Properties

Label 840.2.cc.c.289.5
Level $840$
Weight $2$
Character 840.289
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(289,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.5
Character \(\chi\) \(=\) 840.289
Dual form 840.2.cc.c.529.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{3} +(2.06974 - 0.846282i) q^{5} +(2.64327 - 0.114495i) q^{7} +(0.500000 - 0.866025i) q^{9} +(-3.21893 - 5.57535i) q^{11} -3.47412i q^{13} +(-1.36930 + 1.76777i) q^{15} +(1.70960 - 0.987038i) q^{17} +(-2.21415 + 3.83501i) q^{19} +(-2.23189 + 1.42079i) q^{21} +(-1.75450 - 1.01296i) q^{23} +(3.56761 - 3.50316i) q^{25} +1.00000i q^{27} -6.25115 q^{29} +(-3.03554 - 5.25771i) q^{31} +(5.57535 + 3.21893i) q^{33} +(5.37398 - 2.47393i) q^{35} +(0.679339 + 0.392216i) q^{37} +(1.73706 + 3.00867i) q^{39} +10.2120 q^{41} +9.76386i q^{43} +(0.301966 - 2.21558i) q^{45} +(-1.48055 - 0.854794i) q^{47} +(6.97378 - 0.605281i) q^{49} +(-0.987038 + 1.70960i) q^{51} +(5.64578 - 3.25959i) q^{53} +(-11.3807 - 8.81538i) q^{55} -4.42829i q^{57} +(-5.83826 - 10.1122i) q^{59} +(2.46412 - 4.26799i) q^{61} +(1.22248 - 2.34639i) q^{63} +(-2.94008 - 7.19051i) q^{65} +(9.35985 - 5.40391i) q^{67} +2.02592 q^{69} +10.4314 q^{71} +(-4.41578 + 2.54945i) q^{73} +(-1.33806 + 4.81763i) q^{75} +(-9.14686 - 14.3686i) q^{77} +(-2.72865 + 4.72617i) q^{79} +(-0.500000 - 0.866025i) q^{81} +15.3100i q^{83} +(2.70311 - 3.48971i) q^{85} +(5.41365 - 3.12557i) q^{87} +(5.07049 - 8.78234i) q^{89} +(-0.397768 - 9.18304i) q^{91} +(5.25771 + 3.03554i) q^{93} +(-1.33719 + 9.81125i) q^{95} +9.93481i q^{97} -6.43786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{5} + 12 q^{9} - 8 q^{11} + 8 q^{19} + 12 q^{21} + 2 q^{25} - 24 q^{29} + 4 q^{31} + 30 q^{35} + 4 q^{39} + 32 q^{41} - 2 q^{45} - 12 q^{49} - 20 q^{51} + 12 q^{55} - 4 q^{59} + 32 q^{61} + 22 q^{65}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) 2.06974 0.846282i 0.925614 0.378469i
\(6\) 0 0
\(7\) 2.64327 0.114495i 0.999063 0.0432749i
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −3.21893 5.57535i −0.970545 1.68103i −0.693917 0.720055i \(-0.744116\pi\)
−0.276628 0.960977i \(-0.589217\pi\)
\(12\) 0 0
\(13\) 3.47412i 0.963547i −0.876296 0.481773i \(-0.839993\pi\)
0.876296 0.481773i \(-0.160007\pi\)
\(14\) 0 0
\(15\) −1.36930 + 1.76777i −0.353552 + 0.456436i
\(16\) 0 0
\(17\) 1.70960 0.987038i 0.414639 0.239392i −0.278142 0.960540i \(-0.589719\pi\)
0.692781 + 0.721148i \(0.256385\pi\)
\(18\) 0 0
\(19\) −2.21415 + 3.83501i −0.507960 + 0.879812i 0.491998 + 0.870596i \(0.336267\pi\)
−0.999958 + 0.00921562i \(0.997067\pi\)
\(20\) 0 0
\(21\) −2.23189 + 1.42079i −0.487039 + 0.310042i
\(22\) 0 0
\(23\) −1.75450 1.01296i −0.365839 0.211217i 0.305800 0.952096i \(-0.401076\pi\)
−0.671639 + 0.740879i \(0.734409\pi\)
\(24\) 0 0
\(25\) 3.56761 3.50316i 0.713522 0.700632i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −6.25115 −1.16081 −0.580405 0.814328i \(-0.697106\pi\)
−0.580405 + 0.814328i \(0.697106\pi\)
\(30\) 0 0
\(31\) −3.03554 5.25771i −0.545199 0.944312i −0.998594 0.0530029i \(-0.983121\pi\)
0.453395 0.891310i \(-0.350213\pi\)
\(32\) 0 0
\(33\) 5.57535 + 3.21893i 0.970545 + 0.560344i
\(34\) 0 0
\(35\) 5.37398 2.47393i 0.908369 0.418170i
\(36\) 0 0
\(37\) 0.679339 + 0.392216i 0.111683 + 0.0644800i 0.554801 0.831983i \(-0.312794\pi\)
−0.443118 + 0.896463i \(0.646128\pi\)
\(38\) 0 0
\(39\) 1.73706 + 3.00867i 0.278152 + 0.481773i
\(40\) 0 0
\(41\) 10.2120 1.59484 0.797421 0.603424i \(-0.206197\pi\)
0.797421 + 0.603424i \(0.206197\pi\)
\(42\) 0 0
\(43\) 9.76386i 1.48897i 0.667637 + 0.744487i \(0.267306\pi\)
−0.667637 + 0.744487i \(0.732694\pi\)
\(44\) 0 0
\(45\) 0.301966 2.21558i 0.0450144 0.330280i
\(46\) 0 0
\(47\) −1.48055 0.854794i −0.215960 0.124685i 0.388118 0.921610i \(-0.373125\pi\)
−0.604078 + 0.796925i \(0.706459\pi\)
\(48\) 0 0
\(49\) 6.97378 0.605281i 0.996255 0.0864687i
\(50\) 0 0
\(51\) −0.987038 + 1.70960i −0.138213 + 0.239392i
\(52\) 0 0
\(53\) 5.64578 3.25959i 0.775508 0.447740i −0.0593279 0.998239i \(-0.518896\pi\)
0.834836 + 0.550499i \(0.185562\pi\)
\(54\) 0 0
\(55\) −11.3807 8.81538i −1.53457 1.18867i
\(56\) 0 0
\(57\) 4.42829i 0.586541i
\(58\) 0 0
\(59\) −5.83826 10.1122i −0.760076 1.31649i −0.942811 0.333328i \(-0.891828\pi\)
0.182735 0.983162i \(-0.441505\pi\)
\(60\) 0 0
\(61\) 2.46412 4.26799i 0.315499 0.546460i −0.664045 0.747693i \(-0.731162\pi\)
0.979543 + 0.201233i \(0.0644949\pi\)
\(62\) 0 0
\(63\) 1.22248 2.34639i 0.154018 0.295617i
\(64\) 0 0
\(65\) −2.94008 7.19051i −0.364673 0.891873i
\(66\) 0 0
\(67\) 9.35985 5.40391i 1.14349 0.660193i 0.196196 0.980565i \(-0.437141\pi\)
0.947292 + 0.320372i \(0.103808\pi\)
\(68\) 0 0
\(69\) 2.02592 0.243893
\(70\) 0 0
\(71\) 10.4314 1.23798 0.618989 0.785400i \(-0.287543\pi\)
0.618989 + 0.785400i \(0.287543\pi\)
\(72\) 0 0
\(73\) −4.41578 + 2.54945i −0.516828 + 0.298391i −0.735636 0.677377i \(-0.763117\pi\)
0.218808 + 0.975768i \(0.429783\pi\)
\(74\) 0 0
\(75\) −1.33806 + 4.81763i −0.154506 + 0.556292i
\(76\) 0 0
\(77\) −9.14686 14.3686i −1.04238 1.63746i
\(78\) 0 0
\(79\) −2.72865 + 4.72617i −0.306997 + 0.531735i −0.977704 0.209988i \(-0.932658\pi\)
0.670707 + 0.741723i \(0.265991\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 15.3100i 1.68050i 0.542203 + 0.840248i \(0.317590\pi\)
