Properties

Label 840.2.cp.a.761.3
Level $840$
Weight $2$
Character 840.761
Analytic conductor $6.707$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(521,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.cp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 761.3
Character \(\chi\) \(=\) 840.761
Dual form 840.2.cp.a.521.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.47603 - 0.906269i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(0.719245 - 2.54611i) q^{7} +(1.35735 + 2.67537i) q^{9} +(1.50258 - 0.867515i) q^{11} +4.52010i q^{13} +(1.52287 - 0.825148i) q^{15} +(-1.11074 - 1.92386i) q^{17} +(6.20617 + 3.58314i) q^{19} +(-3.36909 + 3.10632i) q^{21} +(-5.12760 - 2.96042i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(0.421109 - 5.17906i) q^{27} -9.11607i q^{29} +(5.76540 - 3.32866i) q^{31} +(-3.00406 - 0.0812610i) q^{33} +(1.84538 + 1.89594i) q^{35} +(0.687757 - 1.19123i) q^{37} +(4.09643 - 6.67182i) q^{39} +3.20604 q^{41} +9.02575 q^{43} +(-2.99561 - 0.162184i) q^{45} +(-0.561320 + 0.972234i) q^{47} +(-5.96537 - 3.66256i) q^{49} +(-0.104044 + 3.84631i) q^{51} +(6.60510 - 3.81346i) q^{53} +1.73503i q^{55} +(-5.91323 - 10.9133i) q^{57} +(-0.244352 - 0.423231i) q^{59} +(7.58163 + 4.37726i) q^{61} +(7.78806 - 1.53172i) q^{63} +(-3.91452 - 2.26005i) q^{65} +(-7.12780 - 12.3457i) q^{67} +(4.88558 + 9.01668i) q^{69} -7.93299i q^{71} +(-1.22652 + 0.708133i) q^{73} +(-0.0468355 + 1.73142i) q^{75} +(-1.12807 - 4.44969i) q^{77} +(3.04459 - 5.27338i) q^{79} +(-5.31519 + 7.26283i) q^{81} +15.6055 q^{83} +2.22148 q^{85} +(-8.26161 + 13.4556i) q^{87} +(-2.27711 + 3.94408i) q^{89} +(11.5087 + 3.25106i) q^{91} +(-11.5266 - 0.311799i) q^{93} +(-6.20617 + 3.58314i) q^{95} -6.94223i q^{97} +(4.36045 + 2.84243i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{5} - 2 q^{7} - 10 q^{9} + 6 q^{19} - 4 q^{21} - 24 q^{23} - 16 q^{25} - 24 q^{27} + 42 q^{31} + 6 q^{33} - 2 q^{35} + 6 q^{37} + 12 q^{39} - 44 q^{41} - 20 q^{43} + 8 q^{45} - 4 q^{47} + 16 q^{49}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.47603 0.906269i −0.852188 0.523235i
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0.719245 2.54611i 0.271849 0.962340i
\(8\) 0 0
\(9\) 1.35735 + 2.67537i 0.452450 + 0.891790i
\(10\) 0 0
\(11\) 1.50258 0.867515i 0.453045 0.261566i −0.256070 0.966658i \(-0.582428\pi\)
0.709115 + 0.705093i \(0.249095\pi\)
\(12\) 0 0
\(13\) 4.52010i 1.25365i 0.779160 + 0.626826i \(0.215646\pi\)
−0.779160 + 0.626826i \(0.784354\pi\)
\(14\) 0 0
\(15\) 1.52287 0.825148i 0.393203 0.213052i
\(16\) 0 0
\(17\) −1.11074 1.92386i −0.269394 0.466604i 0.699312 0.714817i \(-0.253490\pi\)
−0.968705 + 0.248213i \(0.920157\pi\)
\(18\) 0 0
\(19\) 6.20617 + 3.58314i 1.42379 + 0.822028i 0.996621 0.0821424i \(-0.0261762\pi\)
0.427173 + 0.904170i \(0.359510\pi\)
\(20\) 0 0
\(21\) −3.36909 + 3.10632i −0.735197 + 0.677854i
\(22\) 0 0
\(23\) −5.12760 2.96042i −1.06918 0.617291i −0.141222 0.989978i \(-0.545103\pi\)
−0.927957 + 0.372687i \(0.878437\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0.421109 5.17906i 0.0810424 0.996711i
\(28\) 0 0
\(29\) 9.11607i 1.69281i −0.532539 0.846405i \(-0.678762\pi\)
0.532539 0.846405i \(-0.321238\pi\)
\(30\) 0 0
\(31\) 5.76540 3.32866i 1.03550 0.597845i 0.116943 0.993139i \(-0.462691\pi\)
0.918555 + 0.395294i \(0.129357\pi\)
\(32\) 0 0
\(33\) −3.00406 0.0812610i −0.522940 0.0141457i
\(34\) 0 0
\(35\) 1.84538 + 1.89594i 0.311925 + 0.320472i
\(36\) 0 0
\(37\) 0.687757 1.19123i 0.113067 0.195837i −0.803939 0.594712i \(-0.797266\pi\)
0.917005 + 0.398875i \(0.130599\pi\)
\(38\) 0 0
\(39\) 4.09643 6.67182i 0.655954 1.06835i
\(40\) 0 0
\(41\) 3.20604 0.500699 0.250350 0.968155i \(-0.419454\pi\)
0.250350 + 0.968155i \(0.419454\pi\)
\(42\) 0 0
\(43\) 9.02575 1.37641 0.688207 0.725514i \(-0.258398\pi\)
0.688207 + 0.725514i \(0.258398\pi\)
\(44\) 0 0
\(45\) −2.99561 0.162184i −0.446560 0.0241769i
\(46\) 0 0
\(47\) −0.561320 + 0.972234i −0.0818769 + 0.141815i −0.904056 0.427414i \(-0.859425\pi\)
0.822179 + 0.569229i \(0.192758\pi\)
\(48\) 0 0
\(49\) −5.96537 3.66256i −0.852196 0.523223i
\(50\) 0 0
\(51\) −0.104044 + 3.84631i −0.0145691 + 0.538591i
\(52\) 0 0
\(53\) 6.60510 3.81346i 0.907281 0.523819i 0.0277255 0.999616i \(-0.491174\pi\)
0.879555 + 0.475797i \(0.157840\pi\)
\(54\) 0 0
\(55\) 1.73503i 0.233951i
\(56\) 0 0
\(57\) −5.91323 10.9133i −0.783227 1.44550i
\(58\) 0 0
\(59\) −0.244352 0.423231i −0.0318120 0.0551000i 0.849681 0.527297i \(-0.176794\pi\)
−0.881493 + 0.472197i \(0.843461\pi\)
\(60\) 0 0
\(61\) 7.58163 + 4.37726i 0.970729 + 0.560450i 0.899458 0.437007i \(-0.143961\pi\)
0.0712703 + 0.997457i \(0.477295\pi\)
\(62\) 0 0
\(63\) 7.78806 1.53172i 0.981203 0.192979i
\(64\) 0 0
\(65\) −3.91452 2.26005i −0.485537 0.280325i
\(66\) 0 0
\(67\) −7.12780 12.3457i −0.870800 1.50827i −0.861171 0.508316i \(-0.830268\pi\)
−0.00962884 0.999954i \(-0.503065\pi\)
\(68\) 0 0
\(69\) 4.88558 + 9.01668i 0.588154 + 1.08548i
\(70\) 0 0
\(71\) 7.93299i 0.941473i −0.882274 0.470737i \(-0.843988\pi\)
0.882274 0.470737i \(-0.156012\pi\)
\(72\) 0 0
\(73\) −1.22652 + 0.708133i −0.143554 + 0.0828807i −0.570057 0.821605i \(-0.693079\pi\)
0.426503 + 0.904486i \(0.359745\pi\)
\(74\) 0 0
\(75\) −0.0468355 + 1.73142i −0.00540810 + 0.199927i
\(76\) 0 0
