Properties

Label 840.2.cc.c.289.6
Level $840$
Weight $2$
Character 840.289
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(289,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.6
Character \(\chi\) \(=\) 840.289
Dual form 840.2.cc.c.529.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{3} +(2.23316 - 0.114055i) q^{5} +(-0.262488 - 2.63270i) q^{7} +(0.500000 - 0.866025i) q^{9} +(2.01478 + 3.48970i) q^{11} +6.03388i q^{13} +(-1.87694 + 1.21535i) q^{15} +(-0.815983 + 0.471108i) q^{17} +(4.30486 - 7.45623i) q^{19} +(1.54367 + 2.14874i) q^{21} +(-4.28008 - 2.47111i) q^{23} +(4.97398 - 0.509406i) q^{25} +1.00000i q^{27} +5.99068 q^{29} +(-1.93071 - 3.34408i) q^{31} +(-3.48970 - 2.01478i) q^{33} +(-0.886450 - 5.84929i) q^{35} +(4.61567 + 2.66486i) q^{37} +(-3.01694 - 5.22550i) q^{39} +6.24670 q^{41} +5.03947i q^{43} +(1.01780 - 1.99100i) q^{45} +(10.1585 + 5.86499i) q^{47} +(-6.86220 + 1.38210i) q^{49} +(0.471108 - 0.815983i) q^{51} +(4.38958 - 2.53432i) q^{53} +(4.89734 + 7.56325i) q^{55} +8.60971i q^{57} +(2.18367 + 3.78222i) q^{59} +(-0.759024 + 1.31467i) q^{61} +(-2.41123 - 1.08903i) q^{63} +(0.688195 + 13.4746i) q^{65} +(-8.28111 + 4.78110i) q^{67} +4.94222 q^{69} +8.93194 q^{71} +(-5.91012 + 3.41221i) q^{73} +(-4.05289 + 2.92815i) q^{75} +(8.65847 - 6.22031i) q^{77} +(-3.43708 + 5.95320i) q^{79} +(-0.500000 - 0.866025i) q^{81} -16.3602i q^{83} +(-1.76849 + 1.14513i) q^{85} +(-5.18808 + 2.99534i) q^{87} +(-2.39902 + 4.15523i) q^{89} +(15.8854 - 1.58382i) q^{91} +(3.34408 + 1.93071i) q^{93} +(8.76300 - 17.1419i) q^{95} -18.6629i q^{97} +4.02956 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{5} + 12 q^{9} - 8 q^{11} + 8 q^{19} + 12 q^{21} + 2 q^{25} - 24 q^{29} + 4 q^{31} + 30 q^{35} + 4 q^{39} + 32 q^{41} - 2 q^{45} - 12 q^{49} - 20 q^{51} + 12 q^{55} - 4 q^{59} + 32 q^{61} + 22 q^{65}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) 2.23316 0.114055i 0.998698 0.0510070i
\(6\) 0 0
\(7\) −0.262488 2.63270i −0.0992112 0.995066i
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) 2.01478 + 3.48970i 0.607479 + 1.05218i 0.991654 + 0.128924i \(0.0411523\pi\)
−0.384176 + 0.923260i \(0.625514\pi\)
\(12\) 0 0
\(13\) 6.03388i 1.67350i 0.547587 + 0.836749i \(0.315547\pi\)
−0.547587 + 0.836749i \(0.684453\pi\)
\(14\) 0 0
\(15\) −1.87694 + 1.21535i −0.484625 + 0.313803i
\(16\) 0 0
\(17\) −0.815983 + 0.471108i −0.197905 + 0.114260i −0.595678 0.803223i \(-0.703117\pi\)
0.397773 + 0.917484i \(0.369783\pi\)
\(18\) 0 0
\(19\) 4.30486 7.45623i 0.987602 1.71058i 0.357853 0.933778i \(-0.383509\pi\)
0.629749 0.776799i \(-0.283158\pi\)
\(20\) 0 0
\(21\) 1.54367 + 2.14874i 0.336857 + 0.468893i
\(22\) 0 0
\(23\) −4.28008 2.47111i −0.892459 0.515262i −0.0177132 0.999843i \(-0.505639\pi\)
−0.874746 + 0.484581i \(0.838972\pi\)
\(24\) 0 0
\(25\) 4.97398 0.509406i 0.994797 0.101881i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 5.99068 1.11244 0.556221 0.831035i \(-0.312251\pi\)
0.556221 + 0.831035i \(0.312251\pi\)
\(30\) 0 0
\(31\) −1.93071 3.34408i −0.346765 0.600615i 0.638908 0.769283i \(-0.279387\pi\)
−0.985673 + 0.168669i \(0.946053\pi\)
\(32\) 0 0
\(33\) −3.48970 2.01478i −0.607479 0.350728i
\(34\) 0 0
\(35\) −0.886450 5.84929i −0.149837 0.988711i
\(36\) 0 0
\(37\) 4.61567 + 2.66486i 0.758812 + 0.438100i 0.828869 0.559443i \(-0.188985\pi\)
−0.0700572 + 0.997543i \(0.522318\pi\)
\(38\) 0 0
\(39\) −3.01694 5.22550i −0.483097 0.836749i
\(40\) 0 0
\(41\) 6.24670 0.975571 0.487786 0.872964i \(-0.337805\pi\)
0.487786 + 0.872964i \(0.337805\pi\)
\(42\) 0 0
\(43\) 5.03947i 0.768512i 0.923227 + 0.384256i \(0.125542\pi\)
−0.923227 + 0.384256i \(0.874458\pi\)
\(44\) 0 0
\(45\) 1.01780 1.99100i 0.151725 0.296801i
\(46\) 0 0
\(47\) 10.1585 + 5.86499i 1.48176 + 0.855497i 0.999786 0.0206860i \(-0.00658502\pi\)
0.481978 + 0.876183i \(0.339918\pi\)
\(48\) 0 0
\(49\) −6.86220 + 1.38210i −0.980314 + 0.197443i
\(50\) 0 0
\(51\) 0.471108 0.815983i 0.0659683 0.114260i
\(52\) 0 0
\(53\) 4.38958 2.53432i 0.602955 0.348116i −0.167248 0.985915i \(-0.553488\pi\)
0.770203 + 0.637799i \(0.220155\pi\)
\(54\) 0 0
\(55\) 4.89734 + 7.56325i 0.660357 + 1.01983i
\(56\) 0 0
\(57\) 8.60971i 1.14038i
\(58\) 0 0
\(59\) 2.18367 + 3.78222i 0.284289 + 0.492404i 0.972437 0.233167i \(-0.0749090\pi\)
−0.688147 + 0.725571i \(0.741576\pi\)
\(60\) 0 0
\(61\) −0.759024 + 1.31467i −0.0971830 + 0.168326i −0.910518 0.413470i \(-0.864317\pi\)
0.813335 + 0.581796i \(0.197650\pi\)
\(62\) 0 0
\(63\) −2.41123 1.08903i −0.303786 0.137205i
\(64\) 0 0
\(65\) 0.688195 + 13.4746i 0.0853600 + 1.67132i
\(66\) 0 0
\(67\) −8.28111 + 4.78110i −1.01170 + 0.584105i −0.911689 0.410882i \(-0.865221\pi\)
−0.100010 + 0.994986i \(0.531888\pi\)
\(68\) 0 0
\(69\) 4.94222 0.594973
\(70\) 0 0
\(71\) 8.93194 1.06003 0.530013 0.847989i \(-0.322187\pi\)
0.530013 + 0.847989i \(0.322187\pi\)
\(72\) 0 0
\(73\) −5.91012 + 3.41221i −0.691727 + 0.399369i −0.804259 0.594279i \(-0.797437\pi\)
0.112532 + 0.993648i \(0.464104\pi\)
\(74\) 0 0
\(75\) −4.05289 + 2.92815i −0.467988 + 0.338114i
\(76\) 0 0
\(77\) 8.65847 6.22031i 0.986724 0.708870i
\(78\) 0 0
\(79\) −3.43708 + 5.95320i −0.386702 + 0.669787i −0.992004 0.126209i \(-0.959719\pi\)