−0.542203 + 0.840248i \(0.682410\pi\)
\(84\) 0 0
\(85\) 2.70311 3.48971i 0.293193 0.378512i
\(86\) 0 0
\(87\) 5.41365 3.12557i 0.580405 0.335097i
\(88\) 0 0
\(89\) 5.07049 8.78234i 0.537470 0.930926i −0.461569 0.887104i \(-0.652713\pi\)
0.999039 0.0438217i \(-0.0139534\pi\)
\(90\) 0 0
\(91\) −0.397768 9.18304i −0.0416974 0.962644i
\(92\) 0 0
\(93\) 5.25771 + 3.03554i 0.545199 + 0.314771i
\(94\) 0 0
\(95\) −1.33719 + 9.81125i −0.137193 + 1.00661i
\(96\) 0 0
\(97\) 9.93481i 1.00873i 0.863491 + 0.504364i \(0.168273\pi\)
−0.863491 + 0.504364i \(0.831727\pi\)
\(98\) 0 0
\(99\) −6.43786 −0.647030
\(100\) 0 0
\(101\) −1.54884 2.68267i −0.154115 0.266935i 0.778621 0.627494i \(-0.215919\pi\)
−0.932736 + 0.360559i \(0.882586\pi\)
\(102\) 0 0
\(103\) 13.2104 + 7.62702i 1.30166 + 0.751512i 0.980688 0.195578i \(-0.0626581\pi\)
0.320969 + 0.947090i \(0.395991\pi\)
\(104\) 0 0
\(105\) −3.41704 + 4.82948i −0.333469 + 0.471309i
\(106\) 0 0
\(107\) −2.05902 1.18877i −0.199053 0.114923i 0.397161 0.917749i \(-0.369995\pi\)
−0.596213 + 0.802826i \(0.703329\pi\)
\(108\) 0 0
\(109\) 7.20382 + 12.4774i 0.690000 + 1.19512i 0.971837 + 0.235653i \(0.0757230\pi\)
−0.281837 + 0.959462i \(0.590944\pi\)
\(110\) 0 0
\(111\) −0.784433 −0.0744551
\(112\) 0 0
\(113\) 5.38555i 0.506630i 0.967384 + 0.253315i \(0.0815210\pi\)
−0.967384 + 0.253315i \(0.918479\pi\)
\(114\) 0 0
\(115\) −4.48861 0.611760i −0.418565 0.0570469i
\(116\) 0 0
\(117\) −3.00867 1.73706i −0.278152 0.160591i
\(118\) 0 0
\(119\) 4.40593 2.80475i 0.403891 0.257111i
\(120\) 0 0
\(121\) −15.2230 + 26.3671i −1.38391 + 2.39701i
\(122\) 0 0
\(123\) −8.84382 + 5.10598i −0.797421 + 0.460391i
\(124\) 0 0
\(125\) 4.41935 10.2698i 0.395279 0.918561i
\(126\) 0 0
\(127\) 11.2482i 0.998118i 0.866568 + 0.499059i \(0.166321\pi\)
−0.866568 + 0.499059i \(0.833679\pi\)
\(128\) 0 0
\(129\) −4.88193 8.45575i −0.429830 0.744487i
\(130\) 0 0
\(131\) 5.40870 9.36814i 0.472560 0.818498i −0.526947 0.849898i \(-0.676663\pi\)
0.999507 + 0.0314000i \(0.00999657\pi\)
\(132\) 0 0
\(133\) −5.41350 + 10.3905i −0.469410 + 0.900970i
\(134\) 0 0
\(135\) 0.846282 + 2.06974i 0.0728364 + 0.178134i
\(136\) 0 0
\(137\) 1.21943 0.704037i 0.104183 0.0601500i −0.447003 0.894532i \(-0.647509\pi\)
0.551186 + 0.834382i \(0.314175\pi\)
\(138\) 0 0
\(139\) −5.36340 −0.454917 −0.227459 0.973788i \(-0.573042\pi\)
−0.227459 + 0.973788i \(0.573042\pi\)
\(140\) 0 0
\(141\) 1.70959 0.143973
\(142\) 0 0
\(143\) −19.3694 + 11.1829i −1.61975 + 0.935165i
\(144\) 0 0
\(145\) −12.9382 + 5.29024i −1.07446 + 0.439330i
\(146\) 0 0
\(147\) −5.73683 + 4.01108i −0.473166 + 0.330828i
\(148\) 0 0
\(149\) −1.46209 + 2.53241i −0.119779 + 0.207463i −0.919680 0.392669i \(-0.871552\pi\)
0.799901 + 0.600132i \(0.204885\pi\)
\(150\) 0 0
\(151\) 3.52450 + 6.10462i 0.286820 + 0.496787i 0.973049 0.230599i \(-0.0740685\pi\)
−0.686229 + 0.727386i \(0.740735\pi\)
\(152\) 0 0
\(153\) 1.97408i 0.159595i
\(154\) 0 0
\(155\) −10.7323 8.31314i −0.862037 0.667728i
\(156\) 0 0
\(157\) −2.96645 + 1.71268i −0.236749 + 0.136687i −0.613681 0.789554i \(-0.710312\pi\)
0.376933 + 0.926241i \(0.376979\pi\)
\(158\) 0 0
\(159\) −3.25959 + 5.64578i −0.258503 + 0.447740i
\(160\) 0 0
\(161\) −4.75361 2.47665i −0.374637 0.195188i
\(162\) 0 0
\(163\) 2.53536 + 1.46379i 0.198584 + 0.114653i 0.595995 0.802988i \(-0.296758\pi\)
−0.397411 + 0.917641i \(0.630091\pi\)
\(164\) 0 0
\(165\) 14.2636 + 1.94402i 1.11042 + 0.151341i
\(166\) 0 0
\(167\) 22.1196i 1.71167i −0.517250 0.855835i \(-0.673044\pi\)
0.517250 0.855835i \(-0.326956\pi\)
\(168\) 0 0
\(169\) 0.930504 0.0715773
\(170\) 0 0
\(171\) 2.21415 + 3.83501i 0.169320 + 0.293271i
\(172\) 0 0
\(173\) −11.4022 6.58307i −0.866894 0.500502i −0.000579200 1.00000i \(-0.500184\pi\)
−0.866315 + 0.499498i \(0.833518\pi\)
\(174\) 0 0
\(175\) 9.02908 9.66828i 0.682534 0.730854i
\(176\) 0 0
\(177\) 10.1122 + 5.83826i 0.760076 + 0.438830i
\(178\) 0 0
\(179\) −1.15724 2.00439i −0.0864960 0.149815i 0.819532 0.573034i \(-0.194234\pi\)
−0.906028 + 0.423218i \(0.860900\pi\)
\(180\) 0 0
\(181\) 3.06205 0.227600 0.113800 0.993504i \(-0.463698\pi\)
0.113800 + 0.993504i \(0.463698\pi\)
\(182\) 0 0
\(183\) 4.92825i 0.364307i
\(184\) 0 0
\(185\) 1.73798 + 0.236872i 0.127779 + 0.0174152i
\(186\) 0 0
\(187\) −11.0062 6.35442i −0.804851 0.464681i
\(188\) 0 0
\(189\) 0.114495 + 2.64327i 0.00832826 + 0.192270i
\(190\) 0 0
\(191\) −12.7838 + 22.1421i −0.925000 + 1.60215i −0.133440 + 0.991057i \(0.542602\pi\)
−0.791560 + 0.611091i \(0.790731\pi\)
\(192\) 0 0
\(193\) −18.8184 + 10.8648i −1.35458 + 0.782065i −0.988887 0.148672i \(-0.952500\pi\)
−0.365690 + 0.930737i \(0.619167\pi\)
\(194\) 0 0
\(195\) 6.14144 + 4.75712i 0.439798 + 0.340664i
\(196\) 0 0
\(197\) 11.2646i 0.802567i 0.915954 + 0.401284i \(0.131436\pi\)
−0.915954 + 0.401284i \(0.868564\pi\)
\(198\) 0 0
\(199\) 3.59544 + 6.22748i 0.254874 + 0.441454i 0.964861 0.262760i \(-0.0846327\pi\)
−0.709987 + 0.704214i \(0.751299\pi\)
\(200\) 0 0
\(201\) −5.40391 + 9.35985i −0.381163 + 0.660193i
\(202\) 0 0
\(203\) −16.5235 + 0.715723i −1.15972 + 0.0502339i
\(204\) 0 0
\(205\) 21.1361 8.64221i 1.47621 0.603598i
\(206\) 0 0
\(207\) −1.75450 + 1.01296i −0.121946 + 0.0704057i
