Properties

Label 840.2.cp.b.521.13
Level $840$
Weight $2$
Character 840.521
Analytic conductor $6.707$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(521,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.cp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.13
Character \(\chi\) \(=\) 840.521
Dual form 840.2.cp.b.761.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.51560 - 0.838429i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-1.32384 + 2.29073i) q^{7} +(1.59407 - 2.54144i) q^{9} +(3.96585 + 2.28969i) q^{11} -3.34155i q^{13} +(1.48390 + 0.893332i) q^{15} +(-1.18957 + 2.06040i) q^{17} +(1.42211 - 0.821057i) q^{19} +(-0.0858002 + 4.58177i) q^{21} +(5.45465 - 3.14924i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(0.285156 - 5.18832i) q^{27} +10.4727i q^{29} +(0.580062 + 0.334899i) q^{31} +(7.93038 + 0.145158i) q^{33} +(-2.64575 - 0.00111720i) q^{35} +(2.44443 + 4.23388i) q^{37} +(-2.80165 - 5.06444i) q^{39} +7.20642 q^{41} +0.255178 q^{43} +(2.99799 + 0.109787i) q^{45} +(0.506642 + 0.877529i) q^{47} +(-3.49488 - 6.06513i) q^{49} +(-0.0754144 + 4.12010i) q^{51} +(-6.27078 - 3.62044i) q^{53} +4.57937i q^{55} +(1.46695 - 2.43673i) q^{57} +(4.29866 - 7.44549i) q^{59} +(-11.7955 + 6.81012i) q^{61} +(3.71145 + 7.01606i) q^{63} +(2.89387 - 1.67077i) q^{65} +(5.64814 - 9.78286i) q^{67} +(5.62664 - 9.34632i) q^{69} -3.10631i q^{71} +(-11.9359 - 6.89118i) q^{73} +(-0.0316982 + 1.73176i) q^{75} +(-10.4952 + 6.05351i) q^{77} +(-6.43012 - 11.1373i) q^{79} +(-3.91786 - 8.10249i) q^{81} -5.90484 q^{83} -2.37914 q^{85} +(8.78061 + 15.8724i) q^{87} +(3.29074 + 5.69973i) q^{89} +(7.65458 + 4.42369i) q^{91} +(1.15993 + 0.0212314i) q^{93} +(1.42211 + 0.821057i) q^{95} -4.71324i q^{97} +(12.1410 - 6.42906i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{5} - 2 q^{7} + 8 q^{9} + 6 q^{19} - 14 q^{21} + 24 q^{23} - 16 q^{25} + 24 q^{27} + 42 q^{31} + 18 q^{33} + 2 q^{35} + 6 q^{37} + 12 q^{39} + 44 q^{41} - 20 q^{43} + 10 q^{45} + 4 q^{47} + 16 q^{49}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.51560 0.838429i 0.875031 0.484067i
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −1.32384 + 2.29073i −0.500366 + 0.865814i
\(8\) 0 0
\(9\) 1.59407 2.54144i 0.531358 0.847147i
\(10\) 0 0
\(11\) 3.96585 + 2.28969i 1.19575 + 0.690366i 0.959605 0.281352i \(-0.0907827\pi\)
0.236145 + 0.971718i \(0.424116\pi\)
\(12\) 0 0
\(13\) 3.34155i 0.926779i −0.886155 0.463389i \(-0.846633\pi\)
0.886155 0.463389i \(-0.153367\pi\)
\(14\) 0 0
\(15\) 1.48390 + 0.893332i 0.383141 + 0.230657i
\(16\) 0 0
\(17\) −1.18957 + 2.06040i −0.288513 + 0.499719i −0.973455 0.228878i \(-0.926494\pi\)
0.684942 + 0.728598i \(0.259828\pi\)
\(18\) 0 0
\(19\) 1.42211 0.821057i 0.326255 0.188363i −0.327922 0.944705i \(-0.606348\pi\)
0.654177 + 0.756341i \(0.273015\pi\)
\(20\) 0 0
\(21\) −0.0858002 + 4.58177i −0.0187231 + 0.999825i
\(22\) 0 0
\(23\) 5.45465 3.14924i 1.13737 0.656663i 0.191594 0.981474i \(-0.438634\pi\)
0.945779 + 0.324811i \(0.105301\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0.285156 5.18832i 0.0548783 0.998493i
\(28\) 0 0
\(29\) 10.4727i 1.94473i 0.233465 + 0.972365i \(0.424994\pi\)
−0.233465 + 0.972365i \(0.575006\pi\)
\(30\) 0 0
\(31\) 0.580062 + 0.334899i 0.104182 + 0.0601496i 0.551186 0.834383i \(-0.314176\pi\)
−0.447004 + 0.894532i \(0.647509\pi\)
\(32\) 0 0
\(33\) 7.93038 + 0.145158i 1.38050 + 0.0252687i
\(34\) 0 0
\(35\) −2.64575 0.00111720i −0.447214 0.000188841i
\(36\) 0 0
\(37\) 2.44443 + 4.23388i 0.401862 + 0.696045i 0.993951 0.109827i \(-0.0350298\pi\)
−0.592089 + 0.805873i \(0.701696\pi\)
\(38\) 0 0
\(39\) −2.80165 5.06444i −0.448623 0.810960i
\(40\) 0 0
\(41\) 7.20642 1.12545 0.562727 0.826643i \(-0.309752\pi\)
0.562727 + 0.826643i \(0.309752\pi\)
\(42\) 0 0
\(43\) 0.255178 0.0389143 0.0194571 0.999811i \(-0.493806\pi\)
0.0194571 + 0.999811i \(0.493806\pi\)
\(44\) 0 0
\(45\) 2.99799 + 0.109787i 0.446914 + 0.0163661i
\(46\) 0 0
\(47\) 0.506642 + 0.877529i 0.0739013 + 0.128001i 0.900608 0.434632i \(-0.143122\pi\)
−0.826707 + 0.562633i \(0.809788\pi\)
\(48\) 0 0
\(49\) −3.49488 6.06513i −0.499268 0.866447i
\(50\) 0 0
\(51\) −0.0754144 + 4.12010i −0.0105601 + 0.576930i
\(52\) 0 0
\(53\) −6.27078 3.62044i −0.861358 0.497305i 0.00310897 0.999995i \(-0.499010\pi\)
−0.864467 + 0.502690i \(0.832344\pi\)
\(54\) 0 0
\(55\) 4.57937i 0.617482i
\(56\) 0 0
\(57\) 1.46695 2.43673i 0.194303 0.322753i
\(58\) 0 0
\(59\) 4.29866 7.44549i 0.559637 0.969320i −0.437889 0.899029i \(-0.644274\pi\)
0.997526 0.0702915i \(-0.0223929\pi\)
\(60\) 0 0
\(61\) −11.7955 + 6.81012i −1.51026 + 0.871947i −0.510328 + 0.859980i \(0.670476\pi\)
−0.999928 + 0.0119671i \(0.996191\pi\)
\(62\) 0 0
\(63\) 3.71145 + 7.01606i 0.467599 + 0.883941i
\(64\) 0 0
\(65\) 2.89387 1.67077i 0.358940 0.207234i
\(66\) 0 0
\(67\) 5.64814 9.78286i 0.690030 1.19517i −0.281798 0.959474i \(-0.590931\pi\)
0.971828 0.235693i \(-0.0757358\pi\)
\(68\) 0 0
\(69\) 5.62664 9.34632i 0.677368 1.12517i
\(70\) 0 0
\(71\) 3.10631i 0.368652i −0.982865 0.184326i \(-0.940990\pi\)
0.982865 0.184326i \(-0.0590101\pi\)
\(72\) 0 0
\(73\) −11.9359 6.89118i −1.39699 0.806551i −0.402912 0.915239i \(-0.632002\pi\)
−0.994076 + 0.108688i \(0.965335\pi\)
\(74\) 0 0
\(75\) −0.0316982 + 1.73176i −0.00366019 + 0.199967i
\(76\) 0 0
\(77\) −10.4952 + 6.05351i −1.19604 + 0.689861i
