Properties

Label 1680.2.di.g.289.12
Level $1680$
Weight $2$
Character 1680.289
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(289,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.di (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,2,0,0,0,12,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.12
Character \(\chi\) \(=\) 1680.289
Dual form 1680.2.di.g.529.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{3} +(2.23316 - 0.114055i) q^{5} +(0.262488 + 2.63270i) q^{7} +(0.500000 - 0.866025i) q^{9} +(-2.01478 - 3.48970i) q^{11} +6.03388i q^{13} +(1.87694 - 1.21535i) q^{15} +(-0.815983 + 0.471108i) q^{17} +(-4.30486 + 7.45623i) q^{19} +(1.54367 + 2.14874i) q^{21} +(4.28008 + 2.47111i) q^{23} +(4.97398 - 0.509406i) q^{25} -1.00000i q^{27} +5.99068 q^{29} +(1.93071 + 3.34408i) q^{31} +(-3.48970 - 2.01478i) q^{33} +(0.886450 + 5.84929i) q^{35} +(4.61567 + 2.66486i) q^{37} +(3.01694 + 5.22550i) q^{39} +6.24670 q^{41} -5.03947i q^{43} +(1.01780 - 1.99100i) q^{45} +(-10.1585 - 5.86499i) q^{47} +(-6.86220 + 1.38210i) q^{49} +(-0.471108 + 0.815983i) q^{51} +(4.38958 - 2.53432i) q^{53} +(-4.89734 - 7.56325i) q^{55} +8.60971i q^{57} +(-2.18367 - 3.78222i) q^{59} +(-0.759024 + 1.31467i) q^{61} +(2.41123 + 1.08903i) q^{63} +(0.688195 + 13.4746i) q^{65} +(8.28111 - 4.78110i) q^{67} +4.94222 q^{69} -8.93194 q^{71} +(-5.91012 + 3.41221i) q^{73} +(4.05289 - 2.92815i) q^{75} +(8.65847 - 6.22031i) q^{77} +(3.43708 - 5.95320i) q^{79} +(-0.500000 - 0.866025i) q^{81} +16.3602i q^{83} +(-1.76849 + 1.14513i) q^{85} +(5.18808 - 2.99534i) q^{87} +(-2.39902 + 4.15523i) q^{89} +(-15.8854 + 1.58382i) q^{91} +(3.34408 + 1.93071i) q^{93} +(-8.76300 + 17.1419i) q^{95} -18.6629i q^{97} -4.02956 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{5} + 12 q^{9} + 8 q^{11} - 8 q^{19} + 12 q^{21} + 2 q^{25} - 24 q^{29} - 4 q^{31} - 30 q^{35} - 4 q^{39} + 32 q^{41} - 2 q^{45} - 12 q^{49} + 20 q^{51} - 12 q^{55} + 4 q^{59} + 32 q^{61} + 22 q^{65}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0 0
\(5\) 2.23316 0.114055i 0.998698 0.0510070i
\(6\) 0 0
\(7\) 0.262488 + 2.63270i 0.0992112 + 0.995066i
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −2.01478 3.48970i −0.607479 1.05218i −0.991654 0.128924i \(-0.958848\pi\)
0.384176 0.923260i \(-0.374486\pi\)
\(12\) 0 0
\(13\) 6.03388i 1.67350i 0.547587 + 0.836749i \(0.315547\pi\)
−0.547587 + 0.836749i \(0.684453\pi\)
\(14\) 0 0
\(15\) 1.87694 1.21535i 0.484625 0.313803i
\(16\) 0 0
\(17\) −0.815983 + 0.471108i −0.197905 + 0.114260i −0.595678 0.803223i \(-0.703117\pi\)
0.397773 + 0.917484i \(0.369783\pi\)
\(18\) 0 0
\(19\) −4.30486 + 7.45623i −0.987602 + 1.71058i −0.357853 + 0.933778i \(0.616491\pi\)
−0.629749 + 0.776799i \(0.716842\pi\)
\(20\) 0 0
\(21\) 1.54367 + 2.14874i 0.336857 + 0.468893i
\(22\) 0 0
\(23\) 4.28008 + 2.47111i 0.892459 + 0.515262i 0.874746 0.484581i \(-0.161028\pi\)
0.0177132 + 0.999843i \(0.494361\pi\)
\(24\) 0 0
\(25\) 4.97398 0.509406i 0.994797 0.101881i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 5.99068 1.11244 0.556221 0.831035i \(-0.312251\pi\)
0.556221 + 0.831035i \(0.312251\pi\)
\(30\) 0 0
\(31\) 1.93071 + 3.34408i 0.346765 + 0.600615i 0.985673 0.168669i \(-0.0539468\pi\)
−0.638908 + 0.769283i \(0.720613\pi\)
\(32\) 0 0
\(33\) −3.48970 2.01478i −0.607479 0.350728i
\(34\) 0 0
\(35\) 0.886450 + 5.84929i 0.149837 + 0.988711i
\(36\) 0 0
\(37\) 4.61567 + 2.66486i 0.758812 + 0.438100i 0.828869 0.559443i \(-0.188985\pi\)
−0.0700572 + 0.997543i \(0.522318\pi\)
\(38\) 0 0
\(39\) 3.01694 + 5.22550i 0.483097 + 0.836749i
\(40\) 0 0
\(41\) 6.24670 0.975571 0.487786 0.872964i \(-0.337805\pi\)
0.487786 + 0.872964i \(0.337805\pi\)
\(42\) 0 0
\(43\) 5.03947i 0.768512i −0.923227 0.384256i \(-0.874458\pi\)
0.923227 0.384256i \(-0.125542\pi\)
\(44\) 0 0
\(45\) 1.01780 1.99100i 0.151725 0.296801i
\(46\) 0 0
\(47\) −10.1585 5.86499i −1.48176 0.855497i −0.481978 0.876183i \(-0.660082\pi\)
−0.999786 + 0.0206860i \(0.993415\pi\)
\(48\) 0 0
\(49\) −6.86220 + 1.38210i −0.980314 + 0.197443i
\(50\) 0 0
\(51\) −0.471108 + 0.815983i −0.0659683 + 0.114260i
\(52\) 0 0
\(53\) 4.38958 2.53432i 0.602955 0.348116i −0.167248 0.985915i \(-0.553488\pi\)
0.770203 + 0.637799i \(0.220155\pi\)
\(54\) 0 0
\(55\) −4.89734 7.56325i −0.660357 1.01983i
\(56\) 0 0
\(57\) 8.60971i 1.14038i
\(58\) 0 0
\(59\) −2.18367 3.78222i −0.284289 0.492404i 0.688147 0.725571i \(-0.258424\pi\)
−0.972437 + 0.233167i \(0.925091\pi\)
\(60\) 0 0
\(61\) −0.759024 + 1.31467i −0.0971830 + 0.168326i −0.910518 0.413470i \(-0.864317\pi\)
0.813335 + 0.581796i \(0.197650\pi\)
\(62\) 0 0
\(63\) 2.41123 + 1.08903i 0.303786 + 0.137205i
\(64\) 0 0
\(65\) 0.688195 + 13.4746i 0.0853600 + 1.67132i
\(66\) 0 0
\(67\) 8.28111 4.78110i 1.01170 0.584105i 0.100010 0.994986i \(-0.468112\pi\)
0.911689 + 0.410882i \(0.134779\pi\)
\(68\) 0 0
\(69\) 4.94222 0.594973
\(70\) 0 0
\(71\) −8.93194 −1.06003 −0.530013 0.847989i \(-0.677813\pi\)
−0.530013 + 0.847989i \(0.677813\pi\)
\(72\) 0 0
\(73\) −5.91012 + 3.41221i −0.691727 + 0.399369i −0.804259 0.594279i \(-0.797437\pi\)
0.112532 + 0.993648i \(0.464104\pi\)
\(74\) 0 0
\(75\) 4.05289 2.92815i 0.467988 0.338114i
\(76\) 0 0
\(77\) 8.65847 6.22031i 0.986724 0.708870i
\(78\) 0 0