\(208\) 0 0
\(209\) 28.5087 1.97199
\(210\) 0 0
\(211\) −0.684937 −0.0471530 −0.0235765 0.999722i \(-0.507505\pi\)
−0.0235765 + 0.999722i \(0.507505\pi\)
\(212\) 0 0
\(213\) −9.03384 + 5.21569i −0.618989 + 0.357373i
\(214\) 0 0
\(215\) 8.26298 + 20.2086i 0.563531 + 1.37822i
\(216\) 0 0
\(217\) −8.62574 13.5500i −0.585553 0.919834i
\(218\) 0 0
\(219\) 2.54945 4.41578i 0.172276 0.298391i
\(220\) 0 0
\(221\) −3.42909 5.93935i −0.230665 0.399524i
\(222\) 0 0
\(223\) 11.8453i 0.793218i −0.917988 0.396609i \(-0.870187\pi\)
0.917988 0.396609i \(-0.129813\pi\)
\(224\) 0 0
\(225\) −1.25002 4.84122i −0.0833347 0.322748i
\(226\) 0 0
\(227\) −18.7577 + 10.8298i −1.24499 + 0.718798i −0.970107 0.242678i \(-0.921974\pi\)
−0.274888 + 0.961476i \(0.588641\pi\)
\(228\) 0 0
\(229\) −6.72719 + 11.6518i −0.444545 + 0.769975i −0.998020 0.0628908i \(-0.979968\pi\)
0.553475 + 0.832866i \(0.313301\pi\)
\(230\) 0 0
\(231\) 15.1057 + 7.87017i 0.993884 + 0.517819i
\(232\) 0 0
\(233\) 11.7539 + 6.78613i 0.770026 + 0.444574i 0.832884 0.553448i \(-0.186688\pi\)
−0.0628582 + 0.998022i \(0.520022\pi\)
\(234\) 0 0
\(235\) −3.78774 0.516237i −0.247085 0.0336756i
\(236\) 0 0
\(237\) 5.45731i 0.354490i
\(238\) 0 0
\(239\) 16.0434 1.03776 0.518880 0.854847i \(-0.326349\pi\)
0.518880 + 0.854847i \(0.326349\pi\)
\(240\) 0 0
\(241\) −6.72757 11.6525i −0.433361 0.750603i 0.563800 0.825912i \(-0.309339\pi\)
−0.997160 + 0.0753089i \(0.976006\pi\)
\(242\) 0 0
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 13.9216 7.15456i 0.889421 0.457088i
\(246\) 0 0
\(247\) 13.3233 + 7.69220i 0.847740 + 0.489443i
\(248\) 0 0
\(249\) −7.65502 13.2589i −0.485117 0.840248i
\(250\) 0 0
\(251\) 14.9463 0.943405 0.471703 0.881758i \(-0.343640\pi\)
0.471703 + 0.881758i \(0.343640\pi\)
\(252\) 0 0
\(253\) 13.0426i 0.819983i
\(254\) 0 0
\(255\) −0.596104 + 4.37373i −0.0373294 + 0.273894i
\(256\) 0 0
\(257\) −3.78296 2.18409i −0.235974 0.136240i 0.377351 0.926070i \(-0.376835\pi\)
−0.613325 + 0.789831i \(0.710168\pi\)
\(258\) 0 0
\(259\) 1.84058 + 0.958954i 0.114368 + 0.0595865i
\(260\) 0 0
\(261\) −3.12557 + 5.41365i −0.193468 + 0.335097i
\(262\) 0 0
\(263\) 10.6269 6.13542i 0.655280 0.378326i −0.135196 0.990819i \(-0.543166\pi\)
0.790476 + 0.612493i \(0.209833\pi\)
\(264\) 0 0
\(265\) 8.92674 11.5244i 0.548365 0.707940i
\(266\) 0 0
\(267\) 10.1410i 0.620617i
\(268\) 0 0
\(269\) −6.52845 11.3076i −0.398047 0.689437i 0.595438 0.803401i \(-0.296978\pi\)
−0.993485 + 0.113964i \(0.963645\pi\)
\(270\) 0 0
\(271\) 11.9787 20.7477i 0.727655 1.26034i −0.230217 0.973139i \(-0.573943\pi\)
0.957872 0.287196i \(-0.0927232\pi\)
\(272\) 0 0
\(273\) 4.93600 + 7.75386i 0.298740 + 0.469285i
\(274\) 0 0
\(275\) −31.0153 8.61426i −1.87029 0.519459i
\(276\) 0 0
\(277\) −10.0980 + 5.83008i −0.606730 + 0.350296i −0.771684 0.636006i \(-0.780586\pi\)
0.164955 + 0.986301i \(0.447252\pi\)
\(278\) 0 0
\(279\) −6.07108 −0.363466
\(280\) 0 0
\(281\) −3.15318 −0.188103 −0.0940514 0.995567i \(-0.529982\pi\)
−0.0940514 + 0.995567i \(0.529982\pi\)
\(282\) 0 0
\(283\) 5.85224 3.37879i 0.347880 0.200848i −0.315871 0.948802i \(-0.602297\pi\)
0.663751 + 0.747954i \(0.268963\pi\)
\(284\) 0 0
\(285\) −3.74758 9.16539i −0.221988 0.542911i
\(286\) 0 0
\(287\) 26.9930 1.16922i 1.59335 0.0690166i
\(288\) 0 0
\(289\) −6.55151 + 11.3476i −0.385383 + 0.667503i
\(290\) 0 0
\(291\) −4.96741 8.60380i −0.291195 0.504364i
\(292\) 0 0
\(293\) 23.8213i 1.39166i 0.718209 + 0.695828i \(0.244962\pi\)
−0.718209 + 0.695828i \(0.755038\pi\)
\(294\) 0 0
\(295\) −20.6414 15.9887i −1.20179 0.930897i
\(296\) 0 0
\(297\) 5.57535 3.21893i 0.323515 0.186781i
\(298\) 0 0
\(299\) −3.51915 + 6.09535i −0.203518 + 0.352503i
\(300\) 0 0
\(301\) 1.11791 + 25.8085i 0.0644352 + 1.48758i
\(302\) 0 0
\(303\) 2.68267 + 1.54884i 0.154115 + 0.0889784i
\(304\) 0 0
\(305\) 1.48816 10.9190i 0.0852119 0.625217i
\(306\) 0 0
\(307\) 33.0935i 1.88875i −0.328878 0.944373i \(-0.606670\pi\)
0.328878 0.944373i \(-0.393330\pi\)
\(308\) 0 0
\(309\) −15.2540 −0.867771
\(310\) 0 0
\(311\) −6.09688 10.5601i −0.345722 0.598809i 0.639762 0.768573i \(-0.279033\pi\)
−0.985485 + 0.169764i \(0.945699\pi\)
\(312\) 0 0
\(313\) 5.06300 + 2.92313i 0.286178 + 0.165225i 0.636217 0.771510i \(-0.280498\pi\)
−0.350039 + 0.936735i \(0.613832\pi\)
\(314\) 0 0
\(315\) 0.544505 5.89097i 0.0306794 0.331918i
\(316\) 0 0
\(317\) 5.53273 + 3.19432i 0.310749 + 0.179411i 0.647262 0.762268i \(-0.275914\pi\)
−0.336513 + 0.941679i \(0.609247\pi\)
\(318\) 0 0
\(319\) 20.1220 + 34.8524i 1.12662 + 1.95136i
\(320\) 0 0
\(321\) 2.37755 0.132702
\(322\) 0 0
\(323\) 8.74178i 0.486406i
\(324\) 0 0
\(325\) −12.1704 12.3943i −0.675092 0.687512i
\(326\) 0 0
\(327\) −12.4774 7.20382i −0.690000 0.398372i
\(328\) 0 0
\(329\) −4.01136 2.08994i −0.221153 0.115222i
\(330\) 0 0
\(331\) 11.6288 20.1417i 0.639179 1.10709i −0.346434 0.938074i \(-0.612608\pi\)
0.985613 0.169016i \(-0.0540590\pi\)
\(332\) 0 0
\(333\) 0.679339 0.392216i 0.0372275 0.0214933i
\(334\) 0 0
\(335\) 14.7992 19.1057i 0.808566 1.04386i
\(336\) 0 0
\(337\) 26.1745i 1.42581i −0.701259 0.712907i \(-0.747378\pi\)
0.701259 0.712907i \(-0.252622\pi\)
\(338\) 0 0
\(339\) −2.69278 4.66403i −0.146252 0.253315i
\(340\) 0 0