\(77\) −1.12807 4.44969i −0.128555 0.507089i
\(78\) 0 0
\(79\) 3.04459 5.27338i 0.342543 0.593302i −0.642361 0.766402i \(-0.722045\pi\)
0.984904 + 0.173100i \(0.0553785\pi\)
\(80\) 0 0
\(81\) −5.31519 + 7.26283i −0.590577 + 0.806981i
\(82\) 0 0
\(83\) 15.6055 1.71292 0.856462 0.516211i \(-0.172658\pi\)
0.856462 + 0.516211i \(0.172658\pi\)
\(84\) 0 0
\(85\) 2.22148 0.240953
\(86\) 0 0
\(87\) −8.26161 + 13.4556i −0.885738 + 1.44259i
\(88\) 0 0
\(89\) −2.27711 + 3.94408i −0.241374 + 0.418071i −0.961106 0.276180i \(-0.910931\pi\)
0.719732 + 0.694252i \(0.244265\pi\)
\(90\) 0 0
\(91\) 11.5087 + 3.25106i 1.20644 + 0.340804i
\(92\) 0 0
\(93\) −11.5266 0.311799i −1.19525 0.0323320i
\(94\) 0 0
\(95\) −6.20617 + 3.58314i −0.636740 + 0.367622i
\(96\) 0 0
\(97\) 6.94223i 0.704877i −0.935835 0.352438i \(-0.885353\pi\)
0.935835 0.352438i \(-0.114647\pi\)
\(98\) 0 0
\(99\) 4.36045 + 2.84243i 0.438242 + 0.285675i
\(100\) 0 0
\(101\) 1.42009 + 2.45967i 0.141304 + 0.244746i 0.927988 0.372610i \(-0.121537\pi\)
−0.786684 + 0.617356i \(0.788204\pi\)
\(102\) 0 0
\(103\) −14.1465 8.16751i −1.39390 0.804768i −0.400155 0.916447i \(-0.631044\pi\)
−0.993744 + 0.111679i \(0.964377\pi\)
\(104\) 0 0
\(105\) −1.00560 4.47088i −0.0981368 0.436313i
\(106\) 0 0
\(107\) −6.40143 3.69587i −0.618850 0.357293i 0.157571 0.987508i \(-0.449634\pi\)
−0.776421 + 0.630214i \(0.782967\pi\)
\(108\) 0 0
\(109\) 2.64239 + 4.57675i 0.253095 + 0.438373i 0.964376 0.264534i \(-0.0852182\pi\)
−0.711282 + 0.702907i \(0.751885\pi\)
\(110\) 0 0
\(111\) −2.09473 + 1.13500i −0.198823 + 0.107730i
\(112\) 0 0
\(113\) 15.9020i 1.49594i 0.663734 + 0.747968i \(0.268971\pi\)
−0.663734 + 0.747968i \(0.731029\pi\)
\(114\) 0 0
\(115\) 5.12760 2.96042i 0.478152 0.276061i
\(116\) 0 0
\(117\) −12.0929 + 6.13537i −1.11799 + 0.567215i
\(118\) 0 0
\(119\) −5.69725 + 1.44434i −0.522266 + 0.132403i
\(120\) 0 0
\(121\) −3.99484 + 6.91926i −0.363167 + 0.629024i
\(122\) 0 0
\(123\) −4.73222 2.90554i −0.426690 0.261983i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −6.29106 −0.558242 −0.279121 0.960256i \(-0.590043\pi\)
−0.279121 + 0.960256i \(0.590043\pi\)
\(128\) 0 0
\(129\) −13.3223 8.17976i −1.17296 0.720188i
\(130\) 0 0
\(131\) −6.56624 + 11.3731i −0.573695 + 0.993668i 0.422487 + 0.906369i \(0.361157\pi\)
−0.996182 + 0.0872995i \(0.972176\pi\)
\(132\) 0 0
\(133\) 13.5868 13.2245i 1.17813 1.14671i
\(134\) 0 0
\(135\) 4.27464 + 2.95422i 0.367903 + 0.254259i
\(136\) 0 0
\(137\) 4.99494 2.88383i 0.426746 0.246382i −0.271213 0.962519i \(-0.587425\pi\)
0.697960 + 0.716137i \(0.254092\pi\)
\(138\) 0 0
\(139\) 1.66017i 0.140814i 0.997518 + 0.0704068i \(0.0224297\pi\)
−0.997518 + 0.0704068i \(0.977570\pi\)
\(140\) 0 0
\(141\) 1.70963 0.926344i 0.143977 0.0780122i
\(142\) 0 0
\(143\) 3.92126 + 6.79181i 0.327912 + 0.567960i
\(144\) 0 0
\(145\) 7.89474 + 4.55803i 0.655623 + 0.378524i
\(146\) 0 0
\(147\) 5.48583 + 10.8123i 0.452463 + 0.891783i
\(148\) 0 0
\(149\) 11.4737 + 6.62433i 0.939961 + 0.542686i 0.889948 0.456062i \(-0.150741\pi\)
0.0500126 + 0.998749i \(0.484074\pi\)
\(150\) 0 0
\(151\) 6.42140 + 11.1222i 0.522566 + 0.905111i 0.999655 + 0.0262559i \(0.00835848\pi\)
−0.477089 + 0.878855i \(0.658308\pi\)
\(152\) 0 0
\(153\) 3.63936 5.58299i 0.294225 0.451358i
\(154\) 0 0
\(155\) 6.65732i 0.534729i
\(156\) 0 0
\(157\) 3.96267 2.28785i 0.316255 0.182590i −0.333467 0.942762i \(-0.608219\pi\)
0.649722 + 0.760172i \(0.274885\pi\)
\(158\) 0 0
\(159\) −13.2054 0.357210i −1.04725 0.0283286i
\(160\) 0 0
\(161\) −11.2256 + 10.9262i −0.884699 + 0.861104i
\(162\) 0 0
\(163\) −1.63146 + 2.82578i −0.127786 + 0.221332i −0.922819 0.385235i \(-0.874120\pi\)
0.795032 + 0.606567i \(0.207454\pi\)
\(164\) 0 0
\(165\) 1.57240 2.56096i 0.122412 0.199371i
\(166\) 0 0
\(167\) 16.1809 1.25212 0.626060 0.779775i \(-0.284667\pi\)
0.626060 + 0.779775i \(0.284667\pi\)
\(168\) 0 0
\(169\) −7.43133 −0.571641
\(170\) 0 0
\(171\) −1.16225 + 21.4674i −0.0888796 + 1.64165i
\(172\) 0 0
\(173\) −8.94446 + 15.4923i −0.680035 + 1.17785i 0.294935 + 0.955517i \(0.404702\pi\)
−0.974970 + 0.222337i \(0.928631\pi\)
\(174\) 0 0
\(175\) −2.56462 + 0.650171i −0.193867 + 0.0491483i
\(176\) 0 0
\(177\) −0.0228887 + 0.846152i −0.00172042 + 0.0636007i
\(178\) 0 0
\(179\) −13.9108 + 8.03141i −1.03974 + 0.600296i −0.919760 0.392480i \(-0.871617\pi\)
−0.119982 + 0.992776i \(0.538284\pi\)
\(180\) 0 0
\(181\) 10.4957i 0.780142i 0.920785 + 0.390071i \(0.127550\pi\)
−0.920785 + 0.390071i \(0.872450\pi\)
\(182\) 0 0
\(183\) −7.22377 13.3320i −0.533997 0.985529i
\(184\) 0 0
\(185\) 0.687757 + 1.19123i 0.0505649 + 0.0875810i
\(186\) 0 0
\(187\) −3.33795 1.92717i −0.244095 0.140928i
\(188\) 0 0
\(189\) −12.8836 4.79720i −0.937143 0.348945i
\(190\) 0 0
\(191\) −7.10655 4.10297i −0.514212 0.296881i 0.220351 0.975421i \(-0.429280\pi\)
−0.734563 + 0.678540i \(0.762613\pi\)
\(192\) 0 0
\(193\) 9.61343 + 16.6509i 0.691990 + 1.19856i 0.971185 + 0.238327i \(0.0765989\pi\)
−0.279195 + 0.960234i \(0.590068\pi\)
\(194\) 0 0
\(195\) 3.72975 + 6.88353i 0.267093 + 0.492940i
\(196\) 0 0
\(197\) 22.5041i 1.60335i −0.597761 0.801674i \(-0.703943\pi\)
0.597761 0.801674i \(-0.296057\pi\)
\(198\) 0 0
\(199\) 9.27053 5.35234i 0.657171 0.379418i −0.134027 0.990978i \(-0.542791\pi\)
0.791198 + 0.611560i \(0.209458\pi\)
\(200\) 0 0