\(78\) 0 0
\(79\) −6.43012 11.1373i −0.723445 1.25304i −0.959611 0.281331i \(-0.909224\pi\)
0.236165 0.971713i \(-0.424109\pi\)
\(80\) 0 0
\(81\) −3.91786 8.10249i −0.435317 0.900277i
\(82\) 0 0
\(83\) −5.90484 −0.648140 −0.324070 0.946033i \(-0.605051\pi\)
−0.324070 + 0.946033i \(0.605051\pi\)
\(84\) 0 0
\(85\) −2.37914 −0.258054
\(86\) 0 0
\(87\) 8.78061 + 15.8724i 0.941380 + 1.70170i
\(88\) 0 0
\(89\) 3.29074 + 5.69973i 0.348818 + 0.604170i 0.986040 0.166510i \(-0.0532499\pi\)
−0.637222 + 0.770680i \(0.719917\pi\)
\(90\) 0 0
\(91\) 7.65458 + 4.42369i 0.802418 + 0.463728i
\(92\) 0 0
\(93\) 1.15993 + 0.0212314i 0.120279 + 0.00220159i
\(94\) 0 0
\(95\) 1.42211 + 0.821057i 0.145906 + 0.0842386i
\(96\) 0 0
\(97\) 4.71324i 0.478557i −0.970951 0.239279i \(-0.923089\pi\)
0.970951 0.239279i \(-0.0769109\pi\)
\(98\) 0 0
\(99\) 12.1410 6.42906i 1.22021 0.646144i
\(100\) 0 0
\(101\) 4.61658 7.99614i 0.459366 0.795646i −0.539561 0.841946i \(-0.681410\pi\)
0.998928 + 0.0463004i \(0.0147432\pi\)
\(102\) 0 0
\(103\) −10.2264 + 5.90419i −1.00763 + 0.581758i −0.910498 0.413514i \(-0.864301\pi\)
−0.0971357 + 0.995271i \(0.530968\pi\)
\(104\) 0 0
\(105\) −4.01083 + 2.21658i −0.391417 + 0.216316i
\(106\) 0 0
\(107\) 1.22015 0.704454i 0.117956 0.0681022i −0.439861 0.898066i \(-0.644972\pi\)
0.557817 + 0.829964i \(0.311639\pi\)
\(108\) 0 0
\(109\) −7.09515 + 12.2892i −0.679592 + 1.17709i 0.295512 + 0.955339i \(0.404510\pi\)
−0.975104 + 0.221749i \(0.928823\pi\)
\(110\) 0 0
\(111\) 7.25458 + 4.36738i 0.688574 + 0.414533i
\(112\) 0 0
\(113\) 11.4105i 1.07341i 0.843770 + 0.536705i \(0.180331\pi\)
−0.843770 + 0.536705i \(0.819669\pi\)
\(114\) 0 0
\(115\) 5.45465 + 3.14924i 0.508649 + 0.293668i
\(116\) 0 0
\(117\) −8.49235 5.32668i −0.785118 0.492451i
\(118\) 0 0
\(119\) −3.14500 5.45262i −0.288302 0.499841i
\(120\) 0 0
\(121\) 4.98532 + 8.63483i 0.453211 + 0.784985i
\(122\) 0 0
\(123\) 10.9220 6.04207i 0.984807 0.544795i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 4.47781 0.397342 0.198671 0.980066i \(-0.436338\pi\)
0.198671 + 0.980066i \(0.436338\pi\)
\(128\) 0 0
\(129\) 0.386747 0.213949i 0.0340512 0.0188371i
\(130\) 0 0
\(131\) 2.84104 + 4.92083i 0.248223 + 0.429934i 0.963033 0.269384i \(-0.0868202\pi\)
−0.714810 + 0.699319i \(0.753487\pi\)
\(132\) 0 0
\(133\) −0.00183456 + 4.34462i −0.000159077 + 0.376727i
\(134\) 0 0
\(135\) 4.63580 2.34721i 0.398986 0.202016i
\(136\) 0 0
\(137\) −11.4176 6.59193i −0.975467 0.563186i −0.0745687 0.997216i \(-0.523758\pi\)
−0.900899 + 0.434030i \(0.857091\pi\)
\(138\) 0 0
\(139\) 4.22728i 0.358553i −0.983799 0.179277i \(-0.942624\pi\)
0.983799 0.179277i \(-0.0573757\pi\)
\(140\) 0 0
\(141\) 1.50361 + 0.905198i 0.126627 + 0.0762314i
\(142\) 0 0
\(143\) 7.65110 13.2521i 0.639817 1.10820i
\(144\) 0 0
\(145\) −9.06962 + 5.23635i −0.753191 + 0.434855i
\(146\) 0 0
\(147\) −10.3820 6.26209i −0.856294 0.516489i
\(148\) 0 0
\(149\) −3.91208 + 2.25864i −0.320490 + 0.185035i −0.651611 0.758553i \(-0.725907\pi\)
0.331121 + 0.943588i \(0.392573\pi\)
\(150\) 0 0
\(151\) −12.0815 + 20.9257i −0.983176 + 1.70291i −0.333397 + 0.942786i \(0.608195\pi\)
−0.649778 + 0.760124i \(0.725138\pi\)
\(152\) 0 0
\(153\) 3.34011 + 6.30765i 0.270032 + 0.509943i
\(154\) 0 0
\(155\) 0.669798i 0.0537995i
\(156\) 0 0
\(157\) −19.9609 11.5244i −1.59306 0.919751i −0.992779 0.119958i \(-0.961724\pi\)
−0.600276 0.799793i \(-0.704943\pi\)
\(158\) 0 0
\(159\) −12.5395 0.229522i −0.994444 0.0182023i
\(160\) 0 0
\(161\) −0.00703665 + 16.6642i −0.000554565 + 1.31333i
\(162\) 0 0
\(163\) 4.48563 + 7.76934i 0.351342 + 0.608541i 0.986485 0.163853i \(-0.0523923\pi\)
−0.635143 + 0.772394i \(0.719059\pi\)
\(164\) 0 0
\(165\) 3.83948 + 6.94049i 0.298903 + 0.540316i
\(166\) 0 0
\(167\) 12.0287 0.930807 0.465404 0.885099i \(-0.345909\pi\)
0.465404 + 0.885099i \(0.345909\pi\)
\(168\) 0 0
\(169\) 1.83405 0.141081
\(170\) 0 0
\(171\) 0.180283 4.92304i 0.0137866 0.376474i
\(172\) 0 0
\(173\) −9.48818 16.4340i −0.721373 1.24946i −0.960449 0.278454i \(-0.910178\pi\)
0.239076 0.971001i \(-0.423155\pi\)
\(174\) 0 0
\(175\) −1.32191 2.29185i −0.0999269 0.173247i
\(176\) 0 0
\(177\) 0.272519 14.8885i 0.0204838 1.11909i
\(178\) 0 0
\(179\) −21.1228 12.1952i −1.57879 0.911515i −0.995028 0.0995908i \(-0.968247\pi\)
−0.583762 0.811925i \(-0.698420\pi\)
\(180\) 0 0
\(181\) 14.9046i 1.10785i 0.832567 + 0.553925i \(0.186871\pi\)
−0.832567 + 0.553925i \(0.813129\pi\)
\(182\) 0 0
\(183\) −12.1674 + 20.2111i −0.899440 + 1.49405i
\(184\) 0 0
\(185\) −2.44443 + 4.23388i −0.179718 + 0.311281i
\(186\) 0 0
\(187\) −9.43532 + 5.44748i −0.689979 + 0.398359i
\(188\) 0 0
\(189\) 11.5075 + 7.52174i 0.837050 + 0.547126i
\(190\) 0 0
\(191\) 9.86445 5.69524i 0.713766 0.412093i −0.0986876 0.995118i \(-0.531464\pi\)
0.812454 + 0.583025i \(0.198131\pi\)
\(192\) 0 0
\(193\) −1.40547 + 2.43435i −0.101168 + 0.175228i −0.912166 0.409821i \(-0.865591\pi\)
0.810998 + 0.585049i \(0.198925\pi\)
\(194\) 0 0
\(195\) 2.98511 4.95852i 0.213768 0.355087i
\(196\) 0 0
\(197\) 12.0926i 0.861563i −0.902456 0.430782i \(-0.858238\pi\)
0.902456 0.430782i \(-0.141762\pi\)
\(198\) 0 0
\(199\) 1.98467 + 1.14585i 0.140690 + 0.0812272i 0.568693 0.822550i \(-0.307449\pi\)
−0.428003 + 0.903777i \(0.640783\pi\)
\(200\) 0 0
\(201\) 0.358071 19.5624i 0.0252564 1.37983i
