −3.20604 −0.500699 −0.250350 0.968155i \(-0.580546\pi\)
−0.250350 + 0.968155i \(0.580546\pi\)
\(42\) 0 0
\(43\) 9.02575 1.37641 0.688207 0.725514i \(-0.258398\pi\)
0.688207 + 0.725514i \(0.258398\pi\)
\(44\) 0 0
\(45\) −1.35735 2.67537i −0.202342 0.398820i
\(46\) 0 0
\(47\) 0.561320 + 0.972234i 0.0818769 + 0.141815i 0.904056 0.427414i \(-0.140575\pi\)
−0.822179 + 0.569229i \(0.807242\pi\)
\(48\) 0 0
\(49\) −5.96537 + 3.66256i −0.852196 + 0.523223i
\(50\) 0 0
\(51\) −3.27898 2.01326i −0.459149 0.281913i
\(52\) 0 0
\(53\) −6.60510 3.81346i −0.907281 0.523819i −0.0277255 0.999616i \(-0.508826\pi\)
−0.879555 + 0.475797i \(0.842160\pi\)
\(54\) 0 0
\(55\) 1.73503i 0.233951i
\(56\) 0 0
\(57\) −5.91323 10.9133i −0.783227 1.44550i
\(58\) 0 0
\(59\) 0.244352 0.423231i 0.0318120 0.0551000i −0.849681 0.527297i \(-0.823206\pi\)
0.881493 + 0.472197i \(0.156539\pi\)
\(60\) 0 0
\(61\) 7.58163 4.37726i 0.970729 0.560450i 0.0712703 0.997457i \(-0.477295\pi\)
0.899458 + 0.437007i \(0.143961\pi\)
\(62\) 0 0
\(63\) −1.74164 7.74382i −0.219426 0.975629i
\(64\) 0 0
\(65\) 3.91452 2.26005i 0.485537 0.280325i
\(66\) 0 0
\(67\) −7.12780 + 12.3457i −0.870800 + 1.50827i −0.00962884 + 0.999954i \(0.503065\pi\)
−0.861171 + 0.508316i \(0.830268\pi\)
\(68\) 0 0
\(69\) −4.88558 9.01668i −0.588154 1.08548i
\(70\) 0 0
\(71\) 7.93299i 0.941473i −0.882274 0.470737i \(-0.843988\pi\)
0.882274 0.470737i \(-0.156012\pi\)
\(72\) 0 0
\(73\) −1.22652 0.708133i −0.143554 0.0828807i 0.426503 0.904486i \(-0.359745\pi\)
−0.570057 + 0.821605i \(0.693079\pi\)
\(74\) 0 0
\(75\) 1.47603 + 0.906269i 0.170438 + 0.104647i
\(76\) 0 0
\(77\) 1.12807 4.44969i 0.128555 0.507089i
\(78\) 0 0
\(79\) 3.04459 + 5.27338i 0.342543 + 0.593302i 0.984904 0.173100i \(-0.0553785\pi\)
−0.642361 + 0.766402i \(0.722045\pi\)
\(80\) 0 0
\(81\) 8.94739 + 0.971678i 0.994155 + 0.107964i
\(82\) 0 0
\(83\) −15.6055 −1.71292 −0.856462 0.516211i \(-0.827342\pi\)
−0.856462 + 0.516211i \(0.827342\pi\)
\(84\) 0 0
\(85\) 2.22148 0.240953
\(86\) 0 0
\(87\) −15.7837 0.426955i −1.69219 0.0457744i
\(88\) 0 0
\(89\) 2.27711 + 3.94408i 0.241374 + 0.418071i 0.961106 0.276180i \(-0.0890687\pi\)
−0.719732 + 0.694252i \(0.755735\pi\)
\(90\) 0 0
\(91\) 11.5087 3.25106i 1.20644 0.340804i
\(92\) 0 0
\(93\) 6.03332 9.82642i 0.625626 1.01895i
\(94\) 0 0
\(95\) 6.20617 + 3.58314i 0.636740 + 0.367622i
\(96\) 0 0
\(97\) 6.94223i 0.704877i 0.935835 + 0.352438i \(0.114647\pi\)
−0.935835 + 0.352438i \(0.885353\pi\)
\(98\) 0 0
\(99\) 4.36045 + 2.84243i 0.438242 + 0.285675i
\(100\) 0 0
\(101\) −1.42009 + 2.45967i −0.141304 + 0.244746i −0.927988 0.372610i \(-0.878463\pi\)
0.786684 + 0.617356i \(0.211796\pi\)
\(102\) 0 0
\(103\) −14.1465 + 8.16751i −1.39390 + 0.804768i −0.993744 0.111679i \(-0.964377\pi\)
−0.400155 + 0.916447i \(0.631044\pi\)
\(104\) 0 0
\(105\) 3.19624 + 3.28391i 0.311921 + 0.320477i
\(106\) 0 0
\(107\) 6.40143 3.69587i 0.618850 0.357293i −0.157571 0.987508i \(-0.550366\pi\)
0.776421 + 0.630214i \(0.217033\pi\)
\(108\) 0 0
\(109\) 2.64239 4.57675i 0.253095 0.438373i −0.711282 0.702907i \(-0.751885\pi\)
0.964376 + 0.264534i \(0.0852182\pi\)
\(110\) 0 0
\(111\) 2.09473 1.13500i 0.198823 0.107730i
\(112\) 0 0
\(113\) 15.9020i 1.49594i 0.663734 + 0.747968i \(0.268971\pi\)
−0.663734 + 0.747968i \(0.731029\pi\)
\(114\) 0 0
\(115\) 5.12760 + 2.96042i 0.478152 + 0.276061i
\(116\) 0 0
\(117\) −0.733087 + 13.5405i −0.0677739 + 1.25182i
\(118\) 0 0
\(119\) 5.69725 + 1.44434i 0.522266 + 0.132403i
\(120\) 0 0
\(121\) −3.99484 6.91926i −0.363167 0.629024i
\(122\) 0 0
\(123\) −0.150156 + 5.55099i −0.0135392 + 0.500516i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −6.29106 −0.558242 −0.279121 0.960256i \(-0.590043\pi\)
−0.279121 + 0.960256i \(0.590043\pi\)
\(128\) 0 0
\(129\) 0.422726 15.6273i 0.0372189 1.37591i
\(130\) 0 0
\(131\) 6.56624 + 11.3731i 0.573695 + 0.993668i 0.996182 + 0.0872995i \(0.0278237\pi\)
−0.422487 + 0.906369i \(0.638843\pi\)
\(132\) 0 0
\(133\) 13.5868 + 13.2245i 1.17813 + 1.14671i
\(134\) 0 0
\(135\) −4.69575 + 2.22484i −0.404146 + 0.191484i
\(136\) 0 0
\(137\) −4.99494 2.88383i −0.426746 0.246382i 0.271213 0.962519i \(-0.412575\pi\)
−0.697960 + 0.716137i \(0.745908\pi\)
\(138\) 0 0
\(139\) 1.66017i 0.140814i −0.997518 0.0704068i \(-0.977570\pi\)
0.997518 0.0704068i \(-0.0224297\pi\)
\(140\) 0 0
\(141\) 1.70963 0.926344i 0.143977 0.0780122i
\(142\) 0 0
\(143\) −3.92126 + 6.79181i −0.327912 + 0.567960i
\(144\) 0 0
\(145\) 7.89474 4.55803i 0.655623 0.378524i
\(146\) 0 0
\(147\) 6.06203 + 10.5001i 0.499987 + 0.866033i
\(148\) 0 0
\(149\) −11.4737 + 6.62433i −0.939961 + 0.542686i −0.889948 0.456062i \(-0.849259\pi\)
−0.0500126 + 0.998749i \(0.515926\pi\)
\(150\) 0 0
\(151\) 6.42140 11.1222i 0.522566 0.905111i −0.477089 0.878855i \(-0.658308\pi\)
0.999655 0.0262559i \(-0.00835848\pi\)
\(152\) 0 0