\(341\) −19.5424 + 33.8484i −1.05828 + 1.83299i
\(342\) 0 0
\(343\) 18.3643 2.39838i 0.991579 0.129501i
\(344\) 0 0
\(345\) 4.19313 1.71450i 0.225750 0.0923058i
\(346\) 0 0
\(347\) −1.39822 + 0.807265i −0.0750606 + 0.0433362i −0.537061 0.843544i \(-0.680465\pi\)
0.462000 + 0.886880i \(0.347132\pi\)
\(348\) 0 0
\(349\) 9.09023 0.486589 0.243294 0.969953i \(-0.421772\pi\)
0.243294 + 0.969953i \(0.421772\pi\)
\(350\) 0 0
\(351\) 3.47412 0.185435
\(352\) 0 0
\(353\) −6.37068 + 3.67811i −0.339077 + 0.195766i −0.659864 0.751385i \(-0.729386\pi\)
0.320787 + 0.947151i \(0.396053\pi\)
\(354\) 0 0
\(355\) 21.5902 8.82790i 1.14589 0.468536i
\(356\) 0 0
\(357\) −2.41327 + 4.63195i −0.127724 + 0.245149i
\(358\) 0 0
\(359\) −1.03562 + 1.79375i −0.0546580 + 0.0946705i −0.892060 0.451917i \(-0.850740\pi\)
0.837402 + 0.546588i \(0.184074\pi\)
\(360\) 0 0
\(361\) −0.304877 0.528063i −0.0160462 0.0277928i
\(362\) 0 0
\(363\) 30.4461i 1.59801i
\(364\) 0 0
\(365\) −6.98195 + 9.01370i −0.365452 + 0.471798i
\(366\) 0 0
\(367\) 5.28141 3.04922i 0.275687 0.159168i −0.355782 0.934569i \(-0.615785\pi\)
0.631469 + 0.775401i \(0.282452\pi\)
\(368\) 0 0
\(369\) 5.10598 8.84382i 0.265807 0.460391i
\(370\) 0 0
\(371\) 14.5501 9.26241i 0.755406 0.480880i
\(372\) 0 0
\(373\) 22.6143 + 13.0564i 1.17092 + 0.676033i 0.953897 0.300133i \(-0.0970311\pi\)
0.217026 + 0.976166i \(0.430364\pi\)
\(374\) 0 0
\(375\) 1.30764 + 11.1036i 0.0675264 + 0.573388i
\(376\) 0 0
\(377\) 21.7172i 1.11849i
\(378\) 0 0
\(379\) −18.9893 −0.975414 −0.487707 0.873007i \(-0.662167\pi\)
−0.487707 + 0.873007i \(0.662167\pi\)
\(380\) 0 0
\(381\) −5.62411 9.74125i −0.288132 0.499059i
\(382\) 0 0
\(383\) 25.2815 + 14.5963i 1.29183 + 0.745836i 0.978978 0.203968i \(-0.0653838\pi\)
0.312847 + 0.949803i \(0.398717\pi\)
\(384\) 0 0
\(385\) −31.0915 21.9984i −1.58457 1.12114i
\(386\) 0 0
\(387\) 8.45575 + 4.88193i 0.429830 + 0.248162i
\(388\) 0 0
\(389\) −12.1922 21.1175i −0.618168 1.07070i −0.989820 0.142327i \(-0.954542\pi\)
0.371651 0.928372i \(-0.378792\pi\)
\(390\) 0 0
\(391\) −3.99933 −0.202255
\(392\) 0 0
\(393\) 10.8174i 0.545666i
\(394\) 0 0
\(395\) −1.64792 + 12.0911i −0.0829159 + 0.608371i
\(396\) 0 0
\(397\) 5.97866 + 3.45178i 0.300060 + 0.173240i 0.642470 0.766311i \(-0.277910\pi\)
−0.342410 + 0.939551i \(0.611243\pi\)
\(398\) 0 0
\(399\) −0.507016 11.7052i −0.0253825 0.585992i
\(400\) 0 0
\(401\) −16.6242 + 28.7940i −0.830173 + 1.43790i 0.0677277 + 0.997704i \(0.478425\pi\)
−0.897901 + 0.440198i \(0.854908\pi\)
\(402\) 0 0
\(403\) −18.2659 + 10.5458i −0.909889 + 0.525325i
\(404\) 0 0
\(405\) −1.76777 1.36930i −0.0878412 0.0680412i
\(406\) 0 0
\(407\) 5.05007i 0.250323i
\(408\) 0 0
\(409\) 8.81071 + 15.2606i 0.435662 + 0.754588i 0.997349 0.0727612i \(-0.0231811\pi\)
−0.561688 + 0.827349i \(0.689848\pi\)
\(410\) 0 0
\(411\) −0.704037 + 1.21943i −0.0347276 + 0.0601500i
\(412\) 0 0
\(413\) −16.5899 26.0607i −0.816335 1.28236i
\(414\) 0 0
\(415\) 12.9566 + 31.6877i 0.636015 + 1.55549i
\(416\) 0 0
\(417\) 4.64484 2.68170i 0.227459 0.131323i
\(418\) 0 0
\(419\) −17.7842 −0.868813 −0.434406 0.900717i \(-0.643042\pi\)
−0.434406 + 0.900717i \(0.643042\pi\)
\(420\) 0 0
\(421\) −16.0439 −0.781934 −0.390967 0.920405i \(-0.627859\pi\)
−0.390967 + 0.920405i \(0.627859\pi\)
\(422\) 0 0
\(423\) −1.48055 + 0.854794i −0.0719867 + 0.0415615i
\(424\) 0 0
\(425\) 2.64144 9.51037i 0.128128 0.461321i
\(426\) 0 0
\(427\) 6.02469 11.5636i 0.291555 0.559601i
\(428\) 0 0
\(429\) 11.1829 19.3694i 0.539918 0.935165i
\(430\) 0 0
\(431\) 4.27652 + 7.40715i 0.205993 + 0.356790i 0.950449 0.310882i \(-0.100624\pi\)
−0.744456 + 0.667672i \(0.767291\pi\)
\(432\) 0 0
\(433\) 17.5573i 0.843751i 0.906654 + 0.421876i \(0.138628\pi\)
−0.906654 + 0.421876i \(0.861372\pi\)
\(434\) 0 0
\(435\) 8.55971 11.0506i 0.410407 0.529835i
\(436\) 0 0
\(437\) 7.76944 4.48569i 0.371663 0.214580i
\(438\) 0 0
\(439\) 6.77536 11.7353i 0.323370 0.560093i −0.657811 0.753183i \(-0.728517\pi\)
0.981181 + 0.193090i \(0.0618508\pi\)
\(440\) 0 0
\(441\) 2.96270 6.34211i 0.141081 0.302005i
\(442\) 0 0
\(443\) 12.0290 + 6.94496i 0.571516 + 0.329965i 0.757755 0.652539i \(-0.226296\pi\)
−0.186238 + 0.982505i \(0.559630\pi\)
\(444\) 0 0
\(445\) 3.06223 22.4682i 0.145163 1.06509i
\(446\) 0 0
\(447\) 2.92417i 0.138309i
\(448\) 0 0
\(449\) −38.9144 −1.83648 −0.918241 0.396022i \(-0.870390\pi\)
−0.918241 + 0.396022i \(0.870390\pi\)
\(450\) 0 0
\(451\) −32.8716 56.9353i −1.54786 2.68098i
\(452\) 0 0
\(453\) −6.10462 3.52450i −0.286820 0.165596i
\(454\) 0 0
\(455\) −8.59472 18.6698i −0.402927 0.875256i
\(456\) 0 0
\(457\) −2.29331 1.32404i −0.107276 0.0619360i 0.445402 0.895331i \(-0.353061\pi\)
−0.552678 + 0.833395i \(0.686394\pi\)
\(458\) 0 0
\(459\) 0.987038 + 1.70960i 0.0460710 + 0.0797973i
\(460\) 0 0
\(461\) −20.4079 −0.950493 −0.475246 0.879853i \(-0.657641\pi\)
−0.475246 + 0.879853i \(0.657641\pi\)
\(462\) 0 0
\(463\) 21.0475i 0.978160i −0.872239 0.489080i \(-0.837333\pi\)
0.872239 0.489080i \(-0.162667\pi\)
\(464\) 0 0
\(465\) 13.4510 + 1.83326i 0.623775 + 0.0850153i
\(466\) 0 0
\(467\) 8.33062 + 4.80968i 0.385495 + 0.222566i 0.680206 0.733021i \(-0.261890\pi\)
−0.294711 + 0.955586i \(0.595223\pi\)
\(468\) 0 0
\(469\) 24.1219 15.3557i 1.11385 0.709059i
\(470\) 0 0
