L(s) = 1 | + (1.51 − 0.838i)3-s + (0.5 + 0.866i)5-s + (−1.32 + 2.29i)7-s + (1.59 − 2.54i)9-s + (3.96 + 2.28i)11-s − 3.34i·13-s + (1.48 + 0.893i)15-s + (−1.18 + 2.06i)17-s + (1.42 − 0.821i)19-s + (−0.0858 + 4.58i)21-s + (5.45 − 3.14i)23-s + (−0.499 + 0.866i)25-s + (0.285 − 5.18i)27-s + 10.4i·29-s + (0.580 + 0.334i)31-s + ⋯ |
L(s) = 1 | + (0.875 − 0.484i)3-s + (0.223 + 0.387i)5-s + (−0.500 + 0.865i)7-s + (0.531 − 0.847i)9-s + (1.19 + 0.690i)11-s − 0.926i·13-s + (0.383 + 0.230i)15-s + (−0.288 + 0.499i)17-s + (0.326 − 0.188i)19-s + (−0.0187 + 0.999i)21-s + (1.13 − 0.656i)23-s + (−0.0999 + 0.173i)25-s + (0.0548 − 0.998i)27-s + 1.94i·29-s + (0.104 + 0.0601i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 - 0.107i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 - 0.107i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.23752 + 0.120973i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.23752 + 0.120973i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.51 + 0.838i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (1.32 - 2.29i)T \) |
good | 11 | \( 1 + (-3.96 - 2.28i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3.34iT - 13T^{2} \) |
| 17 | \( 1 + (1.18 - 2.06i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.42 + 0.821i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.45 + 3.14i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 10.4iT - 29T^{2} \) |
| 31 | \( 1 + (-0.580 - 0.334i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.44 - 4.23i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 7.20T + 41T^{2} \) |
| 43 | \( 1 - 0.255T + 43T^{2} \) |
| 47 | \( 1 + (-0.506 - 0.877i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6.27 + 3.62i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.29 + 7.44i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (11.7 - 6.81i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.64 + 9.78i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.10iT - 71T^{2} \) |
| 73 | \( 1 + (11.9 + 6.89i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.43 + 11.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 5.90T + 83T^{2} \) |
| 89 | \( 1 + (-3.29 - 5.69i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 4.71iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01008317313409157543535502808, −9.159992800515874649486114261381, −8.761016115473051437304431272985, −7.61877127388067817846158966635, −6.75930766946148430601590061397, −6.15503017295740063988351391932, −4.81676056723954708349112350635, −3.44416786111031428519441590053, −2.73064567011544650138660822924, −1.46937310323801830016633502209,
1.23113725006718568485207495841, 2.75262853914278529173410699714, 3.92596772254293747851199495785, 4.40945812125252308901980230724, 5.83074996109363473941023394328, 6.87456324650521450654184941212, 7.65414576439503853959807112589, 8.751897998617865166747756017200, 9.399197078937324769508195118137, 9.814974143274538807171100337523