\(201\) −0.667668 + 24.6824i −0.0470937 + 1.74096i
\(202\) 0 0
\(203\) −23.2105 6.55669i −1.62906 0.460189i
\(204\) 0 0
\(205\) −1.60302 + 2.77651i −0.111960 + 0.193920i
\(206\) 0 0
\(207\) 0.960264 17.7366i 0.0667430 1.23278i
\(208\) 0 0
\(209\) 12.4337 0.860056
\(210\) 0 0
\(211\) 24.4415 1.68262 0.841310 0.540554i \(-0.181785\pi\)
0.841310 + 0.540554i \(0.181785\pi\)
\(212\) 0 0
\(213\) −7.18943 + 11.7094i −0.492612 + 0.802313i
\(214\) 0 0
\(215\) −4.51288 + 7.81653i −0.307776 + 0.533083i
\(216\) 0 0
\(217\) −4.32840 17.0735i −0.293831 1.15902i
\(218\) 0 0
\(219\) 2.45215 + 0.0663315i 0.165701 + 0.00448227i
\(220\) 0 0
\(221\) 8.69603 5.02066i 0.584959 0.337726i
\(222\) 0 0
\(223\) 16.4054i 1.09859i −0.835630 0.549293i \(-0.814897\pi\)
0.835630 0.549293i \(-0.185103\pi\)
\(224\) 0 0
\(225\) 1.63826 2.51319i 0.109217 0.167546i
\(226\) 0 0
\(227\) 9.24824 + 16.0184i 0.613827 + 1.06318i 0.990589 + 0.136870i \(0.0437041\pi\)
−0.376762 + 0.926310i \(0.622963\pi\)
\(228\) 0 0
\(229\) −19.3784 11.1881i −1.28056 0.739333i −0.303611 0.952796i \(-0.598192\pi\)
−0.976951 + 0.213463i \(0.931526\pi\)
\(230\) 0 0
\(231\) −2.36756 + 7.59023i −0.155774 + 0.499400i
\(232\) 0 0
\(233\) 22.2560 + 12.8495i 1.45804 + 0.841799i 0.998915 0.0465740i \(-0.0148303\pi\)
0.459123 + 0.888373i \(0.348164\pi\)
\(234\) 0 0
\(235\) −0.561320 0.972234i −0.0366165 0.0634216i
\(236\) 0 0
\(237\) −9.27302 + 5.02447i −0.602347 + 0.326374i
\(238\) 0 0
\(239\) 21.7943i 1.40976i −0.709328 0.704879i \(-0.751001\pi\)
0.709328 0.704879i \(-0.248999\pi\)
\(240\) 0 0
\(241\) −1.97789 + 1.14194i −0.127407 + 0.0735587i −0.562349 0.826900i \(-0.690102\pi\)
0.434942 + 0.900459i \(0.356769\pi\)
\(242\) 0 0
\(243\) 14.4275 5.90318i 0.925524 0.378689i
\(244\) 0 0
\(245\) 6.15455 3.33489i 0.393200 0.213058i
\(246\) 0 0
\(247\) −16.1961 + 28.0525i −1.03054 + 1.78494i
\(248\) 0 0
\(249\) −23.0342 14.1428i −1.45973 0.896261i
\(250\) 0 0
\(251\) −17.1557 −1.08286 −0.541429 0.840747i \(-0.682116\pi\)
−0.541429 + 0.840747i \(0.682116\pi\)
\(252\) 0 0
\(253\) −10.2728 −0.645848
\(254\) 0 0
\(255\) −3.27898 2.01326i −0.205338 0.126075i
\(256\) 0 0
\(257\) 1.87411 3.24605i 0.116904 0.202483i −0.801636 0.597813i \(-0.796036\pi\)
0.918539 + 0.395330i \(0.129370\pi\)
\(258\) 0 0
\(259\) −2.53834 2.60789i −0.157725 0.162047i
\(260\) 0 0
\(261\) 24.3888 12.3737i 1.50963 0.765913i
\(262\) 0 0
\(263\) −17.7647 + 10.2564i −1.09542 + 0.632439i −0.935014 0.354612i \(-0.884613\pi\)
−0.160404 + 0.987051i \(0.551280\pi\)
\(264\) 0 0
\(265\) 7.62692i 0.468518i
\(266\) 0 0
\(267\) 6.93550 3.75791i 0.424445 0.229981i
\(268\) 0 0
\(269\) 9.77038 + 16.9228i 0.595711 + 1.03180i 0.993446 + 0.114301i \(0.0364629\pi\)
−0.397735 + 0.917500i \(0.630204\pi\)
\(270\) 0 0
\(271\) −19.7609 11.4090i −1.20039 0.693047i −0.239750 0.970835i \(-0.577065\pi\)
−0.960642 + 0.277788i \(0.910399\pi\)
\(272\) 0 0
\(273\) −14.0409 15.2287i −0.849792 0.921680i
\(274\) 0 0
\(275\) −1.50258 0.867515i −0.0906090 0.0523131i
\(276\) 0 0
\(277\) −3.27512 5.67267i −0.196783 0.340838i 0.750701 0.660643i \(-0.229716\pi\)
−0.947484 + 0.319805i \(0.896383\pi\)
\(278\) 0 0
\(279\) 16.7311 + 10.9064i 1.00166 + 0.652951i
\(280\) 0 0
\(281\) 12.6670i 0.755651i −0.925877 0.377825i \(-0.876672\pi\)
0.925877 0.377825i \(-0.123328\pi\)
\(282\) 0 0
\(283\) −2.06081 + 1.18981i −0.122502 + 0.0707267i −0.559999 0.828493i \(-0.689198\pi\)
0.437497 + 0.899220i \(0.355865\pi\)
\(284\) 0 0
\(285\) 12.4078 + 0.335636i 0.734975 + 0.0198813i
\(286\) 0 0
\(287\) 2.30593 8.16294i 0.136115 0.481843i
\(288\) 0 0
\(289\) 6.03252 10.4486i 0.354854 0.614625i
\(290\) 0 0
\(291\) −6.29153 + 10.2470i −0.368816 + 0.600688i
\(292\) 0 0
\(293\) −17.6255 −1.02969 −0.514847 0.857282i \(-0.672151\pi\)
−0.514847 + 0.857282i \(0.672151\pi\)
\(294\) 0 0
\(295\) 0.488705 0.0284535
\(296\) 0 0
\(297\) −3.86016 8.14727i −0.223989 0.472752i
\(298\) 0 0
\(299\) 13.3814 23.1773i 0.773868 1.34038i
\(300\) 0 0
\(301\) 6.49173 22.9806i 0.374177 1.32458i
\(302\) 0 0
\(303\) 0.133021 4.91754i 0.00764188 0.282506i
\(304\) 0 0
\(305\) −7.58163 + 4.37726i −0.434123 + 0.250641i
\(306\) 0 0
\(307\) 17.8269i 1.01743i 0.860934 + 0.508717i \(0.169880\pi\)
−0.860934 + 0.508717i \(0.830120\pi\)
\(308\) 0 0
\(309\) 13.4788 + 24.8761i 0.766782 + 1.41515i
\(310\) 0 0
\(311\) −3.30272 5.72047i −0.187280 0.324378i 0.757063 0.653342i \(-0.226634\pi\)
−0.944342 + 0.328964i \(0.893300\pi\)
\(312\) 0 0
\(313\) −14.7063 8.49066i −0.831246 0.479920i 0.0230328 0.999735i \(-0.492668\pi\)
−0.854279 + 0.519814i \(0.826001\pi\)
\(314\) 0 0
\(315\) −2.56752 + 7.51052i −0.144663 + 0.423170i
\(316\) 0 0
\(317\) −2.83413 1.63629i −0.159181 0.0919031i 0.418294 0.908312i \(-0.362628\pi\)
−0.577474 + 0.816409i \(0.695962\pi\)
\(318\) 0 0
\(319\) −7.90832 13.6976i −0.442781 0.766919i
\(320\) 0 0
\(321\) 6.09928 + 11.2567i 0.340429 + 0.628285i
\(322\) 0 0
\(323\) 15.9197i 0.885797i
\(324\) 0 0
\(325\) 3.91452 2.26005i 0.217139 0.125365i
\(326\) 0 0
\(327\) 0.247515 9.15015i 0.0136876 0.506004i
\(328\) 0 0
\(329\) 2.07169 + 2.12846i 0.114216 + 0.117346i
\(330\) 0 0
\(331\) 3.57149 6.18601i 0.196307 0.340014i −0.751021 0.660278i \(-0.770438\pi\)
0.947328 + 0.320264i \(0.103772\pi\)
\(332\) 0 0
\(333\) 4.12051 + 0.223086i 0.225802 + 0.0122250i
