Properties

Label 1680.2.di.g.529.4
Level $1680$
Weight $2$
Character 1680.529
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(289,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.di (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,2,0,0,0,12,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.4
Character \(\chi\) \(=\) 1680.529
Dual form 1680.2.di.g.289.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{3} +(-0.301966 + 2.21558i) q^{5} +(2.64327 + 0.114495i) q^{7} +(0.500000 + 0.866025i) q^{9} +(3.21893 - 5.57535i) q^{11} -3.47412i q^{13} +(1.36930 - 1.76777i) q^{15} +(-1.70960 - 0.987038i) q^{17} +(2.21415 + 3.83501i) q^{19} +(-2.23189 - 1.42079i) q^{21} +(-1.75450 + 1.01296i) q^{23} +(-4.81763 - 1.33806i) q^{25} -1.00000i q^{27} -6.25115 q^{29} +(3.03554 - 5.25771i) q^{31} +(-5.57535 + 3.21893i) q^{33} +(-1.05185 + 5.82182i) q^{35} +(-0.679339 + 0.392216i) q^{37} +(-1.73706 + 3.00867i) q^{39} +10.2120 q^{41} -9.76386i q^{43} +(-2.06974 + 0.846282i) q^{45} +(-1.48055 + 0.854794i) q^{47} +(6.97378 + 0.605281i) q^{49} +(0.987038 + 1.70960i) q^{51} +(-5.64578 - 3.25959i) q^{53} +(11.3807 + 8.81538i) q^{55} -4.42829i q^{57} +(5.83826 - 10.1122i) q^{59} +(2.46412 + 4.26799i) q^{61} +(1.22248 + 2.34639i) q^{63} +(7.69720 + 1.04906i) q^{65} +(9.35985 + 5.40391i) q^{67} +2.02592 q^{69} -10.4314 q^{71} +(4.41578 + 2.54945i) q^{73} +(3.50316 + 3.56761i) q^{75} +(9.14686 - 14.3686i) q^{77} +(2.72865 + 4.72617i) q^{79} +(-0.500000 + 0.866025i) q^{81} -15.3100i q^{83} +(2.70311 - 3.48971i) q^{85} +(5.41365 + 3.12557i) q^{87} +(5.07049 + 8.78234i) q^{89} +(0.397768 - 9.18304i) q^{91} +(-5.25771 + 3.03554i) q^{93} +(-9.16539 + 3.74758i) q^{95} +9.93481i q^{97} +6.43786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{5} + 12 q^{9} + 8 q^{11} - 8 q^{19} + 12 q^{21} + 2 q^{25} - 24 q^{29} - 4 q^{31} - 30 q^{35} - 4 q^{39} + 32 q^{41} - 2 q^{45} - 12 q^{49} + 20 q^{51} - 12 q^{55} + 4 q^{59} + 32 q^{61} + 22 q^{65}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 0 0
\(5\) −0.301966 + 2.21558i −0.135043 + 0.990840i
\(6\) 0 0
\(7\) 2.64327 + 0.114495i 0.999063 + 0.0432749i
\(8\) 0 0
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 3.21893 5.57535i 0.970545 1.68103i 0.276628 0.960977i \(-0.410783\pi\)
0.693917 0.720055i \(-0.255884\pi\)
\(12\) 0 0
\(13\) 3.47412i 0.963547i −0.876296 0.481773i \(-0.839993\pi\)
0.876296 0.481773i \(-0.160007\pi\)
\(14\) 0 0
\(15\) 1.36930 1.76777i 0.353552 0.456436i
\(16\) 0 0
\(17\) −1.70960 0.987038i −0.414639 0.239392i 0.278142 0.960540i \(-0.410281\pi\)
−0.692781 + 0.721148i \(0.743615\pi\)
\(18\) 0 0
\(19\) 2.21415 + 3.83501i 0.507960 + 0.879812i 0.999958 + 0.00921562i \(0.00293346\pi\)
−0.491998 + 0.870596i \(0.663733\pi\)
\(20\) 0 0
\(21\) −2.23189 1.42079i −0.487039 0.310042i
\(22\) 0 0
\(23\) −1.75450 + 1.01296i −0.365839 + 0.211217i −0.671639 0.740879i \(-0.734409\pi\)
0.305800 + 0.952096i \(0.401076\pi\)
\(24\) 0 0
\(25\) −4.81763 1.33806i −0.963527 0.267612i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −6.25115 −1.16081 −0.580405 0.814328i \(-0.697106\pi\)
−0.580405 + 0.814328i \(0.697106\pi\)
\(30\) 0 0
\(31\) 3.03554 5.25771i 0.545199 0.944312i −0.453395 0.891310i \(-0.649787\pi\)
0.998594 0.0530029i \(-0.0168793\pi\)
\(32\) 0 0
\(33\) −5.57535 + 3.21893i −0.970545 + 0.560344i
\(34\) 0 0
\(35\) −1.05185 + 5.82182i −0.177795 + 0.984068i
\(36\) 0 0
\(37\) −0.679339 + 0.392216i −0.111683 + 0.0644800i −0.554801 0.831983i \(-0.687206\pi\)
0.443118 + 0.896463i \(0.353872\pi\)
\(38\) 0 0
\(39\) −1.73706 + 3.00867i −0.278152 + 0.481773i
\(40\) 0 0
\(41\) 10.2120 1.59484 0.797421 0.603424i \(-0.206197\pi\)
0.797421 + 0.603424i \(0.206197\pi\)
\(42\) 0 0
\(43\) 9.76386i 1.48897i −0.667637 0.744487i \(-0.732694\pi\)
0.667637 0.744487i \(-0.267306\pi\)
\(44\) 0 0
\(45\) −2.06974 + 0.846282i −0.308538 + 0.126156i
\(46\) 0 0
\(47\) −1.48055 + 0.854794i −0.215960 + 0.124685i −0.604078 0.796925i \(-0.706459\pi\)
0.388118 + 0.921610i \(0.373125\pi\)
\(48\) 0 0
\(49\) 6.97378 + 0.605281i 0.996255 + 0.0864687i
\(50\) 0 0
\(51\) 0.987038 + 1.70960i 0.138213 + 0.239392i
\(52\) 0 0
\(53\) −5.64578 3.25959i −0.775508 0.447740i 0.0593279 0.998239i \(-0.481104\pi\)
−0.834836 + 0.550499i \(0.814438\pi\)
\(54\) 0 0
\(55\) 11.3807 + 8.81538i 1.53457 + 1.18867i
\(56\) 0 0
\(57\) 4.42829i 0.586541i
\(58\) 0 0
\(59\) 5.83826 10.1122i 0.760076 1.31649i −0.182735 0.983162i \(-0.558495\pi\)