\(471\) 1.71268 2.96645i 0.0789162 0.136687i
\(472\) 0 0
\(473\) 54.4370 31.4292i 2.50301 1.44512i
\(474\) 0 0
\(475\) 5.53546 + 21.4383i 0.253984 + 0.983659i
\(476\) 0 0
\(477\) 6.51919i 0.298493i
\(478\) 0 0
\(479\) 14.5152 + 25.1410i 0.663215 + 1.14872i 0.979766 + 0.200146i \(0.0641418\pi\)
−0.316551 + 0.948575i \(0.602525\pi\)
\(480\) 0 0
\(481\) 1.36261 2.36010i 0.0621295 0.107611i
\(482\) 0 0
\(483\) 5.35507 0.231957i 0.243664 0.0105544i
\(484\) 0 0
\(485\) 8.40766 + 20.5624i 0.381772 + 0.933692i
\(486\) 0 0
\(487\) −9.37294 + 5.41147i −0.424729 + 0.245217i −0.697098 0.716975i \(-0.745526\pi\)
0.272370 + 0.962193i \(0.412193\pi\)
\(488\) 0 0
\(489\) −2.92758 −0.132390
\(490\) 0 0
\(491\) 25.0455 1.13029 0.565143 0.824993i \(-0.308821\pi\)
0.565143 + 0.824993i \(0.308821\pi\)
\(492\) 0 0
\(493\) −10.6870 + 6.17012i −0.481317 + 0.277888i
\(494\) 0 0
\(495\) −13.3247 + 5.44825i −0.598900 + 0.244881i
\(496\) 0 0
\(497\) 27.5730 1.19434i 1.23682 0.0535734i
\(498\) 0 0
\(499\) 2.12900 3.68753i 0.0953069 0.165076i −0.814430 0.580262i \(-0.802950\pi\)
0.909737 + 0.415186i \(0.136283\pi\)
\(500\) 0 0
\(501\) 11.0598 + 19.1562i 0.494116 + 0.855835i
\(502\) 0 0
\(503\) 31.2478i 1.39327i 0.717425 + 0.696636i \(0.245321\pi\)
−0.717425 + 0.696636i \(0.754679\pi\)
\(504\) 0 0
\(505\) −5.47598 4.24166i −0.243678 0.188751i
\(506\) 0 0
\(507\) −0.805840 + 0.465252i −0.0357886 + 0.0206626i
\(508\) 0 0
\(509\) 4.84131 8.38539i 0.214587 0.371676i −0.738558 0.674190i \(-0.764493\pi\)
0.953145 + 0.302514i \(0.0978261\pi\)
\(510\) 0 0
\(511\) −11.3802 + 7.24449i −0.503431 + 0.320477i
\(512\) 0 0
\(513\) −3.83501 2.21415i −0.169320 0.0977569i
\(514\) 0 0
\(515\) 33.7966 + 4.60620i 1.48926 + 0.202973i
\(516\) 0 0
\(517\) 11.0061i 0.484048i
\(518\) 0 0
\(519\) 13.1661 0.577929
\(520\) 0 0
\(521\) −10.5451 18.2647i −0.461990 0.800190i 0.537070 0.843538i \(-0.319531\pi\)
−0.999060 + 0.0433477i \(0.986198\pi\)
\(522\) 0 0
\(523\) −22.5910 13.0429i −0.987837 0.570328i −0.0832098 0.996532i \(-0.526517\pi\)
−0.904627 + 0.426204i \(0.859850\pi\)
\(524\) 0 0
\(525\) −2.98527 + 12.8875i −0.130288 + 0.562457i
\(526\) 0 0
\(527\) −10.3791 5.99239i −0.452121 0.261032i
\(528\) 0 0
\(529\) −9.44782 16.3641i −0.410775 0.711482i
\(530\) 0 0
\(531\) −11.6765 −0.506717
\(532\) 0 0
\(533\) 35.4776i 1.53670i
\(534\) 0 0
\(535\) −5.26766 0.717938i −0.227741 0.0310392i
\(536\) 0 0
\(537\) 2.00439 + 1.15724i 0.0864960 + 0.0499385i
\(538\) 0 0
\(539\) −25.8228 36.9329i −1.11227 1.59081i
\(540\) 0 0
\(541\) 19.0706 33.0312i 0.819907 1.42012i −0.0858430 0.996309i \(-0.527358\pi\)
0.905750 0.423812i \(-0.139308\pi\)
\(542\) 0 0
\(543\) −2.65181 + 1.53103i −0.113800 + 0.0657026i
\(544\) 0 0
\(545\) 25.4694 + 19.7284i 1.09099 + 0.845072i
\(546\) 0 0
\(547\) 30.7904i 1.31650i 0.752798 + 0.658252i \(0.228704\pi\)
−0.752798 + 0.658252i \(0.771296\pi\)
\(548\) 0 0
\(549\) −2.46412 4.26799i −0.105166 0.182153i
\(550\) 0 0
\(551\) 13.8410 23.9732i 0.589644 1.02129i
\(552\) 0 0
\(553\) −6.67145 + 12.8050i −0.283699 + 0.544522i
\(554\) 0 0
\(555\) −1.62357 + 0.663852i −0.0689167 + 0.0281789i
\(556\) 0 0
\(557\) 15.6082 9.01142i 0.661342 0.381826i −0.131446 0.991323i \(-0.541962\pi\)
0.792788 + 0.609497i \(0.208629\pi\)
\(558\) 0 0
\(559\) 33.9208 1.43470
\(560\) 0 0
\(561\) 12.7088 0.536567
\(562\) 0 0
\(563\) 5.78357 3.33914i 0.243748 0.140728i −0.373150 0.927771i \(-0.621722\pi\)
0.616898 + 0.787043i \(0.288389\pi\)
\(564\) 0 0
\(565\) 4.55770 + 11.1467i 0.191744 + 0.468944i
\(566\) 0 0
\(567\) −1.42079 2.23189i −0.0596676 0.0937307i
\(568\) 0 0
\(569\) −8.52169 + 14.7600i −0.357248 + 0.618771i −0.987500 0.157619i \(-0.949618\pi\)
0.630252 + 0.776390i \(0.282951\pi\)
\(570\) 0 0
\(571\) 19.4492 + 33.6870i 0.813923 + 1.40976i 0.910098 + 0.414392i \(0.136006\pi\)
−0.0961751 + 0.995364i \(0.530661\pi\)
\(572\) 0 0
\(573\) 25.5675i 1.06810i
\(574\) 0 0
\(575\) −9.80795 + 2.53245i −0.409020 + 0.105610i
\(576\) 0 0
\(577\) −3.42639 + 1.97823i −0.142643 + 0.0823547i −0.569623 0.821906i \(-0.692911\pi\)
0.426980 + 0.904261i \(0.359577\pi\)
\(578\) 0 0
\(579\) 10.8648 18.8184i 0.451526 0.782065i
\(580\) 0 0
\(581\) 1.75292 + 40.4686i 0.0727233 + 1.67892i
\(582\) 0 0
\(583\) −36.3468 20.9848i −1.50533 0.869103i
\(584\) 0 0
\(585\) −7.69720 1.04906i −0.318240 0.0433735i
\(586\) 0 0
\(587\) 8.33774i 0.344135i 0.985085 + 0.172068i \(0.0550448\pi\)
−0.985085 + 0.172068i \(0.944955\pi\)
\(588\) 0 0
\(589\) 26.8845 1.10776
\(590\) 0 0
\(591\) −5.63229 9.75540i −0.231681 0.401284i
\(592\) 0 0
\(593\) −20.8547 12.0405i −0.856400 0.494442i 0.00640542 0.999979i \(-0.497961\pi\)
−0.862805 + 0.505537i \(0.831294\pi\)
\(594\) 0 0
\(595\) 6.74550 9.53375i 0.276538 0.390846i
\(596\) 0 0
\(597\) −6.22748 3.59544i −0.254874 0.147151i
\(598\) 0 0
\(599\) −7.92587 13.7280i −0.323842 0.560912i 0.657435 0.753511i \(-0.271641\pi\)
−0.981277 + 0.192600i \(0.938308\pi\)
\(600\) 0 0
\(601\) −43.7845 −1.78601 −0.893003 0.450050i \(-0.851406\pi\)
−0.893003 + 0.450050i \(0.851406\pi\)
\(602\) 0 0
\(603\) 10.8078i 0.440129i
\(604\) 0 0
\(605\) −9.19368 + 67.4559i −0.373776 + 2.74247i
\(606\) 0 0
\(607\) −9.07478 5.23933i −0.368334 0.212658i 0.304396 0.952545i \(-0.401545\pi\)
−0.672730 + 0.739888i \(0.734879\pi\)