\(79\) 3.43708 5.95320i 0.386702 0.669787i −0.605302 0.795996i \(-0.706948\pi\)
0.992004 + 0.126209i \(0.0402810\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 16.3602i 1.79577i 0.440232 + 0.897884i \(0.354896\pi\)
−0.440232 + 0.897884i \(0.645104\pi\)
\(84\) 0 0
\(85\) −1.76849 + 1.14513i −0.191819 + 0.124206i
\(86\) 0 0
\(87\) 5.18808 2.99534i 0.556221 0.321134i
\(88\) 0 0
\(89\) −2.39902 + 4.15523i −0.254296 + 0.440453i −0.964704 0.263337i \(-0.915177\pi\)
0.710408 + 0.703790i \(0.248510\pi\)
\(90\) 0 0
\(91\) −15.8854 + 1.58382i −1.66524 + 0.166030i
\(92\) 0 0
\(93\) 3.34408 + 1.93071i 0.346765 + 0.200205i
\(94\) 0 0
\(95\) −8.76300 + 17.1419i −0.899065 + 1.75872i
\(96\) 0 0
\(97\) 18.6629i 1.89493i −0.319862 0.947464i \(-0.603637\pi\)
0.319862 0.947464i \(-0.396363\pi\)
\(98\) 0 0
\(99\) −4.02956 −0.404986
\(100\) 0 0
\(101\) −6.23013 10.7909i −0.619921 1.07374i −0.989500 0.144536i \(-0.953831\pi\)
0.369578 0.929200i \(-0.379502\pi\)
\(102\) 0 0
\(103\) 4.65554 + 2.68788i 0.458724 + 0.264845i 0.711508 0.702678i \(-0.248013\pi\)
−0.252783 + 0.967523i \(0.581346\pi\)
\(104\) 0 0
\(105\) 3.69233 + 4.62241i 0.360335 + 0.451101i
\(106\) 0 0
\(107\) 6.24409 + 3.60503i 0.603639 + 0.348511i 0.770472 0.637474i \(-0.220021\pi\)
−0.166833 + 0.985985i \(0.553354\pi\)
\(108\) 0 0
\(109\) 2.64168 + 4.57553i 0.253027 + 0.438256i 0.964358 0.264601i \(-0.0852404\pi\)
−0.711330 + 0.702858i \(0.751907\pi\)
\(110\) 0 0
\(111\) 5.32972 0.505874
\(112\) 0 0
\(113\) 0.356111i 0.0335001i 0.999860 + 0.0167500i \(0.00533195\pi\)
−0.999860 + 0.0167500i \(0.994668\pi\)
\(114\) 0 0
\(115\) 9.83994 + 5.03021i 0.917580 + 0.469069i
\(116\) 0 0
\(117\) 5.22550 + 3.01694i 0.483097 + 0.278916i
\(118\) 0 0
\(119\) −1.45447 2.02458i −0.133331 0.185593i
\(120\) 0 0
\(121\) −2.61867 + 4.53566i −0.238060 + 0.412333i
\(122\) 0 0
\(123\) 5.40980 3.12335i 0.487786 0.281623i
\(124\) 0 0
\(125\) 11.0496 1.70489i 0.988305 0.152490i
\(126\) 0 0
\(127\) 8.24238i 0.731393i −0.930734 0.365696i \(-0.880831\pi\)
0.930734 0.365696i \(-0.119169\pi\)
\(128\) 0 0
\(129\) −2.51973 4.36431i −0.221850 0.384256i
\(130\) 0 0
\(131\) 3.49102 6.04663i 0.305012 0.528297i −0.672252 0.740322i \(-0.734673\pi\)
0.977264 + 0.212026i \(0.0680061\pi\)
\(132\) 0 0
\(133\) −20.7600 9.37622i −1.80012 0.813021i
\(134\) 0 0
\(135\) −0.114055 2.23316i −0.00981629 0.192200i
\(136\) 0 0
\(137\) 10.0810 5.82027i 0.861278 0.497259i −0.00316232 0.999995i \(-0.501007\pi\)
0.864440 + 0.502736i \(0.167673\pi\)
\(138\) 0 0
\(139\) 17.6122 1.49385 0.746923 0.664910i \(-0.231530\pi\)
0.746923 + 0.664910i \(0.231530\pi\)
\(140\) 0 0
\(141\) −11.7300 −0.987843
\(142\) 0 0
\(143\) 21.0564 12.1569i 1.76083 1.01661i
\(144\) 0 0
\(145\) 13.3781 0.683267i 1.11099 0.0567422i
\(146\) 0 0
\(147\) −5.25179 + 4.62804i −0.433160 + 0.381714i
\(148\) 0 0
\(149\) −0.0837612 + 0.145079i −0.00686199 + 0.0118853i −0.869436 0.494046i \(-0.835518\pi\)
0.862574 + 0.505931i \(0.168851\pi\)
\(150\) 0 0
\(151\) −4.46708 7.73720i −0.363526 0.629645i 0.625013 0.780615i \(-0.285094\pi\)
−0.988538 + 0.150970i \(0.951760\pi\)
\(152\) 0 0
\(153\) 0.942216i 0.0761736i
\(154\) 0 0
\(155\) 4.69298 + 7.24765i 0.376949 + 0.582146i
\(156\) 0 0
\(157\) 0.326196 0.188329i 0.0260332 0.0150303i −0.486927 0.873443i \(-0.661882\pi\)
0.512960 + 0.858412i \(0.328549\pi\)
\(158\) 0 0
\(159\) 2.53432 4.38958i 0.200985 0.348116i
\(160\) 0 0
\(161\) −5.38221 + 11.9168i −0.424178 + 0.939176i
\(162\) 0 0
\(163\) 10.5436 + 6.08734i 0.825837 + 0.476797i 0.852425 0.522849i \(-0.175131\pi\)
−0.0265880 + 0.999646i \(0.508464\pi\)
\(164\) 0 0
\(165\) −8.02284 4.10130i −0.624577 0.319286i
\(166\) 0 0
\(167\) 2.43840i 0.188689i 0.995540 + 0.0943447i \(0.0300756\pi\)
−0.995540 + 0.0943447i \(0.969924\pi\)
\(168\) 0 0
\(169\) −23.4077 −1.80060
\(170\) 0 0
\(171\) 4.30486 + 7.45623i 0.329201 + 0.570192i
\(172\) 0 0
\(173\) −4.91112 2.83544i −0.373385 0.215574i 0.301551 0.953450i \(-0.402496\pi\)
−0.674936 + 0.737876i \(0.735829\pi\)
\(174\) 0 0
\(175\) 2.64672 + 12.9613i 0.200073 + 0.979781i
\(176\) 0 0
\(177\) −3.78222 2.18367i −0.284289 0.164135i
\(178\) 0 0
\(179\) −0.252651 0.437604i −0.0188840 0.0327081i 0.856429 0.516265i \(-0.172678\pi\)
−0.875313 + 0.483557i \(0.839345\pi\)
\(180\) 0 0
\(181\) −26.1722 −1.94536 −0.972681 0.232145i \(-0.925426\pi\)
−0.972681 + 0.232145i \(0.925426\pi\)
\(182\) 0 0
\(183\) 1.51805i 0.112217i
\(184\) 0 0
\(185\) 10.6115 + 5.42461i 0.780170 + 0.398825i
\(186\) 0 0
\(187\) 3.28805 + 1.89836i 0.240446 + 0.138822i
\(188\) 0 0
\(189\) 2.63270 0.262488i 0.191501 0.0190932i
\(190\) 0 0
\(191\) 8.67308 15.0222i 0.627562 1.08697i −0.360477 0.932768i \(-0.617386\pi\)
0.988039 0.154202i \(-0.0492806\pi\)
\(192\) 0 0
\(193\) −3.36126 + 1.94062i −0.241949 + 0.139689i −0.616072 0.787690i \(-0.711277\pi\)
0.374123 + 0.927379i \(0.377944\pi\)
\(194\) 0 0
\(195\) 7.33330 + 11.3253i 0.525148 + 0.811018i
\(196\) 0 0
\(197\) 8.60444i 0.613041i 0.951864 + 0.306520i \(0.0991648\pi\)
−0.951864 + 0.306520i \(0.900835\pi\)
\(198\) 0 0
\(199\) 3.95389 + 6.84834i 0.280284 + 0.485466i 0.971455 0.237226i \(-0.0762381\pi\)
−0.691171 + 0.722692i \(0.742905\pi\)
\(200\) 0 0
\(201\) 4.78110 8.28111i 0.337233 0.584105i
\(202\) 0 0
\(203\) 1.57248 + 15.7716i 0.110367 + 1.10695i
\(204\) 0 0