0.942811 0.333328i \(-0.108172\pi\)
\(60\) 0 0
\(61\) 2.46412 + 4.26799i 0.315499 + 0.546460i 0.979543 0.201233i \(-0.0644949\pi\)
−0.664045 + 0.747693i \(0.731162\pi\)
\(62\) 0 0
\(63\) 1.22248 + 2.34639i 0.154018 + 0.295617i
\(64\) 0 0
\(65\) 7.69720 + 1.04906i 0.954721 + 0.130120i
\(66\) 0 0
\(67\) 9.35985 + 5.40391i 1.14349 + 0.660193i 0.947292 0.320372i \(-0.103808\pi\)
0.196196 + 0.980565i \(0.437141\pi\)
\(68\) 0 0
\(69\) 2.02592 0.243893
\(70\) 0 0
\(71\) −10.4314 −1.23798 −0.618989 0.785400i \(-0.712457\pi\)
−0.618989 + 0.785400i \(0.712457\pi\)
\(72\) 0 0
\(73\) 4.41578 + 2.54945i 0.516828 + 0.298391i 0.735636 0.677377i \(-0.236883\pi\)
−0.218808 + 0.975768i \(0.570217\pi\)
\(74\) 0 0
\(75\) 3.50316 + 3.56761i 0.404510 + 0.411952i
\(76\) 0 0
\(77\) 9.14686 14.3686i 1.04238 1.63746i
\(78\) 0 0
\(79\) 2.72865 + 4.72617i 0.306997 + 0.531735i 0.977704 0.209988i \(-0.0673423\pi\)
−0.670707 + 0.741723i \(0.734009\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 15.3100i 1.68050i −0.542203 0.840248i \(-0.682410\pi\)
0.542203 0.840248i \(-0.317590\pi\)
\(84\) 0 0
\(85\) 2.70311 3.48971i 0.293193 0.378512i
\(86\) 0 0
\(87\) 5.41365 + 3.12557i 0.580405 + 0.335097i
\(88\) 0 0
\(89\) 5.07049 + 8.78234i 0.537470 + 0.930926i 0.999039 + 0.0438217i \(0.0139534\pi\)
−0.461569 + 0.887104i \(0.652713\pi\)
\(90\) 0 0
\(91\) 0.397768 9.18304i 0.0416974 0.962644i
\(92\) 0 0
\(93\) −5.25771 + 3.03554i −0.545199 + 0.314771i
\(94\) 0 0
\(95\) −9.16539 + 3.74758i −0.940349 + 0.384494i
\(96\) 0 0
\(97\) 9.93481i 1.00873i 0.863491 + 0.504364i \(0.168273\pi\)
−0.863491 + 0.504364i \(0.831727\pi\)
\(98\) 0 0
\(99\) 6.43786 0.647030
\(100\) 0 0
\(101\) −1.54884 + 2.68267i −0.154115 + 0.266935i −0.932736 0.360559i \(-0.882586\pi\)
0.778621 + 0.627494i \(0.215919\pi\)
\(102\) 0 0
\(103\) 13.2104 7.62702i 1.30166 0.751512i 0.320969 0.947090i \(-0.395991\pi\)
0.980688 + 0.195578i \(0.0626581\pi\)
\(104\) 0 0
\(105\) 3.82184 4.51592i 0.372973 0.440709i
\(106\) 0 0
\(107\) −2.05902 + 1.18877i −0.199053 + 0.114923i −0.596213 0.802826i \(-0.703329\pi\)
0.397161 + 0.917749i \(0.369995\pi\)
\(108\) 0 0
\(109\) 7.20382 12.4774i 0.690000 1.19512i −0.281837 0.959462i \(-0.590944\pi\)
0.971837 0.235653i \(-0.0757230\pi\)
\(110\) 0 0
\(111\) 0.784433 0.0744551
\(112\) 0 0
\(113\) 5.38555i 0.506630i 0.967384 + 0.253315i \(0.0815210\pi\)
−0.967384 + 0.253315i \(0.918479\pi\)
\(114\) 0 0
\(115\) −1.71450 4.19313i −0.159878 0.391011i
\(116\) 0 0
\(117\) 3.00867 1.73706i 0.278152 0.160591i
\(118\) 0 0
\(119\) −4.40593 2.80475i −0.403891 0.257111i
\(120\) 0 0
\(121\) −15.2230 26.3671i −1.38391 2.39701i
\(122\) 0 0
\(123\) −8.84382 5.10598i −0.797421 0.460391i
\(124\) 0 0
\(125\) 4.41935 10.2698i 0.395279 0.918561i
\(126\) 0 0
\(127\) 11.2482i 0.998118i −0.866568 0.499059i \(-0.833679\pi\)
0.866568 0.499059i \(-0.166321\pi\)
\(128\) 0 0
\(129\) −4.88193 + 8.45575i −0.429830 + 0.744487i
\(130\) 0 0
\(131\) −5.40870 9.36814i −0.472560 0.818498i 0.526947 0.849898i \(-0.323337\pi\)
−0.999507 + 0.0314000i \(0.990003\pi\)
\(132\) 0 0
\(133\) 5.41350 + 10.3905i 0.469410 + 0.900970i
\(134\) 0 0
\(135\) 2.21558 + 0.301966i 0.190687 + 0.0259891i
\(136\) 0 0
\(137\) −1.21943 0.704037i −0.104183 0.0601500i 0.447003 0.894532i \(-0.352491\pi\)
−0.551186 + 0.834382i \(0.685825\pi\)
\(138\) 0 0
\(139\) 5.36340 0.454917 0.227459 0.973788i \(-0.426958\pi\)
0.227459 + 0.973788i \(0.426958\pi\)
\(140\) 0 0
\(141\) 1.70959 0.143973
\(142\) 0 0
\(143\) −19.3694 11.1829i −1.61975 0.935165i
\(144\) 0 0
\(145\) 1.88763 13.8500i 0.156759 1.15018i
\(146\) 0 0
\(147\) −5.73683 4.01108i −0.473166 0.330828i
\(148\) 0 0
\(149\) −1.46209 2.53241i −0.119779 0.207463i 0.799901 0.600132i \(-0.204885\pi\)
−0.919680 + 0.392669i \(0.871552\pi\)
\(150\) 0 0
\(151\) −3.52450 + 6.10462i −0.286820 + 0.496787i −0.973049 0.230599i \(-0.925931\pi\)
0.686229 + 0.727386i \(0.259265\pi\)
\(152\) 0 0
\(153\) 1.97408i 0.159595i
\(154\) 0 0
\(155\) 10.7323 + 8.31314i 0.862037 + 0.667728i
\(156\) 0 0
\(157\) 2.96645 + 1.71268i 0.236749 + 0.136687i 0.613681 0.789554i \(-0.289688\pi\)
−0.376933 + 0.926241i \(0.623021\pi\)
\(158\) 0 0
\(159\) 3.25959 + 5.64578i 0.258503 + 0.447740i
\(160\) 0 0
\(161\) −4.75361 + 2.47665i −0.374637 + 0.195188i
\(162\) 0 0
\(163\) 2.53536 1.46379i 0.198584 0.114653i −0.397411 0.917641i \(-0.630091\pi\)
0.595995 + 0.802988i \(0.296758\pi\)