\(202\) 0 0
\(203\) −23.9901 13.8642i −1.68378 0.973076i
\(204\) 0 0
\(205\) 3.60321 + 6.24095i 0.251659 + 0.435887i
\(206\) 0 0
\(207\) 0.691494 18.8828i 0.0480622 1.31245i
\(208\) 0 0
\(209\) 7.51985 0.520159
\(210\) 0 0
\(211\) 1.42829 0.0983274 0.0491637 0.998791i \(-0.484344\pi\)
0.0491637 + 0.998791i \(0.484344\pi\)
\(212\) 0 0
\(213\) −2.60442 4.70792i −0.178452 0.322581i
\(214\) 0 0
\(215\) 0.127589 + 0.220991i 0.00870149 + 0.0150714i
\(216\) 0 0
\(217\) −1.53507 + 0.885412i −0.104208 + 0.0601057i
\(218\) 0 0
\(219\) −23.8677 0.436875i −1.61283 0.0295213i
\(220\) 0 0
\(221\) 6.88491 + 3.97501i 0.463129 + 0.267388i
\(222\) 0 0
\(223\) 1.01844i 0.0682000i 0.999418 + 0.0341000i \(0.0108565\pi\)
−0.999418 + 0.0341000i \(0.989144\pi\)
\(224\) 0 0
\(225\) 1.40392 + 2.65123i 0.0935944 + 0.176749i
\(226\) 0 0
\(227\) −0.582916 + 1.00964i −0.0386895 + 0.0670122i −0.884722 0.466120i \(-0.845652\pi\)
0.846032 + 0.533132i \(0.178985\pi\)
\(228\) 0 0
\(229\) 21.6754 12.5143i 1.43235 0.826969i 0.435052 0.900405i \(-0.356730\pi\)
0.997300 + 0.0734361i \(0.0233965\pi\)
\(230\) 0 0
\(231\) −10.8311 + 17.9742i −0.712633 + 1.18261i
\(232\) 0 0
\(233\) −6.40367 + 3.69716i −0.419518 + 0.242209i −0.694871 0.719134i \(-0.744539\pi\)
0.275353 + 0.961343i \(0.411205\pi\)
\(234\) 0 0
\(235\) −0.506642 + 0.877529i −0.0330497 + 0.0572437i
\(236\) 0 0
\(237\) −19.0833 11.4885i −1.23959 0.746256i
\(238\) 0 0
\(239\) 7.48792i 0.484353i 0.970232 + 0.242176i \(0.0778613\pi\)
−0.970232 + 0.242176i \(0.922139\pi\)
\(240\) 0 0
\(241\) −14.4880 8.36465i −0.933254 0.538814i −0.0454145 0.998968i \(-0.514461\pi\)
−0.887839 + 0.460154i \(0.847794\pi\)
\(242\) 0 0
\(243\) −12.7313 8.99528i −0.816711 0.577047i
\(244\) 0 0
\(245\) 3.50512 6.05922i 0.223934 0.387109i
\(246\) 0 0
\(247\) −2.74360 4.75206i −0.174571 0.302366i
\(248\) 0 0
\(249\) −8.94936 + 4.95079i −0.567143 + 0.313743i
\(250\) 0 0
\(251\) 15.5876 0.983879 0.491939 0.870629i \(-0.336288\pi\)
0.491939 + 0.870629i \(0.336288\pi\)
\(252\) 0 0
\(253\) 28.8431 1.81335
\(254\) 0 0
\(255\) −3.60582 + 1.99474i −0.225805 + 0.124915i
\(256\) 0 0
\(257\) −8.25966 14.3061i −0.515223 0.892393i −0.999844 0.0176685i \(-0.994376\pi\)
0.484621 0.874724i \(-0.338958\pi\)
\(258\) 0 0
\(259\) −12.9347 0.00546182i −0.803724 0.000339381i
\(260\) 0 0
\(261\) 26.6157 + 16.6942i 1.64747 + 1.03335i
\(262\) 0 0
\(263\) 8.72306 + 5.03626i 0.537887 + 0.310549i 0.744222 0.667932i \(-0.232820\pi\)
−0.206335 + 0.978481i \(0.566154\pi\)
\(264\) 0 0
\(265\) 7.24087i 0.444803i
\(266\) 0 0
\(267\) 9.76626 + 5.87945i 0.597685 + 0.359816i
\(268\) 0 0
\(269\) −7.54206 + 13.0632i −0.459847 + 0.796479i −0.998952 0.0457596i \(-0.985429\pi\)
0.539105 + 0.842238i \(0.318763\pi\)
\(270\) 0 0
\(271\) −9.55078 + 5.51414i −0.580168 + 0.334960i −0.761200 0.648517i \(-0.775390\pi\)
0.181032 + 0.983477i \(0.442056\pi\)
\(272\) 0 0
\(273\) 15.3102 + 0.286706i 0.926616 + 0.0173522i
\(274\) 0 0
\(275\) −3.96585 + 2.28969i −0.239150 + 0.138073i
\(276\) 0 0
\(277\) 5.75687 9.97119i 0.345897 0.599111i −0.639619 0.768692i \(-0.720908\pi\)
0.985516 + 0.169581i \(0.0542414\pi\)
\(278\) 0 0
\(279\) 1.77579 0.940341i 0.106314 0.0562967i
\(280\) 0 0
\(281\) 21.8401i 1.30287i 0.758704 + 0.651436i \(0.225833\pi\)
−0.758704 + 0.651436i \(0.774167\pi\)
\(282\) 0 0
\(283\) −8.93010 5.15579i −0.530839 0.306480i 0.210519 0.977590i \(-0.432485\pi\)
−0.741358 + 0.671110i \(0.765818\pi\)
\(284\) 0 0
\(285\) 2.84375 + 0.0520520i 0.168449 + 0.00308329i
\(286\) 0 0
\(287\) −9.54017 + 16.5080i −0.563139 + 0.974434i
\(288\) 0 0
\(289\) 5.66985 + 9.82046i 0.333520 + 0.577674i
\(290\) 0 0
\(291\) −3.95172 7.14338i −0.231654 0.418752i
\(292\) 0 0
\(293\) −18.2766 −1.06773 −0.533865 0.845570i \(-0.679261\pi\)
−0.533865 + 0.845570i \(0.679261\pi\)
\(294\) 0 0
\(295\) 8.59731 0.500555
\(296\) 0 0
\(297\) 13.0105 19.9232i 0.754947 1.15606i
\(298\) 0 0
\(299\) −10.5234 18.2270i −0.608581 1.05409i
\(300\) 0 0
\(301\) −0.337815 + 0.584543i −0.0194714 + 0.0336925i
\(302\) 0 0
\(303\) 0.292674 15.9896i 0.0168137 0.918579i
\(304\) 0 0
\(305\) −11.7955 6.81012i −0.675407 0.389947i
\(306\) 0 0
\(307\) 28.7426i 1.64042i −0.572059 0.820212i \(-0.693855\pi\)
0.572059 0.820212i \(-0.306145\pi\)
\(308\) 0 0
\(309\) −10.5488 + 17.5225i −0.600101 + 0.996818i
\(310\) 0 0
\(311\) −4.33624 + 7.51059i −0.245886 + 0.425887i −0.962380 0.271706i \(-0.912412\pi\)
0.716494 + 0.697593i \(0.245745\pi\)
\(312\) 0 0
\(313\) 13.8193 7.97859i 0.781115 0.450977i −0.0557104 0.998447i \(-0.517742\pi\)
0.836825 + 0.547470i \(0.184409\pi\)
\(314\) 0 0
\(315\) −4.22036 + 6.72224i −0.237790 + 0.378755i
\(316\) 0 0
\(317\) −2.07065 + 1.19549i −0.116300 + 0.0671456i −0.557021 0.830498i \(-0.688056\pi\)
0.440722 + 0.897644i \(0.354723\pi\)
\(318\) 0 0
\(319\) −23.9792 + 41.5332i −1.34258 + 2.32541i
\(320\) 0 0
\(321\) 1.25862 2.09068i 0.0702495 0.116690i
\(322\) 0 0
\(323\) 3.90682i 0.217381i
\(324\) 0 0
\(325\) 2.89387 + 1.67077i 0.160523 + 0.0926779i
\(326\) 0 0
\(327\) −0.449807 + 24.5742i −0.0248744 + 1.35896i
\(328\) 0 0
\(329\) −2.68090 0.00113204i −0.147803 6.24112e-5i
\(330\) 0 0
\(331\) −12.8685 22.2888i −0.707315 1.22511i −0.965850 0.259104i \(-0.916573\pi\)
0.258535 0.966002i \(-0.416760\pi\)
\(332\) 0 0
\(333\) 14.6568 + 0.536735i 0.803186 + 0.0294129i