\(608\) 0 0
\(609\) 13.9519 8.88158i 0.565360 0.359900i
\(610\) 0 0
\(611\) −2.96966 + 5.14360i −0.120139 + 0.208088i
\(612\) 0 0
\(613\) 14.4808 8.36052i 0.584876 0.337678i −0.178193 0.983996i \(-0.557025\pi\)
0.763069 + 0.646317i \(0.223692\pi\)
\(614\) 0 0
\(615\) −13.9833 + 18.0524i −0.563860 + 0.727943i
\(616\) 0 0
\(617\) 44.5830i 1.79485i 0.441172 + 0.897423i \(0.354563\pi\)
−0.441172 + 0.897423i \(0.645437\pi\)
\(618\) 0 0
\(619\) 13.3076 + 23.0495i 0.534879 + 0.926438i 0.999169 + 0.0407546i \(0.0129762\pi\)
−0.464290 + 0.885683i \(0.653690\pi\)
\(620\) 0 0
\(621\) 1.01296 1.75450i 0.0406488 0.0704057i
\(622\) 0 0
\(623\) 12.3971 23.7947i 0.496681 0.953313i
\(624\) 0 0
\(625\) 0.455714 24.9958i 0.0182286 0.999834i
\(626\) 0 0
\(627\) −24.6893 + 14.2544i −0.985995 + 0.569265i
\(628\) 0 0
\(629\) 1.54853 0.0617439
\(630\) 0 0
\(631\) 44.2904 1.76317 0.881586 0.472023i \(-0.156476\pi\)
0.881586 + 0.472023i \(0.156476\pi\)
\(632\) 0 0
\(633\) 0.593173 0.342468i 0.0235765 0.0136119i
\(634\) 0 0
\(635\) 9.51917 + 23.2808i 0.377757 + 0.923872i
\(636\) 0 0
\(637\) −2.10282 24.2277i −0.0833167 0.959938i
\(638\) 0 0
\(639\) 5.21569 9.03384i 0.206330 0.357373i
\(640\) 0 0
\(641\) 1.38352 + 2.39632i 0.0546457 + 0.0946491i 0.892054 0.451928i \(-0.149264\pi\)
−0.837409 + 0.546577i \(0.815930\pi\)
\(642\) 0 0
\(643\) 37.1906i 1.46665i −0.679876 0.733327i \(-0.737966\pi\)
0.679876 0.733327i \(-0.262034\pi\)
\(644\) 0 0
\(645\) −17.2603 13.3697i −0.679622 0.526430i
\(646\) 0 0
\(647\) 10.0673 5.81235i 0.395786 0.228507i −0.288878 0.957366i \(-0.593282\pi\)
0.684664 + 0.728859i \(0.259949\pi\)
\(648\) 0 0
\(649\) −37.5859 + 65.1007i −1.47538 + 2.55543i
\(650\) 0 0
\(651\) 14.2451 + 7.42178i 0.558310 + 0.290883i
\(652\) 0 0
\(653\) −17.2759 9.97424i −0.676058 0.390322i 0.122310 0.992492i \(-0.460970\pi\)
−0.798368 + 0.602170i \(0.794303\pi\)
\(654\) 0 0
\(655\) 3.26648 23.9669i 0.127632 0.936463i
\(656\) 0 0
\(657\) 5.09891i 0.198927i
\(658\) 0 0
\(659\) −38.7827 −1.51076 −0.755380 0.655287i \(-0.772548\pi\)
−0.755380 + 0.655287i \(0.772548\pi\)
\(660\) 0 0
\(661\) 6.42009 + 11.1199i 0.249713 + 0.432515i 0.963446 0.267903i \(-0.0863305\pi\)
−0.713733 + 0.700417i \(0.752997\pi\)
\(662\) 0 0
\(663\) 5.93935 + 3.42909i 0.230665 + 0.133175i
\(664\) 0 0
\(665\) −2.41123 + 26.0869i −0.0935034 + 1.01161i
\(666\) 0 0
\(667\) 10.9677 + 6.33218i 0.424669 + 0.245183i
\(668\) 0 0
\(669\) 5.92263 + 10.2583i 0.228982 + 0.396609i
\(670\) 0 0
\(671\) −31.7274 −1.22482
\(672\) 0 0
\(673\) 42.8349i 1.65116i −0.564282 0.825582i \(-0.690847\pi\)
0.564282 0.825582i \(-0.309153\pi\)
\(674\) 0 0
\(675\) 3.50316 + 3.56761i 0.134837 + 0.137317i
\(676\) 0 0
\(677\) 19.0937 + 11.0237i 0.733830 + 0.423677i 0.819822 0.572619i \(-0.194072\pi\)
−0.0859916 + 0.996296i \(0.527406\pi\)
\(678\) 0 0
\(679\) 1.13748 + 26.2604i 0.0436526 + 1.00778i
\(680\) 0 0
\(681\) 10.8298 18.7577i 0.414998 0.718798i
\(682\) 0 0
\(683\) −16.8976 + 9.75586i −0.646571 + 0.373298i −0.787141 0.616773i \(-0.788440\pi\)
0.140570 + 0.990071i \(0.455106\pi\)
\(684\) 0 0
\(685\) 1.92808 2.48915i 0.0736682 0.0951056i
\(686\) 0 0
\(687\) 13.4544i 0.513317i
\(688\) 0 0
\(689\) −11.3242 19.6141i −0.431418 0.747238i
\(690\) 0 0
\(691\) −3.88472 + 6.72854i −0.147782 + 0.255966i −0.930407 0.366527i \(-0.880547\pi\)
0.782625 + 0.622493i \(0.213880\pi\)
\(692\) 0 0
\(693\) −17.0170 + 0.737101i −0.646424 + 0.0280002i
\(694\) 0 0
\(695\) −11.1008 + 4.53895i −0.421078 + 0.172172i
\(696\) 0 0
\(697\) 17.4584 10.0796i 0.661283 0.381792i
\(698\) 0 0
\(699\) −13.5723 −0.513350
\(700\) 0 0
\(701\) 44.9618 1.69818 0.849091 0.528246i \(-0.177150\pi\)
0.849091 + 0.528246i \(0.177150\pi\)
\(702\) 0 0
\(703\) −3.00831 + 1.73685i −0.113461 + 0.0655065i
\(704\) 0 0
\(705\) 3.53840 1.44679i 0.133264 0.0544894i
\(706\) 0 0
\(707\) −4.40115 6.91368i −0.165522 0.260016i
\(708\) 0 0
\(709\) 7.35513 12.7395i 0.276228 0.478441i −0.694216 0.719766i \(-0.744249\pi\)
0.970444 + 0.241326i \(0.0775822\pi\)
\(710\) 0 0
\(711\) 2.72865 + 4.72617i 0.102332 + 0.177245i
\(712\) 0 0
\(713\) 12.2995i 0.460622i
\(714\) 0 0
\(715\) −30.6257 + 39.5378i −1.14534 + 1.47863i
\(716\) 0 0
\(717\) −13.8940 + 8.02169i −0.518880 + 0.299575i
\(718\) 0 0
\(719\) −8.07036 + 13.9783i −0.300974 + 0.521302i −0.976357 0.216165i \(-0.930645\pi\)
0.675383 + 0.737467i \(0.263978\pi\)
\(720\) 0 0
\(721\) 35.7919 + 18.6478i 1.33296 + 0.694479i
\(722\) 0 0
\(723\) 11.6525 + 6.72757i 0.433361 + 0.250201i
\(724\) 0 0
\(725\) −22.3017 + 21.8988i −0.828263 + 0.813301i
\(726\) 0 0
\(727\) 12.7937i 0.474492i −0.971450 0.237246i \(-0.923755\pi\)
0.971450 0.237246i \(-0.0762447\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 9.63730 + 16.6923i 0.356448 + 0.617387i
\(732\) 0 0
\(733\) 2.98687 + 1.72447i 0.110323 + 0.0636949i 0.554146 0.832419i \(-0.313045\pi\)
−0.443823 + 0.896114i \(0.646378\pi\)
\(734\) 0 0
\(735\) −8.47922 + 13.1569i −0.312761 + 0.485298i
\(736\) 0 0
\(737\) −60.2574 34.7897i −2.21961 1.28149i
\(738\) 0 0
\(739\) 0.415306 + 0.719331i 0.0152773 + 0.0264610i 0.873563 0.486711i \(-0.161804\pi\)
−0.858286 + 0.513172i \(0.828470\pi\)
\(740\) 0 0
\(741\) −15.3844 −0.565160
\(742\) 0 0
\(743\) 44.6351i 1.63750i 0.574149 + 0.818751i \(0.305333\pi\)