\(164\) 0 0
\(165\) −5.44825 13.3247i −0.424146 1.03732i
\(166\) 0 0
\(167\) 22.1196i 1.71167i 0.517250 + 0.855835i \(0.326956\pi\)
−0.517250 + 0.855835i \(0.673044\pi\)
\(168\) 0 0
\(169\) 0.930504 0.0715773
\(170\) 0 0
\(171\) −2.21415 + 3.83501i −0.169320 + 0.293271i
\(172\) 0 0
\(173\) 11.4022 6.58307i 0.866894 0.500502i 0.000579200 1.00000i \(-0.499816\pi\)
0.866315 + 0.499498i \(0.166482\pi\)
\(174\) 0 0
\(175\) −12.5811 4.08846i −0.951043 0.309058i
\(176\) 0 0
\(177\) −10.1122 + 5.83826i −0.760076 + 0.438830i
\(178\) 0 0
\(179\) 1.15724 2.00439i 0.0864960 0.149815i −0.819532 0.573034i \(-0.805766\pi\)
0.906028 + 0.423218i \(0.139100\pi\)
\(180\) 0 0
\(181\) 3.06205 0.227600 0.113800 0.993504i \(-0.463698\pi\)
0.113800 + 0.993504i \(0.463698\pi\)
\(182\) 0 0
\(183\) 4.92825i 0.364307i
\(184\) 0 0
\(185\) −0.663852 1.62357i −0.0488073 0.119367i
\(186\) 0 0
\(187\) −11.0062 + 6.35442i −0.804851 + 0.464681i
\(188\) 0 0
\(189\) 0.114495 2.64327i 0.00832826 0.192270i
\(190\) 0 0
\(191\) 12.7838 + 22.1421i 0.925000 + 1.60215i 0.791560 + 0.611091i \(0.209269\pi\)
0.133440 + 0.991057i \(0.457398\pi\)
\(192\) 0 0
\(193\) 18.8184 + 10.8648i 1.35458 + 0.782065i 0.988887 0.148672i \(-0.0474997\pi\)
0.365690 + 0.930737i \(0.380833\pi\)
\(194\) 0 0
\(195\) −6.14144 4.75712i −0.439798 0.340664i
\(196\) 0 0
\(197\) 11.2646i 0.802567i 0.915954 + 0.401284i \(0.131436\pi\)
−0.915954 + 0.401284i \(0.868564\pi\)
\(198\) 0 0
\(199\) −3.59544 + 6.22748i −0.254874 + 0.441454i −0.964861 0.262760i \(-0.915367\pi\)
0.709987 + 0.704214i \(0.248701\pi\)
\(200\) 0 0
\(201\) −5.40391 9.35985i −0.381163 0.660193i
\(202\) 0 0
\(203\) −16.5235 0.715723i −1.15972 0.0502339i
\(204\) 0 0
\(205\) −3.08367 + 22.6255i −0.215373 + 1.58023i
\(206\) 0 0
\(207\) −1.75450 1.01296i −0.121946 0.0704057i
\(208\) 0 0
\(209\) 28.5087 1.97199
\(210\) 0 0
\(211\) 0.684937 0.0471530 0.0235765 0.999722i \(-0.492495\pi\)
0.0235765 + 0.999722i \(0.492495\pi\)
\(212\) 0 0
\(213\) 9.03384 + 5.21569i 0.618989 + 0.357373i
\(214\) 0 0
\(215\) 21.6327 + 2.94835i 1.47533 + 0.201076i
\(216\) 0 0
\(217\) 8.62574 13.5500i 0.585553 0.919834i
\(218\) 0 0
\(219\) −2.54945 4.41578i −0.172276 0.298391i
\(220\) 0 0
\(221\) −3.42909 + 5.93935i −0.230665 + 0.399524i
\(222\) 0 0
\(223\) 11.8453i 0.793218i 0.917988 + 0.396609i \(0.129813\pi\)
−0.917988 + 0.396609i \(0.870187\pi\)
\(224\) 0 0
\(225\) −1.25002 4.84122i −0.0833347 0.322748i
\(226\) 0 0
\(227\) −18.7577 10.8298i −1.24499 0.718798i −0.274888 0.961476i \(-0.588641\pi\)
−0.970107 + 0.242678i \(0.921974\pi\)
\(228\) 0 0
\(229\) −6.72719 11.6518i −0.444545 0.769975i 0.553475 0.832866i \(-0.313301\pi\)
−0.998020 + 0.0628908i \(0.979968\pi\)
\(230\) 0 0
\(231\) −15.1057 + 7.87017i −0.993884 + 0.517819i
\(232\) 0 0
\(233\) −11.7539 + 6.78613i −0.770026 + 0.444574i −0.832884 0.553448i \(-0.813312\pi\)
0.0628582 + 0.998022i \(0.479978\pi\)
\(234\) 0 0
\(235\) −1.44679 3.53840i −0.0943785 0.230820i
\(236\) 0 0
\(237\) 5.45731i 0.354490i
\(238\) 0 0
\(239\) −16.0434 −1.03776 −0.518880 0.854847i \(-0.673651\pi\)
−0.518880 + 0.854847i \(0.673651\pi\)
\(240\) 0 0
\(241\) −6.72757 + 11.6525i −0.433361 + 0.750603i −0.997160 0.0753089i \(-0.976006\pi\)
0.563800 + 0.825912i \(0.309339\pi\)
\(242\) 0 0
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 0 0
\(245\) −3.44690 + 15.2682i −0.220214 + 0.975452i
\(246\) 0 0
\(247\) 13.3233 7.69220i 0.847740 0.489443i
\(248\) 0 0
\(249\) −7.65502 + 13.2589i −0.485117 + 0.840248i
\(250\) 0 0
\(251\) −14.9463 −0.943405 −0.471703 0.881758i \(-0.656360\pi\)
−0.471703 + 0.881758i \(0.656360\pi\)
\(252\) 0 0
\(253\) 13.0426i 0.819983i
\(254\) 0 0
\(255\) −4.08582 + 1.67063i −0.255864 + 0.104619i
\(256\) 0 0
\(257\) 3.78296 2.18409i 0.235974 0.136240i −0.377351 0.926070i \(-0.623165\pi\)
0.613325 + 0.789831i \(0.289832\pi\)
\(258\) 0 0
\(259\) −1.84058 + 0.958954i −0.114368 + 0.0595865i
\(260\) 0 0
\(261\) −3.12557 5.41365i −0.193468 0.335097i
\(262\) 0 0
\(263\) 10.6269 + 6.13542i 0.655280 + 0.378326i 0.790476 0.612493i \(-0.209833\pi\)
−0.135196 + 0.990819i \(0.543166\pi\)
\(264\) 0 0
\(265\) 8.92674 11.5244i 0.548365 0.707940i
\(266\) 0 0
\(267\) 10.1410i 0.620617i
\(268\) 0 0
\(269\) −6.52845 + 11.3076i −0.398047 + 0.689437i −0.993485 0.113964i \(-0.963645\pi\)
0.595438 + 0.803401i \(0.296978\pi\)
\(270\) 0 0
\(271\) −11.9787 20.7477i −0.727655 1.26034i −0.957872 0.287196i \(-0.907277\pi\)