0.605302 + 0.795996i \(0.293052\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 16.3602i 1.79577i −0.440232 0.897884i \(-0.645104\pi\)
0.440232 0.897884i \(-0.354896\pi\)
\(84\) 0 0
\(85\) −1.76849 + 1.14513i −0.191819 + 0.124206i
\(86\) 0 0
\(87\) −5.18808 + 2.99534i −0.556221 + 0.321134i
\(88\) 0 0
\(89\) −2.39902 + 4.15523i −0.254296 + 0.440453i −0.964704 0.263337i \(-0.915177\pi\)
0.710408 + 0.703790i \(0.248510\pi\)
\(90\) 0 0
\(91\) 15.8854 1.58382i 1.66524 0.166030i
\(92\) 0 0
\(93\) 3.34408 + 1.93071i 0.346765 + 0.200205i
\(94\) 0 0
\(95\) 8.76300 17.1419i 0.899065 1.75872i
\(96\) 0 0
\(97\) 18.6629i 1.89493i −0.319862 0.947464i \(-0.603637\pi\)
0.319862 0.947464i \(-0.396363\pi\)
\(98\) 0 0
\(99\) 4.02956 0.404986
\(100\) 0 0
\(101\) −6.23013 10.7909i −0.619921 1.07374i −0.989500 0.144536i \(-0.953831\pi\)
0.369578 0.929200i \(-0.379502\pi\)
\(102\) 0 0
\(103\) −4.65554 2.68788i −0.458724 0.264845i 0.252783 0.967523i \(-0.418654\pi\)
−0.711508 + 0.702678i \(0.751987\pi\)
\(104\) 0 0
\(105\) 3.69233 + 4.62241i 0.360335 + 0.451101i
\(106\) 0 0
\(107\) −6.24409 3.60503i −0.603639 0.348511i 0.166833 0.985985i \(-0.446646\pi\)
−0.770472 + 0.637474i \(0.779979\pi\)
\(108\) 0 0
\(109\) 2.64168 + 4.57553i 0.253027 + 0.438256i 0.964358 0.264601i \(-0.0852404\pi\)
−0.711330 + 0.702858i \(0.751907\pi\)
\(110\) 0 0
\(111\) −5.32972 −0.505874
\(112\) 0 0
\(113\) 0.356111i 0.0335001i 0.999860 + 0.0167500i \(0.00533195\pi\)
−0.999860 + 0.0167500i \(0.994668\pi\)
\(114\) 0 0
\(115\) −9.83994 5.03021i −0.917580 0.469069i
\(116\) 0 0
\(117\) 5.22550 + 3.01694i 0.483097 + 0.278916i
\(118\) 0 0
\(119\) 1.45447 + 2.02458i 0.133331 + 0.185593i
\(120\) 0 0
\(121\) −2.61867 + 4.53566i −0.238060 + 0.412333i
\(122\) 0 0
\(123\) −5.40980 + 3.12335i −0.487786 + 0.281623i
\(124\) 0 0
\(125\) 11.0496 1.70489i 0.988305 0.152490i
\(126\) 0 0
\(127\) 8.24238i 0.731393i 0.930734 + 0.365696i \(0.119169\pi\)
−0.930734 + 0.365696i \(0.880831\pi\)
\(128\) 0 0
\(129\) −2.51973 4.36431i −0.221850 0.384256i
\(130\) 0 0
\(131\) −3.49102 + 6.04663i −0.305012 + 0.528297i −0.977264 0.212026i \(-0.931994\pi\)
0.672252 + 0.740322i \(0.265327\pi\)
\(132\) 0 0
\(133\) −20.7600 9.37622i −1.80012 0.813021i
\(134\) 0 0
\(135\) 0.114055 + 2.23316i 0.00981629 + 0.192200i
\(136\) 0 0
\(137\) 10.0810 5.82027i 0.861278 0.497259i −0.00316232 0.999995i \(-0.501007\pi\)
0.864440 + 0.502736i \(0.167673\pi\)
\(138\) 0 0
\(139\) −17.6122 −1.49385 −0.746923 0.664910i \(-0.768470\pi\)
−0.746923 + 0.664910i \(0.768470\pi\)
\(140\) 0 0
\(141\) −11.7300 −0.987843
\(142\) 0 0
\(143\) −21.0564 + 12.1569i −1.76083 + 1.01661i
\(144\) 0 0
\(145\) 13.3781 0.683267i 1.11099 0.0567422i
\(146\) 0 0
\(147\) 5.25179 4.62804i 0.433160 0.381714i
\(148\) 0 0
\(149\) −0.0837612 + 0.145079i −0.00686199 + 0.0118853i −0.869436 0.494046i \(-0.835518\pi\)
0.862574 + 0.505931i \(0.168851\pi\)
\(150\) 0 0
\(151\) 4.46708 + 7.73720i 0.363526 + 0.629645i 0.988538 0.150970i \(-0.0482396\pi\)
−0.625013 + 0.780615i \(0.714906\pi\)
\(152\) 0 0
\(153\) 0.942216i 0.0761736i
\(154\) 0 0
\(155\) −4.69298 7.24765i −0.376949 0.582146i
\(156\) 0 0
\(157\) 0.326196 0.188329i 0.0260332 0.0150303i −0.486927 0.873443i \(-0.661882\pi\)
0.512960 + 0.858412i \(0.328549\pi\)
\(158\) 0 0
\(159\) −2.53432 + 4.38958i −0.200985 + 0.348116i
\(160\) 0 0
\(161\) −5.38221 + 11.9168i −0.424178 + 0.939176i
\(162\) 0 0
\(163\) −10.5436 6.08734i −0.825837 0.476797i 0.0265880 0.999646i \(-0.491536\pi\)
−0.852425 + 0.522849i \(0.824869\pi\)
\(164\) 0 0
\(165\) −8.02284 4.10130i −0.624577 0.319286i
\(166\) 0 0
\(167\) 2.43840i 0.188689i −0.995540 0.0943447i \(-0.969924\pi\)
0.995540 0.0943447i \(-0.0300756\pi\)
\(168\) 0 0
\(169\) −23.4077 −1.80060
\(170\) 0 0
\(171\) −4.30486 7.45623i −0.329201 0.570192i
\(172\) 0 0
\(173\) −4.91112 2.83544i −0.373385 0.215574i 0.301551 0.953450i \(-0.402496\pi\)
−0.674936 + 0.737876i \(0.735829\pi\)
\(174\) 0 0
\(175\) −2.64672 12.9613i −0.200073 0.979781i
\(176\) 0 0
\(177\) −3.78222 2.18367i −0.284289 0.164135i
\(178\) 0 0
\(179\) 0.252651 + 0.437604i 0.0188840 + 0.0327081i 0.875313 0.483557i \(-0.160655\pi\)
−0.856429 + 0.516265i \(0.827322\pi\)
\(180\) 0 0
\(181\) −26.1722 −1.94536 −0.972681 0.232145i \(-0.925426\pi\)
−0.972681 + 0.232145i \(0.925426\pi\)
\(182\) 0 0
\(183\) 1.51805i 0.112217i
\(184\) 0 0
\(185\) 10.6115 + 5.42461i 0.780170 + 0.398825i
\(186\) 0 0
\(187\) −3.28805 1.89836i −0.240446 0.138822i
\(188\) 0 0
\(189\) 2.63270 0.262488i 0.191501 0.0190932i
\(190\) 0 0
\(191\) −8.67308 + 15.0222i −0.627562 + 1.08697i 0.360477 + 0.932768i \(0.382614\pi\)
−0.988039 + 0.154202i \(0.950719\pi\)
\(192\) 0 0
\(193\) −3.36126 + 1.94062i −0.241949 + 0.139689i −0.616072 0.787690i \(-0.711277\pi\)
0.374123 + 0.927379i \(0.377944\pi\)
\(194\) 0 0
\(195\) −7.33330 11.3253i −0.525148 0.811018i
\(196\) 0 0
\(197\) 8.60444i 0.613041i 0.951864 + 0.306520i \(0.0991648\pi\)
−0.951864 + 0.306520i \(0.900835\pi\)
\(198\) 0 0
\(199\) −3.95389 6.84834i −0.280284 0.485466i 0.691171 0.722692i \(-0.257095\pi\)
−0.971455 + 0.237226i \(0.923762\pi\)
\(200\) 0 0
\(201\) 4.78110 8.28111i 0.337233 0.584105i
\(202\) 0 0
\(203\) −1.57248 15.7716i −0.110367 1.10695i
\(204\) 0 0
\(205\) 13.9499 0.712468i 0.974301 0.0497609i
\(206\) 0 0
\(207\) −4.28008 + 2.47111i −0.297486 + 0.171754i