\(205\) 13.9499 0.712468i 0.974301 0.0497609i
\(206\) 0 0
\(207\) 4.28008 2.47111i 0.297486 0.171754i
\(208\) 0 0
\(209\) 34.6933 2.39979
\(210\) 0 0
\(211\) −18.3347 −1.26221 −0.631105 0.775697i \(-0.717398\pi\)
−0.631105 + 0.775697i \(0.717398\pi\)
\(212\) 0 0
\(213\) −7.73529 + 4.46597i −0.530013 + 0.306003i
\(214\) 0 0
\(215\) −0.574777 11.2539i −0.0391994 0.767511i
\(216\) 0 0
\(217\) −8.29717 + 5.96075i −0.563249 + 0.404642i
\(218\) 0 0
\(219\) −3.41221 + 5.91012i −0.230576 + 0.399369i
\(220\) 0 0
\(221\) −2.84261 4.92355i −0.191215 0.331193i
\(222\) 0 0
\(223\) 2.95434i 0.197837i 0.995096 + 0.0989186i \(0.0315383\pi\)
−0.995096 + 0.0989186i \(0.968462\pi\)
\(224\) 0 0
\(225\) 2.04583 4.56230i 0.136389 0.304153i
\(226\) 0 0
\(227\) −14.3495 + 8.28468i −0.952409 + 0.549874i −0.893828 0.448409i \(-0.851991\pi\)
−0.0585806 + 0.998283i \(0.518657\pi\)
\(228\) 0 0
\(229\) −12.0536 + 20.8775i −0.796525 + 1.37962i 0.125342 + 0.992114i \(0.459997\pi\)
−0.921866 + 0.387508i \(0.873336\pi\)
\(230\) 0 0
\(231\) 4.38830 9.71618i 0.288729 0.639278i
\(232\) 0 0
\(233\) 8.93499 + 5.15862i 0.585350 + 0.337952i 0.763257 0.646095i \(-0.223599\pi\)
−0.177906 + 0.984047i \(0.556932\pi\)
\(234\) 0 0
\(235\) −23.3544 11.9388i −1.52347 0.778803i
\(236\) 0 0
\(237\) 6.87416i 0.446525i
\(238\) 0 0
\(239\) 21.4416 1.38694 0.693472 0.720483i \(-0.256080\pi\)
0.693472 + 0.720483i \(0.256080\pi\)
\(240\) 0 0
\(241\) −9.79026 16.9572i −0.630646 1.09231i −0.987420 0.158120i \(-0.949457\pi\)
0.356774 0.934191i \(-0.383877\pi\)
\(242\) 0 0
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 0 0
\(245\) −15.1667 + 3.86912i −0.968967 + 0.247189i
\(246\) 0 0
\(247\) −44.9900 25.9750i −2.86265 1.65275i
\(248\) 0 0
\(249\) 8.18011 + 14.1684i 0.518394 + 0.897884i
\(250\) 0 0
\(251\) −3.07240 −0.193928 −0.0969640 0.995288i \(-0.530913\pi\)
−0.0969640 + 0.995288i \(0.530913\pi\)
\(252\) 0 0
\(253\) 19.9149i 1.25204i
\(254\) 0 0
\(255\) −0.958991 + 1.87595i −0.0600544 + 0.117477i
\(256\) 0 0
\(257\) −22.9987 13.2783i −1.43462 0.828279i −0.437152 0.899388i \(-0.644013\pi\)
−0.997469 + 0.0711089i \(0.977346\pi\)
\(258\) 0 0
\(259\) −5.80421 + 12.8512i −0.360656 + 0.798532i
\(260\) 0 0
\(261\) 2.99534 5.18808i 0.185407 0.321134i
\(262\) 0 0
\(263\) 16.7003 9.64190i 1.02978 0.594545i 0.112860 0.993611i \(-0.463999\pi\)
0.916922 + 0.399066i \(0.130666\pi\)
\(264\) 0 0
\(265\) 9.51356 6.16020i 0.584414 0.378418i
\(266\) 0 0
\(267\) 4.79804i 0.293635i
\(268\) 0 0
\(269\) −2.89650 5.01688i −0.176603 0.305885i 0.764112 0.645083i \(-0.223177\pi\)
−0.940715 + 0.339199i \(0.889844\pi\)
\(270\) 0 0
\(271\) −2.79958 + 4.84901i −0.170062 + 0.294557i −0.938441 0.345438i \(-0.887730\pi\)
0.768379 + 0.639995i \(0.221064\pi\)
\(272\) 0 0
\(273\) −12.9652 + 9.31433i −0.784692 + 0.563729i
\(274\) 0 0
\(275\) −11.7991 16.3314i −0.711515 0.984818i
\(276\) 0 0
\(277\) 4.09578 2.36470i 0.246091 0.142081i −0.371882 0.928280i \(-0.621287\pi\)
0.617973 + 0.786199i \(0.287954\pi\)
\(278\) 0 0
\(279\) 3.86141 0.231177
\(280\) 0 0
\(281\) −13.5939 −0.810942 −0.405471 0.914108i \(-0.632893\pi\)
−0.405471 + 0.914108i \(0.632893\pi\)
\(282\) 0 0
\(283\) 6.80740 3.93026i 0.404658 0.233629i −0.283834 0.958873i \(-0.591606\pi\)
0.688492 + 0.725244i \(0.258273\pi\)
\(284\) 0 0
\(285\) 0.981981 + 19.2268i 0.0581675 + 1.13890i
\(286\) 0 0
\(287\) 1.63969 + 16.4457i 0.0967876 + 0.970758i
\(288\) 0 0
\(289\) −8.05611 + 13.9536i −0.473889 + 0.820800i
\(290\) 0 0
\(291\) −9.33144 16.1625i −0.547019 0.947464i
\(292\) 0 0
\(293\) 12.6210i 0.737325i −0.929563 0.368662i \(-0.879816\pi\)
0.929563 0.368662i \(-0.120184\pi\)
\(294\) 0 0
\(295\) −5.30786 8.19724i −0.309035 0.477262i
\(296\) 0 0
\(297\) −3.48970 + 2.01478i −0.202493 + 0.116909i
\(298\) 0 0
\(299\) −14.9104 + 25.8255i −0.862289 + 1.49353i
\(300\) 0 0
\(301\) 13.2674 1.32280i 0.764720 0.0762450i
\(302\) 0 0
\(303\) −10.7909 6.23013i −0.619921 0.357912i
\(304\) 0 0
\(305\) −1.54507 + 3.02243i −0.0884707 + 0.173064i
\(306\) 0 0
\(307\) 21.1967i 1.20976i 0.796316 + 0.604880i \(0.206779\pi\)
−0.796316 + 0.604880i \(0.793221\pi\)
\(308\) 0 0
\(309\) 5.37576 0.305816
\(310\) 0 0
\(311\) 3.00794 + 5.20990i 0.170565 + 0.295427i 0.938617 0.344960i \(-0.112108\pi\)
−0.768053 + 0.640387i \(0.778774\pi\)
\(312\) 0 0
\(313\) −15.8248 9.13644i −0.894470 0.516422i −0.0190678 0.999818i \(-0.506070\pi\)
−0.875402 + 0.483396i \(0.839403\pi\)
\(314\) 0 0
\(315\) 5.50886 + 2.15696i 0.310389 + 0.121531i
\(316\) 0 0
\(317\) 11.1698 + 6.44888i 0.627358 + 0.362205i 0.779728 0.626118i \(-0.215357\pi\)
−0.152370 + 0.988324i \(0.548691\pi\)
\(318\) 0 0
\(319\) −12.0699 20.9057i −0.675784 1.17049i
\(320\) 0 0
\(321\) 7.21006 0.402426
\(322\) 0 0
\(323\) 8.11221i 0.451375i
\(324\) 0 0
\(325\) 3.07369 + 30.0124i 0.170498 + 1.66479i
\(326\) 0 0
\(327\) 4.57553 + 2.64168i 0.253027 + 0.146085i
\(328\) 0 0
\(329\) 12.7743 28.2837i 0.704269 1.55933i
\(330\) 0 0
\(331\) 1.06329 1.84167i 0.0584438 0.101228i −0.835323 0.549759i \(-0.814719\pi\)
0.893767 + 0.448532i \(0.148053\pi\)
\(332\) 0 0
\(333\) 4.61567 2.66486i 0.252937 0.146033i
\(334\) 0 0
\(335\) 17.9477 11.6215i 0.980588 0.634948i
\(336\) 0 0
\(337\) 9.24557i 0.503639i 0.967774 + 0.251819i \(0.0810289\pi\)
−0.967774 + 0.251819i \(0.918971\pi\)