\(153\) −3.63936 + 5.58299i −0.294225 + 0.451358i
\(154\) 0 0
\(155\) 6.65732i 0.534729i
\(156\) 0 0
\(157\) 3.96267 + 2.28785i 0.316255 + 0.182590i 0.649722 0.760172i \(-0.274885\pi\)
−0.333467 + 0.942762i \(0.608219\pi\)
\(158\) 0 0
\(159\) −6.91204 + 11.2576i −0.548161 + 0.892785i
\(160\) 0 0
\(161\) 11.2256 + 10.9262i 0.884699 + 0.861104i
\(162\) 0 0
\(163\) −1.63146 2.82578i −0.127786 0.221332i 0.795032 0.606567i \(-0.207454\pi\)
−0.922819 + 0.385235i \(0.874120\pi\)
\(164\) 0 0
\(165\) −3.00406 0.0812610i −0.233866 0.00632616i
\(166\) 0 0
\(167\) −16.1809 −1.25212 −0.626060 0.779775i \(-0.715333\pi\)
−0.626060 + 0.779775i \(0.715333\pi\)
\(168\) 0 0
\(169\) −7.43133 −0.571641
\(170\) 0 0
\(171\) −19.1724 + 9.72715i −1.46615 + 0.743853i
\(172\) 0 0
\(173\) 8.94446 + 15.4923i 0.680035 + 1.17785i 0.974970 + 0.222337i \(0.0713686\pi\)
−0.294935 + 0.955517i \(0.595298\pi\)
\(174\) 0 0
\(175\) −2.56462 0.650171i −0.193867 0.0491483i
\(176\) 0 0
\(177\) −0.721345 0.442898i −0.0542196 0.0332903i
\(178\) 0 0
\(179\) 13.9108 + 8.03141i 1.03974 + 0.600296i 0.919760 0.392480i \(-0.128383\pi\)
0.119982 + 0.992776i \(0.461716\pi\)
\(180\) 0 0
\(181\) 10.4957i 0.780142i −0.920785 0.390071i \(-0.872450\pi\)
0.920785 0.390071i \(-0.127550\pi\)
\(182\) 0 0
\(183\) −7.22377 13.3320i −0.533997 0.985529i
\(184\) 0 0
\(185\) −0.687757 + 1.19123i −0.0505649 + 0.0875810i
\(186\) 0 0
\(187\) −3.33795 + 1.92717i −0.244095 + 0.140928i
\(188\) 0 0
\(189\) −13.4893 + 2.65283i −0.981206 + 0.192965i
\(190\) 0 0
\(191\) 7.10655 4.10297i 0.514212 0.296881i −0.220351 0.975421i \(-0.570720\pi\)
0.734563 + 0.678540i \(0.237387\pi\)
\(192\) 0 0
\(193\) 9.61343 16.6509i 0.691990 1.19856i −0.279195 0.960234i \(-0.590068\pi\)
0.971185 0.238327i \(-0.0765989\pi\)
\(194\) 0 0
\(195\) −3.72975 6.88353i −0.267093 0.492940i
\(196\) 0 0
\(197\) 22.5041i 1.60335i −0.597761 0.801674i \(-0.703943\pi\)
0.597761 0.801674i \(-0.296057\pi\)
\(198\) 0 0
\(199\) 9.27053 + 5.35234i 0.657171 + 0.379418i 0.791198 0.611560i \(-0.209458\pi\)
−0.134027 + 0.990978i \(0.542791\pi\)
\(200\) 0 0
\(201\) 21.0418 + 12.9194i 1.48417 + 0.911266i
\(202\) 0 0
\(203\) 23.2105 6.55669i 1.62906 0.460189i
\(204\) 0 0
\(205\) −1.60302 2.77651i −0.111960 0.193920i
\(206\) 0 0
\(207\) −15.8404 + 8.03667i −1.10099 + 0.558587i
\(208\) 0 0
\(209\) −12.4337 −0.860056
\(210\) 0 0
\(211\) 24.4415 1.68262 0.841310 0.540554i \(-0.181785\pi\)
0.841310 + 0.540554i \(0.181785\pi\)
\(212\) 0 0
\(213\) −13.7353 0.371546i −0.941129 0.0254579i
\(214\) 0 0
\(215\) 4.51288 + 7.81653i 0.307776 + 0.533083i
\(216\) 0 0
\(217\) −4.32840 + 17.0735i −0.293831 + 1.15902i
\(218\) 0 0
\(219\) −1.28352 + 2.09046i −0.0867321 + 0.141260i
\(220\) 0 0
\(221\) −8.69603 5.02066i −0.584959 0.337726i
\(222\) 0 0
\(223\) 16.4054i 1.09859i 0.835630 + 0.549293i \(0.185103\pi\)
−0.835630 + 0.549293i \(0.814897\pi\)
\(224\) 0 0
\(225\) 1.63826 2.51319i 0.109217 0.167546i
\(226\) 0 0
\(227\) −9.24824 + 16.0184i −0.613827 + 1.06318i 0.376762 + 0.926310i \(0.377037\pi\)
−0.990589 + 0.136870i \(0.956296\pi\)
\(228\) 0 0
\(229\) −19.3784 + 11.1881i −1.28056 + 0.739333i −0.976951 0.213463i \(-0.931526\pi\)
−0.303611 + 0.952796i \(0.598192\pi\)
\(230\) 0 0
\(231\) −7.65144 2.16156i −0.503428 0.142220i
\(232\) 0 0
\(233\) −22.2560 + 12.8495i −1.45804 + 0.841799i −0.998915 0.0465740i \(-0.985170\pi\)
−0.459123 + 0.888373i \(0.651836\pi\)
\(234\) 0 0
\(235\) −0.561320 + 0.972234i −0.0366165 + 0.0634216i
\(236\) 0 0
\(237\) 9.27302 5.02447i 0.602347 0.326374i
\(238\) 0 0
\(239\) 21.7943i 1.40976i −0.709328 0.704879i \(-0.751001\pi\)
0.709328 0.704879i \(-0.248999\pi\)
\(240\) 0 0
\(241\) −1.97789 1.14194i −0.127407 0.0735587i 0.434942 0.900459i \(-0.356769\pi\)
−0.562349 + 0.826900i \(0.690102\pi\)
\(242\) 0 0
\(243\) 2.10144 15.4462i 0.134807 0.990872i
\(244\) 0 0
\(245\) −6.15455 3.33489i −0.393200 0.213058i
\(246\) 0 0
\(247\) −16.1961 28.0525i −1.03054 1.78494i
\(248\) 0 0
\(249\) −0.730890 + 27.0196i −0.0463183 + 1.71230i
\(250\) 0 0
\(251\) 17.1557 1.08286 0.541429 0.840747i \(-0.317884\pi\)
0.541429 + 0.840747i \(0.317884\pi\)
\(252\) 0 0
\(253\) −10.2728 −0.645848
\(254\) 0 0
\(255\) 0.104044 3.84631i 0.00651549 0.240865i
\(256\) 0 0
\(257\) −1.87411 3.24605i −0.116904 0.202483i 0.801636 0.597813i \(-0.203964\pi\)
−0.918539 + 0.395330i \(0.870630\pi\)
\(258\) 0 0
\(259\) −2.53834 + 2.60789i −0.157725 + 0.162047i
\(260\) 0 0
\(261\) −1.47848 + 27.3082i −0.0915154 + 1.69034i
\(262\) 0 0
\(263\) 17.7647 + 10.2564i 1.09542 + 0.632439i 0.935014 0.354612i \(-0.115387\pi\)
0.160404 + 0.987051i \(0.448720\pi\)
\(264\) 0 0
\(265\) 7.62692i 0.468518i
\(266\) 0 0
\(267\) 6.93550 3.75791i 0.424445 0.229981i
\(268\) 0 0
\(269\) −9.77038 + 16.9228i −0.595711 + 1.03180i 0.397735 + 0.917500i \(0.369796\pi\)
−0.993446 + 0.114301i \(0.963537\pi\)