\(208\) 0 0
\(209\) 34.6933 2.39979
\(210\) 0 0
\(211\) 18.3347 1.26221 0.631105 0.775697i \(-0.282602\pi\)
0.631105 + 0.775697i \(0.282602\pi\)
\(212\) 0 0
\(213\) −7.73529 + 4.46597i −0.530013 + 0.306003i
\(214\) 0 0
\(215\) 0.574777 + 11.2539i 0.0391994 + 0.767511i
\(216\) 0 0
\(217\) −8.29717 + 5.96075i −0.563249 + 0.404642i
\(218\) 0 0
\(219\) 3.41221 5.91012i 0.230576 0.399369i
\(220\) 0 0
\(221\) −2.84261 4.92355i −0.191215 0.331193i
\(222\) 0 0
\(223\) 2.95434i 0.197837i −0.995096 0.0989186i \(-0.968462\pi\)
0.995096 0.0989186i \(-0.0315383\pi\)
\(224\) 0 0
\(225\) 2.04583 4.56230i 0.136389 0.304153i
\(226\) 0 0
\(227\) 14.3495 8.28468i 0.952409 0.549874i 0.0585806 0.998283i \(-0.481343\pi\)
0.893828 + 0.448409i \(0.148009\pi\)
\(228\) 0 0
\(229\) −12.0536 + 20.8775i −0.796525 + 1.37962i 0.125342 + 0.992114i \(0.459997\pi\)
−0.921866 + 0.387508i \(0.873336\pi\)
\(230\) 0 0
\(231\) −4.38830 + 9.71618i −0.288729 + 0.639278i
\(232\) 0 0
\(233\) 8.93499 + 5.15862i 0.585350 + 0.337952i 0.763257 0.646095i \(-0.223599\pi\)
−0.177906 + 0.984047i \(0.556932\pi\)
\(234\) 0 0
\(235\) 23.3544 + 11.9388i 1.52347 + 0.778803i
\(236\) 0 0
\(237\) 6.87416i 0.446525i
\(238\) 0 0
\(239\) −21.4416 −1.38694 −0.693472 0.720483i \(-0.743920\pi\)
−0.693472 + 0.720483i \(0.743920\pi\)
\(240\) 0 0
\(241\) −9.79026 16.9572i −0.630646 1.09231i −0.987420 0.158120i \(-0.949457\pi\)
0.356774 0.934191i \(-0.383877\pi\)
\(242\) 0 0
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) −15.1667 + 3.86912i −0.968967 + 0.247189i
\(246\) 0 0
\(247\) 44.9900 + 25.9750i 2.86265 + 1.65275i
\(248\) 0 0
\(249\) 8.18011 + 14.1684i 0.518394 + 0.897884i
\(250\) 0 0
\(251\) 3.07240 0.193928 0.0969640 0.995288i \(-0.469087\pi\)
0.0969640 + 0.995288i \(0.469087\pi\)
\(252\) 0 0
\(253\) 19.9149i 1.25204i
\(254\) 0 0
\(255\) 0.958991 1.87595i 0.0600544 0.117477i
\(256\) 0 0
\(257\) −22.9987 13.2783i −1.43462 0.828279i −0.437152 0.899388i \(-0.644013\pi\)
−0.997469 + 0.0711089i \(0.977346\pi\)
\(258\) 0 0
\(259\) 5.80421 12.8512i 0.360656 0.798532i
\(260\) 0 0
\(261\) 2.99534 5.18808i 0.185407 0.321134i
\(262\) 0 0
\(263\) −16.7003 + 9.64190i −1.02978 + 0.594545i −0.916922 0.399066i \(-0.869334\pi\)
−0.112860 + 0.993611i \(0.536001\pi\)
\(264\) 0 0
\(265\) 9.51356 6.16020i 0.584414 0.378418i
\(266\) 0 0
\(267\) 4.79804i 0.293635i
\(268\) 0 0
\(269\) −2.89650 5.01688i −0.176603 0.305885i 0.764112 0.645083i \(-0.223177\pi\)
−0.940715 + 0.339199i \(0.889844\pi\)
\(270\) 0 0
\(271\) 2.79958 4.84901i 0.170062 0.294557i −0.768379 0.639995i \(-0.778936\pi\)
0.938441 + 0.345438i \(0.112270\pi\)
\(272\) 0 0
\(273\) −12.9652 + 9.31433i −0.784692 + 0.563729i
\(274\) 0 0
\(275\) 11.7991 + 16.3314i 0.711515 + 0.984818i
\(276\) 0 0
\(277\) 4.09578 2.36470i 0.246091 0.142081i −0.371882 0.928280i \(-0.621287\pi\)
0.617973 + 0.786199i \(0.287954\pi\)
\(278\) 0 0
\(279\) −3.86141 −0.231177
\(280\) 0 0
\(281\) −13.5939 −0.810942 −0.405471 0.914108i \(-0.632893\pi\)
−0.405471 + 0.914108i \(0.632893\pi\)
\(282\) 0 0
\(283\) −6.80740 + 3.93026i −0.404658 + 0.233629i −0.688492 0.725244i \(-0.741727\pi\)
0.283834 + 0.958873i \(0.408394\pi\)
\(284\) 0 0
\(285\) 0.981981 + 19.2268i 0.0581675 + 1.13890i
\(286\) 0 0
\(287\) −1.63969 16.4457i −0.0967876 0.970758i
\(288\) 0 0
\(289\) −8.05611 + 13.9536i −0.473889 + 0.820800i
\(290\) 0 0
\(291\) 9.33144 + 16.1625i 0.547019 + 0.947464i
\(292\) 0 0
\(293\) 12.6210i 0.737325i −0.929563 0.368662i \(-0.879816\pi\)
0.929563 0.368662i \(-0.120184\pi\)
\(294\) 0 0
\(295\) 5.30786 + 8.19724i 0.309035 + 0.477262i
\(296\) 0 0
\(297\) −3.48970 + 2.01478i −0.202493 + 0.116909i
\(298\) 0 0
\(299\) 14.9104 25.8255i 0.862289 1.49353i
\(300\) 0 0
\(301\) 13.2674 1.32280i 0.764720 0.0762450i
\(302\) 0 0
\(303\) 10.7909 + 6.23013i 0.619921 + 0.357912i
\(304\) 0 0
\(305\) −1.54507 + 3.02243i −0.0884707 + 0.173064i
\(306\) 0 0
\(307\) 21.1967i 1.20976i −0.796316 0.604880i \(-0.793221\pi\)
0.796316 0.604880i \(-0.206779\pi\)
\(308\) 0 0
\(309\) 5.37576 0.305816
\(310\) 0 0
\(311\) −3.00794 5.20990i −0.170565 0.295427i 0.768053 0.640387i \(-0.221226\pi\)
−0.938617 + 0.344960i \(0.887892\pi\)
\(312\) 0 0
\(313\) −15.8248 9.13644i −0.894470 0.516422i −0.0190678 0.999818i \(-0.506070\pi\)
−0.875402 + 0.483396i \(0.839403\pi\)
\(314\) 0 0
\(315\) −5.50886 2.15696i −0.310389 0.121531i
\(316\) 0 0
\(317\) 11.1698 + 6.44888i 0.627358 + 0.362205i 0.779728 0.626118i \(-0.215357\pi\)
−0.152370 + 0.988324i \(0.548691\pi\)
\(318\) 0 0
\(319\) 12.0699 + 20.9057i 0.675784 + 1.17049i
\(320\) 0 0
\(321\) 7.21006 0.402426
\(322\) 0 0
\(323\) 8.11221i 0.451375i
\(324\) 0 0
\(325\) 3.07369 + 30.0124i 0.170498 + 1.66479i
\(326\) 0 0
\(327\) −4.57553 2.64168i −0.253027 0.146085i
\(328\) 0 0
\(329\) 12.7743 28.2837i 0.704269 1.55933i
\(330\) 0 0
\(331\) −1.06329 + 1.84167i −0.0584438 + 0.101228i −0.893767 0.448532i \(-0.851947\pi\)
0.835323 + 0.549759i \(0.185281\pi\)
\(332\) 0 0
\(333\) 4.61567 2.66486i 0.252937 0.146033i
\(334\) 0 0
\(335\) −17.9477 + 11.6215i −0.980588 + 0.634948i
\(336\) 0 0
\(337\) 9.24557i 0.503639i 0.967774 + 0.251819i \(0.0810289\pi\)
−0.967774 + 0.251819i \(0.918971\pi\)
\(338\) 0 0
\(339\) −0.178055 0.308401i −0.00967064 0.0167500i
\(340\) 0 0