\(338\) 0 0
\(339\) 0.178055 + 0.308401i 0.00967064 + 0.0167500i
\(340\) 0 0
\(341\) 7.77989 13.4752i 0.421305 0.729721i
\(342\) 0 0
\(343\) −5.43991 17.7033i −0.293728 0.955889i
\(344\) 0 0
\(345\) 11.0367 0.563685i 0.594198 0.0303478i
\(346\) 0 0
\(347\) −5.66332 + 3.26972i −0.304023 + 0.175528i −0.644249 0.764816i \(-0.722830\pi\)
0.340226 + 0.940344i \(0.389497\pi\)
\(348\) 0 0
\(349\) 12.0217 0.643508 0.321754 0.946823i \(-0.395728\pi\)
0.321754 + 0.946823i \(0.395728\pi\)
\(350\) 0 0
\(351\) 6.03388 0.322065
\(352\) 0 0
\(353\) −10.1811 + 5.87805i −0.541884 + 0.312857i −0.745842 0.666123i \(-0.767953\pi\)
0.203958 + 0.978980i \(0.434619\pi\)
\(354\) 0 0
\(355\) −19.9464 + 1.01873i −1.05865 + 0.0540687i
\(356\) 0 0
\(357\) −2.27190 1.02610i −0.120242 0.0543069i
\(358\) 0 0
\(359\) 10.3181 17.8714i 0.544567 0.943217i −0.454068 0.890967i \(-0.650028\pi\)
0.998634 0.0522496i \(-0.0166391\pi\)
\(360\) 0 0
\(361\) −27.5636 47.7415i −1.45072 2.51271i
\(362\) 0 0
\(363\) 5.23733i 0.274889i
\(364\) 0 0
\(365\) −12.8090 + 8.29408i −0.670456 + 0.434132i
\(366\) 0 0
\(367\) 17.0552 9.84685i 0.890276 0.514001i 0.0162435 0.999868i \(-0.494829\pi\)
0.874033 + 0.485867i \(0.161496\pi\)
\(368\) 0 0
\(369\) 3.12335 5.40980i 0.162595 0.281623i
\(370\) 0 0
\(371\) 7.82432 + 10.8912i 0.406219 + 0.565443i
\(372\) 0 0
\(373\) 5.34658 + 3.08685i 0.276835 + 0.159831i 0.631990 0.774977i \(-0.282238\pi\)
−0.355155 + 0.934808i \(0.615572\pi\)
\(374\) 0 0
\(375\) 8.71678 7.00127i 0.450132 0.361544i
\(376\) 0 0
\(377\) 36.1471i 1.86167i
\(378\) 0 0
\(379\) 19.0333 0.977675 0.488838 0.872375i \(-0.337421\pi\)
0.488838 + 0.872375i \(0.337421\pi\)
\(380\) 0 0
\(381\) −4.12119 7.13811i −0.211135 0.365696i
\(382\) 0 0
\(383\) −22.9300 13.2387i −1.17167 0.676464i −0.217597 0.976039i \(-0.569822\pi\)
−0.954073 + 0.299575i \(0.903155\pi\)
\(384\) 0 0
\(385\) 18.6263 14.8785i 0.949282 0.758277i
\(386\) 0 0
\(387\) −4.36431 2.51973i −0.221850 0.128085i
\(388\) 0 0
\(389\) −11.4088 19.7606i −0.578448 1.00190i −0.995658 0.0930910i \(-0.970325\pi\)
0.417210 0.908810i \(-0.363008\pi\)
\(390\) 0 0
\(391\) −4.65663 −0.235496
\(392\) 0 0
\(393\) 6.98205i 0.352198i
\(394\) 0 0
\(395\) 6.99655 13.6864i 0.352034 0.688639i
\(396\) 0 0
\(397\) −8.74349 5.04806i −0.438823 0.253355i 0.264275 0.964447i \(-0.414867\pi\)
−0.703098 + 0.711093i \(0.748201\pi\)
\(398\) 0 0
\(399\) −22.6668 + 2.25995i −1.13476 + 0.113139i
\(400\) 0 0
\(401\) −6.01833 + 10.4241i −0.300541 + 0.520552i −0.976259 0.216608i \(-0.930501\pi\)
0.675718 + 0.737161i \(0.263834\pi\)
\(402\) 0 0
\(403\) −20.1778 + 11.6497i −1.00513 + 0.580311i
\(404\) 0 0
\(405\) −1.21535 1.87694i −0.0603914 0.0932661i
\(406\) 0 0
\(407\) 21.4764i 1.06455i
\(408\) 0 0
\(409\) −14.2036 24.6013i −0.702322 1.21646i −0.967649 0.252300i \(-0.918813\pi\)
0.265327 0.964159i \(-0.414520\pi\)
\(410\) 0 0
\(411\) 5.82027 10.0810i 0.287093 0.497259i
\(412\) 0 0
\(413\) 9.38427 6.74173i 0.461770 0.331739i
\(414\) 0 0
\(415\) 1.86597 + 36.5350i 0.0915967 + 1.79343i
\(416\) 0 0
\(417\) 15.2526 8.80609i 0.746923 0.431236i
\(418\) 0 0
\(419\) −23.3941 −1.14288 −0.571439 0.820645i \(-0.693614\pi\)
−0.571439 + 0.820645i \(0.693614\pi\)
\(420\) 0 0
\(421\) 37.7341 1.83905 0.919524 0.393033i \(-0.128574\pi\)
0.919524 + 0.393033i \(0.128574\pi\)
\(422\) 0 0
\(423\) −10.1585 + 5.86499i −0.493921 + 0.285166i
\(424\) 0 0
\(425\) −3.81870 + 2.75895i −0.185234 + 0.133829i
\(426\) 0 0
\(427\) −3.66036 1.65320i −0.177137 0.0800037i
\(428\) 0 0
\(429\) 12.1569 21.0564i 0.586942 1.01661i
\(430\) 0 0
\(431\) −6.67013 11.5530i −0.321289 0.556488i 0.659466 0.751735i \(-0.270783\pi\)
−0.980754 + 0.195247i \(0.937449\pi\)
\(432\) 0 0
\(433\) 2.73860i 0.131609i −0.997833 0.0658044i \(-0.979039\pi\)
0.997833 0.0658044i \(-0.0209613\pi\)
\(434\) 0 0
\(435\) 11.2442 7.28079i 0.539116 0.349087i
\(436\) 0 0
\(437\) −36.8503 + 21.2755i −1.76279 + 1.01775i
\(438\) 0 0
\(439\) 11.2670 19.5150i 0.537745 0.931401i −0.461280 0.887254i \(-0.652610\pi\)
0.999025 0.0441467i \(-0.0140569\pi\)
\(440\) 0 0
\(441\) −2.23416 + 6.63389i −0.106389 + 0.315900i
\(442\) 0 0
\(443\) 28.2480 + 16.3090i 1.34210 + 0.774863i 0.987116 0.160008i \(-0.0511521\pi\)
0.354986 + 0.934871i \(0.384485\pi\)
\(444\) 0 0
\(445\) −4.88347 + 9.55290i −0.231499 + 0.452851i
\(446\) 0 0
\(447\) 0.167522i 0.00792354i
\(448\) 0 0
\(449\) 24.4718 1.15490 0.577448 0.816427i \(-0.304049\pi\)
0.577448 + 0.816427i \(0.304049\pi\)
\(450\) 0 0
\(451\) −12.5857 21.7991i −0.592639 1.02648i
\(452\) 0 0
\(453\) −7.73720 4.46708i −0.363526 0.209882i
\(454\) 0 0
\(455\) −35.2939 + 5.34873i −1.65461 + 0.250753i
\(456\) 0 0
\(457\) 5.20589 + 3.00562i 0.243521 + 0.140597i 0.616794 0.787125i \(-0.288431\pi\)
−0.373273 + 0.927722i \(0.621764\pi\)
\(458\) 0 0
\(459\) 0.471108 + 0.815983i 0.0219894 + 0.0380868i
\(460\) 0 0
\(461\) 12.6005 0.586863 0.293432 0.955980i \(-0.405203\pi\)
0.293432 + 0.955980i \(0.405203\pi\)
\(462\) 0 0
\(463\) 15.1538i 0.704258i −0.935951 0.352129i \(-0.885458\pi\)
0.935951 0.352129i \(-0.114542\pi\)
\(464\) 0 0
\(465\) 7.68807 + 3.93016i 0.356526 + 0.182257i
\(466\) 0 0
\(467\) −6.26188 3.61530i −0.289765 0.167296i 0.348071 0.937468i \(-0.386837\pi\)
−0.637836 + 0.770172i \(0.720170\pi\)
\(468\) 0 0