\(334\) 0 0
\(335\) 14.2556 0.778867
\(336\) 0 0
\(337\) −1.33490 −0.0727168 −0.0363584 0.999339i \(-0.511576\pi\)
−0.0363584 + 0.999339i \(0.511576\pi\)
\(338\) 0 0
\(339\) 14.4115 23.4719i 0.782726 1.27482i
\(340\) 0 0
\(341\) 5.77532 10.0031i 0.312751 0.541701i
\(342\) 0 0
\(343\) −13.6158 + 12.5542i −0.735187 + 0.677865i
\(344\) 0 0
\(345\) −10.2515 0.277306i −0.551920 0.0149296i
\(346\) 0 0
\(347\) 2.53870 1.46572i 0.136284 0.0786838i −0.430308 0.902682i \(-0.641595\pi\)
0.566592 + 0.823998i \(0.308262\pi\)
\(348\) 0 0
\(349\) 14.1947i 0.759823i 0.925023 + 0.379912i \(0.124046\pi\)
−0.925023 + 0.379912i \(0.875954\pi\)
\(350\) 0 0
\(351\) 23.4099 + 1.90345i 1.24953 + 0.101599i
\(352\) 0 0
\(353\) 6.34424 + 10.9885i 0.337670 + 0.584861i 0.983994 0.178202i \(-0.0570280\pi\)
−0.646324 + 0.763063i \(0.723695\pi\)
\(354\) 0 0
\(355\) 6.87017 + 3.96650i 0.364631 + 0.210520i
\(356\) 0 0
\(357\) 9.71830 + 3.03135i 0.514347 + 0.160436i
\(358\) 0 0
\(359\) −7.00432 4.04395i −0.369674 0.213431i 0.303642 0.952786i \(-0.401797\pi\)
−0.673316 + 0.739355i \(0.735131\pi\)
\(360\) 0 0
\(361\) 16.1777 + 28.0206i 0.851459 + 1.47477i
\(362\) 0 0
\(363\) 12.1672 6.59266i 0.638614 0.346025i
\(364\) 0 0
\(365\) 1.41627i 0.0741307i
\(366\) 0 0
\(367\) −10.8649 + 6.27287i −0.567145 + 0.327441i −0.756008 0.654562i \(-0.772853\pi\)
0.188863 + 0.982003i \(0.439520\pi\)
\(368\) 0 0
\(369\) 4.35172 + 8.57734i 0.226542 + 0.446518i
\(370\) 0 0
\(371\) −4.95880 19.5601i −0.257448 1.01551i
\(372\) 0 0
\(373\) 15.5352 26.9078i 0.804382 1.39323i −0.112325 0.993672i \(-0.535830\pi\)
0.916707 0.399560i \(-0.130837\pi\)
\(374\) 0 0
\(375\) −1.47603 0.906269i −0.0762221 0.0467996i
\(376\) 0 0
\(377\) 41.2056 2.12219
\(378\) 0 0
\(379\) −0.0979431 −0.00503100 −0.00251550 0.999997i \(-0.500801\pi\)
−0.00251550 + 0.999997i \(0.500801\pi\)
\(380\) 0 0
\(381\) 9.28582 + 5.70140i 0.475727 + 0.292092i
\(382\) 0 0
\(383\) −9.57846 + 16.5904i −0.489436 + 0.847729i −0.999926 0.0121553i \(-0.996131\pi\)
0.510490 + 0.859884i \(0.329464\pi\)
\(384\) 0 0
\(385\) 4.41758 + 1.24791i 0.225141 + 0.0635995i
\(386\) 0 0
\(387\) 12.2511 + 24.1472i 0.622759 + 1.22747i
\(388\) 0 0
\(389\) −21.6644 + 12.5079i −1.09843 + 0.634178i −0.935808 0.352511i \(-0.885328\pi\)
−0.162620 + 0.986689i \(0.551995\pi\)
\(390\) 0 0
\(391\) 13.1530i 0.665178i
\(392\) 0 0
\(393\) 19.9990 10.8362i 1.00882 0.546616i
\(394\) 0 0
\(395\) 3.04459 + 5.27338i 0.153190 + 0.265332i
\(396\) 0 0
\(397\) 22.8951 + 13.2185i 1.14907 + 0.663417i 0.948661 0.316295i \(-0.102439\pi\)
0.200411 + 0.979712i \(0.435772\pi\)
\(398\) 0 0
\(399\) −32.0395 + 7.20642i −1.60398 + 0.360772i
\(400\) 0 0
\(401\) 11.7907 + 6.80738i 0.588801 + 0.339944i 0.764623 0.644478i \(-0.222925\pi\)
−0.175822 + 0.984422i \(0.556258\pi\)
\(402\) 0 0
\(403\) 15.0459 + 26.0602i 0.749489 + 1.29815i
\(404\) 0 0
\(405\) −3.63220 8.23451i −0.180485 0.409176i
\(406\) 0 0
\(407\) 2.38656i 0.118297i
\(408\) 0 0
\(409\) 23.3342 13.4720i 1.15380 0.666146i 0.203989 0.978973i \(-0.434609\pi\)
0.949810 + 0.312827i \(0.101276\pi\)
\(410\) 0 0
\(411\) −9.98622 0.270131i −0.492584 0.0133246i
\(412\) 0 0
\(413\) −1.25334 + 0.317742i −0.0616730 + 0.0156351i
\(414\) 0 0
\(415\) −7.80274 + 13.5147i −0.383021 + 0.663412i
\(416\) 0 0
\(417\) 1.50456 2.45046i 0.0736786 0.120000i
\(418\) 0 0
\(419\) 2.39230 0.116871 0.0584357 0.998291i \(-0.481389\pi\)
0.0584357 + 0.998291i \(0.481389\pi\)
\(420\) 0 0
\(421\) −19.4713 −0.948972 −0.474486 0.880263i \(-0.657366\pi\)
−0.474486 + 0.880263i \(0.657366\pi\)
\(422\) 0 0
\(423\) −3.36299 0.182074i −0.163514 0.00885273i
\(424\) 0 0
\(425\) −1.11074 + 1.92386i −0.0538788 + 0.0933208i
\(426\) 0 0
\(427\) 16.5980 16.1554i 0.803236 0.781813i
\(428\) 0 0
\(429\) 0.367308 13.5787i 0.0177338 0.655584i
\(430\) 0 0
\(431\) 9.21326 5.31928i 0.443787 0.256221i −0.261416 0.965226i \(-0.584189\pi\)
0.705203 + 0.709006i \(0.250856\pi\)
\(432\) 0 0
\(433\) 11.4141i 0.548527i 0.961655 + 0.274263i \(0.0884340\pi\)
−0.961655 + 0.274263i \(0.911566\pi\)
\(434\) 0 0
\(435\) −7.52210 13.8826i −0.360657 0.665619i
\(436\) 0 0
\(437\) −21.2152 36.7458i −1.01486 1.75779i
\(438\) 0 0
\(439\) −27.2069 15.7079i −1.29851 0.749698i −0.318367 0.947968i \(-0.603134\pi\)
−0.980147 + 0.198270i \(0.936468\pi\)
\(440\) 0 0
\(441\) 1.70159 20.9309i 0.0810279 0.996712i
\(442\) 0 0
\(443\) −2.27390 1.31284i −0.108036 0.0623747i 0.445008 0.895526i \(-0.353201\pi\)
−0.553044 + 0.833152i \(0.686534\pi\)
\(444\) 0 0
\(445\) −2.27711 3.94408i −0.107946 0.186967i
\(446\) 0 0
\(447\) −10.9321 20.1760i −0.517071 0.954291i
\(448\) 0 0
\(449\) 16.3605i 0.772100i −0.922478 0.386050i \(-0.873839\pi\)
0.922478 0.386050i \(-0.126161\pi\)
\(450\) 0 0
\(451\) 4.81733 2.78129i 0.226839 0.130966i
\(452\) 0 0
\(453\) 0.601499 22.2362i 0.0282609 1.04475i
\(454\) 0 0
\(455\) −8.56985 + 8.34129i −0.401761 + 0.391045i
\(456\) 0 0
\(457\) 13.8490 23.9872i 0.647831 1.12208i −0.335809 0.941930i \(-0.609010\pi\)
0.983640 0.180146i \(-0.0576569\pi\)
\(458\) 0 0
\(459\) −10.4315 + 4.94243i −0.486901 + 0.230693i
\(460\) 0 0
\(461\) −2.25024 −0.104804 −0.0524022 0.998626i \(-0.516688\pi\)
−0.0524022 + 0.998626i \(0.516688\pi\)
\(462\) 0 0
\(463\) −3.66223 −0.170198 −0.0850991 0.996372i \(-0.527121\pi\)
−0.0850991 + 0.996372i \(0.527121\pi\)