0.230217 0.973139i \(-0.426057\pi\)
\(272\) 0 0
\(273\) −4.93600 + 7.75386i −0.298740 + 0.469285i
\(274\) 0 0
\(275\) −22.9678 + 22.5529i −1.38501 + 1.35999i
\(276\) 0 0
\(277\) 10.0980 + 5.83008i 0.606730 + 0.350296i 0.771684 0.636006i \(-0.219414\pi\)
−0.164955 + 0.986301i \(0.552748\pi\)
\(278\) 0 0
\(279\) 6.07108 0.363466
\(280\) 0 0
\(281\) −3.15318 −0.188103 −0.0940514 0.995567i \(-0.529982\pi\)
−0.0940514 + 0.995567i \(0.529982\pi\)
\(282\) 0 0
\(283\) 5.85224 + 3.37879i 0.347880 + 0.200848i 0.663751 0.747954i \(-0.268963\pi\)
−0.315871 + 0.948802i \(0.602297\pi\)
\(284\) 0 0
\(285\) 9.81125 + 1.33719i 0.581168 + 0.0792084i
\(286\) 0 0
\(287\) 26.9930 + 1.16922i 1.59335 + 0.0690166i
\(288\) 0 0
\(289\) −6.55151 11.3476i −0.385383 0.667503i
\(290\) 0 0
\(291\) 4.96741 8.60380i 0.291195 0.504364i
\(292\) 0 0
\(293\) 23.8213i 1.39166i 0.718209 + 0.695828i \(0.244962\pi\)
−0.718209 + 0.695828i \(0.755038\pi\)
\(294\) 0 0
\(295\) 20.6414 + 15.9887i 1.20179 + 0.930897i
\(296\) 0 0
\(297\) −5.57535 3.21893i −0.323515 0.186781i
\(298\) 0 0
\(299\) 3.51915 + 6.09535i 0.203518 + 0.352503i
\(300\) 0 0
\(301\) 1.11791 25.8085i 0.0644352 1.48758i
\(302\) 0 0
\(303\) 2.68267 1.54884i 0.154115 0.0889784i
\(304\) 0 0
\(305\) −10.2002 + 4.17069i −0.584060 + 0.238813i
\(306\) 0 0
\(307\) 33.0935i 1.88875i 0.328878 + 0.944373i \(0.393330\pi\)
−0.328878 + 0.944373i \(0.606670\pi\)
\(308\) 0 0
\(309\) −15.2540 −0.867771
\(310\) 0 0
\(311\) 6.09688 10.5601i 0.345722 0.598809i −0.639762 0.768573i \(-0.720967\pi\)
0.985485 + 0.169764i \(0.0543006\pi\)
\(312\) 0 0
\(313\) −5.06300 + 2.92313i −0.286178 + 0.165225i −0.636217 0.771510i \(-0.719502\pi\)
0.350039 + 0.936735i \(0.386168\pi\)
\(314\) 0 0
\(315\) −5.56777 + 1.99998i −0.313708 + 0.112686i
\(316\) 0 0
\(317\) −5.53273 + 3.19432i −0.310749 + 0.179411i −0.647262 0.762268i \(-0.724086\pi\)
0.336513 + 0.941679i \(0.390753\pi\)
\(318\) 0 0
\(319\) −20.1220 + 34.8524i −1.12662 + 1.95136i
\(320\) 0 0
\(321\) 2.37755 0.132702
\(322\) 0 0
\(323\) 8.74178i 0.486406i
\(324\) 0 0
\(325\) −4.64859 + 16.7370i −0.257857 + 0.928403i
\(326\) 0 0
\(327\) −12.4774 + 7.20382i −0.690000 + 0.398372i
\(328\) 0 0
\(329\) −4.01136 + 2.08994i −0.221153 + 0.115222i
\(330\) 0 0
\(331\) −11.6288 20.1417i −0.639179 1.10709i −0.985613 0.169016i \(-0.945941\pi\)
0.346434 0.938074i \(-0.387392\pi\)
\(332\) 0 0
\(333\) −0.679339 0.392216i −0.0372275 0.0214933i
\(334\) 0 0
\(335\) −14.7992 + 19.1057i −0.808566 + 1.04386i
\(336\) 0 0
\(337\) 26.1745i 1.42581i −0.701259 0.712907i \(-0.747378\pi\)
0.701259 0.712907i \(-0.252622\pi\)
\(338\) 0 0
\(339\) 2.69278 4.66403i 0.146252 0.253315i
\(340\) 0 0
\(341\) −19.5424 33.8484i −1.05828 1.83299i
\(342\) 0 0
\(343\) 18.3643 + 2.39838i 0.991579 + 0.129501i
\(344\) 0 0
\(345\) −0.611760 + 4.48861i −0.0329360 + 0.241658i
\(346\) 0 0
\(347\) −1.39822 0.807265i −0.0750606 0.0433362i 0.462000 0.886880i \(-0.347132\pi\)
−0.537061 + 0.843544i \(0.680465\pi\)
\(348\) 0 0
\(349\) 9.09023 0.486589 0.243294 0.969953i \(-0.421772\pi\)
0.243294 + 0.969953i \(0.421772\pi\)
\(350\) 0 0
\(351\) −3.47412 −0.185435
\(352\) 0 0
\(353\) 6.37068 + 3.67811i 0.339077 + 0.195766i 0.659864 0.751385i \(-0.270614\pi\)
−0.320787 + 0.947151i \(0.603947\pi\)
\(354\) 0 0
\(355\) 3.14992 23.1116i 0.167180 1.22664i
\(356\) 0 0
\(357\) 2.41327 + 4.63195i 0.127724 + 0.245149i
\(358\) 0 0
\(359\) 1.03562 + 1.79375i 0.0546580 + 0.0946705i 0.892060 0.451917i \(-0.149260\pi\)
−0.837402 + 0.546588i \(0.815926\pi\)
\(360\) 0 0
\(361\) −0.304877 + 0.528063i −0.0160462 + 0.0277928i
\(362\) 0 0
\(363\) 30.4461i 1.59801i
\(364\) 0 0
\(365\) −6.98195 + 9.01370i −0.365452 + 0.471798i
\(366\) 0 0
\(367\) 5.28141 + 3.04922i 0.275687 + 0.159168i 0.631469 0.775401i \(-0.282452\pi\)
−0.355782 + 0.934569i \(0.615785\pi\)
\(368\) 0 0
\(369\) 5.10598 + 8.84382i 0.265807 + 0.460391i
\(370\) 0 0
\(371\) −14.5501 9.26241i −0.755406 0.480880i
\(372\) 0 0
\(373\) −22.6143 + 13.0564i −1.17092 + 0.676033i −0.953897 0.300133i \(-0.902969\pi\)
−0.217026 + 0.976166i \(0.569636\pi\)
\(374\) 0 0
\(375\) −8.96218 + 6.68426i −0.462805 + 0.345173i
\(376\) 0 0
\(377\) 21.7172i 1.11849i
\(378\) 0 0
\(379\) 18.9893 0.975414 0.487707 0.873007i \(-0.337833\pi\)
0.487707 + 0.873007i \(0.337833\pi\)
\(380\) 0 0
\(381\) −5.62411 + 9.74125i −0.288132 + 0.499059i
\(382\) 0 0
\(383\) 25.2815 14.5963i 1.29183 0.745836i 0.312847 0.949803i \(-0.398717\pi\)