\(334\) 0 0
\(335\) 11.2963 0.617181
\(336\) 0 0
\(337\) 5.27090 0.287124 0.143562 0.989641i \(-0.454144\pi\)
0.143562 + 0.989641i \(0.454144\pi\)
\(338\) 0 0
\(339\) 9.56690 + 17.2937i 0.519603 + 0.939267i
\(340\) 0 0
\(341\) 1.53363 + 2.65632i 0.0830506 + 0.143848i
\(342\) 0 0
\(343\) 18.5202 + 0.0234611i 0.999999 + 0.00126678i
\(344\) 0 0
\(345\) 10.9075 + 0.199651i 0.587239 + 0.0107488i
\(346\) 0 0
\(347\) 21.0562 + 12.1568i 1.13035 + 0.652611i 0.944024 0.329876i \(-0.107007\pi\)
0.186331 + 0.982487i \(0.440340\pi\)
\(348\) 0 0
\(349\) 33.1786i 1.77601i −0.459832 0.888006i \(-0.652090\pi\)
0.459832 0.888006i \(-0.347910\pi\)
\(350\) 0 0
\(351\) −17.3370 0.952863i −0.925382 0.0508601i
\(352\) 0 0
\(353\) −1.30341 + 2.25758i −0.0693736 + 0.120159i −0.898626 0.438716i \(-0.855433\pi\)
0.829252 + 0.558875i \(0.188767\pi\)
\(354\) 0 0
\(355\) 2.69015 1.55316i 0.142778 0.0824330i
\(356\) 0 0
\(357\) −9.33820 5.62712i −0.494230 0.297819i
\(358\) 0 0
\(359\) −1.52866 + 0.882573i −0.0806796 + 0.0465804i −0.539797 0.841795i \(-0.681499\pi\)
0.459117 + 0.888376i \(0.348166\pi\)
\(360\) 0 0
\(361\) −8.15173 + 14.1192i −0.429039 + 0.743117i
\(362\) 0 0
\(363\) 14.7954 + 8.90709i 0.776559 + 0.467501i
\(364\) 0 0
\(365\) 13.7824i 0.721401i
\(366\) 0 0
\(367\) −12.4341 7.17881i −0.649053 0.374731i 0.139040 0.990287i \(-0.455598\pi\)
−0.788093 + 0.615556i \(0.788932\pi\)
\(368\) 0 0
\(369\) 11.4876 18.3147i 0.598019 0.953426i
\(370\) 0 0
\(371\) 16.5950 9.57177i 0.861568 0.496941i
\(372\) 0 0
\(373\) −2.14148 3.70915i −0.110882 0.192053i 0.805244 0.592943i \(-0.202034\pi\)
−0.916126 + 0.400890i \(0.868701\pi\)
\(374\) 0 0
\(375\) −1.51560 + 0.838429i −0.0782651 + 0.0432963i
\(376\) 0 0
\(377\) 34.9950 1.80233
\(378\) 0 0
\(379\) 13.1755 0.676780 0.338390 0.941006i \(-0.390118\pi\)
0.338390 + 0.941006i \(0.390118\pi\)
\(380\) 0 0
\(381\) 6.78656 3.75433i 0.347686 0.192340i
\(382\) 0 0
\(383\) −11.2109 19.4179i −0.572852 0.992209i −0.996271 0.0862753i \(-0.972504\pi\)
0.423419 0.905934i \(-0.360830\pi\)
\(384\) 0 0
\(385\) −10.4901 6.06237i −0.534625 0.308967i
\(386\) 0 0
\(387\) 0.406772 0.648520i 0.0206774 0.0329661i
\(388\) 0 0
\(389\) 23.4684 + 13.5495i 1.18989 + 0.686986i 0.958283 0.285823i \(-0.0922668\pi\)
0.231612 + 0.972808i \(0.425600\pi\)
\(390\) 0 0
\(391\) 14.9850i 0.757823i
\(392\) 0 0
\(393\) 8.43164 + 5.07598i 0.425320 + 0.256049i
\(394\) 0 0
\(395\) 6.43012 11.1373i 0.323535 0.560378i
\(396\) 0 0
\(397\) 17.4836 10.0942i 0.877478 0.506612i 0.00765220 0.999971i \(-0.497564\pi\)
0.869826 + 0.493358i \(0.164231\pi\)
\(398\) 0 0
\(399\) 3.63988 + 6.58624i 0.182222 + 0.329724i
\(400\) 0 0
\(401\) −11.9366 + 6.89159i −0.596085 + 0.344150i −0.767500 0.641049i \(-0.778499\pi\)
0.171415 + 0.985199i \(0.445166\pi\)
\(402\) 0 0
\(403\) 1.11908 1.93831i 0.0557454 0.0965539i
\(404\) 0 0
\(405\) 5.05804 7.44421i 0.251336 0.369906i
\(406\) 0 0
\(407\) 22.3879i 1.10973i
\(408\) 0 0
\(409\) 12.2565 + 7.07628i 0.606044 + 0.349899i 0.771415 0.636332i \(-0.219549\pi\)
−0.165372 + 0.986231i \(0.552882\pi\)
\(410\) 0 0
\(411\) −22.8313 0.417904i −1.12618 0.0206137i
\(412\) 0 0
\(413\) 11.3649 + 19.7037i 0.559228 + 0.969557i
\(414\) 0 0
\(415\) −2.95242 5.11374i −0.144929 0.251024i
\(416\) 0 0
\(417\) −3.54427 6.40685i −0.173564 0.313745i
\(418\) 0 0
\(419\) 36.2097 1.76896 0.884479 0.466579i \(-0.154514\pi\)
0.884479 + 0.466579i \(0.154514\pi\)
\(420\) 0 0
\(421\) 21.6548 1.05539 0.527694 0.849435i \(-0.323057\pi\)
0.527694 + 0.849435i \(0.323057\pi\)
\(422\) 0 0
\(423\) 3.03781 + 0.111246i 0.147704 + 0.00540895i
\(424\) 0 0
\(425\) −1.18957 2.06040i −0.0577026 0.0999439i
\(426\) 0 0
\(427\) 0.0152165 36.0358i 0.000736378 1.74389i
\(428\) 0 0
\(429\) 0.485052 26.4997i 0.0234185 1.27942i
\(430\) 0 0
\(431\) 23.1646 + 13.3741i 1.11580 + 0.644206i 0.940325 0.340278i \(-0.110521\pi\)
0.175473 + 0.984484i \(0.443855\pi\)
\(432\) 0 0
\(433\) 8.57658i 0.412164i 0.978535 + 0.206082i \(0.0660714\pi\)
−0.978535 + 0.206082i \(0.933929\pi\)
\(434\) 0 0
\(435\) −9.35559 + 15.5404i −0.448566 + 0.745106i
\(436\) 0 0
\(437\) 5.17141 8.95715i 0.247382 0.428479i
\(438\) 0 0
\(439\) 19.0918 11.0226i 0.911201 0.526082i 0.0303838 0.999538i \(-0.490327\pi\)
0.880817 + 0.473456i \(0.156994\pi\)
\(440\) 0 0
\(441\) −20.9853 0.786234i −0.999299 0.0374397i
\(442\) 0 0
\(443\) −28.3326 + 16.3578i −1.34612 + 0.777183i −0.987698 0.156377i \(-0.950019\pi\)
−0.358423 + 0.933559i \(0.616685\pi\)
\(444\) 0 0
\(445\) −3.29074 + 5.69973i −0.155996 + 0.270193i
\(446\) 0 0
\(447\) −4.03543 + 6.70319i −0.190869 + 0.317050i
\(448\) 0 0
\(449\) 12.2185i 0.576629i 0.957536 + 0.288314i \(0.0930948\pi\)
−0.957536 + 0.288314i \(0.906905\pi\)
\(450\) 0 0
\(451\) 28.5796 + 16.5004i 1.34576 + 0.776976i
\(452\) 0 0
\(453\) −0.765921 + 41.8444i −0.0359861 + 1.96602i
\(454\) 0 0
\(455\) −0.00373317 + 8.84091i −0.000175013 + 0.414468i
\(456\) 0 0
\(457\) 20.4850 + 35.4811i 0.958250 + 1.65974i 0.726750 + 0.686902i \(0.241030\pi\)
0.231500 + 0.972835i \(0.425637\pi\)
\(458\) 0 0
\(459\) 10.3508 + 6.75941i 0.483133 + 0.315502i
\(460\) 0 0
\(461\) 29.9492 1.39487 0.697437 0.716646i \(-0.254324\pi\)
0.697437 + 0.716646i \(0.254324\pi\)
\(462\) 0 0
\(463\) −13.4377 −0.624502 −0.312251 0.950000i \(-0.601083\pi\)
−0.312251 + 0.950000i \(0.601083\pi\)