−0.574149 + 0.818751i \(0.694667\pi\)
\(744\) 0 0
\(745\) −0.883000 + 6.47875i −0.0323506 + 0.237363i
\(746\) 0 0
\(747\) 13.2589 + 7.65502i 0.485117 + 0.280083i
\(748\) 0 0
\(749\) −5.57865 2.90651i −0.203839 0.106201i
\(750\) 0 0
\(751\) −1.90845 + 3.30554i −0.0696404 + 0.120621i −0.898743 0.438476i \(-0.855519\pi\)
0.829103 + 0.559096i \(0.188852\pi\)
\(752\) 0 0
\(753\) −12.9439 + 7.47317i −0.471703 + 0.272338i
\(754\) 0 0
\(755\) 12.4610 + 9.65222i 0.453503 + 0.351280i
\(756\) 0 0
\(757\) 27.5200i 1.00023i 0.865958 + 0.500116i \(0.166709\pi\)
−0.865958 + 0.500116i \(0.833291\pi\)
\(758\) 0 0
\(759\) −6.52131 11.2952i −0.236709 0.409991i
\(760\) 0 0
\(761\) 12.0646 20.8964i 0.437340 0.757495i −0.560143 0.828396i \(-0.689254\pi\)
0.997483 + 0.0709007i \(0.0225873\pi\)
\(762\) 0 0
\(763\) 20.4702 + 32.1563i 0.741072 + 1.16414i
\(764\) 0 0
\(765\) −1.67063 4.08582i −0.0604016 0.147723i
\(766\) 0 0
\(767\) −35.1308 + 20.2828i −1.26850 + 0.732369i
\(768\) 0 0
\(769\) 48.2761 1.74088 0.870441 0.492273i \(-0.163834\pi\)
0.870441 + 0.492273i \(0.163834\pi\)
\(770\) 0 0
\(771\) 4.36818 0.157316
\(772\) 0 0
\(773\) −0.220383 + 0.127238i −0.00792664 + 0.00457645i −0.503958 0.863728i \(-0.668123\pi\)
0.496031 + 0.868305i \(0.334790\pi\)
\(774\) 0 0
\(775\) −29.2482 8.12348i −1.05063 0.291804i
\(776\) 0 0
\(777\) −2.07347 + 0.0898134i −0.0743853 + 0.00322204i
\(778\) 0 0
\(779\) −22.6108 + 39.1630i −0.810115 + 1.40316i
\(780\) 0 0
\(781\) −33.5779 58.1586i −1.20151 2.08108i
\(782\) 0 0
\(783\) 6.25115i 0.223398i
\(784\) 0 0
\(785\) −4.69036 + 6.05525i −0.167406 + 0.216121i
\(786\) 0 0
\(787\) −13.9417 + 8.04923i −0.496967 + 0.286924i −0.727460 0.686150i \(-0.759299\pi\)
0.230493 + 0.973074i \(0.425966\pi\)
\(788\) 0 0
\(789\) −6.13542 + 10.6269i −0.218427 + 0.378326i
\(790\) 0 0
\(791\) 0.616617 + 14.2355i 0.0219244 + 0.506156i
\(792\) 0 0
\(793\) −14.8275 8.56066i −0.526540 0.303998i
\(794\) 0 0
\(795\) −1.96857 + 14.4438i −0.0698181 + 0.512269i
\(796\) 0 0
\(797\) 36.0791i 1.27799i 0.769212 + 0.638993i \(0.220649\pi\)
−0.769212 + 0.638993i \(0.779351\pi\)
\(798\) 0 0
\(799\) −3.37486 −0.119394
\(800\) 0 0
\(801\) −5.07049 8.78234i −0.179157 0.310309i
\(802\) 0 0
\(803\) 28.4282 + 16.4130i 1.00321 + 0.579204i
\(804\) 0 0
\(805\) −11.9347 1.10313i −0.420641 0.0388801i
\(806\) 0 0
\(807\) 11.3076 + 6.52845i 0.398047 + 0.229812i
\(808\) 0 0
\(809\) 15.6052 + 27.0291i 0.548651 + 0.950291i 0.998367 + 0.0571195i \(0.0181916\pi\)
−0.449717 + 0.893171i \(0.648475\pi\)
\(810\) 0 0
\(811\) 6.91344 0.242764 0.121382 0.992606i \(-0.461267\pi\)
0.121382 + 0.992606i \(0.461267\pi\)
\(812\) 0 0
\(813\) 23.9574i 0.840224i
\(814\) 0 0
\(815\) 6.48629 + 0.884028i 0.227205 + 0.0309662i
\(816\) 0 0
\(817\) −37.4445 21.6186i −1.31002 0.756339i
\(818\) 0 0
\(819\) −8.15163 4.24704i −0.284841 0.148404i
\(820\) 0 0
\(821\) −2.05513 + 3.55959i −0.0717245 + 0.124230i −0.899657 0.436597i \(-0.856184\pi\)
0.827933 + 0.560827i \(0.189517\pi\)
\(822\) 0 0
\(823\) 25.6619 14.8159i 0.894516 0.516449i 0.0190992 0.999818i \(-0.493920\pi\)
0.875417 + 0.483368i \(0.160587\pi\)
\(824\) 0 0
\(825\) 31.1671 8.04747i 1.08510 0.280177i
\(826\) 0 0
\(827\) 1.19658i 0.0416093i −0.999784 0.0208046i \(-0.993377\pi\)
0.999784 0.0208046i \(-0.00662280\pi\)
\(828\) 0 0
\(829\) 0.860027 + 1.48961i 0.0298700 + 0.0517363i 0.880574 0.473909i \(-0.157157\pi\)
−0.850704 + 0.525645i \(0.823824\pi\)
\(830\) 0 0
\(831\) 5.83008 10.0980i 0.202243 0.350296i
\(832\) 0 0
\(833\) 11.3249 7.91818i 0.392386 0.274349i
\(834\) 0 0
\(835\) −18.7195 45.7818i −0.647814 1.58434i
\(836\) 0 0
\(837\) 5.25771 3.03554i 0.181733 0.104924i
\(838\) 0 0
\(839\) 14.6942 0.507299 0.253650 0.967296i \(-0.418369\pi\)
0.253650 + 0.967296i \(0.418369\pi\)
\(840\) 0 0
\(841\) 10.0769 0.347478
\(842\) 0 0
\(843\) 2.73073 1.57659i 0.0940514 0.0543006i
\(844\) 0 0
\(845\) 1.92590 0.787469i 0.0662529 0.0270898i
\(846\) 0 0
\(847\) −37.2198 + 71.4384i −1.27889 + 2.45465i
\(848\) 0 0
\(849\) −3.37879 + 5.85224i −0.115960 + 0.200848i
\(850\) 0 0
\(851\) −0.794601 1.37629i −0.0272386 0.0471786i
\(852\) 0 0
\(853\) 10.3635i 0.354839i −0.984135 0.177420i \(-0.943225\pi\)
0.984135 0.177420i \(-0.0567750\pi\)
\(854\) 0 0
\(855\) 7.82820 + 6.06367i 0.267719 + 0.207373i
\(856\) 0 0
\(857\) −10.2373 + 5.91051i −0.349699 + 0.201899i −0.664553 0.747241i \(-0.731378\pi\)
0.314853 + 0.949140i \(0.398045\pi\)
\(858\) 0 0
\(859\) −6.63018 + 11.4838i −0.226219 + 0.391822i −0.956684 0.291127i \(-0.905970\pi\)
0.730466 + 0.682949i \(0.239303\pi\)
\(860\) 0 0
\(861\) −22.7920 + 14.5091i −0.776750 + 0.494468i
\(862\) 0 0
\(863\) −41.8247 24.1475i −1.42373 0.821990i −0.427114 0.904198i \(-0.640470\pi\)
−0.996615 + 0.0822074i \(0.973803\pi\)
\(864\) 0 0
\(865\) −29.1707 3.97572i −0.991834 0.135179i
\(866\) 0 0
\(867\) 13.1030i 0.445002i
\(868\) 0 0
\(869\) 35.1334 1.19182
\(870\) 0 0
\(871\) −18.7738 32.5172i −0.636127 1.10180i
\(872\) 0 0
\(873\) 8.60380 + 4.96741i 0.291195 + 0.168121i
\(874\) 0 0
\(875\) 10.5057 27.6519i 0.355158 0.934806i
\(876\) 0 0
\(877\) 45.4274 + 26.2275i 1.53397 + 0.885640i 0.999173 + 0.0406624i \(0.0129468\pi\)
0.534801 + 0.844978i \(0.320387\pi\)
\(878\) 0 0
\(879\) −11.9107 20.6299i −0.401736 0.695828i