\(464\) 0 0
\(465\) 6.03332 9.82642i 0.279789 0.455689i
\(466\) 0 0
\(467\) −12.8340 + 22.2291i −0.593885 + 1.02864i 0.399819 + 0.916594i \(0.369073\pi\)
−0.993703 + 0.112044i \(0.964260\pi\)
\(468\) 0 0
\(469\) −36.5602 + 9.26859i −1.68819 + 0.427984i
\(470\) 0 0
\(471\) −7.92243 0.214305i −0.365047 0.00987465i
\(472\) 0 0
\(473\) 13.5619 7.82997i 0.623577 0.360023i
\(474\) 0 0
\(475\) 7.16627i 0.328811i
\(476\) 0 0
\(477\) 19.1679 + 12.4949i 0.877636 + 0.572101i
\(478\) 0 0
\(479\) −14.8176 25.6648i −0.677032 1.17265i −0.975870 0.218350i \(-0.929932\pi\)
0.298838 0.954304i \(-0.403401\pi\)
\(480\) 0 0
\(481\) 5.38448 + 3.10873i 0.245511 + 0.141746i
\(482\) 0 0
\(483\) 26.4714 5.95402i 1.20449 0.270917i
\(484\) 0 0
\(485\) 6.01215 + 3.47112i 0.272998 + 0.157615i
\(486\) 0 0
\(487\) 9.71448 + 16.8260i 0.440205 + 0.762458i 0.997704 0.0677196i \(-0.0215723\pi\)
−0.557499 + 0.830178i \(0.688239\pi\)
\(488\) 0 0
\(489\) 4.96901 2.69240i 0.224707 0.121755i
\(490\) 0 0
\(491\) 28.6905i 1.29478i 0.762158 + 0.647391i \(0.224140\pi\)
−0.762158 + 0.647391i \(0.775860\pi\)
\(492\) 0 0
\(493\) −17.5380 + 10.1256i −0.789872 + 0.456033i
\(494\) 0 0
\(495\) −4.64184 + 2.35504i −0.208635 + 0.105851i
\(496\) 0 0
\(497\) −20.1983 5.70577i −0.906017 0.255939i
\(498\) 0 0
\(499\) −16.4576 + 28.5054i −0.736743 + 1.27608i 0.217211 + 0.976125i \(0.430304\pi\)
−0.953954 + 0.299952i \(0.903029\pi\)
\(500\) 0 0
\(501\) −23.8836 14.6643i −1.06704 0.655153i
\(502\) 0 0
\(503\) −12.2651 −0.546874 −0.273437 0.961890i \(-0.588160\pi\)
−0.273437 + 0.961890i \(0.588160\pi\)
\(504\) 0 0
\(505\) −2.84018 −0.126387
\(506\) 0 0
\(507\) 10.9689 + 6.73479i 0.487146 + 0.299102i
\(508\) 0 0
\(509\) 7.21563 12.4978i 0.319827 0.553957i −0.660625 0.750716i \(-0.729709\pi\)
0.980452 + 0.196760i \(0.0630419\pi\)
\(510\) 0 0
\(511\) 0.920815 + 3.63218i 0.0407345 + 0.160678i
\(512\) 0 0
\(513\) 21.1707 30.6333i 0.934711 1.35249i
\(514\) 0 0
\(515\) 14.1465 8.16751i 0.623371 0.359903i
\(516\) 0 0
\(517\) 1.94781i 0.0856647i
\(518\) 0 0
\(519\) 27.2425 14.7610i 1.19581 0.647936i
\(520\) 0 0
\(521\) −3.78222 6.55100i −0.165702 0.287005i 0.771202 0.636590i \(-0.219656\pi\)
−0.936904 + 0.349586i \(0.886322\pi\)
\(522\) 0 0
\(523\) 8.64129 + 4.98905i 0.377857 + 0.218156i 0.676886 0.736088i \(-0.263329\pi\)
−0.299028 + 0.954244i \(0.596662\pi\)
\(524\) 0 0
\(525\) 4.37470 + 1.36456i 0.190927 + 0.0595544i
\(526\) 0 0
\(527\) −12.8077 7.39454i −0.557913 0.322111i
\(528\) 0 0
\(529\) 6.02822 + 10.4412i 0.262096 + 0.453964i
\(530\) 0 0
\(531\) 0.800626 1.22821i 0.0347442 0.0532996i
\(532\) 0 0
\(533\) 14.4916i 0.627702i
\(534\) 0 0
\(535\) 6.40143 3.69587i 0.276758 0.159786i
\(536\) 0 0
\(537\) 27.8114 + 0.752310i 1.20015 + 0.0324646i
\(538\) 0 0
\(539\) −12.1408 0.328237i −0.522940 0.0141381i
\(540\) 0 0
\(541\) −16.5475 + 28.6612i −0.711434 + 1.23224i 0.252884 + 0.967496i \(0.418621\pi\)
−0.964319 + 0.264744i \(0.914713\pi\)
\(542\) 0 0
\(543\) 9.51197 15.4921i 0.408198 0.664828i
\(544\) 0 0
\(545\) −5.28477 −0.226375
\(546\) 0 0
\(547\) −45.0112 −1.92454 −0.962270 0.272096i \(-0.912283\pi\)
−0.962270 + 0.272096i \(0.912283\pi\)
\(548\) 0 0
\(549\) −1.41984 + 26.2251i −0.0605972 + 1.11926i
\(550\) 0 0
\(551\) 32.6641 56.5759i 1.39154 2.41021i
\(552\) 0 0
\(553\) −11.2368 11.5447i −0.477838 0.490931i
\(554\) 0 0
\(555\) 0.0644229 2.38159i 0.00273460 0.101093i
\(556\) 0 0
\(557\) 1.45160 0.838083i 0.0615064 0.0355107i −0.468931 0.883235i \(-0.655361\pi\)
0.530438 + 0.847724i \(0.322028\pi\)
\(558\) 0 0
\(559\) 40.7973i 1.72554i
\(560\) 0 0
\(561\) 3.18039 + 5.86964i 0.134276 + 0.247817i
\(562\) 0 0
\(563\) 21.4502 + 37.1529i 0.904020 + 1.56581i 0.822227 + 0.569159i \(0.192731\pi\)
0.0817930 + 0.996649i \(0.473935\pi\)
\(564\) 0 0
\(565\) −13.7716 7.95101i −0.579374 0.334502i
\(566\) 0 0
\(567\) 14.6691 + 18.7568i 0.616042 + 0.787713i
\(568\) 0 0
\(569\) 35.5051 + 20.4989i 1.48845 + 0.859357i 0.999913 0.0131862i \(-0.00419740\pi\)
0.488537 + 0.872543i \(0.337531\pi\)
\(570\) 0 0
\(571\) −7.30655 12.6553i −0.305770 0.529609i 0.671663 0.740857i \(-0.265580\pi\)
−0.977432 + 0.211248i \(0.932247\pi\)
\(572\) 0 0
\(573\) 6.77112 + 12.4966i 0.282867 + 0.522052i
\(574\) 0 0
\(575\) 5.92085i 0.246916i
\(576\) 0 0
\(577\) −11.8401 + 6.83587i −0.492909 + 0.284581i −0.725780 0.687926i \(-0.758521\pi\)
0.232872 + 0.972508i \(0.425188\pi\)
\(578\) 0 0
\(579\) 0.900499 33.2897i 0.0374235 1.38347i
\(580\) 0 0
\(581\) 11.2242 39.7333i 0.465657 1.64841i
\(582\) 0 0
\(583\) 6.61646 11.4601i 0.274026 0.474627i
\(584\) 0 0
\(585\) 0.733087 13.5405i 0.0303094 0.559830i
\(586\) 0 0
\(587\) −1.12952 −0.0466203 −0.0233102 0.999728i \(-0.507421\pi\)
−0.0233102 + 0.999728i \(0.507421\pi\)
\(588\) 0 0
\(589\) 47.7081 1.96578
\(590\) 0 0
\(591\) −20.3947 + 33.2168i −0.838928 + 1.36635i
\(592\) 0 0
\(593\) −5.52609 + 9.57146i −0.226929 + 0.393053i −0.956896 0.290429i \(-0.906202\pi\)
0.729967 + 0.683482i \(0.239535\pi\)
\(594\) 0 0
\(595\) 1.59779 5.65613i 0.0655029 0.231879i
\(596\) 0 0
\(597\) −18.5343 0.501359i −0.758558 0.0205193i
\(598\) 0 0
\(599\) 13.6283 7.86831i 0.556838 0.321490i −0.195038 0.980796i \(-0.562483\pi\)
0.751875 + 0.659305i \(0.229150\pi\)
\(600\) 0 0
\(601\) 36.9336i 1.50655i −0.657704 0.753276i \(-0.728472\pi\)