\(270\) 0 0
\(271\) −19.7609 + 11.4090i −1.20039 + 0.693047i −0.960642 0.277788i \(-0.910399\pi\)
−0.239750 + 0.970835i \(0.577065\pi\)
\(272\) 0 0
\(273\) −5.08993 20.0786i −0.308057 1.21521i
\(274\) 0 0
\(275\) 1.50258 0.867515i 0.0906090 0.0523131i
\(276\) 0 0
\(277\) −3.27512 + 5.67267i −0.196783 + 0.340838i −0.947484 0.319805i \(-0.896383\pi\)
0.750701 + 0.660643i \(0.229716\pi\)
\(278\) 0 0
\(279\) −16.7311 10.9064i −1.00166 0.652951i
\(280\) 0 0
\(281\) 12.6670i 0.755651i −0.925877 0.377825i \(-0.876672\pi\)
0.925877 0.377825i \(-0.123328\pi\)
\(282\) 0 0
\(283\) −2.06081 1.18981i −0.122502 0.0707267i 0.437497 0.899220i \(-0.355865\pi\)
−0.559999 + 0.828493i \(0.689198\pi\)
\(284\) 0 0
\(285\) 6.49457 10.5777i 0.384705 0.626566i
\(286\) 0 0
\(287\) −2.30593 8.16294i −0.136115 0.481843i
\(288\) 0 0
\(289\) 6.03252 + 10.4486i 0.354854 + 0.614625i
\(290\) 0 0
\(291\) 12.0199 + 0.325143i 0.704619 + 0.0190602i
\(292\) 0 0
\(293\) 17.6255 1.02969 0.514847 0.857282i \(-0.327849\pi\)
0.514847 + 0.857282i \(0.327849\pi\)
\(294\) 0 0
\(295\) 0.488705 0.0284535
\(296\) 0 0
\(297\) 5.12566 7.41663i 0.297421 0.430357i
\(298\) 0 0
\(299\) −13.3814 23.1773i −0.773868 1.34038i
\(300\) 0 0
\(301\) 6.49173 + 22.9806i 0.374177 + 1.32458i
\(302\) 0 0
\(303\) 4.19221 + 2.57397i 0.240836 + 0.147871i
\(304\) 0 0
\(305\) 7.58163 + 4.37726i 0.434123 + 0.250641i
\(306\) 0 0
\(307\) 17.8269i 1.01743i −0.860934 0.508717i \(-0.830120\pi\)
0.860934 0.508717i \(-0.169880\pi\)
\(308\) 0 0
\(309\) 13.4788 + 24.8761i 0.766782 + 1.41515i
\(310\) 0 0
\(311\) 3.30272 5.72047i 0.187280 0.324378i −0.757063 0.653342i \(-0.773366\pi\)
0.944342 + 0.328964i \(0.106700\pi\)
\(312\) 0 0
\(313\) −14.7063 + 8.49066i −0.831246 + 0.479920i −0.854279 0.519814i \(-0.826001\pi\)
0.0230328 + 0.999735i \(0.492668\pi\)
\(314\) 0 0
\(315\) 5.83552 5.38021i 0.328794 0.303141i
\(316\) 0 0
\(317\) 2.83413 1.63629i 0.159181 0.0919031i −0.418294 0.908312i \(-0.637372\pi\)
0.577474 + 0.816409i \(0.304038\pi\)
\(318\) 0 0
\(319\) −7.90832 + 13.6976i −0.442781 + 0.766919i
\(320\) 0 0
\(321\) −6.09928 11.2567i −0.340429 0.628285i
\(322\) 0 0
\(323\) 15.9197i 0.885797i
\(324\) 0 0
\(325\) 3.91452 + 2.26005i 0.217139 + 0.125365i
\(326\) 0 0
\(327\) −7.80050 4.78943i −0.431369 0.264856i
\(328\) 0 0
\(329\) −2.07169 + 2.12846i −0.114216 + 0.117346i
\(330\) 0 0
\(331\) 3.57149 + 6.18601i 0.196307 + 0.340014i 0.947328 0.320264i \(-0.103772\pi\)
−0.751021 + 0.660278i \(0.770438\pi\)
\(332\) 0 0
\(333\) −1.86706 3.68001i −0.102314 0.201663i
\(334\) 0 0
\(335\) −14.2556 −0.778867
\(336\) 0 0
\(337\) −1.33490 −0.0727168 −0.0363584 0.999339i \(-0.511576\pi\)
−0.0363584 + 0.999339i \(0.511576\pi\)
\(338\) 0 0
\(339\) 27.5330 + 0.744779i 1.49539 + 0.0404509i
\(340\) 0 0
\(341\) −5.77532 10.0031i −0.312751 0.541701i
\(342\) 0 0
\(343\) −13.6158 12.5542i −0.735187 0.677865i
\(344\) 0 0
\(345\) 5.36588 8.73937i 0.288889 0.470512i
\(346\) 0 0
\(347\) −2.53870 1.46572i −0.136284 0.0786838i 0.430308 0.902682i \(-0.358405\pi\)
−0.566592 + 0.823998i \(0.691738\pi\)
\(348\) 0 0
\(349\) 14.1947i 0.759823i −0.925023 0.379912i \(-0.875954\pi\)
0.925023 0.379912i \(-0.124046\pi\)
\(350\) 0 0
\(351\) 23.4099 + 1.90345i 1.24953 + 0.101599i
\(352\) 0 0
\(353\) −6.34424 + 10.9885i −0.337670 + 0.584861i −0.983994 0.178202i \(-0.942972\pi\)
0.646324 + 0.763063i \(0.276305\pi\)
\(354\) 0 0
\(355\) 6.87017 3.96650i 0.364631 0.210520i
\(356\) 0 0
\(357\) 2.76759 9.79667i 0.146477 0.518495i
\(358\) 0 0
\(359\) 7.00432 4.04395i 0.369674 0.213431i −0.303642 0.952786i \(-0.598203\pi\)
0.673316 + 0.739355i \(0.264869\pi\)
\(360\) 0 0
\(361\) 16.1777 28.0206i 0.851459 1.47477i
\(362\) 0 0
\(363\) −12.1672 + 6.59266i −0.638614 + 0.346025i
\(364\) 0 0
\(365\) 1.41627i 0.0741307i
\(366\) 0 0
\(367\) −10.8649 6.27287i −0.567145 0.327441i 0.188863 0.982003i \(-0.439520\pi\)
−0.756008 + 0.654562i \(0.772853\pi\)
\(368\) 0 0
\(369\) 9.60406 + 0.519967i 0.499967 + 0.0270684i
\(370\) 0 0
\(371\) 4.95880 19.5601i 0.257448 1.01551i
\(372\) 0 0
\(373\) 15.5352 + 26.9078i 0.804382 + 1.39323i 0.916707 + 0.399560i \(0.130837\pi\)
−0.112325 + 0.993672i \(0.535830\pi\)
\(374\) 0 0
\(375\) −0.0468355 + 1.73142i −0.00241857 + 0.0894100i
\(376\) 0 0
\(377\) −41.2056 −2.12219
\(378\) 0 0
\(379\) −0.0979431 −0.00503100 −0.00251550 0.999997i \(-0.500801\pi\)
−0.00251550 + 0.999997i \(0.500801\pi\)
\(380\) 0 0
\(381\) −0.294645 + 10.8925i −0.0150951 + 0.558038i
\(382\) 0 0
\(383\) 9.57846 + 16.5904i 0.489436 + 0.847729i 0.999926 0.0121553i \(-0.00386924\pi\)
−0.510490 + 0.859884i \(0.670536\pi\)
\(384\) 0 0
\(385\) 4.41758 1.24791i 0.225141 0.0635995i
\(386\) 0 0
\(387\) −27.0377 1.46383i −1.37440 0.0744106i
\(388\) 0 0
\(389\) 21.6644 + 12.5079i 1.09843 + 0.634178i 0.935808 0.352511i \(-0.114672\pi\)
0.162620 + 0.986689i \(0.448005\pi\)