\(880\) 0 0
\(881\) 39.9109 1.34463 0.672316 0.740264i \(-0.265300\pi\)
0.672316 + 0.740264i \(0.265300\pi\)
\(882\) 0 0
\(883\) 16.5805i 0.557977i −0.960294 0.278988i \(-0.910001\pi\)
0.960294 0.278988i \(-0.0899991\pi\)
\(884\) 0 0
\(885\) 25.8703 + 3.52591i 0.869621 + 0.118522i
\(886\) 0 0
\(887\) 2.68503 + 1.55020i 0.0901546 + 0.0520508i 0.544399 0.838826i \(-0.316758\pi\)
−0.454245 + 0.890877i \(0.650091\pi\)
\(888\) 0 0
\(889\) 1.28786 + 29.7321i 0.0431935 + 0.997183i
\(890\) 0 0
\(891\) −3.21893 + 5.57535i −0.107838 + 0.186781i
\(892\) 0 0
\(893\) 6.55629 3.78528i 0.219398 0.126669i
\(894\) 0 0
\(895\) −4.09146 3.16922i −0.136762 0.105935i
\(896\) 0 0
\(897\) 7.03830i 0.235002i
\(898\) 0 0
\(899\) 18.9756 + 32.8667i 0.632872 + 1.09617i
\(900\) 0 0
\(901\) 6.43469 11.1452i 0.214371 0.371301i
\(902\) 0 0
\(903\) −13.8724 21.7919i −0.461645 0.725189i
\(904\) 0 0
\(905\) 6.33764 2.59136i 0.210670 0.0861397i
\(906\) 0 0
\(907\) −46.7805 + 27.0087i −1.55332 + 0.896810i −0.555452 + 0.831549i \(0.687455\pi\)
−0.997868 + 0.0652613i \(0.979212\pi\)
\(908\) 0 0
\(909\) −3.09768 −0.102743
\(910\) 0 0
\(911\) −37.7405 −1.25040 −0.625199 0.780466i \(-0.714982\pi\)
−0.625199 + 0.780466i \(0.714982\pi\)
\(912\) 0 0
\(913\) 85.3589 49.2820i 2.82497 1.63100i
\(914\) 0 0
\(915\) 4.17069 + 10.2002i 0.137879 + 0.337207i
\(916\) 0 0
\(917\) 13.2241 25.3818i 0.436697 0.838182i
\(918\) 0 0
\(919\) −2.96944 + 5.14321i −0.0979527 + 0.169659i −0.910837 0.412766i \(-0.864563\pi\)
0.812884 + 0.582425i \(0.197896\pi\)
\(920\) 0 0
\(921\) 16.5467 + 28.6598i 0.545234 + 0.944373i
\(922\) 0 0
\(923\) 36.2399i 1.19285i
\(924\) 0 0
\(925\) 3.79761 0.980558i 0.124865 0.0322405i
\(926\) 0 0
\(927\) 13.2104 7.62702i 0.433886 0.250504i
\(928\) 0 0
\(929\) 17.4419 30.2102i 0.572249 0.991164i −0.424086 0.905622i \(-0.639404\pi\)
0.996335 0.0855421i \(-0.0272622\pi\)
\(930\) 0 0
\(931\) −13.1197 + 28.0847i −0.429981 + 0.920439i
\(932\) 0 0
\(933\) 10.5601 + 6.09688i 0.345722 + 0.199603i
\(934\) 0 0
\(935\) −28.1575 3.83763i −0.920849 0.125504i
\(936\) 0 0
\(937\) 0.324265i 0.0105933i 0.999986 + 0.00529664i \(0.00168598\pi\)
−0.999986 + 0.00529664i \(0.998314\pi\)
\(938\) 0 0
\(939\) −5.84625 −0.190785
\(940\) 0 0
\(941\) 2.05593 + 3.56098i 0.0670214 + 0.116085i 0.897589 0.440834i \(-0.145317\pi\)
−0.830567 + 0.556918i \(0.811984\pi\)
\(942\) 0 0
\(943\) −17.9169 10.3443i −0.583455 0.336858i
\(944\) 0 0
\(945\) 2.47393 + 5.37398i 0.0804769 + 0.174816i
\(946\) 0 0
\(947\) −0.839535 0.484706i −0.0272812 0.0157508i 0.486297 0.873793i \(-0.338347\pi\)
−0.513579 + 0.858043i \(0.671681\pi\)
\(948\) 0 0
\(949\) 8.85710 + 15.3410i 0.287514 + 0.497988i
\(950\) 0 0
\(951\) −6.38865 −0.207166
\(952\) 0 0
\(953\) 46.5994i 1.50950i −0.656011 0.754752i \(-0.727757\pi\)
0.656011 0.754752i \(-0.272243\pi\)
\(954\) 0 0
\(955\) −7.72052 + 56.6470i −0.249830 + 1.83305i
\(956\) 0 0
\(957\) −34.8524 20.1220i −1.12662 0.650453i
\(958\) 0 0
\(959\) 3.14267 2.00058i 0.101482 0.0646021i
\(960\) 0 0
\(961\) −2.92900 + 5.07318i −0.0944840 + 0.163651i
\(962\) 0 0
\(963\) −2.05902 + 1.18877i −0.0663508 + 0.0383077i
\(964\) 0 0
\(965\) −29.7544 + 38.4129i −0.957828 + 1.23656i
\(966\) 0 0
\(967\) 11.3945i 0.366421i −0.983074 0.183211i \(-0.941351\pi\)
0.983074 0.183211i \(-0.0586490\pi\)
\(968\) 0 0
\(969\) −4.37089 7.57060i −0.140413 0.243203i
\(970\) 0 0
\(971\) 21.4249 37.1091i 0.687558 1.19089i −0.285067 0.958508i \(-0.592016\pi\)
0.972625 0.232379i \(-0.0746508\pi\)
\(972\) 0 0
\(973\) −14.1769 + 0.614080i −0.454491 + 0.0196865i
\(974\) 0 0
\(975\) 16.7370 + 4.64859i 0.536014 + 0.148874i
\(976\) 0 0
\(977\) 10.9311 6.31107i 0.349717 0.201909i −0.314844 0.949144i \(-0.601952\pi\)
0.664561 + 0.747234i \(0.268619\pi\)
\(978\) 0 0
\(979\) −65.2862 −2.08656
\(980\) 0 0
\(981\) 14.4076 0.460000
\(982\) 0 0
\(983\) −24.7997 + 14.3181i −0.790988 + 0.456677i −0.840310 0.542106i \(-0.817627\pi\)
0.0493222 + 0.998783i \(0.484294\pi\)
\(984\) 0 0
\(985\) 9.53301 + 23.3147i 0.303747 + 0.742868i
\(986\) 0 0
\(987\) 4.51891 0.195739i 0.143838 0.00623043i
\(988\) 0 0
\(989\) 9.89042 17.1307i 0.314497 0.544725i
\(990\) 0 0
\(991\) −21.5883 37.3921i −0.685776 1.18780i −0.973192 0.229993i \(-0.926130\pi\)
0.287417 0.957806i \(-0.407204\pi\)
\(992\) 0 0
\(993\) 23.2577i 0.738060i
\(994\) 0 0
\(995\) 12.7118 + 9.84648i 0.402992 + 0.312155i
\(996\) 0 0
\(997\) 7.47512 4.31576i 0.236739 0.136682i −0.376938 0.926239i \(-0.623023\pi\)
0.613677 + 0.789557i \(0.289690\pi\)
\(998\) 0 0
\(999\) −0.392216 + 0.679339i −0.0124092 + 0.0214933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.cc.c.289.5 24
4.3 odd 2 1680.2.di.g.289.8 24
5.4 even 2 inner 840.2.cc.c.289.9 yes 24
7.4 even 3 inner 840.2.cc.c.529.9 yes 24
20.19 odd 2 1680.2.di.g.289.4 24
28.11 odd 6 1680.2.di.g.529.4 24
35.4 even 6 inner 840.2.cc.c.529.5 yes 24
140.39 odd 6 1680.2.di.g.529.8 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.cc.c.289.5 24 1.1 even 1 trivial
840.2.cc.c.289.9 yes 24 5.4 even 2 inner
840.2.cc.c.529.5 yes 24 35.4 even 6 inner
840.2.cc.c.529.9 yes 24 7.4 even 3 inner
1680.2.di.g.289.4 24 20.19 odd 2
1680.2.di.g.289.8 24 4.3 odd 2
1680.2.di.g.529.4 24 28.11 odd 6
1680.2.di.g.529.8 24 140.39 odd 6