0.978978 + 0.203968i \(0.0653838\pi\)
\(384\) 0 0
\(385\) 29.0729 + 24.6045i 1.48169 + 1.25396i
\(386\) 0 0
\(387\) 8.45575 4.88193i 0.429830 0.248162i
\(388\) 0 0
\(389\) −12.1922 + 21.1175i −0.618168 + 1.07070i 0.371651 + 0.928372i \(0.378792\pi\)
−0.989820 + 0.142327i \(0.954542\pi\)
\(390\) 0 0
\(391\) 3.99933 0.202255
\(392\) 0 0
\(393\) 10.8174i 0.545666i
\(394\) 0 0
\(395\) −11.2952 + 4.61842i −0.568322 + 0.232378i
\(396\) 0 0
\(397\) −5.97866 + 3.45178i −0.300060 + 0.173240i −0.642470 0.766311i \(-0.722090\pi\)
0.342410 + 0.939551i \(0.388757\pi\)
\(398\) 0 0
\(399\) 0.507016 11.7052i 0.0253825 0.585992i
\(400\) 0 0
\(401\) −16.6242 28.7940i −0.830173 1.43790i −0.897901 0.440198i \(-0.854908\pi\)
0.0677277 0.997704i \(-0.478425\pi\)
\(402\) 0 0
\(403\) −18.2659 10.5458i −0.909889 0.525325i
\(404\) 0 0
\(405\) −1.76777 1.36930i −0.0878412 0.0680412i
\(406\) 0 0
\(407\) 5.05007i 0.250323i
\(408\) 0 0
\(409\) 8.81071 15.2606i 0.435662 0.754588i −0.561688 0.827349i \(-0.689848\pi\)
0.997349 + 0.0727612i \(0.0231811\pi\)
\(410\) 0 0
\(411\) 0.704037 + 1.21943i 0.0347276 + 0.0601500i
\(412\) 0 0
\(413\) 16.5899 26.0607i 0.816335 1.28236i
\(414\) 0 0
\(415\) 33.9207 + 4.62311i 1.66510 + 0.226939i
\(416\) 0 0
\(417\) −4.64484 2.68170i −0.227459 0.131323i
\(418\) 0 0
\(419\) 17.7842 0.868813 0.434406 0.900717i \(-0.356958\pi\)
0.434406 + 0.900717i \(0.356958\pi\)
\(420\) 0 0
\(421\) −16.0439 −0.781934 −0.390967 0.920405i \(-0.627859\pi\)
−0.390967 + 0.920405i \(0.627859\pi\)
\(422\) 0 0
\(423\) −1.48055 0.854794i −0.0719867 0.0415615i
\(424\) 0 0
\(425\) 6.91551 + 7.04274i 0.335451 + 0.341623i
\(426\) 0 0
\(427\) 6.02469 + 11.5636i 0.291555 + 0.559601i
\(428\) 0 0
\(429\) 11.1829 + 19.3694i 0.539918 + 0.935165i
\(430\) 0 0
\(431\) −4.27652 + 7.40715i −0.205993 + 0.356790i −0.950449 0.310882i \(-0.899376\pi\)
0.744456 + 0.667672i \(0.232709\pi\)
\(432\) 0 0
\(433\) 17.5573i 0.843751i 0.906654 + 0.421876i \(0.138628\pi\)
−0.906654 + 0.421876i \(0.861372\pi\)
\(434\) 0 0
\(435\) −8.55971 + 11.0506i −0.410407 + 0.529835i
\(436\) 0 0
\(437\) −7.76944 4.48569i −0.371663 0.214580i
\(438\) 0 0
\(439\) −6.77536 11.7353i −0.323370 0.560093i 0.657811 0.753183i \(-0.271483\pi\)
−0.981181 + 0.193090i \(0.938149\pi\)
\(440\) 0 0
\(441\) 2.96270 + 6.34211i 0.141081 + 0.302005i
\(442\) 0 0
\(443\) 12.0290 6.94496i 0.571516 0.329965i −0.186238 0.982505i \(-0.559630\pi\)
0.757755 + 0.652539i \(0.226296\pi\)
\(444\) 0 0
\(445\) −20.9891 + 8.58213i −0.994980 + 0.406832i
\(446\) 0 0
\(447\) 2.92417i 0.138309i
\(448\) 0 0
\(449\) −38.9144 −1.83648 −0.918241 0.396022i \(-0.870390\pi\)
−0.918241 + 0.396022i \(0.870390\pi\)
\(450\) 0 0
\(451\) 32.8716 56.9353i 1.54786 2.68098i
\(452\) 0 0
\(453\) 6.10462 3.52450i 0.286820 0.165596i
\(454\) 0 0
\(455\) 20.2257 + 3.65425i 0.948195 + 0.171314i
\(456\) 0 0
\(457\) 2.29331 1.32404i 0.107276 0.0619360i −0.445402 0.895331i \(-0.646939\pi\)
0.552678 + 0.833395i \(0.313606\pi\)
\(458\) 0 0
\(459\) −0.987038 + 1.70960i −0.0460710 + 0.0797973i
\(460\) 0 0
\(461\) −20.4079 −0.950493 −0.475246 0.879853i \(-0.657641\pi\)
−0.475246 + 0.879853i \(0.657641\pi\)
\(462\) 0 0
\(463\) 21.0475i 0.978160i 0.872239 + 0.489080i \(0.162667\pi\)
−0.872239 + 0.489080i \(0.837333\pi\)
\(464\) 0 0
\(465\) −5.13785 12.5655i −0.238262 0.582713i
\(466\) 0 0
\(467\) 8.33062 4.80968i 0.385495 0.222566i −0.294711 0.955586i \(-0.595223\pi\)
0.680206 + 0.733021i \(0.261890\pi\)
\(468\) 0 0
\(469\) 24.1219 + 15.3557i 1.11385 + 0.709059i
\(470\) 0 0
\(471\) −1.71268 2.96645i −0.0789162 0.136687i
\(472\) 0 0
\(473\) −54.4370 31.4292i −2.50301 1.44512i
\(474\) 0 0
\(475\) −5.53546 21.4383i −0.253984 0.983659i
\(476\) 0 0
\(477\) 6.51919i 0.298493i
\(478\) 0 0
\(479\) −14.5152 + 25.1410i −0.663215 + 1.14872i 0.316551 + 0.948575i \(0.397475\pi\)
−0.979766 + 0.200146i \(0.935858\pi\)
\(480\) 0 0
\(481\) 1.36261 + 2.36010i 0.0621295 + 0.107611i
\(482\) 0 0
\(483\) 5.35507 + 0.231957i 0.243664 + 0.0105544i
\(484\) 0 0
\(485\) −22.0114 2.99997i −0.999487 0.136222i
\(486\) 0 0
\(487\) −9.37294 5.41147i −0.424729 0.245217i 0.272370 0.962193i \(-0.412193\pi\)
−0.697098 + 0.716975i \(0.745526\pi\)
\(488\) 0 0
\(489\) −2.92758 −0.132390
\(490\) 0 0
\(491\) −25.0455 −1.13029 −0.565143 0.824993i \(-0.691179\pi\)
−0.565143 + 0.824993i \(0.691179\pi\)
\(492\) 0 0
\(493\) 10.6870 + 6.17012i 0.481317 + 0.277888i