\(469\) 14.7609 + 20.5467i 0.681595 + 0.948758i
\(470\) 0 0
\(471\) 0.188329 0.326196i 0.00867775 0.0150303i
\(472\) 0 0
\(473\) −17.5862 + 10.1534i −0.808616 + 0.466854i
\(474\) 0 0
\(475\) −17.6140 + 39.2801i −0.808188 + 1.80229i
\(476\) 0 0
\(477\) 5.06865i 0.232077i
\(478\) 0 0
\(479\) −11.3323 19.6282i −0.517788 0.896835i −0.999786 0.0206632i \(-0.993422\pi\)
0.481998 0.876172i \(-0.339911\pi\)
\(480\) 0 0
\(481\) −16.0794 + 27.8504i −0.733160 + 1.26987i
\(482\) 0 0
\(483\) 1.29727 + 13.0114i 0.0590280 + 0.592038i
\(484\) 0 0
\(485\) −2.12860 41.6771i −0.0966545 1.89246i
\(486\) 0 0
\(487\) −1.35472 + 0.782149i −0.0613883 + 0.0354425i −0.530380 0.847760i \(-0.677951\pi\)
0.468992 + 0.883203i \(0.344617\pi\)
\(488\) 0 0
\(489\) 12.1747 0.550558
\(490\) 0 0
\(491\) −26.6626 −1.20327 −0.601633 0.798773i \(-0.705483\pi\)
−0.601633 + 0.798773i \(0.705483\pi\)
\(492\) 0 0
\(493\) −4.88829 + 2.82226i −0.220158 + 0.127108i
\(494\) 0 0
\(495\) −8.99863 + 0.459591i −0.404459 + 0.0206571i
\(496\) 0 0
\(497\) −2.34453 23.5151i −0.105167 1.05480i
\(498\) 0 0
\(499\) −7.79416 + 13.4999i −0.348914 + 0.604338i −0.986057 0.166408i \(-0.946783\pi\)
0.637142 + 0.770746i \(0.280116\pi\)
\(500\) 0 0
\(501\) 1.21920 + 2.11172i 0.0544699 + 0.0943447i
\(502\) 0 0
\(503\) 3.45014i 0.153834i 0.997037 + 0.0769171i \(0.0245077\pi\)
−0.997037 + 0.0769171i \(0.975492\pi\)
\(504\) 0 0
\(505\) −15.1436 23.3872i −0.673882 1.04072i
\(506\) 0 0
\(507\) −20.2717 + 11.7039i −0.900298 + 0.519787i
\(508\) 0 0
\(509\) −8.62103 + 14.9321i −0.382121 + 0.661852i −0.991365 0.131130i \(-0.958139\pi\)
0.609245 + 0.792982i \(0.291473\pi\)
\(510\) 0 0
\(511\) −10.5347 14.6639i −0.466026 0.648692i
\(512\) 0 0
\(513\) 7.45623 + 4.30486i 0.329201 + 0.190064i
\(514\) 0 0
\(515\) 10.7031 + 5.47147i 0.471636 + 0.241102i
\(516\) 0 0
\(517\) 47.2666i 2.07878i
\(518\) 0 0
\(519\) −5.67087 −0.248924
\(520\) 0 0
\(521\) −12.0109 20.8034i −0.526205 0.911415i −0.999534 0.0305286i \(-0.990281\pi\)
0.473328 0.880886i \(-0.343052\pi\)
\(522\) 0 0
\(523\) −11.2726 6.50827i −0.492918 0.284587i 0.232866 0.972509i \(-0.425190\pi\)
−0.725784 + 0.687922i \(0.758523\pi\)
\(524\) 0 0
\(525\) 8.77277 + 9.90144i 0.382875 + 0.432134i
\(526\) 0 0
\(527\) −3.15085 1.81914i −0.137253 0.0792431i
\(528\) 0 0
\(529\) 0.712749 + 1.23452i 0.0309891 + 0.0536747i
\(530\) 0 0
\(531\) −4.36734 −0.189526
\(532\) 0 0
\(533\) 37.6919i 1.63262i
\(534\) 0 0
\(535\) 14.3552 + 7.33842i 0.620630 + 0.317268i
\(536\) 0 0
\(537\) −0.437604 0.252651i −0.0188840 0.0109027i
\(538\) 0 0
\(539\) 18.6489 + 21.1624i 0.803267 + 0.911528i
\(540\) 0 0
\(541\) 2.92211 5.06124i 0.125631 0.217600i −0.796348 0.604838i \(-0.793238\pi\)
0.921980 + 0.387239i \(0.126571\pi\)
\(542\) 0 0
\(543\) −22.6658 + 13.0861i −0.972681 + 0.561578i
\(544\) 0 0
\(545\) 6.42116 + 9.91658i 0.275052 + 0.424780i
\(546\) 0 0
\(547\) 0.494131i 0.0211275i 0.999944 + 0.0105638i \(0.00336261\pi\)
−0.999944 + 0.0105638i \(0.996637\pi\)
\(548\) 0 0
\(549\) 0.759024 + 1.31467i 0.0323943 + 0.0561087i
\(550\) 0 0
\(551\) −25.7890 + 44.6679i −1.09865 + 1.90292i
\(552\) 0 0
\(553\) 16.5752 + 7.48615i 0.704848 + 0.318343i
\(554\) 0 0
\(555\) 11.9021 0.607881i 0.505216 0.0258031i
\(556\) 0 0
\(557\) 20.2502 11.6914i 0.858027 0.495382i −0.00532420 0.999986i \(-0.501695\pi\)
0.863351 + 0.504604i \(0.168361\pi\)
\(558\) 0 0
\(559\) 30.4076 1.28610
\(560\) 0 0
\(561\) 3.79671 0.160297
\(562\) 0 0
\(563\) 35.9025 20.7283i 1.51311 0.873594i 0.513227 0.858253i \(-0.328450\pi\)
0.999882 0.0153411i \(-0.00488342\pi\)
\(564\) 0 0
\(565\) 0.0406162 + 0.795251i 0.00170874 + 0.0334565i
\(566\) 0 0
\(567\) 2.14874 1.54367i 0.0902386 0.0648281i
\(568\) 0 0
\(569\) −13.3499 + 23.1227i −0.559656 + 0.969352i 0.437869 + 0.899039i \(0.355733\pi\)
−0.997525 + 0.0703134i \(0.977600\pi\)
\(570\) 0 0
\(571\) −7.93378 13.7417i −0.332019 0.575073i 0.650889 0.759173i \(-0.274396\pi\)
−0.982908 + 0.184100i \(0.941063\pi\)
\(572\) 0 0
\(573\) 17.3462i 0.724647i
\(574\) 0 0
\(575\) 22.5479 + 10.1109i 0.940311 + 0.421656i
\(576\) 0 0
\(577\) 37.9174 21.8916i 1.57852 0.911359i 0.583454 0.812146i \(-0.301701\pi\)
0.995066 0.0992127i \(-0.0316324\pi\)
\(578\) 0 0
\(579\) −1.94062 + 3.36126i −0.0806496 + 0.139689i
\(580\) 0 0
\(581\) −43.0715 + 4.29437i −1.78691 + 0.178160i
\(582\) 0 0
\(583\) −17.6881 10.2122i −0.732564 0.422946i
\(584\) 0 0
\(585\) 12.0135 + 6.14131i 0.496695 + 0.253912i
\(586\) 0 0
\(587\) 11.9428i 0.492933i −0.969151 0.246467i \(-0.920730\pi\)
0.969151 0.246467i \(-0.0792696\pi\)
\(588\) 0 0
\(589\) −33.2457 −1.36986
\(590\) 0 0
\(591\) 4.30222 + 7.45166i 0.176970 + 0.306520i
\(592\) 0 0
\(593\) 39.6083 + 22.8678i 1.62652 + 0.939070i 0.985122 + 0.171859i \(0.0549774\pi\)
0.641395 + 0.767211i \(0.278356\pi\)
\(594\) 0 0
\(595\) −3.47898 4.35531i −0.142624 0.178550i
\(596\) 0 0
\(597\) 6.84834 + 3.95389i 0.280284 + 0.161822i
\(598\) 0 0
\(599\) −1.00358 1.73825i −0.0410052 0.0710230i 0.844794 0.535091i \(-0.179723\pi\)
−0.885800 + 0.464068i \(0.846389\pi\)
\(600\) 0 0
\(601\) 41.7743 1.70401 0.852004 0.523535i \(-0.175387\pi\)
0.852004 + 0.523535i \(0.175387\pi\)
\(602\) 0 0
\(603\) 9.56220i 0.389403i
\(604\) 0 0
\(605\) −5.33058 + 10.4275i −0.216719 + 0.423939i
\(606\) 0 0