\(390\) 0 0
\(391\) 13.1530i 0.665178i
\(392\) 0 0
\(393\) 19.9990 10.8362i 1.00882 0.546616i
\(394\) 0 0
\(395\) −3.04459 + 5.27338i −0.153190 + 0.265332i
\(396\) 0 0
\(397\) 22.8951 13.2185i 1.14907 0.663417i 0.200411 0.979712i \(-0.435772\pi\)
0.948661 + 0.316295i \(0.102439\pi\)
\(398\) 0 0
\(399\) 23.5334 22.9051i 1.17814 1.14669i
\(400\) 0 0
\(401\) −11.7907 + 6.80738i −0.588801 + 0.339944i −0.764623 0.644478i \(-0.777075\pi\)
0.175822 + 0.984422i \(0.443742\pi\)
\(402\) 0 0
\(403\) 15.0459 26.0602i 0.749489 1.29815i
\(404\) 0 0
\(405\) 3.63220 + 8.23451i 0.180485 + 0.409176i
\(406\) 0 0
\(407\) 2.38656i 0.118297i
\(408\) 0 0
\(409\) 23.3342 + 13.4720i 1.15380 + 0.666146i 0.949810 0.312827i \(-0.101276\pi\)
0.203989 + 0.978973i \(0.434609\pi\)
\(410\) 0 0
\(411\) −5.22705 + 8.51326i −0.257831 + 0.419928i
\(412\) 0 0
\(413\) 1.25334 + 0.317742i 0.0616730 + 0.0156351i
\(414\) 0 0
\(415\) −7.80274 13.5147i −0.383021 0.663412i
\(416\) 0 0
\(417\) −2.87444 0.0777548i −0.140762 0.00380767i
\(418\) 0 0
\(419\) −2.39230 −0.116871 −0.0584357 0.998291i \(-0.518611\pi\)
−0.0584357 + 0.998291i \(0.518611\pi\)
\(420\) 0 0
\(421\) −19.4713 −0.948972 −0.474486 0.880263i \(-0.657366\pi\)
−0.474486 + 0.880263i \(0.657366\pi\)
\(422\) 0 0
\(423\) −1.52382 3.00347i −0.0740905 0.146034i
\(424\) 0 0
\(425\) 1.11074 + 1.92386i 0.0538788 + 0.0933208i
\(426\) 0 0
\(427\) 16.5980 + 16.1554i 0.803236 + 0.781813i
\(428\) 0 0
\(429\) 11.5758 + 7.10743i 0.558886 + 0.343150i
\(430\) 0 0
\(431\) −9.21326 5.31928i −0.443787 0.256221i 0.261416 0.965226i \(-0.415811\pi\)
−0.705203 + 0.709006i \(0.749144\pi\)
\(432\) 0 0
\(433\) 11.4141i 0.548527i −0.961655 0.274263i \(-0.911566\pi\)
0.961655 0.274263i \(-0.0884340\pi\)
\(434\) 0 0
\(435\) −7.52210 13.8826i −0.360657 0.665619i
\(436\) 0 0
\(437\) 21.2152 36.7458i 1.01486 1.75779i
\(438\) 0 0
\(439\) −27.2069 + 15.7079i −1.29851 + 0.749698i −0.980147 0.198270i \(-0.936468\pi\)
−0.318367 + 0.947968i \(0.603134\pi\)
\(440\) 0 0
\(441\) 18.4640 10.0041i 0.879236 0.476387i
\(442\) 0 0
\(443\) 2.27390 1.31284i 0.108036 0.0623747i −0.445008 0.895526i \(-0.646799\pi\)
0.553044 + 0.833152i \(0.313466\pi\)
\(444\) 0 0
\(445\) −2.27711 + 3.94408i −0.107946 + 0.186967i
\(446\) 0 0
\(447\) 10.9321 + 20.1760i 0.517071 + 0.954291i
\(448\) 0 0
\(449\) 16.3605i 0.772100i −0.922478 0.386050i \(-0.873839\pi\)
0.922478 0.386050i \(-0.126161\pi\)
\(450\) 0 0
\(451\) 4.81733 + 2.78129i 0.226839 + 0.130966i
\(452\) 0 0
\(453\) −18.9564 11.6390i −0.890649 0.546849i
\(454\) 0 0
\(455\) 8.56985 + 8.34129i 0.401761 + 0.391045i
\(456\) 0 0
\(457\) 13.8490 + 23.9872i 0.647831 + 1.12208i 0.983640 + 0.180146i \(0.0576569\pi\)
−0.335809 + 0.941930i \(0.609010\pi\)
\(458\) 0 0
\(459\) 9.49603 + 6.56274i 0.443237 + 0.306322i
\(460\) 0 0
\(461\) 2.25024 0.104804 0.0524022 0.998626i \(-0.483312\pi\)
0.0524022 + 0.998626i \(0.483312\pi\)
\(462\) 0 0
\(463\) −3.66223 −0.170198 −0.0850991 0.996372i \(-0.527121\pi\)
−0.0850991 + 0.996372i \(0.527121\pi\)
\(464\) 0 0
\(465\) 11.5266 + 0.311799i 0.534533 + 0.0144593i
\(466\) 0 0
\(467\) 12.8340 + 22.2291i 0.593885 + 1.02864i 0.993703 + 0.112044i \(0.0357398\pi\)
−0.399819 + 0.916594i \(0.630927\pi\)
\(468\) 0 0
\(469\) −36.5602 9.26859i −1.68819 0.427984i
\(470\) 0 0
\(471\) 4.14681 6.75388i 0.191075 0.311202i
\(472\) 0 0
\(473\) −13.5619 7.82997i −0.623577 0.360023i
\(474\) 0 0
\(475\) 7.16627i 0.328811i
\(476\) 0 0
\(477\) 19.1679 + 12.4949i 0.877636 + 0.572101i
\(478\) 0 0
\(479\) 14.8176 25.6648i 0.677032 1.17265i −0.298838 0.954304i \(-0.596599\pi\)
0.975870 0.218350i \(-0.0700676\pi\)
\(480\) 0 0
\(481\) 5.38448 3.10873i 0.245511 0.141746i
\(482\) 0 0
\(483\) 19.4435 18.9244i 0.884712 0.861091i
\(484\) 0 0
\(485\) −6.01215 + 3.47112i −0.272998 + 0.157615i
\(486\) 0 0
\(487\) 9.71448 16.8260i 0.440205 0.762458i −0.557499 0.830178i \(-0.688239\pi\)
0.997704 + 0.0677196i \(0.0215723\pi\)
\(488\) 0 0
\(489\) −4.96901 + 2.69240i −0.224707 + 0.121755i
\(490\) 0 0
\(491\) 28.6905i 1.29478i 0.762158 + 0.647391i \(0.224140\pi\)
−0.762158 + 0.647391i \(0.775860\pi\)
\(492\) 0 0
\(493\) −17.5380 10.1256i −0.789872 0.456033i
\(494\) 0 0
\(495\) −0.281393 + 5.19748i −0.0126477 + 0.233609i
\(496\) 0 0
\(497\) 20.1983 5.70577i 0.906017 0.255939i
\(498\) 0 0
\(499\) −16.4576 28.5054i −0.736743 1.27608i −0.953954 0.299952i \(-0.903029\pi\)
0.217211 0.976125i \(-0.430304\pi\)
\(500\) 0 0
\(501\) −0.757843 + 28.0160i −0.0338579 + 1.25166i
\(502\) 0 0
\(503\) 12.2651 0.546874 0.273437 0.961890i \(-0.411840\pi\)
0.273437 + 0.961890i \(0.411840\pi\)
\(504\) 0 0
\(505\) −2.84018 −0.126387
\(506\) 0 0
\(507\) −0.348050 + 12.8667i −0.0154574 + 0.571432i
\(508\) 0 0
\(509\) −7.21563 12.4978i −0.319827 0.553957i 0.660625 0.750716i \(-0.270291\pi\)
−0.980452 + 0.196760i \(0.936958\pi\)