0.657704 0.753276i \(-0.271528\pi\)
\(602\) 0 0
\(603\) 23.3544 35.8270i 0.951065 1.45899i
\(604\) 0 0
\(605\) −3.99484 6.91926i −0.162413 0.281308i
\(606\) 0 0
\(607\) −6.08775 3.51476i −0.247094 0.142660i 0.371339 0.928497i \(-0.378899\pi\)
−0.618433 + 0.785838i \(0.712232\pi\)
\(608\) 0 0
\(609\) 28.3174 + 30.7129i 1.14748 + 1.24455i
\(610\) 0 0
\(611\) −4.39460 2.53722i −0.177786 0.102645i
\(612\) 0 0
\(613\) 6.83385 + 11.8366i 0.276017 + 0.478075i 0.970391 0.241539i \(-0.0776522\pi\)
−0.694374 + 0.719614i \(0.744319\pi\)
\(614\) 0 0
\(615\) 4.88238 2.64546i 0.196877 0.106675i
\(616\) 0 0
\(617\) 29.1859i 1.17498i −0.809232 0.587489i \(-0.800116\pi\)
0.809232 0.587489i \(-0.199884\pi\)
\(618\) 0 0
\(619\) 30.1847 17.4271i 1.21322 0.700455i 0.249764 0.968307i \(-0.419647\pi\)
0.963460 + 0.267852i \(0.0863137\pi\)
\(620\) 0 0
\(621\) −17.4915 + 25.3095i −0.701909 + 1.01564i
\(622\) 0 0
\(623\) 8.40426 + 8.63455i 0.336710 + 0.345936i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −18.3525 11.2683i −0.732930 0.450012i
\(628\) 0 0
\(629\) −3.05568 −0.121838
\(630\) 0 0
\(631\) −17.5038 −0.696816 −0.348408 0.937343i \(-0.613278\pi\)
−0.348408 + 0.937343i \(0.613278\pi\)
\(632\) 0 0
\(633\) −36.0764 22.1505i −1.43391 0.880405i
\(634\) 0 0
\(635\) 3.14553 5.44822i 0.124827 0.216206i
\(636\) 0 0
\(637\) 16.5551 26.9641i 0.655939 1.06836i
\(638\) 0 0
\(639\) 21.2237 10.7679i 0.839596 0.425970i
\(640\) 0 0
\(641\) −12.8017 + 7.39109i −0.505638 + 0.291930i −0.731039 0.682336i \(-0.760964\pi\)
0.225401 + 0.974266i \(0.427631\pi\)
\(642\) 0 0
\(643\) 8.75484i 0.345257i −0.984987 0.172629i \(-0.944774\pi\)
0.984987 0.172629i \(-0.0552260\pi\)
\(644\) 0 0
\(645\) 13.7450 7.44758i 0.541210 0.293248i
\(646\) 0 0
\(647\) −2.25035 3.89772i −0.0884703 0.153235i 0.818394 0.574657i \(-0.194864\pi\)
−0.906865 + 0.421422i \(0.861531\pi\)
\(648\) 0 0
\(649\) −0.734318 0.423959i −0.0288245 0.0166418i
\(650\) 0 0
\(651\) −9.08432 + 29.1237i −0.356043 + 1.14145i
\(652\) 0 0
\(653\) 18.4630 + 10.6596i 0.722514 + 0.417144i 0.815677 0.578507i \(-0.196364\pi\)
−0.0931631 + 0.995651i \(0.529698\pi\)
\(654\) 0 0
\(655\) −6.56624 11.3731i −0.256564 0.444382i
\(656\) 0 0
\(657\) −3.55934 2.32021i −0.138863 0.0905202i
\(658\) 0 0
\(659\) 29.9255i 1.16573i 0.812569 + 0.582865i \(0.198069\pi\)
−0.812569 + 0.582865i \(0.801931\pi\)
\(660\) 0 0
\(661\) −23.9971 + 13.8547i −0.933379 + 0.538886i −0.887879 0.460078i \(-0.847821\pi\)
−0.0455001 + 0.998964i \(0.514488\pi\)
\(662\) 0 0
\(663\) −17.3857 0.470290i −0.675205 0.0182645i
\(664\) 0 0
\(665\) 4.65930 + 18.3788i 0.180680 + 0.712698i
\(666\) 0 0
\(667\) −26.9874 + 46.7436i −1.04496 + 1.80992i
\(668\) 0 0
\(669\) −14.8677 + 24.2149i −0.574818 + 0.936202i
\(670\) 0 0
\(671\) 15.1893 0.586378
\(672\) 0 0
\(673\) −28.8495 −1.11206 −0.556032 0.831161i \(-0.687677\pi\)
−0.556032 + 0.831161i \(0.687677\pi\)
\(674\) 0 0
\(675\) −4.69575 + 2.22484i −0.180740 + 0.0856341i
\(676\) 0 0
\(677\) −21.9030 + 37.9372i −0.841802 + 1.45804i 0.0465685 + 0.998915i \(0.485171\pi\)
−0.888370 + 0.459128i \(0.848162\pi\)
\(678\) 0 0
\(679\) −17.6757 4.99317i −0.678331 0.191620i
\(680\) 0 0
\(681\) 0.866292 32.0251i 0.0331964 1.22721i
\(682\) 0 0
\(683\) −10.2915 + 5.94181i −0.393794 + 0.227357i −0.683803 0.729667i \(-0.739675\pi\)
0.290009 + 0.957024i \(0.406342\pi\)
\(684\) 0 0
\(685\) 5.76766i 0.220371i
\(686\) 0 0
\(687\) 18.4637 + 34.0761i 0.704435 + 1.30009i
\(688\) 0 0
\(689\) 17.2372 + 29.8558i 0.656686 + 1.13741i
\(690\) 0 0
\(691\) −25.8888 14.9469i −0.984858 0.568608i −0.0811246 0.996704i \(-0.525851\pi\)
−0.903733 + 0.428096i \(0.859185\pi\)
\(692\) 0 0
\(693\) 10.3734 9.05779i 0.394052 0.344077i
\(694\) 0 0
\(695\) −1.43775 0.830084i −0.0545369 0.0314869i
\(696\) 0 0
\(697\) −3.56108 6.16796i −0.134885 0.233628i
\(698\) 0 0
\(699\) −21.2055 39.1362i −0.802065 1.48027i
\(700\) 0 0
\(701\) 25.1116i 0.948451i −0.880403 0.474226i \(-0.842728\pi\)
0.880403 0.474226i \(-0.157272\pi\)
\(702\) 0 0
\(703\) 8.53668 4.92865i 0.321967 0.185888i
\(704\) 0 0
\(705\) −0.0525794 + 1.94376i −0.00198025 + 0.0732062i
\(706\) 0 0
\(707\) 7.28399 1.84661i 0.273943 0.0694488i
\(708\) 0 0
\(709\) 13.8755 24.0330i 0.521104 0.902578i −0.478595 0.878036i \(-0.658854\pi\)
0.999699 0.0245424i \(-0.00781286\pi\)
\(710\) 0 0
\(711\) 18.2408 + 0.987564i 0.684084 + 0.0370365i
\(712\) 0 0
\(713\) −39.4170 −1.47618
\(714\) 0 0
\(715\) −7.84251 −0.293293
\(716\) 0 0
\(717\) −19.7515 + 32.1692i −0.737634 + 1.20138i
\(718\) 0 0
\(719\) 3.02336 5.23662i 0.112752 0.195293i −0.804127 0.594458i \(-0.797367\pi\)
0.916879 + 0.399165i \(0.130700\pi\)
\(720\) 0 0
\(721\) −30.9702 + 30.1442i −1.15339 + 1.12263i
\(722\) 0 0
\(723\) 3.95434 + 0.106966i 0.147064 + 0.00397812i
\(724\) 0 0
\(725\) −7.89474 + 4.55803i −0.293203 + 0.169281i
\(726\) 0 0
\(727\) 24.4800i 0.907915i −0.891023 0.453957i \(-0.850012\pi\)
0.891023 0.453957i \(-0.149988\pi\)
\(728\) 0 0
\(729\) −26.6453 4.36189i −0.986864 0.161552i
\(730\) 0 0
\(731\) −10.0253 17.3643i −0.370798 0.642240i
\(732\) 0 0
\(733\) −14.6881 8.48017i −0.542517 0.313222i 0.203582 0.979058i \(-0.434742\pi\)
−0.746098 + 0.665836i \(0.768075\pi\)
\(734\) 0 0
\(735\) −12.1066 0.655282i −0.446560 0.0241704i
\(736\) 0 0