\(607\) 21.4763 + 12.3993i 0.871695 + 0.503273i 0.867911 0.496720i \(-0.165462\pi\)
0.00378381 + 0.999993i \(0.498796\pi\)
\(608\) 0 0
\(609\) 9.24763 + 12.8724i 0.374733 + 0.521616i
\(610\) 0 0
\(611\) 35.3887 61.2950i 1.43167 2.47973i
\(612\) 0 0
\(613\) −12.0834 + 6.97638i −0.488045 + 0.281773i −0.723763 0.690048i \(-0.757589\pi\)
0.235718 + 0.971822i \(0.424256\pi\)
\(614\) 0 0
\(615\) 11.7247 7.59195i 0.472786 0.306137i
\(616\) 0 0
\(617\) 10.0319i 0.403867i −0.979399 0.201934i \(-0.935277\pi\)
0.979399 0.201934i \(-0.0647226\pi\)
\(618\) 0 0
\(619\) −4.81213 8.33486i −0.193416 0.335006i 0.752964 0.658061i \(-0.228623\pi\)
−0.946380 + 0.323055i \(0.895290\pi\)
\(620\) 0 0
\(621\) 2.47111 4.28008i 0.0991621 0.171754i
\(622\) 0 0
\(623\) −11.5692 5.22520i −0.463509 0.209343i
\(624\) 0 0
\(625\) 24.4810 5.06755i 0.979240 0.202702i
\(626\) 0 0
\(627\) 30.0453 17.3467i 1.19989 0.692759i
\(628\) 0 0
\(629\) −5.02175 −0.200230
\(630\) 0 0
\(631\) −19.5975 −0.780166 −0.390083 0.920780i \(-0.627554\pi\)
−0.390083 + 0.920780i \(0.627554\pi\)
\(632\) 0 0
\(633\) −15.8783 + 9.16733i −0.631105 + 0.364369i
\(634\) 0 0
\(635\) −0.940084 18.4065i −0.0373061 0.730441i
\(636\) 0 0
\(637\) −8.33946 41.4057i −0.330421 1.64055i
\(638\) 0 0
\(639\) −4.46597 + 7.73529i −0.176671 + 0.306003i
\(640\) 0 0
\(641\) −21.1952 36.7112i −0.837160 1.45000i −0.892259 0.451524i \(-0.850881\pi\)
0.0550987 0.998481i \(-0.482453\pi\)
\(642\) 0 0
\(643\) 9.64930i 0.380531i −0.981733 0.190266i \(-0.939065\pi\)
0.981733 0.190266i \(-0.0609349\pi\)
\(644\) 0 0
\(645\) −6.12473 9.45880i −0.241161 0.372440i
\(646\) 0 0
\(647\) 9.61266 5.54987i 0.377913 0.218188i −0.298997 0.954254i \(-0.596652\pi\)
0.676910 + 0.736066i \(0.263319\pi\)
\(648\) 0 0
\(649\) −8.79922 + 15.2407i −0.345399 + 0.598249i
\(650\) 0 0
\(651\) −4.20519 + 9.31075i −0.164814 + 0.364917i
\(652\) 0 0
\(653\) −3.64945 2.10701i −0.142814 0.0824536i 0.426891 0.904303i \(-0.359609\pi\)
−0.569704 + 0.821850i \(0.692942\pi\)
\(654\) 0 0
\(655\) 7.10636 13.9012i 0.277668 0.543167i
\(656\) 0 0
\(657\) 6.82442i 0.266246i
\(658\) 0 0
\(659\) −6.52405 −0.254141 −0.127070 0.991894i \(-0.540557\pi\)
−0.127070 + 0.991894i \(0.540557\pi\)
\(660\) 0 0
\(661\) −6.36675 11.0275i −0.247638 0.428922i 0.715232 0.698887i \(-0.246321\pi\)
−0.962870 + 0.269965i \(0.912988\pi\)
\(662\) 0 0
\(663\) −4.92355 2.84261i −0.191215 0.110398i
\(664\) 0 0
\(665\) −47.4297 18.5708i −1.83925 0.720144i
\(666\) 0 0
\(667\) 25.6406 + 14.8036i 0.992808 + 0.573198i
\(668\) 0 0
\(669\) 1.47717 + 2.55853i 0.0571107 + 0.0989186i
\(670\) 0 0
\(671\) 6.11706 0.236146
\(672\) 0 0
\(673\) 36.7489i 1.41656i −0.705929 0.708282i \(-0.749470\pi\)
0.705929 0.708282i \(-0.250530\pi\)
\(674\) 0 0
\(675\) −0.509406 4.97398i −0.0196070 0.191449i
\(676\) 0 0
\(677\) −12.2576 7.07691i −0.471097 0.271988i 0.245602 0.969371i \(-0.421014\pi\)
−0.716699 + 0.697383i \(0.754348\pi\)
\(678\) 0 0
\(679\) 49.1337 4.89879i 1.88558 0.187998i
\(680\) 0 0
\(681\) −8.28468 + 14.3495i −0.317470 + 0.549874i
\(682\) 0 0
\(683\) −19.2195 + 11.0964i −0.735413 + 0.424591i −0.820399 0.571791i \(-0.806249\pi\)
0.0849862 + 0.996382i \(0.472915\pi\)
\(684\) 0 0
\(685\) 21.8486 14.1474i 0.834793 0.540543i
\(686\) 0 0
\(687\) 24.1072i 0.919748i
\(688\) 0 0
\(689\) 15.2918 + 26.4862i 0.582572 + 1.00904i
\(690\) 0 0
\(691\) −24.2439 + 41.9916i −0.922280 + 1.59744i −0.126401 + 0.991979i \(0.540343\pi\)
−0.795879 + 0.605456i \(0.792991\pi\)
\(692\) 0 0
\(693\) −1.05771 10.6086i −0.0401791 0.402988i
\(694\) 0 0
\(695\) 39.3308 2.00876i 1.49190 0.0761965i
\(696\) 0 0
\(697\) −5.09720 + 2.94287i −0.193070 + 0.111469i
\(698\) 0 0
\(699\) 10.3172 0.390234
\(700\) 0 0
\(701\) −0.122295 −0.00461901 −0.00230950 0.999997i \(-0.500735\pi\)
−0.00230950 + 0.999997i \(0.500735\pi\)
\(702\) 0 0
\(703\) −39.7396 + 22.9437i −1.49881 + 0.865337i
\(704\) 0 0
\(705\) −26.1949 + 1.33786i −0.986557 + 0.0503869i
\(706\) 0 0
\(707\) 26.7739 19.2345i 1.00693 0.723389i
\(708\) 0 0
\(709\) 11.9545 20.7058i 0.448960 0.777621i −0.549359 0.835587i \(-0.685128\pi\)
0.998319 + 0.0579652i \(0.0184613\pi\)
\(710\) 0 0
\(711\) −3.43708 5.95320i −0.128901 0.223262i
\(712\) 0 0
\(713\) 19.0839i 0.714699i
\(714\) 0 0
\(715\) 45.6358 29.5499i 1.70668 1.10511i
\(716\) 0 0
\(717\) 18.5690 10.7208i 0.693472 0.400376i
\(718\) 0 0
\(719\) −3.19471 + 5.53340i −0.119143 + 0.206361i −0.919428 0.393258i \(-0.871348\pi\)
0.800286 + 0.599619i \(0.204681\pi\)
\(720\) 0 0
\(721\) −5.85435 + 12.9622i −0.218027 + 0.482737i
\(722\) 0 0
\(723\) −16.9572 9.79026i −0.630646 0.364104i
\(724\) 0 0
\(725\) 29.7975 3.05169i 1.10665 0.113337i
\(726\) 0 0
\(727\) 43.7937i 1.62422i 0.583505 + 0.812110i \(0.301681\pi\)
−0.583505 + 0.812110i \(0.698319\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 2.37413 + 4.11212i 0.0878105 + 0.152092i
\(732\) 0 0
\(733\) 29.1319 + 16.8193i 1.07601 + 0.621235i 0.929817 0.368021i \(-0.119965\pi\)
0.146193 + 0.989256i \(0.453298\pi\)
\(734\) 0 0
\(735\) −11.2002 + 10.9341i −0.413126 + 0.403311i
\(736\) 0 0
\(737\) −33.3692 19.2657i −1.22917 0.709662i
\(738\) 0 0
\(739\) 5.00246 + 8.66452i 0.184019 + 0.318730i 0.943245 0.332097i \(-0.107756\pi\)
−0.759227 + 0.650826i \(0.774423\pi\)
\(740\) 0 0
\(741\) −51.9500 −1.90843
\(742\) 0 0