\(494\) 0 0
\(495\) −1.94402 + 14.2636i −0.0873770 + 0.641103i
\(496\) 0 0
\(497\) −27.5730 1.19434i −1.23682 0.0535734i
\(498\) 0 0
\(499\) −2.12900 3.68753i −0.0953069 0.165076i 0.814430 0.580262i \(-0.197050\pi\)
−0.909737 + 0.415186i \(0.863717\pi\)
\(500\) 0 0
\(501\) 11.0598 19.1562i 0.494116 0.855835i
\(502\) 0 0
\(503\) 31.2478i 1.39327i −0.717425 0.696636i \(-0.754679\pi\)
0.717425 0.696636i \(-0.245321\pi\)
\(504\) 0 0
\(505\) −5.47598 4.24166i −0.243678 0.188751i
\(506\) 0 0
\(507\) −0.805840 0.465252i −0.0357886 0.0206626i
\(508\) 0 0
\(509\) 4.84131 + 8.38539i 0.214587 + 0.371676i 0.953145 0.302514i \(-0.0978261\pi\)
−0.738558 + 0.674190i \(0.764493\pi\)
\(510\) 0 0
\(511\) 11.3802 + 7.24449i 0.503431 + 0.320477i
\(512\) 0 0
\(513\) 3.83501 2.21415i 0.169320 0.0977569i
\(514\) 0 0
\(515\) 12.9092 + 31.5718i 0.568848 + 1.39122i
\(516\) 0 0
\(517\) 11.0061i 0.484048i
\(518\) 0 0
\(519\) −13.1661 −0.577929
\(520\) 0 0
\(521\) −10.5451 + 18.2647i −0.461990 + 0.800190i −0.999060 0.0433477i \(-0.986198\pi\)
0.537070 + 0.843538i \(0.319531\pi\)
\(522\) 0 0
\(523\) −22.5910 + 13.0429i −0.987837 + 0.570328i −0.904627 0.426204i \(-0.859850\pi\)
−0.0832098 + 0.996532i \(0.526517\pi\)
\(524\) 0 0
\(525\) 8.85134 + 9.83127i 0.386304 + 0.429072i
\(526\) 0 0
\(527\) −10.3791 + 5.99239i −0.452121 + 0.261032i
\(528\) 0 0
\(529\) −9.44782 + 16.3641i −0.410775 + 0.711482i
\(530\) 0 0
\(531\) 11.6765 0.506717
\(532\) 0 0
\(533\) 35.4776i 1.53670i
\(534\) 0 0
\(535\) −2.01208 4.92089i −0.0869896 0.212749i
\(536\) 0 0
\(537\) −2.00439 + 1.15724i −0.0864960 + 0.0499385i
\(538\) 0 0
\(539\) 25.8228 36.9329i 1.11227 1.59081i
\(540\) 0 0
\(541\) 19.0706 + 33.0312i 0.819907 + 1.42012i 0.905750 + 0.423812i \(0.139308\pi\)
−0.0858430 + 0.996309i \(0.527358\pi\)
\(542\) 0 0
\(543\) −2.65181 1.53103i −0.113800 0.0657026i
\(544\) 0 0
\(545\) 25.4694 + 19.7284i 1.09099 + 0.845072i
\(546\) 0 0
\(547\) 30.7904i 1.31650i −0.752798 0.658252i \(-0.771296\pi\)
0.752798 0.658252i \(-0.228704\pi\)
\(548\) 0 0
\(549\) −2.46412 + 4.26799i −0.105166 + 0.182153i
\(550\) 0 0
\(551\) −13.8410 23.9732i −0.589644 1.02129i
\(552\) 0 0
\(553\) 6.67145 + 12.8050i 0.283699 + 0.544522i
\(554\) 0 0
\(555\) −0.236872 + 1.73798i −0.0100547 + 0.0737730i
\(556\) 0 0
\(557\) −15.6082 9.01142i −0.661342 0.381826i 0.131446 0.991323i \(-0.458038\pi\)
−0.792788 + 0.609497i \(0.791371\pi\)
\(558\) 0 0
\(559\) −33.9208 −1.43470
\(560\) 0 0
\(561\) 12.7088 0.536567
\(562\) 0 0
\(563\) 5.78357 + 3.33914i 0.243748 + 0.140728i 0.616898 0.787043i \(-0.288389\pi\)
−0.373150 + 0.927771i \(0.621722\pi\)
\(564\) 0 0
\(565\) −11.9322 1.62625i −0.501989 0.0684170i
\(566\) 0 0
\(567\) −1.42079 + 2.23189i −0.0596676 + 0.0937307i
\(568\) 0 0
\(569\) −8.52169 14.7600i −0.357248 0.618771i 0.630252 0.776390i \(-0.282951\pi\)
−0.987500 + 0.157619i \(0.949618\pi\)
\(570\) 0 0
\(571\) −19.4492 + 33.6870i −0.813923 + 1.40976i 0.0961751 + 0.995364i \(0.469339\pi\)
−0.910098 + 0.414392i \(0.863994\pi\)
\(572\) 0 0
\(573\) 25.5675i 1.06810i
\(574\) 0 0
\(575\) 9.80795 2.53245i 0.409020 0.105610i
\(576\) 0 0
\(577\) 3.42639 + 1.97823i 0.142643 + 0.0823547i 0.569623 0.821906i \(-0.307089\pi\)
−0.426980 + 0.904261i \(0.640423\pi\)
\(578\) 0 0
\(579\) −10.8648 18.8184i −0.451526 0.782065i
\(580\) 0 0
\(581\) 1.75292 40.4686i 0.0727233 1.67892i
\(582\) 0 0
\(583\) −36.3468 + 20.9848i −1.50533 + 0.869103i
\(584\) 0 0
\(585\) 2.94008 + 7.19051i 0.121558 + 0.297291i
\(586\) 0 0
\(587\) 8.33774i 0.344135i −0.985085 0.172068i \(-0.944955\pi\)
0.985085 0.172068i \(-0.0550448\pi\)
\(588\) 0 0
\(589\) 26.8845 1.10776
\(590\) 0 0
\(591\) 5.63229 9.75540i 0.231681 0.401284i
\(592\) 0 0
\(593\) 20.8547 12.0405i 0.856400 0.494442i −0.00640542 0.999979i \(-0.502039\pi\)
0.862805 + 0.505537i \(0.168706\pi\)
\(594\) 0 0
\(595\) 7.54460 8.91477i 0.309299 0.365470i
\(596\) 0 0
\(597\) 6.22748 3.59544i 0.254874 0.147151i
\(598\) 0 0
\(599\) 7.92587 13.7280i 0.323842 0.560912i −0.657435 0.753511i \(-0.728359\pi\)
0.981277 + 0.192600i \(0.0616919\pi\)
\(600\) 0 0
\(601\) −43.7845 −1.78601 −0.893003 0.450050i \(-0.851406\pi\)
−0.893003 + 0.450050i \(0.851406\pi\)
\(602\) 0 0
\(603\) 10.8078i 0.440129i
\(604\) 0 0
\(605\) 63.0154 25.7660i 2.56194 1.04754i
\(606\) 0 0
\(607\) −9.07478 + 5.23933i −0.368334 + 0.212658i −0.672730 0.739888i \(-0.734879\pi\)
0.304396 + 0.952545i \(0.401545\pi\)
\(608\) 0 0