\(464\) 0 0
\(465\) 0.561578 + 1.01514i 0.0260426 + 0.0470762i
\(466\) 0 0
\(467\) 8.83482 + 15.3024i 0.408827 + 0.708109i 0.994759 0.102252i \(-0.0326047\pi\)
−0.585932 + 0.810360i \(0.699271\pi\)
\(468\) 0 0
\(469\) 14.9326 + 25.8893i 0.689525 + 1.19546i
\(470\) 0 0
\(471\) −39.9152 0.730608i −1.83919 0.0336646i
\(472\) 0 0
\(473\) 1.01200 + 0.584277i 0.0465317 + 0.0268651i
\(474\) 0 0
\(475\) 1.64211i 0.0753453i
\(476\) 0 0
\(477\) −19.1972 + 10.1656i −0.878980 + 0.465450i
\(478\) 0 0
\(479\) 1.17226 2.03041i 0.0535618 0.0927717i −0.838001 0.545668i \(-0.816276\pi\)
0.891563 + 0.452896i \(0.149609\pi\)
\(480\) 0 0
\(481\) 14.1477 8.16819i 0.645080 0.372437i
\(482\) 0 0
\(483\) 13.9611 + 25.2622i 0.635252 + 1.14947i
\(484\) 0 0
\(485\) 4.08179 2.35662i 0.185344 0.107009i
\(486\) 0 0
\(487\) 1.55112 2.68661i 0.0702878 0.121742i −0.828740 0.559634i \(-0.810942\pi\)
0.899027 + 0.437892i \(0.144275\pi\)
\(488\) 0 0
\(489\) 13.3124 + 8.01431i 0.602010 + 0.362420i
\(490\) 0 0
\(491\) 1.65953i 0.0748937i 0.999299 + 0.0374468i \(0.0119225\pi\)
−0.999299 + 0.0374468i \(0.988078\pi\)
\(492\) 0 0
\(493\) −21.5779 12.4580i −0.971819 0.561080i
\(494\) 0 0
\(495\) 11.6382 + 7.29986i 0.523099 + 0.328104i
\(496\) 0 0
\(497\) 7.11572 + 4.11227i 0.319184 + 0.184461i
\(498\) 0 0
\(499\) −8.79584 15.2348i −0.393756 0.682005i 0.599185 0.800610i \(-0.295491\pi\)
−0.992942 + 0.118605i \(0.962158\pi\)
\(500\) 0 0
\(501\) 18.2306 10.0852i 0.814485 0.450573i
\(502\) 0 0
\(503\) 11.8921 0.530244 0.265122 0.964215i \(-0.414588\pi\)
0.265122 + 0.964215i \(0.414588\pi\)
\(504\) 0 0
\(505\) 9.23315 0.410870
\(506\) 0 0
\(507\) 2.77969 1.53772i 0.123450 0.0682927i
\(508\) 0 0
\(509\) −20.3441 35.2370i −0.901735 1.56185i −0.825241 0.564781i \(-0.808961\pi\)
−0.0764941 0.997070i \(-0.524373\pi\)
\(510\) 0 0
\(511\) 31.5870 18.2190i 1.39733 0.805961i
\(512\) 0 0
\(513\) −3.85438 7.61250i −0.170175 0.336100i
\(514\) 0 0
\(515\) −10.2264 5.90419i −0.450627 0.260170i
\(516\) 0 0
\(517\) 4.64020i 0.204076i
\(518\) 0 0
\(519\) −28.1590 16.9522i −1.23604 0.744119i
\(520\) 0 0
\(521\) −1.21998 + 2.11307i −0.0534483 + 0.0925752i −0.891512 0.452998i \(-0.850355\pi\)
0.838063 + 0.545573i \(0.183688\pi\)
\(522\) 0 0
\(523\) −1.67444 + 0.966739i −0.0732182 + 0.0422726i −0.536162 0.844115i \(-0.680126\pi\)
0.462944 + 0.886388i \(0.346793\pi\)
\(524\) 0 0
\(525\) −3.92503 2.36519i −0.171302 0.103225i
\(526\) 0 0
\(527\) −1.38005 + 0.796772i −0.0601159 + 0.0347079i
\(528\) 0 0
\(529\) 8.33547 14.4375i 0.362412 0.627716i
\(530\) 0 0
\(531\) −12.0699 22.7935i −0.523790 0.989152i
\(532\) 0 0
\(533\) 24.0806i 1.04305i
\(534\) 0 0
\(535\) 1.22015 + 0.704454i 0.0527517 + 0.0304562i
\(536\) 0 0
\(537\) −42.2385 0.773134i −1.82273 0.0333632i
\(538\) 0 0
\(539\) 0.0270716 32.0556i 0.00116606 1.38073i
\(540\) 0 0
\(541\) −9.53749 16.5194i −0.410049 0.710225i 0.584846 0.811144i \(-0.301155\pi\)
−0.994895 + 0.100919i \(0.967822\pi\)
\(542\) 0 0
\(543\) 12.4964 + 22.5894i 0.536274 + 0.969403i
\(544\) 0 0
\(545\) −14.1903 −0.607846
\(546\) 0 0
\(547\) 36.9219 1.57867 0.789334 0.613964i \(-0.210426\pi\)
0.789334 + 0.613964i \(0.210426\pi\)
\(548\) 0 0
\(549\) −1.49533 + 40.8334i −0.0638191 + 1.74273i
\(550\) 0 0
\(551\) 8.59867 + 14.8933i 0.366316 + 0.634478i
\(552\) 0 0
\(553\) 34.0250 + 0.0143674i 1.44689 + 0.000610965i
\(554\) 0 0
\(555\) −0.154968 + 8.46634i −0.00657803 + 0.359376i
\(556\) 0 0
\(557\) −39.3573 22.7229i −1.66762 0.962802i −0.968915 0.247394i \(-0.920426\pi\)
−0.698707 0.715408i \(-0.746241\pi\)
\(558\) 0 0
\(559\) 0.852689i 0.0360649i
\(560\) 0 0
\(561\) −9.73282 + 16.1670i −0.410920 + 0.682573i
\(562\) 0 0
\(563\) 3.36343 5.82564i 0.141752 0.245521i −0.786405 0.617712i \(-0.788060\pi\)
0.928156 + 0.372190i \(0.121393\pi\)
\(564\) 0 0
\(565\) −9.88179 + 5.70526i −0.415730 + 0.240022i
\(566\) 0 0
\(567\) 23.7472 + 1.75168i 0.997291 + 0.0735636i
\(568\) 0 0
\(569\) 7.80887 4.50846i 0.327365 0.189004i −0.327306 0.944919i \(-0.606141\pi\)
0.654671 + 0.755914i \(0.272807\pi\)
\(570\) 0 0
\(571\) 20.4021 35.3374i 0.853799 1.47882i −0.0239548 0.999713i \(-0.507626\pi\)
0.877754 0.479111i \(-0.159041\pi\)
\(572\) 0 0
\(573\) 10.1755 16.9023i 0.425087 0.706105i
\(574\) 0 0
\(575\) 6.29849i 0.262665i
\(576\) 0 0
\(577\) 1.66415 + 0.960799i 0.0692796 + 0.0399986i 0.534240 0.845333i \(-0.320598\pi\)
−0.464960 + 0.885332i \(0.653931\pi\)
\(578\) 0 0
\(579\) −0.0891018 + 4.86788i −0.00370294 + 0.202302i
\(580\) 0 0
\(581\) 7.81708 13.5264i 0.324307 0.561169i
\(582\) 0 0
\(583\) −16.5793 28.7162i −0.686645 1.18930i
\(584\) 0 0
\(585\) 0.366860 10.0179i 0.0151678 0.414190i
\(586\) 0 0
\(587\) −23.2576 −0.959944 −0.479972 0.877284i \(-0.659353\pi\)
−0.479972 + 0.877284i \(0.659353\pi\)
\(588\) 0 0
\(589\) 1.09988 0.0453199
\(590\) 0 0
\(591\) −10.1388 18.3275i −0.417054 0.753894i
\(592\) 0 0
\(593\) −2.11803 3.66853i −0.0869770 0.150649i 0.819255 0.573429i \(-0.194387\pi\)
−0.906232 + 0.422781i \(0.861054\pi\)
\(594\) 0 0
\(595\) 3.14961 5.44996i 0.129121 0.223427i
\(596\) 0 0
\(597\) 3.96868 + 0.0726427i 0.162427 + 0.00297307i
\(598\) 0 0
\(599\) 3.49694 + 2.01896i 0.142881 + 0.0824925i 0.569736 0.821827i \(-0.307045\pi\)
−0.426855 + 0.904320i \(0.640379\pi\)
\(600\) 0 0
\(601\) 0.420595i 0.0171564i 0.999963 + 0.00857821i \(0.00273056\pi\)