\(737\) −21.4202 12.3669i −0.789023 0.455542i
\(738\) 0 0
\(739\) 15.6634 + 27.1299i 0.576189 + 0.997988i 0.995911 + 0.0903358i \(0.0287940\pi\)
−0.419723 + 0.907652i \(0.637873\pi\)
\(740\) 0 0
\(741\) 49.3292 26.7284i 1.81215 0.981893i
\(742\) 0 0
\(743\) 25.2739i 0.927208i 0.886043 + 0.463604i \(0.153444\pi\)
−0.886043 + 0.463604i \(0.846556\pi\)
\(744\) 0 0
\(745\) −11.4737 + 6.62433i −0.420363 + 0.242697i
\(746\) 0 0
\(747\) 21.1821 + 41.7504i 0.775013 + 1.52757i
\(748\) 0 0
\(749\) −14.0143 + 13.6405i −0.512071 + 0.498414i
\(750\) 0 0
\(751\) 16.3393 28.3005i 0.596229 1.03270i −0.397143 0.917757i \(-0.629998\pi\)
0.993372 0.114942i \(-0.0366684\pi\)
\(752\) 0 0
\(753\) 25.3224 + 15.5477i 0.922799 + 0.566589i
\(754\) 0 0
\(755\) −12.8428 −0.467397
\(756\) 0 0
\(757\) −18.5359 −0.673697 −0.336848 0.941559i \(-0.609361\pi\)
−0.336848 + 0.941559i \(0.609361\pi\)
\(758\) 0 0
\(759\) 15.1631 + 9.30997i 0.550384 + 0.337930i
\(760\) 0 0
\(761\) −15.3810 + 26.6407i −0.557561 + 0.965723i 0.440139 + 0.897930i \(0.354929\pi\)
−0.997699 + 0.0677935i \(0.978404\pi\)
\(762\) 0 0
\(763\) 13.5534 3.43601i 0.490667 0.124392i
\(764\) 0 0
\(765\) 3.01533 + 5.94328i 0.109019 + 0.214880i
\(766\) 0 0
\(767\) 1.91305 1.10450i 0.0690761 0.0398811i
\(768\) 0 0
\(769\) 34.0455i 1.22771i 0.789418 + 0.613855i \(0.210382\pi\)
−0.789418 + 0.613855i \(0.789618\pi\)
\(770\) 0 0
\(771\) −5.70804 + 3.09283i −0.205570 + 0.111386i
\(772\) 0 0
\(773\) −6.68565 11.5799i −0.240466 0.416499i 0.720381 0.693578i \(-0.243967\pi\)
−0.960847 + 0.277079i \(0.910634\pi\)
\(774\) 0 0
\(775\) −5.76540 3.32866i −0.207099 0.119569i
\(776\) 0 0
\(777\) 1.38322 + 6.14976i 0.0496228 + 0.220621i
\(778\) 0 0
\(779\) 19.8972 + 11.4877i 0.712892 + 0.411589i
\(780\) 0 0
\(781\) −6.88199 11.9200i −0.246257 0.426530i
\(782\) 0 0
\(783\) −47.2127 3.83885i −1.68724 0.137189i
\(784\) 0 0
\(785\) 4.57569i 0.163313i
\(786\) 0 0
\(787\) 22.4629 12.9690i 0.800717 0.462294i −0.0430051 0.999075i \(-0.513693\pi\)
0.843722 + 0.536781i \(0.180360\pi\)
\(788\) 0 0
\(789\) 35.5164 + 0.960731i 1.26442 + 0.0342029i
\(790\) 0 0
\(791\) 40.4883 + 11.4375i 1.43960 + 0.406669i
\(792\) 0 0
\(793\) −19.7857 + 34.2698i −0.702609 + 1.21695i
\(794\) 0 0
\(795\) 6.91204 11.2576i 0.245145 0.399265i
\(796\) 0 0
\(797\) −30.9797 −1.09736 −0.548679 0.836033i \(-0.684869\pi\)
−0.548679 + 0.836033i \(0.684869\pi\)
\(798\) 0 0
\(799\) 2.49392 0.0882286
\(800\) 0 0
\(801\) −13.6427 0.738621i −0.482041 0.0260979i
\(802\) 0 0
\(803\) −1.22863 + 2.12805i −0.0433575 + 0.0750973i
\(804\) 0 0
\(805\) −3.84957 15.1847i −0.135679 0.535191i
\(806\) 0 0
\(807\) 0.915202 33.8332i 0.0322166 1.19099i
\(808\) 0 0
\(809\) −24.1436 + 13.9393i −0.848845 + 0.490081i −0.860261 0.509854i \(-0.829699\pi\)
0.0114160 + 0.999935i \(0.496366\pi\)
\(810\) 0 0
\(811\) 26.1528i 0.918349i −0.888346 0.459175i \(-0.848145\pi\)
0.888346 0.459175i \(-0.151855\pi\)
\(812\) 0 0
\(813\) 18.8282 + 34.7488i 0.660334 + 1.21869i
\(814\) 0 0
\(815\) −1.63146 2.82578i −0.0571477 0.0989827i
\(816\) 0 0
\(817\) 56.0154 + 32.3405i 1.95973 + 1.13145i
\(818\) 0 0
\(819\) 6.92354 + 35.2028i 0.241928 + 1.23009i
\(820\) 0 0
\(821\) −2.42107 1.39781i −0.0844959 0.0487837i 0.457157 0.889386i \(-0.348868\pi\)
−0.541653 + 0.840602i \(0.682201\pi\)
\(822\) 0 0
\(823\) 12.4881 + 21.6300i 0.435308 + 0.753976i 0.997321 0.0731527i \(-0.0233060\pi\)
−0.562012 + 0.827129i \(0.689973\pi\)
\(824\) 0 0
\(825\) 1.43166 + 2.64222i 0.0498439 + 0.0919904i
\(826\) 0 0
\(827\) 44.4134i 1.54440i 0.635377 + 0.772202i \(0.280845\pi\)
−0.635377 + 0.772202i \(0.719155\pi\)
\(828\) 0 0
\(829\) −27.6610 + 15.9701i −0.960705 + 0.554663i −0.896390 0.443267i \(-0.853820\pi\)
−0.0643148 + 0.997930i \(0.520486\pi\)
\(830\) 0 0
\(831\) −0.306784 + 11.3412i −0.0106422 + 0.393422i
\(832\) 0 0
\(833\) −0.420264 + 15.5447i −0.0145613 + 0.538591i
\(834\) 0 0
\(835\) −8.09047 + 14.0131i −0.279982 + 0.484944i
\(836\) 0 0
\(837\) −14.8115 31.2611i −0.511959 1.08054i
\(838\) 0 0
\(839\) 11.3366 0.391384 0.195692 0.980665i \(-0.437305\pi\)
0.195692 + 0.980665i \(0.437305\pi\)
\(840\) 0 0
\(841\) −54.1027 −1.86561
\(842\) 0 0
\(843\) −11.4797 + 18.6969i −0.395383 + 0.643957i
\(844\) 0 0
\(845\) 3.71567 6.43572i 0.127823 0.221396i
\(846\) 0 0
\(847\) 14.7439 + 15.1479i 0.506608 + 0.520490i
\(848\) 0 0
\(849\) 4.12011 + 0.111450i 0.141402 + 0.00382497i
\(850\) 0 0
\(851\) −7.05309 + 4.07210i −0.241777 + 0.139590i
\(852\) 0 0
\(853\) 41.8866i 1.43417i 0.696986 + 0.717085i \(0.254524\pi\)
−0.696986 + 0.717085i \(0.745476\pi\)
\(854\) 0 0
\(855\) −18.0102 11.7402i −0.615935 0.401507i
\(856\) 0 0
\(857\) 20.1484 + 34.8980i 0.688255 + 1.19209i 0.972402 + 0.233312i \(0.0749563\pi\)
−0.284147 + 0.958781i \(0.591710\pi\)
\(858\) 0 0
\(859\) −4.51782 2.60837i −0.154146 0.0889963i 0.420943 0.907087i \(-0.361699\pi\)
−0.575089 + 0.818091i \(0.695033\pi\)
\(860\) 0 0
\(861\) −10.8015 + 9.95898i −0.368112 + 0.339401i
\(862\) 0 0
\(863\) 7.10243 + 4.10059i 0.241769 + 0.139586i 0.615990 0.787754i \(-0.288756\pi\)
−0.374220 + 0.927340i \(0.622090\pi\)
\(864\) 0 0
\(865\) −8.94446 15.4923i −0.304121 0.526753i
\(866\) 0 0
\(867\) −18.3735 + 9.95544i −0.623996 + 0.338104i
\(868\) 0 0
\(869\) 10.5649i 0.358390i
\(870\) 0 0
\(871\) 55.8039 32.2184i 1.89084 1.09168i
\(872\) 0 0