\(609\) 13.9519 + 8.88158i 0.565360 + 0.359900i
\(610\) 0 0
\(611\) 2.96966 + 5.14360i 0.120139 + 0.208088i
\(612\) 0 0
\(613\) −14.4808 8.36052i −0.584876 0.337678i 0.178193 0.983996i \(-0.442975\pi\)
−0.763069 + 0.646317i \(0.776308\pi\)
\(614\) 0 0
\(615\) 13.9833 18.0524i 0.563860 0.727943i
\(616\) 0 0
\(617\) 44.5830i 1.79485i 0.441172 + 0.897423i \(0.354563\pi\)
−0.441172 + 0.897423i \(0.645437\pi\)
\(618\) 0 0
\(619\) −13.3076 + 23.0495i −0.534879 + 0.926438i 0.464290 + 0.885683i \(0.346310\pi\)
−0.999169 + 0.0407546i \(0.987024\pi\)
\(620\) 0 0
\(621\) 1.01296 + 1.75450i 0.0406488 + 0.0704057i
\(622\) 0 0
\(623\) 12.3971 + 23.7947i 0.496681 + 0.953313i
\(624\) 0 0
\(625\) 21.4192 + 12.8926i 0.856767 + 0.515703i
\(626\) 0 0
\(627\) −24.6893 14.2544i −0.985995 0.569265i
\(628\) 0 0
\(629\) 1.54853 0.0617439
\(630\) 0 0
\(631\) −44.2904 −1.76317 −0.881586 0.472023i \(-0.843524\pi\)
−0.881586 + 0.472023i \(0.843524\pi\)
\(632\) 0 0
\(633\) −0.593173 0.342468i −0.0235765 0.0136119i
\(634\) 0 0
\(635\) 24.9214 + 3.39658i 0.988975 + 0.134789i
\(636\) 0 0
\(637\) 2.10282 24.2277i 0.0833167 0.959938i
\(638\) 0 0
\(639\) −5.21569 9.03384i −0.206330 0.357373i
\(640\) 0 0
\(641\) 1.38352 2.39632i 0.0546457 0.0946491i −0.837409 0.546577i \(-0.815930\pi\)
0.892054 + 0.451928i \(0.149264\pi\)
\(642\) 0 0
\(643\) 37.1906i 1.46665i 0.679876 + 0.733327i \(0.262034\pi\)
−0.679876 + 0.733327i \(0.737966\pi\)
\(644\) 0 0
\(645\) −17.2603 13.3697i −0.679622 0.526430i
\(646\) 0 0
\(647\) 10.0673 + 5.81235i 0.395786 + 0.228507i 0.684664 0.728859i \(-0.259949\pi\)
−0.288878 + 0.957366i \(0.593282\pi\)
\(648\) 0 0
\(649\) −37.5859 65.1007i −1.47538 2.55543i
\(650\) 0 0
\(651\) −14.2451 + 7.42178i −0.558310 + 0.290883i
\(652\) 0 0
\(653\) 17.2759 9.97424i 0.676058 0.390322i −0.122310 0.992492i \(-0.539030\pi\)
0.798368 + 0.602170i \(0.205697\pi\)
\(654\) 0 0
\(655\) 22.3892 9.15457i 0.874817 0.357699i
\(656\) 0 0
\(657\) 5.09891i 0.198927i
\(658\) 0 0
\(659\) 38.7827 1.51076 0.755380 0.655287i \(-0.227452\pi\)
0.755380 + 0.655287i \(0.227452\pi\)
\(660\) 0 0
\(661\) 6.42009 11.1199i 0.249713 0.432515i −0.713733 0.700417i \(-0.752997\pi\)
0.963446 + 0.267903i \(0.0863305\pi\)
\(662\) 0 0
\(663\) 5.93935 3.42909i 0.230665 0.133175i
\(664\) 0 0
\(665\) −24.6557 + 8.85650i −0.956107 + 0.343440i
\(666\) 0 0
\(667\) 10.9677 6.33218i 0.424669 0.245183i
\(668\) 0 0
\(669\) 5.92263 10.2583i 0.228982 0.396609i
\(670\) 0 0
\(671\) 31.7274 1.22482
\(672\) 0 0
\(673\) 42.8349i 1.65116i −0.564282 0.825582i \(-0.690847\pi\)
0.564282 0.825582i \(-0.309153\pi\)
\(674\) 0 0
\(675\) −1.33806 + 4.81763i −0.0515020 + 0.185431i
\(676\) 0 0
\(677\) −19.0937 + 11.0237i −0.733830 + 0.423677i −0.819822 0.572619i \(-0.805928\pi\)
0.0859916 + 0.996296i \(0.472594\pi\)
\(678\) 0 0
\(679\) −1.13748 + 26.2604i −0.0436526 + 1.00778i
\(680\) 0 0
\(681\) 10.8298 + 18.7577i 0.414998 + 0.718798i
\(682\) 0 0
\(683\) −16.8976 9.75586i −0.646571 0.373298i 0.140570 0.990071i \(-0.455106\pi\)
−0.787141 + 0.616773i \(0.788440\pi\)
\(684\) 0 0
\(685\) 1.92808 2.48915i 0.0736682 0.0951056i
\(686\) 0 0
\(687\) 13.4544i 0.513317i
\(688\) 0 0
\(689\) −11.3242 + 19.6141i −0.431418 + 0.747238i
\(690\) 0 0
\(691\) 3.88472 + 6.72854i 0.147782 + 0.255966i 0.930407 0.366527i \(-0.119453\pi\)
−0.782625 + 0.622493i \(0.786120\pi\)
\(692\) 0 0
\(693\) 17.0170 + 0.737101i 0.646424 + 0.0280002i
\(694\) 0 0
\(695\) −1.61956 + 11.8831i −0.0614335 + 0.450750i
\(696\) 0 0
\(697\) −17.4584 10.0796i −0.661283 0.381792i
\(698\) 0 0
\(699\) 13.5723 0.513350
\(700\) 0 0
\(701\) 44.9618 1.69818 0.849091 0.528246i \(-0.177150\pi\)
0.849091 + 0.528246i \(0.177150\pi\)
\(702\) 0 0
\(703\) −3.00831 1.73685i −0.113461 0.0655065i
\(704\) 0 0
\(705\) −0.516237 + 3.78774i −0.0194426 + 0.142655i
\(706\) 0 0
\(707\) −4.40115 + 6.91368i −0.165522 + 0.260016i
\(708\) 0 0
\(709\) 7.35513 + 12.7395i 0.276228 + 0.478441i 0.970444 0.241326i \(-0.0775822\pi\)
−0.694216 + 0.719766i \(0.744249\pi\)
\(710\) 0 0
\(711\) −2.72865 + 4.72617i −0.102332 + 0.177245i
\(712\) 0 0
\(713\) 12.2995i 0.460622i
\(714\) 0 0
\(715\) 30.6257 39.5378i 1.14534 1.47863i
\(716\) 0 0
\(717\) 13.8940 + 8.02169i 0.518880 + 0.299575i
\(718\) 0 0
\(719\) 8.07036 + 13.9783i 0.300974 + 0.521302i 0.976357 0.216165i \(-0.0693550\pi\)
−0.675383 + 0.737467i \(0.736022\pi\)
\(720\) 0 0
\(721\) 35.7919 18.6478i 1.33296 0.694479i
\(722\) 0 0