−0.999963 + 0.00857821i \(0.997269\pi\)
\(602\) 0 0
\(603\) −15.8590 29.9490i −0.645829 1.21962i
\(604\) 0 0
\(605\) −4.98532 + 8.63483i −0.202682 + 0.351056i
\(606\) 0 0
\(607\) −33.6082 + 19.4037i −1.36411 + 0.787572i −0.990169 0.139878i \(-0.955329\pi\)
−0.373946 + 0.927450i \(0.621996\pi\)
\(608\) 0 0
\(609\) −47.9835 0.898559i −1.94439 0.0364115i
\(610\) 0 0
\(611\) 2.93231 1.69297i 0.118628 0.0684901i
\(612\) 0 0
\(613\) −1.20336 + 2.08429i −0.0486034 + 0.0841836i −0.889304 0.457317i \(-0.848810\pi\)
0.840700 + 0.541501i \(0.182144\pi\)
\(614\) 0 0
\(615\) 10.6936 + 6.43773i 0.431208 + 0.259594i
\(616\) 0 0
\(617\) 37.0222i 1.49046i 0.666809 + 0.745229i \(0.267660\pi\)
−0.666809 + 0.745229i \(0.732340\pi\)
\(618\) 0 0
\(619\) −38.4406 22.1937i −1.54506 0.892040i −0.998508 0.0546145i \(-0.982607\pi\)
−0.546551 0.837426i \(-0.684060\pi\)
\(620\) 0 0
\(621\) −14.7839 29.1985i −0.593256 1.17170i
\(622\) 0 0
\(623\) −17.4130 0.00735281i −0.697636 0.000294584i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 11.3971 6.30486i 0.455155 0.251792i
\(628\) 0 0
\(629\) −11.6313 −0.463770
\(630\) 0 0
\(631\) 43.2826 1.72305 0.861526 0.507713i \(-0.169509\pi\)
0.861526 + 0.507713i \(0.169509\pi\)
\(632\) 0 0
\(633\) 2.16471 1.19752i 0.0860395 0.0475971i
\(634\) 0 0
\(635\) 2.23891 + 3.87790i 0.0888483 + 0.153890i
\(636\) 0 0
\(637\) −20.2669 + 11.6783i −0.803005 + 0.462711i
\(638\) 0 0
\(639\) −7.89452 4.95169i −0.312302 0.195886i
\(640\) 0 0
\(641\) 3.29528 + 1.90253i 0.130156 + 0.0751453i 0.563664 0.826004i \(-0.309391\pi\)
−0.433509 + 0.901149i \(0.642725\pi\)
\(642\) 0 0
\(643\) 32.4867i 1.28115i 0.767896 + 0.640574i \(0.221304\pi\)
−0.767896 + 0.640574i \(0.778696\pi\)
\(644\) 0 0
\(645\) 0.378658 + 0.227959i 0.0149097 + 0.00897586i
\(646\) 0 0
\(647\) 17.9573 31.1030i 0.705975 1.22278i −0.260363 0.965511i \(-0.583842\pi\)
0.966338 0.257274i \(-0.0828243\pi\)
\(648\) 0 0
\(649\) 34.0957 19.6851i 1.33837 0.772710i
\(650\) 0 0
\(651\) −1.58420 + 2.62898i −0.0620897 + 0.103038i
\(652\) 0 0
\(653\) −5.22686 + 3.01773i −0.204543 + 0.118093i −0.598773 0.800919i \(-0.704345\pi\)
0.394230 + 0.919012i \(0.371011\pi\)
\(654\) 0 0
\(655\) −2.84104 + 4.92083i −0.111009 + 0.192273i
\(656\) 0 0
\(657\) −36.5402 + 19.3493i −1.42557 + 0.754887i
\(658\) 0 0
\(659\) 44.2426i 1.72345i 0.507378 + 0.861724i \(0.330615\pi\)
−0.507378 + 0.861724i \(0.669385\pi\)
\(660\) 0 0
\(661\) −32.5001 18.7639i −1.26411 0.729832i −0.290240 0.956954i \(-0.593735\pi\)
−0.973866 + 0.227122i \(0.927068\pi\)
\(662\) 0 0
\(663\) 13.7675 + 0.252001i 0.534686 + 0.00978690i
\(664\) 0 0
\(665\) −3.76347 + 2.17072i −0.145941 + 0.0841770i
\(666\) 0 0
\(667\) 32.9811 + 57.1249i 1.27703 + 2.21188i
\(668\) 0 0
\(669\) 0.853893 + 1.54355i 0.0330134 + 0.0596771i
\(670\) 0 0
\(671\) −62.3722 −2.40785
\(672\) 0 0
\(673\) −42.0580 −1.62122 −0.810608 0.585589i \(-0.800863\pi\)
−0.810608 + 0.585589i \(0.800863\pi\)
\(674\) 0 0
\(675\) 4.35064 + 2.84111i 0.167456 + 0.109355i
\(676\) 0 0
\(677\) 8.48672 + 14.6994i 0.326171 + 0.564945i 0.981749 0.190183i \(-0.0609081\pi\)
−0.655577 + 0.755128i \(0.727575\pi\)
\(678\) 0 0
\(679\) 10.7968 + 6.23959i 0.414342 + 0.239454i
\(680\) 0 0
\(681\) −0.0369548 + 2.01894i −0.00141611 + 0.0773661i
\(682\) 0 0
\(683\) −28.4430 16.4216i −1.08834 0.628354i −0.155206 0.987882i \(-0.549604\pi\)
−0.933134 + 0.359528i \(0.882938\pi\)
\(684\) 0 0
\(685\) 13.1839i 0.503729i
\(686\) 0 0
\(687\) 22.3589 37.1400i 0.853044 1.41698i
\(688\) 0 0
\(689\) −12.0979 + 20.9541i −0.460892 + 0.798288i
\(690\) 0 0
\(691\) −4.90189 + 2.83011i −0.186477 + 0.107662i −0.590332 0.807161i \(-0.701003\pi\)
0.403855 + 0.914823i \(0.367670\pi\)
\(692\) 0 0
\(693\) −1.34551 + 36.3227i −0.0511116 + 1.37979i
\(694\) 0 0
\(695\) 3.66093 2.11364i 0.138867 0.0801749i
\(696\) 0 0
\(697\) −8.57254 + 14.8481i −0.324708 + 0.562411i
\(698\) 0 0
\(699\) −6.60558 + 10.9724i −0.249846 + 0.415015i
\(700\) 0 0
\(701\) 4.15192i 0.156816i 0.996921 + 0.0784078i \(0.0249836\pi\)
−0.996921 + 0.0784078i \(0.975016\pi\)
\(702\) 0 0
\(703\) 6.95251 + 4.01403i 0.262219 + 0.151392i
\(704\) 0 0
\(705\) −0.0321192 + 1.75476i −0.00120968 + 0.0660883i
\(706\) 0 0
\(707\) 12.2054 + 21.1610i 0.459030 + 0.795840i
\(708\) 0 0
\(709\) −11.4637 19.8557i −0.430528 0.745697i 0.566390 0.824137i \(-0.308339\pi\)
−0.996919 + 0.0784399i \(0.975006\pi\)
\(710\) 0 0
\(711\) −38.5549 1.41189i −1.44592 0.0529501i
\(712\) 0 0
\(713\) 4.21872 0.157992
\(714\) 0 0
\(715\) 15.3022 0.572270
\(716\) 0 0
\(717\) 6.27809 + 11.3487i 0.234459 + 0.423824i
\(718\) 0 0
\(719\) 11.8053 + 20.4474i 0.440263 + 0.762558i 0.997709 0.0676554i \(-0.0215519\pi\)
−0.557446 + 0.830213i \(0.688219\pi\)
\(720\) 0 0
\(721\) 0.0131923 31.2421i 0.000491306 1.16352i
\(722\) 0 0
\(723\) −28.9711 0.530288i −1.07745 0.0197216i
\(724\) 0 0
\(725\) −9.06962 5.23635i −0.336837 0.194473i
\(726\) 0 0
\(727\) 23.9107i 0.886800i 0.896324 + 0.443400i \(0.146228\pi\)
−0.896324 + 0.443400i \(0.853772\pi\)
\(728\) 0 0
\(729\) −26.8374 2.95896i −0.993977 0.109591i
\(730\) 0 0
\(731\) −0.303552 + 0.525767i −0.0112273 + 0.0194462i
\(732\) 0 0
\(733\) 5.64644 3.25997i 0.208556 0.120410i −0.392084 0.919929i \(-0.628246\pi\)
0.600640 + 0.799519i \(0.294912\pi\)
\(734\) 0 0
\(735\) 0.232125 12.1221i 0.00856205 0.447132i
\(736\) 0 0