\(341\) 7.77989 13.4752i 0.421305 0.729721i
\(342\) 0 0
\(343\) 5.43991 + 17.7033i 0.293728 + 0.955889i
\(344\) 0 0
\(345\) 11.0367 0.563685i 0.594198 0.0303478i
\(346\) 0 0
\(347\) 5.66332 3.26972i 0.304023 0.175528i −0.340226 0.940344i \(-0.610503\pi\)
0.644249 + 0.764816i \(0.277170\pi\)
\(348\) 0 0
\(349\) 12.0217 0.643508 0.321754 0.946823i \(-0.395728\pi\)
0.321754 + 0.946823i \(0.395728\pi\)
\(350\) 0 0
\(351\) −6.03388 −0.322065
\(352\) 0 0
\(353\) −10.1811 + 5.87805i −0.541884 + 0.312857i −0.745842 0.666123i \(-0.767953\pi\)
0.203958 + 0.978980i \(0.434619\pi\)
\(354\) 0 0
\(355\) 19.9464 1.01873i 1.05865 0.0540687i
\(356\) 0 0
\(357\) −2.27190 1.02610i −0.120242 0.0543069i
\(358\) 0 0
\(359\) −10.3181 + 17.8714i −0.544567 + 0.943217i 0.454068 + 0.890967i \(0.349972\pi\)
−0.998634 + 0.0522496i \(0.983361\pi\)
\(360\) 0 0
\(361\) −27.5636 47.7415i −1.45072 2.51271i
\(362\) 0 0
\(363\) 5.23733i 0.274889i
\(364\) 0 0
\(365\) −12.8090 + 8.29408i −0.670456 + 0.434132i
\(366\) 0 0
\(367\) −17.0552 + 9.84685i −0.890276 + 0.514001i −0.874033 0.485867i \(-0.838504\pi\)
−0.0162435 + 0.999868i \(0.505171\pi\)
\(368\) 0 0
\(369\) 3.12335 5.40980i 0.162595 0.281623i
\(370\) 0 0
\(371\) −7.82432 10.8912i −0.406219 0.565443i
\(372\) 0 0
\(373\) 5.34658 + 3.08685i 0.276835 + 0.159831i 0.631990 0.774977i \(-0.282238\pi\)
−0.355155 + 0.934808i \(0.615572\pi\)
\(374\) 0 0
\(375\) −8.71678 + 7.00127i −0.450132 + 0.361544i
\(376\) 0 0
\(377\) 36.1471i 1.86167i
\(378\) 0 0
\(379\) −19.0333 −0.977675 −0.488838 0.872375i \(-0.662579\pi\)
−0.488838 + 0.872375i \(0.662579\pi\)
\(380\) 0 0
\(381\) −4.12119 7.13811i −0.211135 0.365696i
\(382\) 0 0
\(383\) 22.9300 + 13.2387i 1.17167 + 0.676464i 0.954073 0.299575i \(-0.0968448\pi\)
0.217597 + 0.976039i \(0.430178\pi\)
\(384\) 0 0
\(385\) 18.6263 14.8785i 0.949282 0.758277i
\(386\) 0 0
\(387\) 4.36431 + 2.51973i 0.221850 + 0.128085i
\(388\) 0 0
\(389\) −11.4088 19.7606i −0.578448 1.00190i −0.995658 0.0930910i \(-0.970325\pi\)
0.417210 0.908810i \(-0.363008\pi\)
\(390\) 0 0
\(391\) 4.65663 0.235496
\(392\) 0 0
\(393\) 6.98205i 0.352198i
\(394\) 0 0
\(395\) −6.99655 + 13.6864i −0.352034 + 0.688639i
\(396\) 0 0
\(397\) −8.74349 5.04806i −0.438823 0.253355i 0.264275 0.964447i \(-0.414867\pi\)
−0.703098 + 0.711093i \(0.748201\pi\)
\(398\) 0 0
\(399\) 22.6668 2.25995i 1.13476 0.113139i
\(400\) 0 0
\(401\) −6.01833 + 10.4241i −0.300541 + 0.520552i −0.976259 0.216608i \(-0.930501\pi\)
0.675718 + 0.737161i \(0.263834\pi\)
\(402\) 0 0
\(403\) 20.1778 11.6497i 1.00513 0.580311i
\(404\) 0 0
\(405\) −1.21535 1.87694i −0.0603914 0.0932661i
\(406\) 0 0
\(407\) 21.4764i 1.06455i
\(408\) 0 0
\(409\) −14.2036 24.6013i −0.702322 1.21646i −0.967649 0.252300i \(-0.918813\pi\)
0.265327 0.964159i \(-0.414520\pi\)
\(410\) 0 0
\(411\) −5.82027 + 10.0810i −0.287093 + 0.497259i
\(412\) 0 0
\(413\) 9.38427 6.74173i 0.461770 0.331739i
\(414\) 0 0
\(415\) −1.86597 36.5350i −0.0915967 1.79343i
\(416\) 0 0
\(417\) 15.2526 8.80609i 0.746923 0.431236i
\(418\) 0 0
\(419\) 23.3941 1.14288 0.571439 0.820645i \(-0.306386\pi\)
0.571439 + 0.820645i \(0.306386\pi\)
\(420\) 0 0
\(421\) 37.7341 1.83905 0.919524 0.393033i \(-0.128574\pi\)
0.919524 + 0.393033i \(0.128574\pi\)
\(422\) 0 0
\(423\) 10.1585 5.86499i 0.493921 0.285166i
\(424\) 0 0
\(425\) −3.81870 + 2.75895i −0.185234 + 0.133829i
\(426\) 0 0
\(427\) 3.66036 + 1.65320i 0.177137 + 0.0800037i
\(428\) 0 0
\(429\) 12.1569 21.0564i 0.586942 1.01661i
\(430\) 0 0
\(431\) 6.67013 + 11.5530i 0.321289 + 0.556488i 0.980754 0.195247i \(-0.0625507\pi\)
−0.659466 + 0.751735i \(0.729217\pi\)
\(432\) 0 0
\(433\) 2.73860i 0.131609i −0.997833 0.0658044i \(-0.979039\pi\)
0.997833 0.0658044i \(-0.0209613\pi\)
\(434\) 0 0
\(435\) −11.2442 + 7.28079i −0.539116 + 0.349087i
\(436\) 0 0
\(437\) −36.8503 + 21.2755i −1.76279 + 1.01775i
\(438\) 0 0
\(439\) −11.2670 + 19.5150i −0.537745 + 0.931401i 0.461280 + 0.887254i \(0.347390\pi\)
−0.999025 + 0.0441467i \(0.985943\pi\)
\(440\) 0 0
\(441\) −2.23416 + 6.63389i −0.106389 + 0.315900i
\(442\) 0 0
\(443\) −28.2480 16.3090i −1.34210 0.774863i −0.354986 0.934871i \(-0.615515\pi\)
−0.987116 + 0.160008i \(0.948848\pi\)
\(444\) 0 0
\(445\) −4.88347 + 9.55290i −0.231499 + 0.452851i
\(446\) 0 0
\(447\) 0.167522i 0.00792354i
\(448\) 0 0
\(449\) 24.4718 1.15490 0.577448 0.816427i \(-0.304049\pi\)
0.577448 + 0.816427i \(0.304049\pi\)
\(450\) 0 0
\(451\) 12.5857 + 21.7991i 0.592639 + 1.02648i
\(452\) 0 0
\(453\) −7.73720 4.46708i −0.363526 0.209882i
\(454\) 0 0
\(455\) 35.2939 5.34873i 1.65461 0.250753i
\(456\) 0 0
\(457\) 5.20589 + 3.00562i 0.243521 + 0.140597i 0.616794 0.787125i \(-0.288431\pi\)
−0.373273 + 0.927722i \(0.621764\pi\)
\(458\) 0 0
\(459\) −0.471108 0.815983i −0.0219894 0.0380868i
\(460\) 0 0
\(461\) 12.6005 0.586863 0.293432 0.955980i \(-0.405203\pi\)
0.293432 + 0.955980i \(0.405203\pi\)
\(462\) 0 0
\(463\) 15.1538i 0.704258i 0.935951 + 0.352129i \(0.114542\pi\)
−0.935951 + 0.352129i \(0.885458\pi\)
\(464\) 0 0
\(465\) 7.68807 + 3.93016i 0.356526 + 0.182257i
\(466\) 0 0
\(467\) 6.26188 + 3.61530i 0.289765 + 0.167296i 0.637836 0.770172i \(-0.279830\pi\)
−0.348071 + 0.937468i \(0.613163\pi\)
\(468\) 0 0
\(469\) 14.7609 + 20.5467i 0.681595 + 0.948758i
\(470\) 0 0