\(743\) 43.8326i 1.60806i 0.594587 + 0.804031i \(0.297316\pi\)
−0.594587 + 0.804031i \(0.702684\pi\)
\(744\) 0 0
\(745\) −0.170505 + 0.333537i −0.00624682 + 0.0122198i
\(746\) 0 0
\(747\) 14.1684 + 8.18011i 0.518394 + 0.299295i
\(748\) 0 0
\(749\) −7.85195 + 17.3851i −0.286904 + 0.635237i
\(750\) 0 0
\(751\) 14.0538 24.3418i 0.512829 0.888246i −0.487060 0.873368i \(-0.661931\pi\)
0.999889 0.0148777i \(-0.00473591\pi\)
\(752\) 0 0
\(753\) −2.66077 + 1.53620i −0.0969640 + 0.0559822i
\(754\) 0 0
\(755\) −10.8582 16.7689i −0.395169 0.610283i
\(756\) 0 0
\(757\) 4.04902i 0.147164i 0.997289 + 0.0735821i \(0.0234431\pi\)
−0.997289 + 0.0735821i \(0.976557\pi\)
\(758\) 0 0
\(759\) −9.95747 17.2468i −0.361433 0.626021i
\(760\) 0 0
\(761\) 1.84389 3.19371i 0.0668409 0.115772i −0.830668 0.556768i \(-0.812041\pi\)
0.897509 + 0.440996i \(0.145375\pi\)
\(762\) 0 0
\(763\) −11.3526 + 8.15578i −0.410991 + 0.295259i
\(764\) 0 0
\(765\) 0.107464 + 2.10412i 0.00388539 + 0.0760745i
\(766\) 0 0
\(767\) 22.8215 13.1760i 0.824037 0.475758i
\(768\) 0 0
\(769\) −32.7377 −1.18055 −0.590275 0.807202i \(-0.700981\pi\)
−0.590275 + 0.807202i \(0.700981\pi\)
\(770\) 0 0
\(771\) −26.5566 −0.956414
\(772\) 0 0
\(773\) 34.4737 19.9034i 1.23993 0.715876i 0.270853 0.962621i \(-0.412694\pi\)
0.969080 + 0.246745i \(0.0793611\pi\)
\(774\) 0 0
\(775\) 11.3068 + 15.6499i 0.406152 + 0.562161i
\(776\) 0 0
\(777\) 1.39899 + 14.0315i 0.0501884 + 0.503379i
\(778\) 0 0
\(779\) −26.8912 + 46.5769i −0.963476 + 1.66879i
\(780\) 0 0
\(781\) 17.9959 + 31.1698i 0.643943 + 1.11534i
\(782\) 0 0
\(783\) 5.99068i 0.214089i
\(784\) 0 0
\(785\) 0.706966 0.457773i 0.0252327 0.0163386i
\(786\) 0 0
\(787\) −1.32740 + 0.766373i −0.0473166 + 0.0273183i −0.523472 0.852043i \(-0.675363\pi\)
0.476155 + 0.879361i \(0.342030\pi\)
\(788\) 0 0
\(789\) 9.64190 16.7003i 0.343261 0.594545i
\(790\) 0 0
\(791\) −0.937532 + 0.0934748i −0.0333348 + 0.00332358i
\(792\) 0 0
\(793\) −7.93255 4.57986i −0.281693 0.162636i
\(794\) 0 0
\(795\) 5.15889 10.0917i 0.182967 0.357915i
\(796\) 0 0
\(797\) 24.0075i 0.850388i 0.905102 + 0.425194i \(0.139794\pi\)
−0.905102 + 0.425194i \(0.860206\pi\)
\(798\) 0 0
\(799\) 11.0522 0.390998
\(800\) 0 0
\(801\) 2.39902 + 4.15523i 0.0847653 + 0.146818i
\(802\) 0 0
\(803\) 23.8152 + 13.7497i 0.840419 + 0.485216i
\(804\) 0 0
\(805\) −10.6601 + 27.2260i −0.375721 + 0.959589i
\(806\) 0 0
\(807\) −5.01688 2.89650i −0.176603 0.101962i
\(808\) 0 0
\(809\) −5.42064 9.38882i −0.190580 0.330093i 0.754863 0.655883i \(-0.227703\pi\)
−0.945442 + 0.325789i \(0.894370\pi\)
\(810\) 0 0
\(811\) 14.0911 0.494805 0.247402 0.968913i \(-0.420423\pi\)
0.247402 + 0.968913i \(0.420423\pi\)
\(812\) 0 0
\(813\) 5.59916i 0.196371i
\(814\) 0 0
\(815\) 24.2398 + 12.3914i 0.849082 + 0.434053i
\(816\) 0 0
\(817\) 37.5754 + 21.6942i 1.31460 + 0.758984i
\(818\) 0 0
\(819\) −6.57106 + 14.5491i −0.229612 + 0.508385i
\(820\) 0 0
\(821\) −20.3827 + 35.3039i −0.711361 + 1.23211i 0.252985 + 0.967470i \(0.418588\pi\)
−0.964346 + 0.264644i \(0.914746\pi\)
\(822\) 0 0
\(823\) 8.82720 5.09639i 0.307697 0.177649i −0.338198 0.941075i \(-0.609818\pi\)
0.645895 + 0.763426i \(0.276484\pi\)
\(824\) 0 0
\(825\) −18.3840 8.24380i −0.640050 0.287012i
\(826\) 0 0
\(827\) 12.2847i 0.427180i 0.976923 + 0.213590i \(0.0685157\pi\)
−0.976923 + 0.213590i \(0.931484\pi\)
\(828\) 0 0
\(829\) 16.7079 + 28.9390i 0.580290 + 1.00509i 0.995445 + 0.0953412i \(0.0303942\pi\)
−0.415154 + 0.909751i \(0.636272\pi\)
\(830\) 0 0
\(831\) 2.36470 4.09578i 0.0820305 0.142081i
\(832\) 0 0
\(833\) 4.94832 4.36061i 0.171449 0.151086i
\(834\) 0 0
\(835\) 0.278112 + 5.44534i 0.00962447 + 0.188444i
\(836\) 0 0
\(837\) 3.34408 1.93071i 0.115588 0.0667350i
\(838\) 0 0
\(839\) 21.8245 0.753464 0.376732 0.926322i \(-0.377048\pi\)
0.376732 + 0.926322i \(0.377048\pi\)
\(840\) 0 0
\(841\) 6.88823 0.237525
\(842\) 0 0
\(843\) −11.7726 + 6.79693i −0.405471 + 0.234099i
\(844\) 0 0
\(845\) −52.2732 + 2.66977i −1.79825 + 0.0918429i
\(846\) 0 0
\(847\) −12.6284 5.70360i −0.433917 0.195978i
\(848\) 0 0
\(849\) 3.93026 6.80740i 0.134886 0.233629i
\(850\) 0 0
\(851\) 13.1703 + 22.8116i 0.451472 + 0.781973i
\(852\) 0 0
\(853\) 3.88967i 0.133180i 0.997780 + 0.0665899i \(0.0212119\pi\)
−0.997780 + 0.0665899i \(0.978788\pi\)
\(854\) 0 0
\(855\) 10.4638 + 16.1599i 0.357856 + 0.552658i
\(856\) 0 0
\(857\) −1.38779 + 0.801241i −0.0474060 + 0.0273699i −0.523516 0.852016i \(-0.675380\pi\)
0.476110 + 0.879386i \(0.342047\pi\)
\(858\) 0 0
\(859\) 9.09518 15.7533i 0.310324 0.537496i −0.668109 0.744064i \(-0.732896\pi\)
0.978432 + 0.206567i \(0.0662293\pi\)
\(860\) 0 0
\(861\) 9.64285 + 13.4225i 0.328627 + 0.457439i
\(862\) 0 0
\(863\) 1.10842 + 0.639947i 0.0377311 + 0.0217840i 0.518747 0.854928i \(-0.326399\pi\)
−0.481016 + 0.876712i \(0.659732\pi\)
\(864\) 0 0
\(865\) −11.2907 5.77184i −0.383895 0.196248i
\(866\) 0 0
\(867\) 16.1122i 0.547200i
\(868\) 0 0
\(869\) −27.6998 −0.939652
\(870\) 0 0
\(871\) 28.8486 + 49.9673i 0.977498 + 1.69308i
\(872\) 0 0
\(873\) −16.1625 9.33144i −0.547019 0.315821i
\(874\) 0 0
\(875\) 7.38885 + 28.6427i 0.249789 + 0.968300i
\(876\) 0 0
\(877\) −33.1825 19.1579i −1.12049 0.646918i −0.178967 0.983855i \(-0.557276\pi\)
−0.941527 + 0.336937i \(0.890609\pi\)
\(878\) 0 0