\(737\) 44.7993 25.8649i 1.65020 0.952746i
\(738\) 0 0
\(739\) −19.2254 + 33.2993i −0.707217 + 1.22494i 0.258669 + 0.965966i \(0.416716\pi\)
−0.965885 + 0.258970i \(0.916617\pi\)
\(740\) 0 0
\(741\) −8.14246 4.90189i −0.299121 0.180075i
\(742\) 0 0
\(743\) 22.9796i 0.843039i −0.906819 0.421519i \(-0.861497\pi\)
0.906819 0.421519i \(-0.138503\pi\)
\(744\) 0 0
\(745\) −3.91208 2.25864i −0.143328 0.0827502i
\(746\) 0 0
\(747\) −9.41275 + 15.0068i −0.344394 + 0.549070i
\(748\) 0 0
\(749\) −0.00157403 + 3.72762i −5.75137e−5 + 0.136204i
\(750\) 0 0
\(751\) 16.7413 + 28.9968i 0.610898 + 1.05811i 0.991089 + 0.133199i \(0.0425249\pi\)
−0.380191 + 0.924908i \(0.624142\pi\)
\(752\) 0 0
\(753\) 23.6245 13.0691i 0.860924 0.476263i
\(754\) 0 0
\(755\) −24.1629 −0.879379
\(756\) 0 0
\(757\) 23.7732 0.864050 0.432025 0.901862i \(-0.357799\pi\)
0.432025 + 0.901862i \(0.357799\pi\)
\(758\) 0 0
\(759\) 43.7146 24.1829i 1.58674 0.877784i
\(760\) 0 0
\(761\) 0.339493 + 0.588019i 0.0123066 + 0.0213157i 0.872113 0.489304i \(-0.162749\pi\)
−0.859807 + 0.510620i \(0.829416\pi\)
\(762\) 0 0
\(763\) −18.7583 32.5220i −0.679095 1.17738i
\(764\) 0 0
\(765\) −3.79252 + 6.04645i −0.137119 + 0.218610i
\(766\) 0 0
\(767\) −24.8795 14.3642i −0.898346 0.518660i
\(768\) 0 0
\(769\) 6.05929i 0.218503i 0.994014 + 0.109252i \(0.0348455\pi\)
−0.994014 + 0.109252i \(0.965155\pi\)
\(770\) 0 0
\(771\) −24.5130 14.7572i −0.882814 0.531469i
\(772\) 0 0
\(773\) −0.553516 + 0.958718i −0.0199086 + 0.0344827i −0.875808 0.482660i \(-0.839671\pi\)
0.855899 + 0.517142i \(0.173004\pi\)
\(774\) 0 0
\(775\) −0.580062 + 0.334899i −0.0208364 + 0.0120299i
\(776\) 0 0
\(777\) −19.6084 + 10.8366i −0.703448 + 0.388759i
\(778\) 0 0
\(779\) 10.2483 5.91688i 0.367185 0.211994i
\(780\) 0 0
\(781\) 7.11248 12.3192i 0.254505 0.440815i
\(782\) 0 0
\(783\) 54.3357 + 2.98635i 1.94180 + 0.106724i
\(784\) 0 0
\(785\) 23.0489i 0.822650i
\(786\) 0 0
\(787\) 18.2006 + 10.5081i 0.648781 + 0.374574i 0.787989 0.615689i \(-0.211122\pi\)
−0.139208 + 0.990263i \(0.544456\pi\)
\(788\) 0 0
\(789\) 17.4432 + 0.319281i 0.620994 + 0.0113667i
\(790\) 0 0
\(791\) −26.1384 15.1057i −0.929374 0.537098i
\(792\) 0 0
\(793\) 22.7564 + 39.4152i 0.808102 + 1.39967i
\(794\) 0 0
\(795\) −6.07096 10.9743i −0.215315 0.389217i
\(796\) 0 0
\(797\) 0.858844 0.0304218 0.0152109 0.999884i \(-0.495158\pi\)
0.0152109 + 0.999884i \(0.495158\pi\)
\(798\) 0 0
\(799\) −2.41074 −0.0852860
\(800\) 0 0
\(801\) 19.7312 + 0.722563i 0.697168 + 0.0255305i
\(802\) 0 0
\(803\) −31.5573 54.6588i −1.11363 1.92887i
\(804\) 0 0
\(805\) −14.4352 + 8.32602i −0.508773 + 0.293454i
\(806\) 0 0
\(807\) −0.478139 + 26.1221i −0.0168313 + 0.919541i
\(808\) 0 0
\(809\) 36.3644 + 20.9950i 1.27850 + 0.738144i 0.976573 0.215186i \(-0.0690359\pi\)
0.301930 + 0.953330i \(0.402369\pi\)
\(810\) 0 0
\(811\) 14.5311i 0.510257i −0.966907 0.255128i \(-0.917882\pi\)
0.966907 0.255128i \(-0.0821177\pi\)
\(812\) 0 0
\(813\) −9.85192 + 16.3649i −0.345522 + 0.573941i
\(814\) 0 0
\(815\) −4.48563 + 7.76934i −0.157125 + 0.272148i
\(816\) 0 0
\(817\) 0.362891 0.209515i 0.0126960 0.00733002i
\(818\) 0 0
\(819\) 23.4445 12.4020i 0.819218 0.433361i
\(820\) 0 0
\(821\) 12.8950 7.44495i 0.450039 0.259830i −0.257807 0.966196i \(-0.583000\pi\)
0.707847 + 0.706366i \(0.249667\pi\)
\(822\) 0 0
\(823\) 13.9686 24.1944i 0.486916 0.843363i −0.512971 0.858406i \(-0.671455\pi\)
0.999887 + 0.0150429i \(0.00478850\pi\)
\(824\) 0 0
\(825\) −4.09090 + 6.79533i −0.142427 + 0.236583i
\(826\) 0 0
\(827\) 2.99272i 0.104067i −0.998645 0.0520335i \(-0.983430\pi\)
0.998645 0.0520335i \(-0.0165703\pi\)
\(828\) 0 0
\(829\) −2.27416 1.31299i −0.0789850 0.0456020i 0.459987 0.887925i \(-0.347854\pi\)
−0.538972 + 0.842323i \(0.681187\pi\)
\(830\) 0 0
\(831\) 0.364965 19.9390i 0.0126605 0.691678i
\(832\) 0 0
\(833\) 16.6540 + 0.0140646i 0.577026 + 0.000487311i
\(834\) 0 0
\(835\) 6.01434 + 10.4171i 0.208135 + 0.360500i
\(836\) 0 0
\(837\) 1.90297 2.91405i 0.0657764 0.100724i
\(838\) 0 0
\(839\) −29.6528 −1.02373 −0.511864 0.859067i \(-0.671045\pi\)
−0.511864 + 0.859067i \(0.671045\pi\)
\(840\) 0 0
\(841\) −80.6773 −2.78198
\(842\) 0 0
\(843\) 18.3114 + 33.1008i 0.630677 + 1.14005i
\(844\) 0 0
\(845\) 0.917027 + 1.58834i 0.0315467 + 0.0546405i
\(846\) 0 0
\(847\) −26.3798 0.0111392i −0.906422 0.000382746i
\(848\) 0 0
\(849\) −17.8572 0.326859i −0.612858 0.0112178i
\(850\) 0 0
\(851\) 26.6670 + 15.3962i 0.914134 + 0.527776i
\(852\) 0 0
\(853\) 17.9134i 0.613341i 0.951816 + 0.306671i \(0.0992150\pi\)
−0.951816 + 0.306671i \(0.900785\pi\)
\(854\) 0 0
\(855\) 4.35362 2.30539i 0.148891 0.0788427i
\(856\) 0 0
\(857\) −7.63917 + 13.2314i −0.260949 + 0.451977i −0.966494 0.256688i \(-0.917369\pi\)
0.705545 + 0.708665i \(0.250702\pi\)
\(858\) 0 0
\(859\) −0.803639 + 0.463981i −0.0274198 + 0.0158308i −0.513647 0.858001i \(-0.671706\pi\)
0.486227 + 0.873832i \(0.338373\pi\)
\(860\) 0 0
\(861\) −0.618313 + 33.0182i −0.0210720 + 1.12526i
\(862\) 0 0
\(863\) 20.8695 12.0490i 0.710405 0.410153i −0.100806 0.994906i \(-0.532142\pi\)
0.811211 + 0.584754i \(0.198809\pi\)
\(864\) 0 0
\(865\) 9.48818 16.4340i 0.322608 0.558773i
\(866\) 0 0
\(867\) 16.8270 + 10.1301i 0.571474 + 0.344037i
\(868\) 0 0
\(869\) 58.8918i 1.99777i
\(870\) 0 0
\(871\) −32.6899 18.8735i −1.10765 0.639505i