\(471\) −0.188329 + 0.326196i −0.00867775 + 0.0150303i
\(472\) 0 0
\(473\) −17.5862 + 10.1534i −0.808616 + 0.466854i
\(474\) 0 0
\(475\) 17.6140 39.2801i 0.808188 1.80229i
\(476\) 0 0
\(477\) 5.06865i 0.232077i
\(478\) 0 0
\(479\) 11.3323 + 19.6282i 0.517788 + 0.896835i 0.999786 + 0.0206632i \(0.00657777\pi\)
−0.481998 + 0.876172i \(0.660089\pi\)
\(480\) 0 0
\(481\) −16.0794 + 27.8504i −0.733160 + 1.26987i
\(482\) 0 0
\(483\) −1.29727 13.0114i −0.0590280 0.592038i
\(484\) 0 0
\(485\) −2.12860 41.6771i −0.0966545 1.89246i
\(486\) 0 0
\(487\) 1.35472 0.782149i 0.0613883 0.0354425i −0.468992 0.883203i \(-0.655383\pi\)
0.530380 + 0.847760i \(0.322049\pi\)
\(488\) 0 0
\(489\) 12.1747 0.550558
\(490\) 0 0
\(491\) 26.6626 1.20327 0.601633 0.798773i \(-0.294517\pi\)
0.601633 + 0.798773i \(0.294517\pi\)
\(492\) 0 0
\(493\) −4.88829 + 2.82226i −0.220158 + 0.127108i
\(494\) 0 0
\(495\) 8.99863 0.459591i 0.404459 0.0206571i
\(496\) 0 0
\(497\) −2.34453 23.5151i −0.105167 1.05480i
\(498\) 0 0
\(499\) 7.79416 13.4999i 0.348914 0.604338i −0.637142 0.770746i \(-0.719884\pi\)
0.986057 + 0.166408i \(0.0532170\pi\)
\(500\) 0 0
\(501\) 1.21920 + 2.11172i 0.0544699 + 0.0943447i
\(502\) 0 0
\(503\) 3.45014i 0.153834i −0.997037 0.0769171i \(-0.975492\pi\)
0.997037 0.0769171i \(-0.0245077\pi\)
\(504\) 0 0
\(505\) −15.1436 23.3872i −0.673882 1.04072i
\(506\) 0 0
\(507\) 20.2717 11.7039i 0.900298 0.519787i
\(508\) 0 0
\(509\) −8.62103 + 14.9321i −0.382121 + 0.661852i −0.991365 0.131130i \(-0.958139\pi\)
0.609245 + 0.792982i \(0.291473\pi\)
\(510\) 0 0
\(511\) 10.5347 + 14.6639i 0.466026 + 0.648692i
\(512\) 0 0
\(513\) 7.45623 + 4.30486i 0.329201 + 0.190064i
\(514\) 0 0
\(515\) −10.7031 5.47147i −0.471636 0.241102i
\(516\) 0 0
\(517\) 47.2666i 2.07878i
\(518\) 0 0
\(519\) 5.67087 0.248924
\(520\) 0 0
\(521\) −12.0109 20.8034i −0.526205 0.911415i −0.999534 0.0305286i \(-0.990281\pi\)
0.473328 0.880886i \(-0.343052\pi\)
\(522\) 0 0
\(523\) 11.2726 + 6.50827i 0.492918 + 0.284587i 0.725784 0.687922i \(-0.241477\pi\)
−0.232866 + 0.972509i \(0.574810\pi\)
\(524\) 0 0
\(525\) 8.77277 + 9.90144i 0.382875 + 0.432134i
\(526\) 0 0
\(527\) 3.15085 + 1.81914i 0.137253 + 0.0792431i
\(528\) 0 0
\(529\) 0.712749 + 1.23452i 0.0309891 + 0.0536747i
\(530\) 0 0
\(531\) 4.36734 0.189526
\(532\) 0 0
\(533\) 37.6919i 1.63262i
\(534\) 0 0
\(535\) −14.3552 7.33842i −0.620630 0.317268i
\(536\) 0 0
\(537\) −0.437604 0.252651i −0.0188840 0.0109027i
\(538\) 0 0
\(539\) −18.6489 21.1624i −0.803267 0.911528i
\(540\) 0 0
\(541\) 2.92211 5.06124i 0.125631 0.217600i −0.796348 0.604838i \(-0.793238\pi\)
0.921980 + 0.387239i \(0.126571\pi\)
\(542\) 0 0
\(543\) 22.6658 13.0861i 0.972681 0.561578i
\(544\) 0 0
\(545\) 6.42116 + 9.91658i 0.275052 + 0.424780i
\(546\) 0 0
\(547\) 0.494131i 0.0211275i −0.999944 0.0105638i \(-0.996637\pi\)
0.999944 0.0105638i \(-0.00336261\pi\)
\(548\) 0 0
\(549\) 0.759024 + 1.31467i 0.0323943 + 0.0561087i
\(550\) 0 0
\(551\) 25.7890 44.6679i 1.09865 1.90292i
\(552\) 0 0
\(553\) 16.5752 + 7.48615i 0.704848 + 0.318343i
\(554\) 0 0
\(555\) −11.9021 + 0.607881i −0.505216 + 0.0258031i
\(556\) 0 0
\(557\) 20.2502 11.6914i 0.858027 0.495382i −0.00532420 0.999986i \(-0.501695\pi\)
0.863351 + 0.504604i \(0.168361\pi\)
\(558\) 0 0
\(559\) −30.4076 −1.28610
\(560\) 0 0
\(561\) 3.79671 0.160297
\(562\) 0 0
\(563\) −35.9025 + 20.7283i −1.51311 + 0.873594i −0.513227 + 0.858253i \(0.671550\pi\)
−0.999882 + 0.0153411i \(0.995117\pi\)
\(564\) 0 0
\(565\) 0.0406162 + 0.795251i 0.00170874 + 0.0334565i
\(566\) 0 0
\(567\) −2.14874 + 1.54367i −0.0902386 + 0.0648281i
\(568\) 0 0
\(569\) −13.3499 + 23.1227i −0.559656 + 0.969352i 0.437869 + 0.899039i \(0.355733\pi\)
−0.997525 + 0.0703134i \(0.977600\pi\)
\(570\) 0 0
\(571\) 7.93378 + 13.7417i 0.332019 + 0.575073i 0.982908 0.184100i \(-0.0589370\pi\)
−0.650889 + 0.759173i \(0.725604\pi\)
\(572\) 0 0
\(573\) 17.3462i 0.724647i
\(574\) 0 0
\(575\) −22.5479 10.1109i −0.940311 0.421656i
\(576\) 0 0
\(577\) 37.9174 21.8916i 1.57852 0.911359i 0.583454 0.812146i \(-0.301701\pi\)
0.995066 0.0992127i \(-0.0316324\pi\)
\(578\) 0 0
\(579\) 1.94062 3.36126i 0.0806496 0.139689i
\(580\) 0 0
\(581\) −43.0715 + 4.29437i −1.78691 + 0.178160i
\(582\) 0 0
\(583\) 17.6881 + 10.2122i 0.732564 + 0.422946i
\(584\) 0 0
\(585\) 12.0135 + 6.14131i 0.496695 + 0.253912i
\(586\) 0 0
\(587\) 11.9428i 0.492933i 0.969151 + 0.246467i \(0.0792696\pi\)
−0.969151 + 0.246467i \(0.920730\pi\)
\(588\) 0 0
\(589\) −33.2457 −1.36986
\(590\) 0 0
\(591\) −4.30222 7.45166i −0.176970 0.306520i
\(592\) 0 0
\(593\) 39.6083 + 22.8678i 1.62652 + 0.939070i 0.985122 + 0.171859i \(0.0549774\pi\)
0.641395 + 0.767211i \(0.278356\pi\)
\(594\) 0 0
\(595\) 3.47898 + 4.35531i 0.142624 + 0.178550i
\(596\) 0 0
\(597\) 6.84834 + 3.95389i 0.280284 + 0.161822i
\(598\) 0 0
\(599\) 1.00358 + 1.73825i 0.0410052 + 0.0710230i 0.885800 0.464068i \(-0.153611\pi\)
−0.844794 + 0.535091i \(0.820277\pi\)
\(600\) 0 0
\(601\) 41.7743 1.70401 0.852004 0.523535i \(-0.175387\pi\)
0.852004 + 0.523535i \(0.175387\pi\)
\(602\) 0 0
\(603\) 9.56220i 0.389403i
\(604\) 0 0
\(605\) −5.33058 + 10.4275i −0.216719 + 0.423939i
\(606\) 0 0
\(607\) −21.4763 12.3993i −0.871695 0.503273i −0.00378381 0.999993i \(-0.501204\pi\)