\(510\) 0 0
\(511\) 0.920815 3.63218i 0.0407345 0.160678i
\(512\) 0 0
\(513\) 15.9438 + 33.6510i 0.703936 + 1.48573i
\(514\) 0 0
\(515\) −14.1465 8.16751i −0.623371 0.359903i
\(516\) 0 0
\(517\) 1.94781i 0.0856647i
\(518\) 0 0
\(519\) 27.2425 14.7610i 1.19581 0.647936i
\(520\) 0 0
\(521\) 3.78222 6.55100i 0.165702 0.287005i −0.771202 0.636590i \(-0.780344\pi\)
0.936904 + 0.349586i \(0.113678\pi\)
\(522\) 0 0
\(523\) 8.64129 4.98905i 0.377857 0.218156i −0.299028 0.954244i \(-0.596662\pi\)
0.676886 + 0.736088i \(0.263329\pi\)
\(524\) 0 0
\(525\) −1.24583 + 4.40998i −0.0543726 + 0.192467i
\(526\) 0 0
\(527\) 12.8077 7.39454i 0.557913 0.322111i
\(528\) 0 0
\(529\) 6.02822 10.4412i 0.262096 0.453964i
\(530\) 0 0
\(531\) −0.800626 + 1.22821i −0.0347442 + 0.0532996i
\(532\) 0 0
\(533\) 14.4916i 0.627702i
\(534\) 0 0
\(535\) 6.40143 + 3.69587i 0.276758 + 0.159786i
\(536\) 0 0
\(537\) 14.5572 23.7093i 0.628191 1.02313i
\(538\) 0 0
\(539\) 12.1408 0.328237i 0.522940 0.0141381i
\(540\) 0 0
\(541\) −16.5475 28.6612i −0.711434 1.23224i −0.964319 0.264744i \(-0.914713\pi\)
0.252884 0.967496i \(-0.418621\pi\)
\(542\) 0 0
\(543\) −18.1725 0.491573i −0.779857 0.0210954i
\(544\) 0 0
\(545\) 5.28477 0.226375
\(546\) 0 0
\(547\) −45.0112 −1.92454 −0.962270 0.272096i \(-0.912283\pi\)
−0.962270 + 0.272096i \(0.912283\pi\)
\(548\) 0 0
\(549\) −23.4216 + 11.8830i −0.999608 + 0.507152i
\(550\) 0 0
\(551\) −32.6641 56.5759i −1.39154 2.41021i
\(552\) 0 0
\(553\) −11.2368 + 11.5447i −0.477838 + 0.490931i
\(554\) 0 0
\(555\) 2.03031 + 1.24659i 0.0861817 + 0.0529146i
\(556\) 0 0
\(557\) −1.45160 0.838083i −0.0615064 0.0355107i 0.468931 0.883235i \(-0.344639\pi\)
−0.530438 + 0.847724i \(0.677972\pi\)
\(558\) 0 0
\(559\) 40.7973i 1.72554i
\(560\) 0 0
\(561\) 3.18039 + 5.86964i 0.134276 + 0.247817i
\(562\) 0 0
\(563\) −21.4502 + 37.1529i −0.904020 + 1.56581i −0.0817930 + 0.996649i \(0.526065\pi\)
−0.822227 + 0.569159i \(0.807269\pi\)
\(564\) 0 0
\(565\) −13.7716 + 7.95101i −0.579374 + 0.334502i
\(566\) 0 0
\(567\) 3.96137 + 23.4799i 0.166362 + 0.986065i
\(568\) 0 0
\(569\) −35.5051 + 20.4989i −1.48845 + 0.859357i −0.999913 0.0131862i \(-0.995803\pi\)
−0.488537 + 0.872543i \(0.662469\pi\)
\(570\) 0 0
\(571\) −7.30655 + 12.6553i −0.305770 + 0.529609i −0.977432 0.211248i \(-0.932247\pi\)
0.671663 + 0.740857i \(0.265580\pi\)
\(572\) 0 0
\(573\) −6.77112 12.4966i −0.282867 0.522052i
\(574\) 0 0
\(575\) 5.92085i 0.246916i
\(576\) 0 0
\(577\) −11.8401 6.83587i −0.492909 0.284581i 0.232872 0.972508i \(-0.425188\pi\)
−0.725780 + 0.687926i \(0.758521\pi\)
\(578\) 0 0
\(579\) −28.3795 17.4247i −1.17941 0.724146i
\(580\) 0 0
\(581\) −11.2242 39.7333i −0.465657 1.64841i
\(582\) 0 0
\(583\) 6.61646 + 11.4601i 0.274026 + 0.474627i
\(584\) 0 0
\(585\) −12.0929 + 6.13537i −0.499982 + 0.253666i
\(586\) 0 0
\(587\) 1.12952 0.0466203 0.0233102 0.999728i \(-0.492579\pi\)
0.0233102 + 0.999728i \(0.492579\pi\)
\(588\) 0 0
\(589\) 47.7081 1.96578
\(590\) 0 0
\(591\) −38.9639 1.05399i −1.60276 0.0433553i
\(592\) 0 0
\(593\) 5.52609 + 9.57146i 0.226929 + 0.393053i 0.956896 0.290429i \(-0.0937981\pi\)
−0.729967 + 0.683482i \(0.760465\pi\)
\(594\) 0 0
\(595\) 1.59779 + 5.65613i 0.0655029 + 0.231879i
\(596\) 0 0
\(597\) 9.70133 15.8005i 0.397049 0.646671i
\(598\) 0 0
\(599\) −13.6283 7.86831i −0.556838 0.321490i 0.195038 0.980796i \(-0.437517\pi\)
−0.751875 + 0.659305i \(0.770850\pi\)
\(600\) 0 0
\(601\) 36.9336i 1.50655i 0.657704 + 0.753276i \(0.271528\pi\)
−0.657704 + 0.753276i \(0.728472\pi\)
\(602\) 0 0
\(603\) 23.3544 35.8270i 0.951065 1.45899i
\(604\) 0 0
\(605\) 3.99484 6.91926i 0.162413 0.281308i
\(606\) 0 0
\(607\) −6.08775 + 3.51476i −0.247094 + 0.142660i −0.618433 0.785838i \(-0.712232\pi\)
0.371339 + 0.928497i \(0.378899\pi\)
\(608\) 0 0
\(609\) −10.2653 40.4942i −0.415970 1.64091i
\(610\) 0 0
\(611\) 4.39460 2.53722i 0.177786 0.102645i
\(612\) 0 0
\(613\) 6.83385 11.8366i 0.276017 0.478075i −0.694374 0.719614i \(-0.744319\pi\)
0.970391 + 0.241539i \(0.0776522\pi\)
\(614\) 0 0
\(615\) −4.88238 + 2.64546i −0.196877 + 0.106675i
\(616\) 0 0
\(617\) 29.1859i 1.17498i −0.809232 0.587489i \(-0.800116\pi\)
0.809232 0.587489i \(-0.199884\pi\)
\(618\) 0 0
\(619\) 30.1847 + 17.4271i 1.21322 + 0.700455i 0.963460 0.267852i \(-0.0863137\pi\)
0.249764 + 0.968307i \(0.419647\pi\)
\(620\) 0 0
\(621\) 13.1729 + 27.8028i 0.528612 + 1.11569i
\(622\) 0 0
\(623\) −8.40426 + 8.63455i −0.336710 + 0.345936i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −0.582338 + 21.5279i −0.0232563 + 0.859742i
\(628\) 0 0
\(629\) 3.05568 0.121838
\(630\) 0 0
\(631\) −17.5038 −0.696816 −0.348408 0.937343i \(-0.613278\pi\)
−0.348408 + 0.937343i \(0.613278\pi\)
\(632\) 0 0
\(633\) 1.14473 42.3184i 0.0454988 1.68200i
\(634\) 0 0
\(635\) −3.14553 5.44822i −0.124827 0.216206i
\(636\) 0 0