\(873\) 18.5730 9.42305i 0.628602 0.318922i
\(874\) 0 0
\(875\) 0.719245 2.54611i 0.0243149 0.0860743i
\(876\) 0 0
\(877\) −17.5894 + 30.4657i −0.593951 + 1.02875i 0.399743 + 0.916627i \(0.369099\pi\)
−0.993694 + 0.112126i \(0.964234\pi\)
\(878\) 0 0
\(879\) 26.0159 + 15.9735i 0.877494 + 0.538772i
\(880\) 0 0
\(881\) −13.3867 −0.451011 −0.225505 0.974242i \(-0.572403\pi\)
−0.225505 + 0.974242i \(0.572403\pi\)
\(882\) 0 0
\(883\) −3.79780 −0.127806 −0.0639031 0.997956i \(-0.520355\pi\)
−0.0639031 + 0.997956i \(0.520355\pi\)
\(884\) 0 0
\(885\) −0.721345 0.442898i −0.0242477 0.0148879i
\(886\) 0 0
\(887\) −13.8288 + 23.9521i −0.464325 + 0.804234i −0.999171 0.0407153i \(-0.987036\pi\)
0.534846 + 0.844950i \(0.320370\pi\)
\(888\) 0 0
\(889\) −4.52482 + 16.0178i −0.151758 + 0.537218i
\(890\) 0 0
\(891\) −1.68589 + 15.5240i −0.0564795 + 0.520073i
\(892\) 0 0
\(893\) −6.96729 + 4.02257i −0.233152 + 0.134610i
\(894\) 0 0
\(895\) 16.0628i 0.536921i
\(896\) 0 0
\(897\) −40.7563 + 22.0833i −1.36081 + 0.737340i
\(898\) 0 0
\(899\) −30.3443 52.5578i −1.01204 1.75290i
\(900\) 0 0
\(901\) −14.6731 8.47152i −0.488832 0.282227i
\(902\) 0 0
\(903\) −30.4086 + 28.0369i −1.01194 + 0.933008i
\(904\) 0 0
\(905\) −9.08958 5.24787i −0.302148 0.174445i
\(906\) 0 0
\(907\) −10.9484 18.9633i −0.363537 0.629665i 0.625003 0.780622i \(-0.285098\pi\)
−0.988540 + 0.150957i \(0.951764\pi\)
\(908\) 0 0
\(909\) −4.65296 + 7.13791i −0.154329 + 0.236749i
\(910\) 0 0
\(911\) 13.0835i 0.433477i 0.976230 + 0.216739i \(0.0695419\pi\)
−0.976230 + 0.216739i \(0.930458\pi\)
\(912\) 0 0
\(913\) 23.4485 13.5380i 0.776031 0.448042i
\(914\) 0 0
\(915\) 15.1577 + 0.410022i 0.501099 + 0.0135549i
\(916\) 0 0
\(917\) 24.2343 + 24.8984i 0.800288 + 0.822217i
\(918\) 0 0
\(919\) −3.62558 + 6.27969i −0.119597 + 0.207148i −0.919608 0.392837i \(-0.871494\pi\)
0.800011 + 0.599985i \(0.204827\pi\)
\(920\) 0 0
\(921\) 16.1560 26.3131i 0.532357 0.867046i
\(922\) 0 0
\(923\) 35.8580 1.18028
\(924\) 0 0
\(925\) −1.37551 −0.0452266
\(926\) 0 0
\(927\) 2.64927 48.9334i 0.0870135 1.60718i
\(928\) 0 0
\(929\) −16.5819 + 28.7207i −0.544035 + 0.942297i 0.454631 + 0.890680i \(0.349771\pi\)
−0.998667 + 0.0516174i \(0.983562\pi\)
\(930\) 0 0
\(931\) −23.8987 44.1052i −0.783248 1.44549i
\(932\) 0 0
\(933\) −0.309369 + 11.4368i −0.0101283 + 0.374423i
\(934\) 0 0
\(935\) 3.33795 1.92717i 0.109163 0.0630251i
\(936\) 0 0
\(937\) 31.3774i 1.02506i −0.858671 0.512528i \(-0.828709\pi\)
0.858671 0.512528i \(-0.171291\pi\)
\(938\) 0 0
\(939\) 14.0121 + 25.8603i 0.457268 + 0.843920i
\(940\) 0 0
\(941\) −10.0272 17.3676i −0.326876 0.566167i 0.655014 0.755617i \(-0.272663\pi\)
−0.981890 + 0.189450i \(0.939329\pi\)
\(942\) 0 0
\(943\) −16.4393 9.49124i −0.535337 0.309077i
\(944\) 0 0
\(945\) 10.5963 8.75891i 0.344697 0.284927i
\(946\) 0 0
\(947\) −10.3813 5.99364i −0.337346 0.194767i 0.321752 0.946824i \(-0.395728\pi\)
−0.659098 + 0.752057i \(0.729062\pi\)
\(948\) 0 0
\(949\) −3.20083 5.54401i −0.103903 0.179966i
\(950\) 0 0
\(951\) 2.70036 + 4.98371i 0.0875652 + 0.161608i
\(952\) 0 0
\(953\) 18.3262i 0.593643i 0.954933 + 0.296821i \(0.0959266\pi\)
−0.954933 + 0.296821i \(0.904073\pi\)
\(954\) 0 0
\(955\) 7.10655 4.10297i 0.229963 0.132769i
\(956\) 0 0
\(957\) −0.740780 + 27.3852i −0.0239460 + 0.885238i
\(958\) 0 0
\(959\) −3.74997 14.7919i −0.121093 0.477654i
\(960\) 0 0
\(961\) 6.65993 11.5353i 0.214836 0.372108i
\(962\) 0 0
\(963\) 1.19882 22.1428i 0.0386314 0.713541i
\(964\) 0 0
\(965\) −19.2269 −0.618934
\(966\) 0 0
\(967\) 30.4904 0.980506 0.490253 0.871580i \(-0.336904\pi\)
0.490253 + 0.871580i \(0.336904\pi\)
\(968\) 0 0
\(969\) −14.4276 + 23.4980i −0.463480 + 0.754866i
\(970\) 0 0
\(971\) 14.5995 25.2872i 0.468522 0.811503i −0.530831 0.847478i \(-0.678120\pi\)
0.999353 + 0.0359742i \(0.0114534\pi\)
\(972\) 0 0
\(973\) 4.22697 + 1.19407i 0.135511 + 0.0382801i
\(974\) 0 0
\(975\) −7.82619 0.211701i −0.250639 0.00677987i
\(976\) 0 0
\(977\) 24.2834 14.0200i 0.776894 0.448540i −0.0584344 0.998291i \(-0.518611\pi\)
0.835328 + 0.549751i \(0.185278\pi\)
\(978\) 0 0
\(979\) 7.90172i 0.252540i
\(980\) 0 0
\(981\) −8.65784 + 13.2816i −0.276424 + 0.424049i
\(982\) 0 0
\(983\) 24.2928 + 42.0763i 0.774819 + 1.34203i 0.934896 + 0.354921i \(0.115492\pi\)
−0.160078 + 0.987104i \(0.551174\pi\)
\(984\) 0 0
\(985\) 19.4891 + 11.2520i 0.620974 + 0.358520i
\(986\) 0 0
\(987\) −1.12893 5.01919i −0.0359342 0.159762i
\(988\) 0 0
\(989\) −46.2805 26.7201i −1.47163 0.849648i
\(990\) 0 0
\(991\) 0.953533 + 1.65157i 0.0302900 + 0.0524638i 0.880773 0.473539i \(-0.157024\pi\)
−0.850483 + 0.526002i \(0.823690\pi\)
\(992\) 0 0
\(993\) −10.8778 + 5.89402i −0.345198 + 0.187041i
\(994\) 0 0
\(995\) 10.7047i 0.339361i
\(996\) 0 0
\(997\) 36.5101 21.0791i 1.15629 0.667582i 0.205875 0.978578i \(-0.433996\pi\)
0.950411 + 0.310996i \(0.100663\pi\)
\(998\) 0 0
\(999\) −5.87983 4.06357i −0.186030 0.128566i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.cp.a.761.3 yes 32
3.2 odd 2 840.2.cp.b.761.9 yes 32
7.3 odd 6 840.2.cp.b.521.9 yes 32
21.17 even 6 inner 840.2.cp.a.521.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.cp.a.521.3 32 21.17 even 6 inner
840.2.cp.a.761.3 yes 32 1.1 even 1 trivial
840.2.cp.b.521.9 yes 32 7.3 odd 6
840.2.cp.b.761.9 yes 32 3.2 odd 2