\(872\) 0 0
\(873\) −11.9784 7.51325i −0.405408 0.254285i
\(874\) 0 0
\(875\) 1.32384 2.29073i 0.0447541 0.0774408i
\(876\) 0 0
\(877\) 21.1571 + 36.6451i 0.714423 + 1.23742i 0.963182 + 0.268852i \(0.0866442\pi\)
−0.248758 + 0.968566i \(0.580022\pi\)
\(878\) 0 0
\(879\) −27.7000 + 15.3236i −0.934297 + 0.516853i
\(880\) 0 0
\(881\) −44.6817 −1.50537 −0.752683 0.658384i \(-0.771240\pi\)
−0.752683 + 0.658384i \(0.771240\pi\)
\(882\) 0 0
\(883\) 1.03834 0.0349430 0.0174715 0.999847i \(-0.494438\pi\)
0.0174715 + 0.999847i \(0.494438\pi\)
\(884\) 0 0
\(885\) 13.0301 7.20824i 0.438001 0.242302i
\(886\) 0 0
\(887\) 28.0197 + 48.5316i 0.940811 + 1.62953i 0.763929 + 0.645300i \(0.223268\pi\)
0.176882 + 0.984232i \(0.443399\pi\)
\(888\) 0 0
\(889\) −5.92792 + 10.2575i −0.198816 + 0.344024i
\(890\) 0 0
\(891\) 3.01452 41.1040i 0.100990 1.37703i
\(892\) 0 0
\(893\) 1.44100 + 0.831963i 0.0482213 + 0.0278406i
\(894\) 0 0
\(895\) 24.3905i 0.815284i
\(896\) 0 0
\(897\) −31.2312 18.8017i −1.04278 0.627770i
\(898\) 0 0
\(899\) −3.50730 + 6.07481i −0.116975 + 0.202606i
\(900\) 0 0
\(901\) 14.9191 8.61352i 0.497026 0.286958i
\(902\) 0 0
\(903\) −0.0218943 + 1.16917i −0.000728597 + 0.0389074i
\(904\) 0 0
\(905\) −12.9078 + 7.45230i −0.429068 + 0.247723i
\(906\) 0 0
\(907\) −18.8838 + 32.7077i −0.627027 + 1.08604i 0.361118 + 0.932520i \(0.382395\pi\)
−0.988145 + 0.153523i \(0.950938\pi\)
\(908\) 0 0
\(909\) −12.9626 24.4792i −0.429941 0.811924i
\(910\) 0 0
\(911\) 48.5155i 1.60739i −0.595041 0.803696i \(-0.702864\pi\)
0.595041 0.803696i \(-0.297136\pi\)
\(912\) 0 0
\(913\) −23.4177 13.5202i −0.775013 0.447454i
\(914\) 0 0
\(915\) −23.5870 0.431737i −0.779762 0.0142728i
\(916\) 0 0
\(917\) −15.0334 0.00634800i −0.496446 0.000209629i
\(918\) 0 0
\(919\) −5.38077 9.31976i −0.177495 0.307431i 0.763527 0.645776i \(-0.223466\pi\)
−0.941022 + 0.338346i \(0.890133\pi\)
\(920\) 0 0
\(921\) −24.0986 43.5622i −0.794076 1.43542i
\(922\) 0 0
\(923\) −10.3799 −0.341658
\(924\) 0 0
\(925\) −4.88886 −0.160745
\(926\) 0 0
\(927\) −1.29641 + 35.4014i −0.0425797 + 1.16274i
\(928\) 0 0
\(929\) 2.28184 + 3.95227i 0.0748648 + 0.129670i 0.901027 0.433762i \(-0.142814\pi\)
−0.826163 + 0.563432i \(0.809481\pi\)
\(930\) 0 0
\(931\) −9.94992 5.75580i −0.326096 0.188639i
\(932\) 0 0
\(933\) −0.274902 + 15.0187i −0.00899989 + 0.491689i
\(934\) 0 0
\(935\) −9.43532 5.44748i −0.308568 0.178152i
\(936\) 0 0
\(937\) 13.1080i 0.428220i 0.976810 + 0.214110i \(0.0686851\pi\)
−0.976810 + 0.214110i \(0.931315\pi\)
\(938\) 0 0
\(939\) 14.2551 23.6789i 0.465196 0.772731i
\(940\) 0 0
\(941\) −5.26970 + 9.12739i −0.171787 + 0.297545i −0.939045 0.343795i \(-0.888288\pi\)
0.767257 + 0.641339i \(0.221621\pi\)
\(942\) 0 0
\(943\) 39.3085 22.6948i 1.28006 0.739044i
\(944\) 0 0
\(945\) −0.760249 + 13.7267i −0.0247309 + 0.446529i
\(946\) 0 0
\(947\) 29.2418 16.8828i 0.950231 0.548616i 0.0570785 0.998370i \(-0.481821\pi\)
0.893153 + 0.449753i \(0.148488\pi\)
\(948\) 0 0
\(949\) −23.0272 + 39.8843i −0.747495 + 1.29470i
\(950\) 0 0
\(951\) −2.13594 + 3.54798i −0.0692627 + 0.115051i
\(952\) 0 0
\(953\) 33.0923i 1.07197i −0.844229 0.535983i \(-0.819941\pi\)
0.844229 0.535983i \(-0.180059\pi\)
\(954\) 0 0
\(955\) 9.86445 + 5.69524i 0.319206 + 0.184294i
\(956\) 0 0
\(957\) −1.52019 + 83.0524i −0.0491408 + 2.68470i
\(958\) 0 0
\(959\) 30.2154 17.4278i 0.975705 0.562774i
\(960\) 0 0
\(961\) −15.2757 26.4583i −0.492764 0.853492i
\(962\) 0 0
\(963\) 0.154680 4.22389i 0.00498450 0.136113i
\(964\) 0 0
\(965\) −2.81094 −0.0904874
\(966\) 0 0
\(967\) −12.5703 −0.404232 −0.202116 0.979362i \(-0.564782\pi\)
−0.202116 + 0.979362i \(0.564782\pi\)
\(968\) 0 0
\(969\) 3.27559 + 5.92116i 0.105227 + 0.190215i
\(970\) 0 0
\(971\) 22.9191 + 39.6971i 0.735510 + 1.27394i 0.954499 + 0.298213i \(0.0963907\pi\)
−0.218989 + 0.975727i \(0.570276\pi\)
\(972\) 0 0
\(973\) 9.68355 + 5.59625i 0.310440 + 0.179408i
\(974\) 0 0
\(975\) 5.78676 + 0.105921i 0.185325 + 0.00339219i
\(976\) 0 0
\(977\) 15.1701 + 8.75845i 0.485334 + 0.280208i 0.722637 0.691228i \(-0.242930\pi\)
−0.237303 + 0.971436i \(0.576263\pi\)
\(978\) 0 0
\(979\) 30.1390i 0.963248i
\(980\) 0 0
\(981\) 19.9220 + 37.6217i 0.636060 + 1.20117i
\(982\) 0 0
\(983\) −9.58460 + 16.6010i −0.305701 + 0.529490i −0.977417 0.211319i \(-0.932224\pi\)
0.671716 + 0.740809i \(0.265558\pi\)
\(984\) 0 0
\(985\) 10.4725 6.04631i 0.333682 0.192651i
\(986\) 0 0
\(987\) −4.06411 + 2.24602i −0.129362 + 0.0714918i
\(988\) 0 0
\(989\) 1.39191 0.803617i 0.0442600 0.0255535i
\(990\) 0 0
\(991\) −6.91260 + 11.9730i −0.219586 + 0.380334i −0.954681 0.297629i \(-0.903804\pi\)
0.735095 + 0.677964i \(0.237137\pi\)
\(992\) 0 0
\(993\) −38.1910 22.9916i −1.21196 0.729617i
\(994\) 0 0
\(995\) 2.29170i 0.0726518i
\(996\) 0 0
\(997\) 5.27252 + 3.04409i 0.166983 + 0.0964074i 0.581162 0.813788i \(-0.302598\pi\)
−0.414180 + 0.910195i \(0.635932\pi\)
\(998\) 0 0
\(999\) 22.6638 11.4752i 0.717050 0.363059i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.cp.b.521.13 yes 32
3.2 odd 2 840.2.cp.a.521.9 32
7.5 odd 6 840.2.cp.a.761.9 yes 32
21.5 even 6 inner 840.2.cp.b.761.13 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.cp.a.521.9 32 3.2 odd 2
840.2.cp.a.761.9 yes 32 7.5 odd 6
840.2.cp.b.521.13 yes 32 1.1 even 1 trivial
840.2.cp.b.761.13 yes 32 21.5 even 6 inner