\(637\) 16.5551 + 26.9641i 0.655939 + 1.06836i
\(638\) 0 0
\(639\) −1.28660 + 23.7642i −0.0508972 + 0.940096i
\(640\) 0 0
\(641\) 12.8017 + 7.39109i 0.505638 + 0.291930i 0.731039 0.682336i \(-0.239036\pi\)
−0.225401 + 0.974266i \(0.572369\pi\)
\(642\) 0 0
\(643\) 8.75484i 0.345257i 0.984987 + 0.172629i \(0.0552260\pi\)
−0.984987 + 0.172629i \(0.944774\pi\)
\(644\) 0 0
\(645\) 13.7450 7.44758i 0.541210 0.293248i
\(646\) 0 0
\(647\) 2.25035 3.89772i 0.0884703 0.153235i −0.818394 0.574657i \(-0.805136\pi\)
0.906865 + 0.421422i \(0.138469\pi\)
\(648\) 0 0
\(649\) −0.734318 + 0.423959i −0.0288245 + 0.0166418i
\(650\) 0 0
\(651\) 29.3586 + 8.29391i 1.15065 + 0.325064i
\(652\) 0 0
\(653\) −18.4630 + 10.6596i −0.722514 + 0.417144i −0.815677 0.578507i \(-0.803636\pi\)
0.0931631 + 0.995651i \(0.470302\pi\)
\(654\) 0 0
\(655\) −6.56624 + 11.3731i −0.256564 + 0.444382i
\(656\) 0 0
\(657\) 3.55934 + 2.32021i 0.138863 + 0.0905202i
\(658\) 0 0
\(659\) 29.9255i 1.16573i 0.812569 + 0.582865i \(0.198069\pi\)
−0.812569 + 0.582865i \(0.801931\pi\)
\(660\) 0 0
\(661\) −23.9971 13.8547i −0.933379 0.538886i −0.0455001 0.998964i \(-0.514488\pi\)
−0.887879 + 0.460078i \(0.847821\pi\)
\(662\) 0 0
\(663\) −9.10014 + 14.8213i −0.353420 + 0.575612i
\(664\) 0 0
\(665\) −4.65930 + 18.3788i −0.180680 + 0.712698i
\(666\) 0 0
\(667\) −26.9874 46.7436i −1.04496 1.80992i
\(668\) 0 0
\(669\) 28.4046 + 0.768354i 1.09818 + 0.0297063i
\(670\) 0 0
\(671\) −15.1893 −0.586378
\(672\) 0 0
\(673\) −28.8495 −1.11206 −0.556032 0.831161i \(-0.687677\pi\)
−0.556032 + 0.831161i \(0.687677\pi\)
\(674\) 0 0
\(675\) −4.27464 2.95422i −0.164531 0.113708i
\(676\) 0 0
\(677\) 21.9030 + 37.9372i 0.841802 + 1.45804i 0.888370 + 0.459128i \(0.151838\pi\)
−0.0465685 + 0.998915i \(0.514829\pi\)
\(678\) 0 0
\(679\) −17.6757 + 4.99317i −0.678331 + 0.191620i
\(680\) 0 0
\(681\) 27.3014 + 16.7628i 1.04619 + 0.642352i
\(682\) 0 0
\(683\) 10.2915 + 5.94181i 0.393794 + 0.227357i 0.683803 0.729667i \(-0.260325\pi\)
−0.290009 + 0.957024i \(0.593658\pi\)
\(684\) 0 0
\(685\) 5.76766i 0.220371i
\(686\) 0 0
\(687\) 18.4637 + 34.0761i 0.704435 + 1.30009i
\(688\) 0 0
\(689\) −17.2372 + 29.8558i −0.656686 + 1.13741i
\(690\) 0 0
\(691\) −25.8888 + 14.9469i −0.984858 + 0.568608i −0.903733 0.428096i \(-0.859185\pi\)
−0.0811246 + 0.996704i \(0.525851\pi\)
\(692\) 0 0
\(693\) −4.10092 + 13.1466i −0.155781 + 0.499398i
\(694\) 0 0
\(695\) 1.43775 0.830084i 0.0545369 0.0314869i
\(696\) 0 0
\(697\) −3.56108 + 6.16796i −0.134885 + 0.233628i
\(698\) 0 0
\(699\) 21.2055 + 39.1362i 0.802065 + 1.48027i
\(700\) 0 0
\(701\) 25.1116i 0.948451i −0.880403 0.474226i \(-0.842728\pi\)
0.880403 0.474226i \(-0.157272\pi\)
\(702\) 0 0
\(703\) 8.53668 + 4.92865i 0.321967 + 0.185888i
\(704\) 0 0
\(705\) 1.65705 + 1.01741i 0.0624083 + 0.0383180i
\(706\) 0 0
\(707\) −7.28399 1.84661i −0.273943 0.0694488i
\(708\) 0 0
\(709\) 13.8755 + 24.0330i 0.521104 + 0.902578i 0.999699 + 0.0245424i \(0.00781286\pi\)
−0.478595 + 0.878036i \(0.658854\pi\)
\(710\) 0 0
\(711\) −8.26515 16.2908i −0.309967 0.610952i
\(712\) 0 0
\(713\) 39.4170 1.47618
\(714\) 0 0
\(715\) −7.84251 −0.293293
\(716\) 0 0
\(717\) −37.7351 1.02075i −1.40924 0.0381205i
\(718\) 0 0
\(719\) −3.02336 5.23662i −0.112752 0.195293i 0.804127 0.594458i \(-0.202633\pi\)
−0.916879 + 0.399165i \(0.869300\pi\)
\(720\) 0 0
\(721\) −30.9702 30.1442i −1.15339 1.12263i
\(722\) 0 0
\(723\) −2.06981 + 3.37108i −0.0769769 + 0.125372i
\(724\) 0 0
\(725\) 7.89474 + 4.55803i 0.293203 + 0.169281i
\(726\) 0 0
\(727\) 24.4800i 0.907915i 0.891023 + 0.453957i \(0.149988\pi\)
−0.891023 + 0.453957i \(0.850012\pi\)
\(728\) 0 0
\(729\) −26.6453 4.36189i −0.986864 0.161552i
\(730\) 0 0
\(731\) 10.0253 17.3643i 0.370798 0.642240i
\(732\) 0 0
\(733\) −14.6881 + 8.48017i −0.542517 + 0.313222i −0.746098 0.665836i \(-0.768075\pi\)
0.203582 + 0.979058i \(0.434742\pi\)
\(734\) 0 0
\(735\) −6.06233 + 10.4999i −0.223612 + 0.387295i
\(736\) 0 0
\(737\) 21.4202 12.3669i 0.789023 0.455542i
\(738\) 0 0
\(739\) 15.6634 27.1299i 0.576189 0.997988i −0.419723 0.907652i \(-0.637873\pi\)
0.995911 0.0903358i \(-0.0287940\pi\)
\(740\) 0 0
\(741\) −49.3292 + 26.7284i −1.81215 + 0.981893i
\(742\) 0 0
\(743\) 25.2739i 0.927208i 0.886043 + 0.463604i \(0.153444\pi\)
−0.886043 + 0.463604i \(0.846556\pi\)
\(744\) 0 0
\(745\) −11.4737 6.62433i −0.420363 0.242697i
\(746\) 0 0
\(747\) 46.7480 + 2.53095i 1.71042 + 0.0926027i
\(748\) 0 0
\(749\) 14.0143 + 13.6405i 0.512071 + 0.498414i
\(750\) 0 0
\(751\) 16.3393 + 28.3005i 0.596229 + 1.03270i 0.993372 + 0.114942i \(0.0366684\pi\)
−0.397143 + 0.917757i \(0.629998\pi\)
\(752\) 0 0
\(753\) 0.803495 29.7037i 0.0292810 1.08246i
\(754\) 0 0
\(755\) 12.8428 0.467397
\(756\) 0 0
\(757\) −18.5359 −0.673697 −0.336848 0.941559i \(-0.609361\pi\)
−0.336848 + 0.941559i \(0.609361\pi\)
\(758\) 0 0