\(879\) −6.31048 10.9301i −0.212847 0.368662i
\(880\) 0 0
\(881\) 18.3756 0.619090 0.309545 0.950885i \(-0.399823\pi\)
0.309545 + 0.950885i \(0.399823\pi\)
\(882\) 0 0
\(883\) 10.9195i 0.367470i 0.982976 + 0.183735i \(0.0588188\pi\)
−0.982976 + 0.183735i \(0.941181\pi\)
\(884\) 0 0
\(885\) −8.69536 4.44509i −0.292291 0.149420i
\(886\) 0 0
\(887\) 7.39462 + 4.26929i 0.248287 + 0.143349i 0.618980 0.785407i \(-0.287546\pi\)
−0.370693 + 0.928756i \(0.620880\pi\)
\(888\) 0 0
\(889\) 21.6997 2.16353i 0.727784 0.0725624i
\(890\) 0 0
\(891\) −2.01478 + 3.48970i −0.0674976 + 0.116909i
\(892\) 0 0
\(893\) 87.4615 50.4959i 2.92679 1.68978i
\(894\) 0 0
\(895\) −0.614121 0.948423i −0.0205278 0.0317023i
\(896\) 0 0
\(897\) 29.8208i 0.995686i
\(898\) 0 0
\(899\) 11.5662 + 20.0333i 0.385756 + 0.668149i
\(900\) 0 0
\(901\) −2.38788 + 4.13593i −0.0795518 + 0.137788i
\(902\) 0 0
\(903\) 10.8285 7.77928i 0.360350 0.258878i
\(904\) 0 0
\(905\) −58.4466 + 2.98507i −1.94283 + 0.0992270i
\(906\) 0 0
\(907\) 8.05971 4.65327i 0.267618 0.154509i −0.360187 0.932880i \(-0.617287\pi\)
0.627805 + 0.778371i \(0.283954\pi\)
\(908\) 0 0
\(909\) −12.4603 −0.413281
\(910\) 0 0
\(911\) −49.8087 −1.65024 −0.825119 0.564959i \(-0.808892\pi\)
−0.825119 + 0.564959i \(0.808892\pi\)
\(912\) 0 0
\(913\) 57.0923 32.9622i 1.88948 1.09089i
\(914\) 0 0
\(915\) 0.173141 + 3.39004i 0.00572386 + 0.112071i
\(916\) 0 0
\(917\) 16.8353 + 7.60364i 0.555951 + 0.251094i
\(918\) 0 0
\(919\) 2.13941 3.70556i 0.0705725 0.122235i −0.828580 0.559871i \(-0.810851\pi\)
0.899152 + 0.437636i \(0.144184\pi\)
\(920\) 0 0
\(921\) 10.5984 + 18.3569i 0.349228 + 0.604880i
\(922\) 0 0
\(923\) 53.8943i 1.77395i
\(924\) 0 0
\(925\) 24.3158 + 10.9037i 0.799497 + 0.358512i
\(926\) 0 0
\(927\) 4.65554 2.68788i 0.152908 0.0882815i
\(928\) 0 0
\(929\) −0.111327 + 0.192825i −0.00365254 + 0.00632638i −0.867846 0.496833i \(-0.834496\pi\)
0.864193 + 0.503160i \(0.167829\pi\)
\(930\) 0 0
\(931\) 19.2355 57.1159i 0.630418 1.87190i
\(932\) 0 0
\(933\) 5.20990 + 3.00794i 0.170565 + 0.0984755i
\(934\) 0 0
\(935\) 7.55925 + 3.86431i 0.247214 + 0.126376i
\(936\) 0 0
\(937\) 30.1325i 0.984387i 0.870486 + 0.492194i \(0.163805\pi\)
−0.870486 + 0.492194i \(0.836195\pi\)
\(938\) 0 0
\(939\) −18.2729 −0.596313
\(940\) 0 0
\(941\) 16.2555 + 28.1553i 0.529914 + 0.917838i 0.999391 + 0.0348933i \(0.0111091\pi\)
−0.469477 + 0.882945i \(0.655558\pi\)
\(942\) 0 0
\(943\) 26.7364 + 15.4363i 0.870657 + 0.502674i
\(944\) 0 0
\(945\) 5.84929 0.886450i 0.190277 0.0288362i
\(946\) 0 0
\(947\) −17.4042 10.0483i −0.565560 0.326526i 0.189814 0.981820i \(-0.439211\pi\)
−0.755374 + 0.655294i \(0.772545\pi\)
\(948\) 0 0
\(949\) −20.5889 35.6610i −0.668343 1.15760i
\(950\) 0 0
\(951\) 12.8978 0.418239
\(952\) 0 0
\(953\) 12.8274i 0.415519i 0.978180 + 0.207760i \(0.0666172\pi\)
−0.978180 + 0.207760i \(0.933383\pi\)
\(954\) 0 0
\(955\) 17.6550 34.5362i 0.571302 1.11756i
\(956\) 0 0
\(957\) −20.9057 12.0699i −0.675784 0.390164i
\(958\) 0 0
\(959\) 17.9691 + 25.0125i 0.580254 + 0.807695i
\(960\) 0 0
\(961\) 8.04475 13.9339i 0.259508 0.449481i
\(962\) 0 0
\(963\) 6.24409 3.60503i 0.201213 0.116170i
\(964\) 0 0
\(965\) −7.28488 + 4.71709i −0.234509 + 0.151848i
\(966\) 0 0
\(967\) 0.279633i 0.00899239i 0.999990 + 0.00449619i \(0.00143119\pi\)
−0.999990 + 0.00449619i \(0.998569\pi\)
\(968\) 0 0
\(969\) −4.05610 7.02538i −0.130301 0.225688i
\(970\) 0 0
\(971\) 20.2390 35.0550i 0.649501 1.12497i −0.333741 0.942665i \(-0.608311\pi\)
0.983242 0.182305i \(-0.0583557\pi\)
\(972\) 0 0
\(973\) 4.62299 + 46.3676i 0.148206 + 1.48648i
\(974\) 0 0
\(975\) 17.6681 + 24.4547i 0.565832 + 0.783177i
\(976\) 0 0
\(977\) −6.16126 + 3.55720i −0.197116 + 0.113805i −0.595310 0.803496i \(-0.702971\pi\)
0.398193 + 0.917301i \(0.369637\pi\)
\(978\) 0 0
\(979\) 19.3340 0.617917
\(980\) 0 0
\(981\) 5.28337 0.168685
\(982\) 0 0
\(983\) −13.9886 + 8.07634i −0.446168 + 0.257595i −0.706210 0.708002i \(-0.749597\pi\)
0.260042 + 0.965597i \(0.416263\pi\)
\(984\) 0 0
\(985\) 0.981379 + 19.2151i 0.0312693 + 0.612243i
\(986\) 0 0
\(987\) −3.07898 30.8815i −0.0980051 0.982969i
\(988\) 0 0
\(989\) 12.4531 21.5693i 0.395985 0.685865i
\(990\) 0 0
\(991\) 7.75931 + 13.4395i 0.246483 + 0.426920i 0.962547 0.271113i \(-0.0873919\pi\)
−0.716065 + 0.698034i \(0.754059\pi\)
\(992\) 0 0
\(993\) 2.12658i 0.0674851i
\(994\) 0 0
\(995\) 9.61075 + 14.8425i 0.304681 + 0.470538i
\(996\) 0 0
\(997\) −39.8042 + 22.9810i −1.26061 + 0.727815i −0.973193 0.229990i \(-0.926131\pi\)
−0.287419 + 0.957805i \(0.592797\pi\)
\(998\) 0 0
\(999\) 2.66486 4.61567i 0.0843124 0.146033i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.di.g.289.12 24
4.3 odd 2 840.2.cc.c.289.6 24
5.4 even 2 inner 1680.2.di.g.289.3 24
7.4 even 3 inner 1680.2.di.g.529.2 24
20.19 odd 2 840.2.cc.c.289.8 yes 24
28.11 odd 6 840.2.cc.c.529.8 yes 24
35.4 even 6 inner 1680.2.di.g.529.12 24
140.39 odd 6 840.2.cc.c.529.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.cc.c.289.6 24 4.3 odd 2
840.2.cc.c.289.8 yes 24 20.19 odd 2
840.2.cc.c.529.6 yes 24 140.39 odd 6
840.2.cc.c.529.8 yes 24 28.11 odd 6
1680.2.di.g.289.3 24 5.4 even 2 inner
1680.2.di.g.289.12 24 1.1 even 1 trivial
1680.2.di.g.529.2 24 7.4 even 3 inner
1680.2.di.g.529.12 24 35.4 even 6 inner