−0.867911 + 0.496720i \(0.834538\pi\)
\(608\) 0 0
\(609\) 9.24763 + 12.8724i 0.374733 + 0.521616i
\(610\) 0 0
\(611\) −35.3887 + 61.2950i −1.43167 + 2.47973i
\(612\) 0 0
\(613\) −12.0834 + 6.97638i −0.488045 + 0.281773i −0.723763 0.690048i \(-0.757589\pi\)
0.235718 + 0.971822i \(0.424256\pi\)
\(614\) 0 0
\(615\) −11.7247 + 7.59195i −0.472786 + 0.306137i
\(616\) 0 0
\(617\) 10.0319i 0.403867i −0.979399 0.201934i \(-0.935277\pi\)
0.979399 0.201934i \(-0.0647226\pi\)
\(618\) 0 0
\(619\) 4.81213 + 8.33486i 0.193416 + 0.335006i 0.946380 0.323055i \(-0.104710\pi\)
−0.752964 + 0.658061i \(0.771377\pi\)
\(620\) 0 0
\(621\) 2.47111 4.28008i 0.0991621 0.171754i
\(622\) 0 0
\(623\) 11.5692 + 5.22520i 0.463509 + 0.209343i
\(624\) 0 0
\(625\) 24.4810 5.06755i 0.979240 0.202702i
\(626\) 0 0
\(627\) −30.0453 + 17.3467i −1.19989 + 0.692759i
\(628\) 0 0
\(629\) −5.02175 −0.200230
\(630\) 0 0
\(631\) 19.5975 0.780166 0.390083 0.920780i \(-0.372446\pi\)
0.390083 + 0.920780i \(0.372446\pi\)
\(632\) 0 0
\(633\) −15.8783 + 9.16733i −0.631105 + 0.364369i
\(634\) 0 0
\(635\) 0.940084 + 18.4065i 0.0373061 + 0.730441i
\(636\) 0 0
\(637\) −8.33946 41.4057i −0.330421 1.64055i
\(638\) 0 0
\(639\) 4.46597 7.73529i 0.176671 0.306003i
\(640\) 0 0
\(641\) −21.1952 36.7112i −0.837160 1.45000i −0.892259 0.451524i \(-0.850881\pi\)
0.0550987 0.998481i \(-0.482453\pi\)
\(642\) 0 0
\(643\) 9.64930i 0.380531i 0.981733 + 0.190266i \(0.0609349\pi\)
−0.981733 + 0.190266i \(0.939065\pi\)
\(644\) 0 0
\(645\) −6.12473 9.45880i −0.241161 0.372440i
\(646\) 0 0
\(647\) −9.61266 + 5.54987i −0.377913 + 0.218188i −0.676910 0.736066i \(-0.736681\pi\)
0.298997 + 0.954254i \(0.403348\pi\)
\(648\) 0 0
\(649\) −8.79922 + 15.2407i −0.345399 + 0.598249i
\(650\) 0 0
\(651\) 4.20519 9.31075i 0.164814 0.364917i
\(652\) 0 0
\(653\) −3.64945 2.10701i −0.142814 0.0824536i 0.426891 0.904303i \(-0.359609\pi\)
−0.569704 + 0.821850i \(0.692942\pi\)
\(654\) 0 0
\(655\) −7.10636 + 13.9012i −0.277668 + 0.543167i
\(656\) 0 0
\(657\) 6.82442i 0.266246i
\(658\) 0 0
\(659\) 6.52405 0.254141 0.127070 0.991894i \(-0.459443\pi\)
0.127070 + 0.991894i \(0.459443\pi\)
\(660\) 0 0
\(661\) −6.36675 11.0275i −0.247638 0.428922i 0.715232 0.698887i \(-0.246321\pi\)
−0.962870 + 0.269965i \(0.912988\pi\)
\(662\) 0 0
\(663\) 4.92355 + 2.84261i 0.191215 + 0.110398i
\(664\) 0 0
\(665\) −47.4297 18.5708i −1.83925 0.720144i
\(666\) 0 0
\(667\) −25.6406 14.8036i −0.992808 0.573198i
\(668\) 0 0
\(669\) 1.47717 + 2.55853i 0.0571107 + 0.0989186i
\(670\) 0 0
\(671\) −6.11706 −0.236146
\(672\) 0 0
\(673\) 36.7489i 1.41656i −0.705929 0.708282i \(-0.749470\pi\)
0.705929 0.708282i \(-0.250530\pi\)
\(674\) 0 0
\(675\) 0.509406 + 4.97398i 0.0196070 + 0.191449i
\(676\) 0 0
\(677\) −12.2576 7.07691i −0.471097 0.271988i 0.245602 0.969371i \(-0.421014\pi\)
−0.716699 + 0.697383i \(0.754348\pi\)
\(678\) 0 0
\(679\) −49.1337 + 4.89879i −1.88558 + 0.187998i
\(680\) 0 0
\(681\) −8.28468 + 14.3495i −0.317470 + 0.549874i
\(682\) 0 0
\(683\) 19.2195 11.0964i 0.735413 0.424591i −0.0849862 0.996382i \(-0.527085\pi\)
0.820399 + 0.571791i \(0.193751\pi\)
\(684\) 0 0
\(685\) 21.8486 14.1474i 0.834793 0.540543i
\(686\) 0 0
\(687\) 24.1072i 0.919748i
\(688\) 0 0
\(689\) 15.2918 + 26.4862i 0.582572 + 1.00904i
\(690\) 0 0
\(691\) 24.2439 41.9916i 0.922280 1.59744i 0.126401 0.991979i \(-0.459657\pi\)
0.795879 0.605456i \(-0.207009\pi\)
\(692\) 0 0
\(693\) −1.05771 10.6086i −0.0401791 0.402988i
\(694\) 0 0
\(695\) −39.3308 + 2.00876i −1.49190 + 0.0761965i
\(696\) 0 0
\(697\) −5.09720 + 2.94287i −0.193070 + 0.111469i
\(698\) 0 0
\(699\) −10.3172 −0.390234
\(700\) 0 0
\(701\) −0.122295 −0.00461901 −0.00230950 0.999997i \(-0.500735\pi\)
−0.00230950 + 0.999997i \(0.500735\pi\)
\(702\) 0 0
\(703\) 39.7396 22.9437i 1.49881 0.865337i
\(704\) 0 0
\(705\) −26.1949 + 1.33786i −0.986557 + 0.0503869i
\(706\) 0 0
\(707\) −26.7739 + 19.2345i −1.00693 + 0.723389i
\(708\) 0 0
\(709\) 11.9545 20.7058i 0.448960 0.777621i −0.549359 0.835587i \(-0.685128\pi\)
0.998319 + 0.0579652i \(0.0184613\pi\)
\(710\) 0 0
\(711\) 3.43708 + 5.95320i 0.128901 + 0.223262i
\(712\) 0 0
\(713\) 19.0839i 0.714699i
\(714\) 0 0
\(715\) −45.6358 + 29.5499i −1.70668 + 1.10511i
\(716\) 0 0
\(717\) 18.5690 10.7208i 0.693472 0.400376i
\(718\) 0 0
\(719\) 3.19471 5.53340i 0.119143 0.206361i −0.800286 0.599619i \(-0.795319\pi\)
0.919428 + 0.393258i \(0.128652\pi\)
\(720\) 0 0
\(721\) −5.85435 + 12.9622i −0.218027 + 0.482737i
\(722\) 0 0
\(723\) 16.9572 + 9.79026i 0.630646 + 0.364104i
\(724\) 0 0
\(725\) 29.7975 3.05169i 1.10665 0.113337i
\(726\) 0 0
\(727\) 43.7937i 1.62422i −0.583505 0.812110i \(-0.698319\pi\)
0.583505 0.812110i \(-0.301681\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −2.37413 4.11212i −0.0878105 0.152092i
\(732\) 0 0
\(733\) 29.1319 + 16.8193i 1.07601 + 0.621235i 0.929817 0.368021i \(-0.119965\pi\)
0.146193 + 0.989256i \(0.453298\pi\)
\(734\) 0 0
\(735\) 11.2002 10.9341i 0.413126 0.403311i
\(736\) 0 0
\(737\) −33.3692 19.2657i −1.22917 0.709662i
\(738\) 0 0
\(739\) −5.00246 8.66452i −0.184019 0.318730i 0.759227 0.650826i \(-0.225577\pi\)
−0.943245 + 0.332097i \(0.892244\pi\)
\(740\) 0 0
\(741\) −51.9500 −1.90843
\(742\) 0 0
\(743\) 43.8326i 1.60806i −0.594587 0.804031i \(-0.702684\pi\)