\(759\) −0.481134 + 17.7866i −0.0174641 + 0.645612i
\(760\) 0 0
\(761\) 15.3810 + 26.6407i 0.557561 + 0.965723i 0.997699 + 0.0677935i \(0.0215959\pi\)
−0.440139 + 0.897930i \(0.645071\pi\)
\(762\) 0 0
\(763\) 13.5534 + 3.43601i 0.490667 + 0.124392i
\(764\) 0 0
\(765\) −6.65469 0.360287i −0.240601 0.0130262i
\(766\) 0 0
\(767\) −1.91305 1.10450i −0.0690761 0.0398811i
\(768\) 0 0
\(769\) 34.0455i 1.22771i −0.789418 0.613855i \(-0.789618\pi\)
0.789418 0.613855i \(-0.210382\pi\)
\(770\) 0 0
\(771\) −5.70804 + 3.09283i −0.205570 + 0.111386i
\(772\) 0 0
\(773\) 6.68565 11.5799i 0.240466 0.416499i −0.720381 0.693578i \(-0.756033\pi\)
0.960847 + 0.277079i \(0.0893664\pi\)
\(774\) 0 0
\(775\) −5.76540 + 3.32866i −0.207099 + 0.119569i
\(776\) 0 0
\(777\) 4.39647 + 4.51707i 0.157722 + 0.162049i
\(778\) 0 0
\(779\) −19.8972 + 11.4877i −0.712892 + 0.411589i
\(780\) 0 0
\(781\) −6.88199 + 11.9200i −0.246257 + 0.426530i
\(782\) 0 0
\(783\) 47.2127 + 3.83885i 1.68724 + 0.137189i
\(784\) 0 0
\(785\) 4.57569i 0.163313i
\(786\) 0 0
\(787\) 22.4629 + 12.9690i 0.800717 + 0.462294i 0.843722 0.536781i \(-0.180360\pi\)
−0.0430051 + 0.999075i \(0.513693\pi\)
\(788\) 0 0
\(789\) 18.5902 30.2777i 0.661829 1.07792i
\(790\) 0 0
\(791\) −40.4883 + 11.4375i −1.43960 + 0.406669i
\(792\) 0 0
\(793\) −19.7857 34.2698i −0.702609 1.21695i
\(794\) 0 0
\(795\) −13.2054 0.357210i −0.468346 0.0126689i
\(796\) 0 0
\(797\) 30.9797 1.09736 0.548679 0.836033i \(-0.315131\pi\)
0.548679 + 0.836033i \(0.315131\pi\)
\(798\) 0 0
\(799\) 2.49392 0.0882286
\(800\) 0 0
\(801\) −6.18169 12.1842i −0.218419 0.430509i
\(802\) 0 0
\(803\) 1.22863 + 2.12805i 0.0433575 + 0.0750973i
\(804\) 0 0
\(805\) −3.84957 + 15.1847i −0.135679 + 0.535191i
\(806\) 0 0
\(807\) 28.8428 + 17.7092i 1.01532 + 0.623393i
\(808\) 0 0
\(809\) 24.1436 + 13.9393i 0.848845 + 0.490081i 0.860261 0.509854i \(-0.170301\pi\)
−0.0114160 + 0.999935i \(0.503634\pi\)
\(810\) 0 0
\(811\) 26.1528i 0.918349i 0.888346 + 0.459175i \(0.151855\pi\)
−0.888346 + 0.459175i \(0.848145\pi\)
\(812\) 0 0
\(813\) 18.8282 + 34.7488i 0.660334 + 1.21869i
\(814\) 0 0
\(815\) 1.63146 2.82578i 0.0571477 0.0989827i
\(816\) 0 0
\(817\) 56.0154 32.3405i 1.95973 1.13145i
\(818\) 0 0
\(819\) −35.0028 + 7.87241i −1.22310 + 0.275084i
\(820\) 0 0
\(821\) 2.42107 1.39781i 0.0844959 0.0487837i −0.457157 0.889386i \(-0.651132\pi\)
0.541653 + 0.840602i \(0.317799\pi\)
\(822\) 0 0
\(823\) 12.4881 21.6300i 0.435308 0.753976i −0.562012 0.827129i \(-0.689973\pi\)
0.997321 + 0.0731527i \(0.0233060\pi\)
\(824\) 0 0
\(825\) −1.43166 2.64222i −0.0498439 0.0919904i
\(826\) 0 0
\(827\) 44.4134i 1.54440i 0.635377 + 0.772202i \(0.280845\pi\)
−0.635377 + 0.772202i \(0.719155\pi\)
\(828\) 0 0
\(829\) −27.6610 15.9701i −0.960705 0.554663i −0.0643148 0.997930i \(-0.520486\pi\)
−0.896390 + 0.443267i \(0.853820\pi\)
\(830\) 0 0
\(831\) 9.66837 + 5.93628i 0.335392 + 0.205927i
\(832\) 0 0
\(833\) 0.420264 + 15.5447i 0.0145613 + 0.538591i
\(834\) 0 0
\(835\) −8.09047 14.0131i −0.279982 0.484944i
\(836\) 0 0
\(837\) −19.6672 + 28.4577i −0.679797 + 0.983640i
\(838\) 0 0
\(839\) −11.3366 −0.391384 −0.195692 0.980665i \(-0.562695\pi\)
−0.195692 + 0.980665i \(0.562695\pi\)
\(840\) 0 0
\(841\) −54.1027 −1.86561
\(842\) 0 0
\(843\) −21.9319 0.593266i −0.755374 0.0204332i
\(844\) 0 0
\(845\) −3.71567 6.43572i −0.127823 0.221396i
\(846\) 0 0
\(847\) 14.7439 15.1479i 0.506608 0.520490i
\(848\) 0 0
\(849\) −2.15657 + 3.51239i −0.0740133 + 0.120545i
\(850\) 0 0
\(851\) 7.05309 + 4.07210i 0.241777 + 0.139590i
\(852\) 0 0
\(853\) 41.8866i 1.43417i −0.696986 0.717085i \(-0.745476\pi\)
0.696986 0.717085i \(-0.254524\pi\)
\(854\) 0 0
\(855\) −18.0102 11.7402i −0.615935 0.401507i
\(856\) 0 0
\(857\) −20.1484 + 34.8980i −0.688255 + 1.19209i 0.284147 + 0.958781i \(0.408290\pi\)
−0.972402 + 0.233312i \(0.925044\pi\)
\(858\) 0 0
\(859\) −4.51782 + 2.60837i −0.154146 + 0.0889963i −0.575089 0.818091i \(-0.695033\pi\)
0.420943 + 0.907087i \(0.361699\pi\)
\(860\) 0 0
\(861\) −14.2415 + 3.61021i −0.485347 + 0.123036i
\(862\) 0 0
\(863\) −7.10243 + 4.10059i −0.241769 + 0.139586i −0.615990 0.787754i \(-0.711244\pi\)
0.374220 + 0.927340i \(0.377910\pi\)
\(864\) 0 0
\(865\) −8.94446 + 15.4923i −0.304121 + 0.526753i
\(866\) 0 0
\(867\) 18.3735 9.95544i 0.623996 0.338104i
\(868\) 0 0
\(869\) 10.5649i 0.358390i
\(870\) 0 0
\(871\) 55.8039 + 32.2184i 1.89084 + 1.09168i
\(872\) 0 0
\(873\) 1.12592 20.7962i 0.0381065 0.703846i
\(874\) 0 0
\(875\) −0.719245 2.54611i −0.0243149 0.0860743i
\(876\) 0 0
\(877\) −17.5894 30.4657i −0.593951 1.02875i −0.993694 0.112126i \(-0.964234\pi\)
0.399743 0.916627i \(-0.369099\pi\)
\(878\) 0 0
\(879\) 0.825500 30.5171i 0.0278434 1.02932i
\(880\) 0 0
\(881\) 13.3867 0.451011 0.225505 0.974242i \(-0.427597\pi\)
0.225505 + 0.974242i \(0.427597\pi\)
\(882\) 0 0
\(883\) −3.79780 −0.127806 −0.0639031 0.997956i \(-0.520355\pi\)
−0.0639031 + 0.997956i \(0.520355\pi\)
\(884\) 0 0
\(885\) 0.0228887 0.846152i 0.000769396 0.0284431i
\(886\) 0 0
\(887\) 13.8288 + 23.9521i 0.464325 + 0.804234i 0.999171 0.0407153i \(-0.0129637\pi\)
−0.534846 + 0.844950i \(0.679630\pi\)
\(888\) 0 0
\(889\) −4.52482 16.0178i −0.151758 0.537218i
\(890\) 0 0
\(891\) −12.6012 9.22202i −0.422157 0.308949i
\(892\) 0 0
\(893\) 6.96729 + 4.02257i 0.233152 + 0.134610i
\(894\) 0 0
\(895\) 16.0628i 0.536921i
\(896\) 0 0
\(897\) −40.7563 + 22.0833i −1.36081 + 0.737340i
\(898\) 0 0
\(899\) 30.3443 52.5578i 1.01204 1.75290i
\(900\) 0 0
\(901\) −14.6731 + 8.47152i −0.488832 + 0.282227i
\(902\) 0 0
\(903\) 40.0930 10.1636i 1.33421 0.338223i
\(904\) 0 0
\(905\) 9.08958 5.24787i 0.302148 0.174445i
\(906\) 0 0
\(907\) −10.9484 + 18.9633i −0.363537 + 0.629665i −0.988540 0.150957i \(-0.951764\pi\)
0.625003 + 0.780622i \(0.285098\pi\)
\(908\) 0 0
\(909\) 4.65296 7.13791i 0.154329 0.236749i
\(910\) 0 0
\(911\) 13.0835i 0.433477i 0.976230 + 0.216739i \(0.0695419\pi\)
−0.976230 + 0.216739i \(0.930458\pi\)
\(912\) 0 0
\(913\) 23.4485 + 13.5380i 0.776031 + 0.448042i
\(914\) 0 0
\(915\) 7.93395 12.9220i 0.262288 0.427187i
\(916\) 0 0
\(917\) −24.2343 + 24.8984i −0.800288 + 0.822217i
\(918\) 0 0
\(919\) −3.62558 6.27969i −0.119597 0.207148i 0.800011 0.599985i \(-0.204827\pi\)
−0.919608 + 0.392837i \(0.871494\pi\)
\(920\) 0 0
\(921\) −30.8658 0.834931i −1.01706 0.0275119i
\(922\) 0 0
\(923\) −35.8580 −1.18028
\(924\) 0 0
\(925\) −1.37551 −0.0452266
\(926\) 0 0
\(927\) 43.7022 22.1724i 1.43537 0.728236i
\(928\) 0 0
\(929\) 16.5819 + 28.7207i 0.544035 + 0.942297i 0.998667 + 0.0516174i \(0.0164376\pi\)
−0.454631 + 0.890680i \(0.650229\pi\)
\(930\) 0 0
\(931\) −23.8987 + 44.1052i −0.783248 + 1.44549i
\(932\) 0 0
\(933\) −9.74984 5.98630i −0.319195 0.195983i
\(934\) 0 0
\(935\) −3.33795 1.92717i −0.109163 0.0630251i
\(936\) 0 0
\(937\) 31.3774i 1.02506i 0.858671 + 0.512528i \(0.171291\pi\)
−0.858671 + 0.512528i \(0.828709\pi\)
\(938\) 0 0
\(939\) 14.0121 + 25.8603i 0.457268 + 0.843920i
\(940\) 0 0
\(941\) 10.0272 17.3676i 0.326876 0.566167i −0.655014 0.755617i \(-0.727337\pi\)
0.981890 + 0.189450i \(0.0606706\pi\)
\(942\) 0 0
\(943\) −16.4393 + 9.49124i −0.535337 + 0.309077i
\(944\) 0 0
\(945\) −9.04209 10.3557i −0.294139 0.336871i
\(946\) 0 0
\(947\) 10.3813 5.99364i 0.337346 0.194767i −0.321752 0.946824i \(-0.604272\pi\)
0.659098 + 0.752057i \(0.270938\pi\)
\(948\) 0 0
\(949\) −3.20083 + 5.54401i −0.103903 + 0.179966i
\(950\) 0 0
\(951\) −2.70036 4.98371i −0.0875652 0.161608i
\(952\) 0 0
\(953\) 18.3262i 0.593643i 0.954933 + 0.296821i \(0.0959266\pi\)
−0.954933 + 0.296821i \(0.904073\pi\)
\(954\) 0 0
\(955\) 7.10655 + 4.10297i 0.229963 + 0.132769i
\(956\) 0 0
\(957\) 23.3459 + 14.3341i 0.754666 + 0.463357i
\(958\) 0 0
\(959\) 3.74997 14.7919i 0.121093 0.477654i
\(960\) 0 0
\(961\) 6.65993 + 11.5353i 0.214836 + 0.372108i
\(962\) 0 0
\(963\) −19.7756 + 10.0332i −0.637261 + 0.323315i
\(964\) 0 0
\(965\) 19.2269 0.618934
\(966\) 0 0
\(967\) 30.4904 0.980506 0.490253 0.871580i \(-0.336904\pi\)
0.490253 + 0.871580i \(0.336904\pi\)
\(968\) 0 0
\(969\) −27.5637 0.745608i −0.885473 0.0239524i
\(970\) 0 0
\(971\) −14.5995 25.2872i −0.468522 0.811503i 0.530831 0.847478i \(-0.321880\pi\)
−0.999353 + 0.0359742i \(0.988547\pi\)
\(972\) 0 0
\(973\) 4.22697 1.19407i 0.135511 0.0382801i
\(974\) 0 0
\(975\) 4.09643 6.67182i 0.131191 0.213669i
\(976\) 0 0
\(977\) −24.2834 14.0200i −0.776894 0.448540i 0.0584344 0.998291i \(-0.481389\pi\)
−0.835328 + 0.549751i \(0.814722\pi\)
\(978\) 0 0
\(979\) 7.90172i 0.252540i
\(980\) 0 0
\(981\) −8.65784 + 13.2816i −0.276424 + 0.424049i
\(982\) 0 0
\(983\) −24.2928 + 42.0763i −0.774819 + 1.34203i 0.160078 + 0.987104i \(0.448826\pi\)
−0.934896 + 0.354921i \(0.884508\pi\)
\(984\) 0 0
\(985\) 19.4891 11.2520i 0.620974 0.358520i
\(986\) 0 0
\(987\) 3.58822 + 3.68665i 0.114214 + 0.117347i
\(988\) 0 0
\(989\) 46.2805 26.7201i 1.47163 0.849648i
\(990\) 0 0
\(991\) 0.953533 1.65157i 0.0302900 0.0524638i −0.850483 0.526002i \(-0.823690\pi\)
0.880773 + 0.473539i \(0.157024\pi\)
\(992\) 0 0
\(993\) 10.8778 5.89402i 0.345198 0.187041i
\(994\) 0 0
\(995\) 10.7047i 0.339361i
\(996\) 0 0
\(997\) 36.5101 + 21.0791i 1.15629 + 0.667582i 0.950411 0.310996i \(-0.100663\pi\)
0.205875 + 0.978578i \(0.433996\pi\)
\(998\) 0 0
\(999\) −6.45907 + 3.06030i −0.204356 + 0.0968236i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.cp.b.521.9 yes 32
3.2 odd 2 840.2.cp.a.521.3 32
7.5 odd 6 840.2.cp.a.761.3 yes 32
21.5 even 6 inner 840.2.cp.b.761.9 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.cp.a.521.3 32 3.2 odd 2
840.2.cp.a.761.3 yes 32 7.5 odd 6
840.2.cp.b.521.9 yes 32 1.1 even 1 trivial
840.2.cp.b.761.9 yes 32 21.5 even 6 inner