0.594587 0.804031i \(-0.297316\pi\)
\(744\) 0 0
\(745\) −0.170505 + 0.333537i −0.00624682 + 0.0122198i
\(746\) 0 0
\(747\) −14.1684 8.18011i −0.518394 0.299295i
\(748\) 0 0
\(749\) −7.85195 + 17.3851i −0.286904 + 0.635237i
\(750\) 0 0
\(751\) −14.0538 + 24.3418i −0.512829 + 0.888246i 0.487060 + 0.873368i \(0.338069\pi\)
−0.999889 + 0.0148777i \(0.995264\pi\)
\(752\) 0 0
\(753\) −2.66077 + 1.53620i −0.0969640 + 0.0559822i
\(754\) 0 0
\(755\) 10.8582 + 16.7689i 0.395169 + 0.610283i
\(756\) 0 0
\(757\) 4.04902i 0.147164i 0.997289 + 0.0735821i \(0.0234431\pi\)
−0.997289 + 0.0735821i \(0.976557\pi\)
\(758\) 0 0
\(759\) 9.95747 + 17.2468i 0.361433 + 0.626021i
\(760\) 0 0
\(761\) 1.84389 3.19371i 0.0668409 0.115772i −0.830668 0.556768i \(-0.812041\pi\)
0.897509 + 0.440996i \(0.145375\pi\)
\(762\) 0 0
\(763\) 11.3526 8.15578i 0.410991 0.295259i
\(764\) 0 0
\(765\) 0.107464 + 2.10412i 0.00388539 + 0.0760745i
\(766\) 0 0
\(767\) −22.8215 + 13.1760i −0.824037 + 0.475758i
\(768\) 0 0
\(769\) −32.7377 −1.18055 −0.590275 0.807202i \(-0.700981\pi\)
−0.590275 + 0.807202i \(0.700981\pi\)
\(770\) 0 0
\(771\) 26.5566 0.956414
\(772\) 0 0
\(773\) 34.4737 19.9034i 1.23993 0.715876i 0.270853 0.962621i \(-0.412694\pi\)
0.969080 + 0.246745i \(0.0793611\pi\)
\(774\) 0 0
\(775\) −11.3068 15.6499i −0.406152 0.562161i
\(776\) 0 0
\(777\) 1.39899 + 14.0315i 0.0501884 + 0.503379i
\(778\) 0 0
\(779\) 26.8912 46.5769i 0.963476 1.66879i
\(780\) 0 0
\(781\) 17.9959 + 31.1698i 0.643943 + 1.11534i
\(782\) 0 0
\(783\) 5.99068i 0.214089i
\(784\) 0 0
\(785\) 0.706966 0.457773i 0.0252327 0.0163386i
\(786\) 0 0
\(787\) 1.32740 0.766373i 0.0473166 0.0273183i −0.476155 0.879361i \(-0.657970\pi\)
0.523472 + 0.852043i \(0.324637\pi\)
\(788\) 0 0
\(789\) 9.64190 16.7003i 0.343261 0.594545i
\(790\) 0 0
\(791\) 0.937532 0.0934748i 0.0333348 0.00332358i
\(792\) 0 0
\(793\) −7.93255 4.57986i −0.281693 0.162636i
\(794\) 0 0
\(795\) −5.15889 + 10.0917i −0.182967 + 0.357915i
\(796\) 0 0
\(797\) 24.0075i 0.850388i 0.905102 + 0.425194i \(0.139794\pi\)
−0.905102 + 0.425194i \(0.860206\pi\)
\(798\) 0 0
\(799\) −11.0522 −0.390998
\(800\) 0 0
\(801\) 2.39902 + 4.15523i 0.0847653 + 0.146818i
\(802\) 0 0
\(803\) −23.8152 13.7497i −0.840419 0.485216i
\(804\) 0 0
\(805\) −10.6601 + 27.2260i −0.375721 + 0.959589i
\(806\) 0 0
\(807\) 5.01688 + 2.89650i 0.176603 + 0.101962i
\(808\) 0 0
\(809\) −5.42064 9.38882i −0.190580 0.330093i 0.754863 0.655883i \(-0.227703\pi\)
−0.945442 + 0.325789i \(0.894370\pi\)
\(810\) 0 0
\(811\) −14.0911 −0.494805 −0.247402 0.968913i \(-0.579577\pi\)
−0.247402 + 0.968913i \(0.579577\pi\)
\(812\) 0 0
\(813\) 5.59916i 0.196371i
\(814\) 0 0
\(815\) −24.2398 12.3914i −0.849082 0.434053i
\(816\) 0 0
\(817\) 37.5754 + 21.6942i 1.31460 + 0.758984i
\(818\) 0 0
\(819\) 6.57106 14.5491i 0.229612 0.508385i
\(820\) 0 0
\(821\) −20.3827 + 35.3039i −0.711361 + 1.23211i 0.252985 + 0.967470i \(0.418588\pi\)
−0.964346 + 0.264644i \(0.914746\pi\)
\(822\) 0 0
\(823\) −8.82720 + 5.09639i −0.307697 + 0.177649i −0.645895 0.763426i \(-0.723516\pi\)
0.338198 + 0.941075i \(0.390182\pi\)
\(824\) 0 0
\(825\) −18.3840 8.24380i −0.640050 0.287012i
\(826\) 0 0
\(827\) 12.2847i 0.427180i −0.976923 0.213590i \(-0.931484\pi\)
0.976923 0.213590i \(-0.0685157\pi\)
\(828\) 0 0
\(829\) 16.7079 + 28.9390i 0.580290 + 1.00509i 0.995445 + 0.0953412i \(0.0303942\pi\)
−0.415154 + 0.909751i \(0.636272\pi\)
\(830\) 0 0
\(831\) −2.36470 + 4.09578i −0.0820305 + 0.142081i
\(832\) 0 0
\(833\) 4.94832 4.36061i 0.171449 0.151086i
\(834\) 0 0
\(835\) −0.278112 5.44534i −0.00962447 0.188444i
\(836\) 0 0
\(837\) 3.34408 1.93071i 0.115588 0.0667350i
\(838\) 0 0
\(839\) −21.8245 −0.753464 −0.376732 0.926322i \(-0.622952\pi\)
−0.376732 + 0.926322i \(0.622952\pi\)
\(840\) 0 0
\(841\) 6.88823 0.237525
\(842\) 0 0
\(843\) 11.7726 6.79693i 0.405471 0.234099i
\(844\) 0 0
\(845\) −52.2732 + 2.66977i −1.79825 + 0.0918429i
\(846\) 0 0
\(847\) 12.6284 + 5.70360i 0.433917 + 0.195978i
\(848\) 0 0
\(849\) 3.93026 6.80740i 0.134886 0.233629i
\(850\) 0 0
\(851\) −13.1703 22.8116i −0.451472 0.781973i
\(852\) 0 0
\(853\) 3.88967i 0.133180i 0.997780 + 0.0665899i \(0.0212119\pi\)
−0.997780 + 0.0665899i \(0.978788\pi\)
\(854\) 0 0
\(855\) −10.4638 16.1599i −0.357856 0.552658i
\(856\) 0 0
\(857\) −1.38779 + 0.801241i −0.0474060 + 0.0273699i −0.523516 0.852016i \(-0.675380\pi\)
0.476110 + 0.879386i \(0.342047\pi\)
\(858\) 0 0
\(859\) −9.09518 + 15.7533i −0.310324 + 0.537496i −0.978432 0.206567i \(-0.933771\pi\)
0.668109 + 0.744064i \(0.267104\pi\)
\(860\) 0 0
\(861\) 9.64285 + 13.4225i 0.328627 + 0.457439i
\(862\) 0 0
\(863\) −1.10842 0.639947i −0.0377311 0.0217840i 0.481016 0.876712i \(-0.340268\pi\)
−0.518747 + 0.854928i \(0.673601\pi\)
\(864\) 0 0
\(865\) −11.2907 5.77184i −0.383895 0.196248i
\(866\) 0 0
\(867\) 16.1122i 0.547200i
\(868\) 0 0
\(869\) −27.6998 −0.939652
\(870\) 0 0
\(871\) −28.8486 49.9673i −0.977498 1.69308i
\(872\) 0 0
\(873\) −16.1625 9.33144i −0.547019 0.315821i
\(874\) 0 0
\(875\) −7.38885 28.6427i −0.249789 0.968300i
\(876\) 0 0
\(877\) −33.1825 19.1579i −1.12049 0.646918i −0.178967 0.983855i \(-0.557276\pi\)
−0.941527 + 0.336937i \(0.890609\pi\)
\(878\) 0 0
\(879\) 6.31048 + 10.9301i 0.212847 + 0.368662i
\(880\) 0 0
\(881\) 18.3756 0.619090 0.309545 0.950885i \(-0.399823\pi\)
0.309545 + 0.950885i \(0.399823\pi\)
\(882\) 0 0
\(883\) 10.9195i 0.367470i −0.982976 0.183735i \(-0.941181\pi\)
0.982976 0.183735i \(-0.0588188\pi\)
\(884\) 0 0
\(885\) −8.69536 4.44509i −0.292291 0.149420i
\(886\) 0 0
\(887\) −7.39462 4.26929i −0.248287 0.143349i 0.370693 0.928756i \(-0.379120\pi\)
−0.618980 + 0.785407i \(0.712454\pi\)
\(888\) 0 0
\(889\) 21.6997 2.16353i 0.727784 0.0725624i
\(890\) 0 0
\(891\) 2.01478 3.48970i 0.0674976 0.116909i
\(892\) 0 0
\(893\) 87.4615 50.4959i 2.92679 1.68978i
\(894\) 0 0
\(895\) 0.614121 + 0.948423i 0.0205278 + 0.0317023i
\(896\) 0 0
\(897\) 29.8208i 0.995686i
\(898\) 0 0
\(899\) −11.5662 20.0333i −0.385756 0.668149i
\(900\) 0 0
\(901\) −2.38788 + 4.13593i −0.0795518 + 0.137788i
\(902\) 0 0
\(903\) −10.8285 + 7.77928i −0.360350 + 0.258878i
\(904\) 0 0
\(905\) −58.4466 + 2.98507i −1.94283 + 0.0992270i
\(906\) 0 0
\(907\) −8.05971 + 4.65327i −0.267618 + 0.154509i −0.627805 0.778371i \(-0.716046\pi\)
0.360187 + 0.932880i \(0.382713\pi\)
\(908\) 0 0
\(909\) −12.4603 −0.413281
\(910\) 0 0
\(911\) 49.8087 1.65024 0.825119 0.564959i \(-0.191108\pi\)
0.825119 + 0.564959i \(0.191108\pi\)
\(912\) 0 0
\(913\) 57.0923 32.9622i 1.88948 1.09089i
\(914\) 0 0
\(915\) −0.173141 3.39004i −0.00572386 0.112071i
\(916\) 0 0
\(917\) 16.8353 + 7.60364i 0.555951 + 0.251094i
\(918\) 0 0
\(919\) −2.13941 + 3.70556i −0.0705725 + 0.122235i −0.899152 0.437636i \(-0.855816\pi\)
0.828580 + 0.559871i \(0.189149\pi\)
\(920\) 0 0
\(921\) 10.5984 + 18.3569i 0.349228 + 0.604880i
\(922\) 0 0
\(923\) 53.8943i 1.77395i
\(924\) 0 0
\(925\) 24.3158 + 10.9037i 0.799497 + 0.358512i
\(926\) 0 0
\(927\) −4.65554 + 2.68788i −0.152908 + 0.0882815i
\(928\) 0 0
\(929\) −0.111327 + 0.192825i −0.00365254 + 0.00632638i −0.867846 0.496833i \(-0.834496\pi\)
0.864193 + 0.503160i \(0.167829\pi\)
\(930\) 0 0
\(931\) −19.2355 + 57.1159i −0.630418 + 1.87190i
\(932\) 0 0
\(933\) 5.20990 + 3.00794i 0.170565 + 0.0984755i
\(934\) 0 0
\(935\) −7.55925 3.86431i −0.247214 0.126376i
\(936\) 0 0
\(937\) 30.1325i 0.984387i 0.870486 + 0.492194i \(0.163805\pi\)
−0.870486 + 0.492194i \(0.836195\pi\)
\(938\) 0 0
\(939\) 18.2729 0.596313
\(940\) 0 0
\(941\) 16.2555 + 28.1553i 0.529914 + 0.917838i 0.999391 + 0.0348933i \(0.0111091\pi\)
−0.469477 + 0.882945i \(0.655558\pi\)
\(942\) 0 0
\(943\) −26.7364 15.4363i −0.870657 0.502674i
\(944\) 0 0
\(945\) 5.84929 0.886450i 0.190277 0.0288362i
\(946\) 0 0
\(947\) 17.4042 + 10.0483i 0.565560 + 0.326526i 0.755374 0.655294i \(-0.227455\pi\)
−0.189814 + 0.981820i \(0.560789\pi\)
\(948\) 0 0
\(949\) −20.5889 35.6610i −0.668343 1.15760i
\(950\) 0 0
\(951\) −12.8978 −0.418239
\(952\) 0 0
\(953\) 12.8274i 0.415519i 0.978180 + 0.207760i \(0.0666172\pi\)
−0.978180 + 0.207760i \(0.933383\pi\)
\(954\) 0 0
\(955\) −17.6550 + 34.5362i −0.571302 + 1.11756i
\(956\) 0 0
\(957\) −20.9057 12.0699i −0.675784 0.390164i
\(958\) 0 0
\(959\) −17.9691 25.0125i −0.580254 0.807695i
\(960\) 0 0
\(961\) 8.04475 13.9339i 0.259508 0.449481i
\(962\) 0 0
\(963\) −6.24409 + 3.60503i −0.201213 + 0.116170i
\(964\) 0 0
\(965\) −7.28488 + 4.71709i −0.234509 + 0.151848i
\(966\) 0 0
\(967\) 0.279633i 0.00899239i −0.999990 0.00449619i \(-0.998569\pi\)
0.999990 0.00449619i \(-0.00143119\pi\)
\(968\) 0 0
\(969\) −4.05610 7.02538i −0.130301 0.225688i
\(970\) 0 0
\(971\) −20.2390 + 35.0550i −0.649501 + 1.12497i 0.333741 + 0.942665i \(0.391689\pi\)
−0.983242 + 0.182305i \(0.941644\pi\)
\(972\) 0 0
\(973\) 4.62299 + 46.3676i 0.148206 + 1.48648i
\(974\) 0 0
\(975\) −17.6681 24.4547i −0.565832 0.783177i
\(976\) 0 0
\(977\) −6.16126 + 3.55720i −0.197116 + 0.113805i −0.595310 0.803496i \(-0.702971\pi\)
0.398193 + 0.917301i \(0.369637\pi\)
\(978\) 0 0
\(979\) −19.3340 −0.617917
\(980\) 0 0
\(981\) 5.28337 0.168685
\(982\) 0 0
\(983\) 13.9886 8.07634i 0.446168 0.257595i −0.260042 0.965597i \(-0.583737\pi\)
0.706210 + 0.708002i \(0.250403\pi\)
\(984\) 0 0
\(985\) 0.981379 + 19.2151i 0.0312693 + 0.612243i
\(986\) 0 0
\(987\) 3.07898 + 30.8815i 0.0980051 + 0.982969i
\(988\) 0 0
\(989\) 12.4531 21.5693i 0.395985 0.685865i
\(990\) 0 0
\(991\) −7.75931 13.4395i −0.246483 0.426920i 0.716065 0.698034i \(-0.245941\pi\)
−0.962547 + 0.271113i \(0.912608\pi\)
\(992\) 0 0
\(993\) 2.12658i 0.0674851i
\(994\) 0 0
\(995\) −9.61075 14.8425i −0.304681 0.470538i
\(996\) 0 0
\(997\) −39.8042 + 22.9810i −1.26061 + 0.727815i −0.973193 0.229990i \(-0.926131\pi\)
−0.287419 + 0.957805i \(0.592797\pi\)
\(998\) 0 0
\(999\) −2.66486 + 4.61567i −0.0843124 + 0.146033i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.cc.c.289.6 24
4.3 odd 2 1680.2.di.g.289.12 24
5.4 even 2 inner 840.2.cc.c.289.8 yes 24
7.4 even 3 inner 840.2.cc.c.529.8 yes 24
20.19 odd 2 1680.2.di.g.289.3 24
28.11 odd 6 1680.2.di.g.529.2 24
35.4 even 6 inner 840.2.cc.c.529.6 yes 24
140.39 odd 6 1680.2.di.g.529.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.cc.c.289.6 24 1.1 even 1 trivial
840.2.cc.c.289.8 yes 24 5.4 even 2 inner
840.2.cc.c.529.6 yes 24 35.4 even 6 inner
840.2.cc.c.529.8 yes 24 7.4 even 3 inner
1680.2.di.g.289.3 24 20.19 odd 2
1680.2.di.g.289.12 24 4.3 odd 2
1680.2.di.g.529.2 24 28.11 odd 6
1680.2.di.g.529.12 24 140.39 odd 6