\(723\) 11.6525 6.72757i 0.433361 0.250201i
\(724\) 0 0
\(725\) 30.1157 + 8.36442i 1.11847 + 0.310647i
\(726\) 0 0
\(727\) 12.7937i 0.474492i 0.971450 + 0.237246i \(0.0762447\pi\)
−0.971450 + 0.237246i \(0.923755\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −9.63730 + 16.6923i −0.356448 + 0.617387i
\(732\) 0 0
\(733\) −2.98687 + 1.72447i −0.110323 + 0.0636949i −0.554146 0.832419i \(-0.686955\pi\)
0.443823 + 0.896114i \(0.353622\pi\)
\(734\) 0 0
\(735\) 10.6192 11.4992i 0.391696 0.424155i
\(736\) 0 0
\(737\) 60.2574 34.7897i 2.21961 1.28149i
\(738\) 0 0
\(739\) −0.415306 + 0.719331i −0.0152773 + 0.0264610i −0.873563 0.486711i \(-0.838196\pi\)
0.858286 + 0.513172i \(0.171530\pi\)
\(740\) 0 0
\(741\) −15.3844 −0.565160
\(742\) 0 0
\(743\) 44.6351i 1.63750i −0.574149 0.818751i \(-0.694667\pi\)
0.574149 0.818751i \(-0.305333\pi\)
\(744\) 0 0
\(745\) 6.05226 2.47468i 0.221738 0.0906651i
\(746\) 0 0
\(747\) 13.2589 7.65502i 0.485117 0.280083i
\(748\) 0 0
\(749\) −5.57865 + 2.90651i −0.203839 + 0.106201i
\(750\) 0 0
\(751\) 1.90845 + 3.30554i 0.0696404 + 0.120621i 0.898743 0.438476i \(-0.144481\pi\)
−0.829103 + 0.559096i \(0.811148\pi\)
\(752\) 0 0
\(753\) 12.9439 + 7.47317i 0.471703 + 0.272338i
\(754\) 0 0
\(755\) −12.4610 9.65222i −0.453503 0.351280i
\(756\) 0 0
\(757\) 27.5200i 1.00023i 0.865958 + 0.500116i \(0.166709\pi\)
−0.865958 + 0.500116i \(0.833291\pi\)
\(758\) 0 0
\(759\) 6.52131 11.2952i 0.236709 0.409991i
\(760\) 0 0
\(761\) 12.0646 + 20.8964i 0.437340 + 0.757495i 0.997483 0.0709007i \(-0.0225873\pi\)
−0.560143 + 0.828396i \(0.689254\pi\)
\(762\) 0 0
\(763\) 20.4702 32.1563i 0.741072 1.16414i
\(764\) 0 0
\(765\) 4.37373 + 0.596104i 0.158133 + 0.0215522i
\(766\) 0 0
\(767\) −35.1308 20.2828i −1.26850 0.732369i
\(768\) 0 0
\(769\) 48.2761 1.74088 0.870441 0.492273i \(-0.163834\pi\)
0.870441 + 0.492273i \(0.163834\pi\)
\(770\) 0 0
\(771\) −4.36818 −0.157316
\(772\) 0 0
\(773\) 0.220383 + 0.127238i 0.00792664 + 0.00457645i 0.503958 0.863728i \(-0.331877\pi\)
−0.496031 + 0.868305i \(0.665210\pi\)
\(774\) 0 0
\(775\) −21.6593 + 21.2680i −0.778024 + 0.763968i
\(776\) 0 0
\(777\) 2.07347 + 0.0898134i 0.0743853 + 0.00322204i
\(778\) 0 0
\(779\) 22.6108 + 39.1630i 0.810115 + 1.40316i
\(780\) 0 0
\(781\) −33.5779 + 58.1586i −1.20151 + 2.08108i
\(782\) 0 0
\(783\) 6.25115i 0.223398i
\(784\) 0 0
\(785\) −4.69036 + 6.05525i −0.167406 + 0.216121i
\(786\) 0 0
\(787\) −13.9417 8.04923i −0.496967 0.286924i 0.230493 0.973074i \(-0.425966\pi\)
−0.727460 + 0.686150i \(0.759299\pi\)
\(788\) 0 0
\(789\) −6.13542 10.6269i −0.218427 0.378326i
\(790\) 0 0
\(791\) −0.616617 + 14.2355i −0.0219244 + 0.506156i
\(792\) 0 0
\(793\) 14.8275 8.56066i 0.526540 0.303998i
\(794\) 0 0
\(795\) −13.4930 + 5.51708i −0.478547 + 0.195670i
\(796\) 0 0
\(797\) 36.0791i 1.27799i 0.769212 + 0.638993i \(0.220649\pi\)
−0.769212 + 0.638993i \(0.779351\pi\)
\(798\) 0 0
\(799\) 3.37486 0.119394
\(800\) 0 0
\(801\) −5.07049 + 8.78234i −0.179157 + 0.310309i
\(802\) 0 0
\(803\) 28.4282 16.4130i 1.00321 0.579204i
\(804\) 0 0
\(805\) −4.05181 11.2799i −0.142808 0.397564i
\(806\) 0 0
\(807\) 11.3076 6.52845i 0.398047 0.229812i
\(808\) 0 0
\(809\) 15.6052 27.0291i 0.548651 0.950291i −0.449717 0.893171i \(-0.648475\pi\)
0.998367 0.0571195i \(-0.0181916\pi\)
\(810\) 0 0
\(811\) −6.91344 −0.242764 −0.121382 0.992606i \(-0.538733\pi\)
−0.121382 + 0.992606i \(0.538733\pi\)
\(812\) 0 0
\(813\) 23.9574i 0.840224i
\(814\) 0 0
\(815\) 2.47756 + 6.05931i 0.0867850 + 0.212248i
\(816\) 0 0
\(817\) 37.4445 21.6186i 1.31002 0.756339i
\(818\) 0 0
\(819\) 8.15163 4.24704i 0.284841 0.148404i
\(820\) 0 0
\(821\) −2.05513 3.55959i −0.0717245 0.124230i 0.827933 0.560827i \(-0.189517\pi\)
−0.899657 + 0.436597i \(0.856184\pi\)
\(822\) 0 0
\(823\) 25.6619 + 14.8159i 0.894516 + 0.516449i 0.875417 0.483368i \(-0.160587\pi\)
0.0190992 + 0.999818i \(0.493920\pi\)
\(824\) 0 0
\(825\) 31.1671 8.04747i 1.08510 0.280177i
\(826\) 0 0
\(827\) 1.19658i 0.0416093i 0.999784 + 0.0208046i \(0.00662280\pi\)
−0.999784 + 0.0208046i \(0.993377\pi\)
\(828\) 0 0
\(829\) 0.860027 1.48961i 0.0298700 0.0517363i −0.850704 0.525645i \(-0.823824\pi\)
0.880574 + 0.473909i \(0.157157\pi\)
\(830\) 0 0
\(831\) −5.83008 10.0980i −0.202243 0.350296i
\(832\) 0 0
\(833\) −11.3249 7.91818i −0.392386 0.274349i
\(834\) 0 0
\(835\) −49.0079 6.67938i −1.69599 0.231149i
\(836\) 0 0
\(837\) −5.25771 3.03554i −0.181733 0.104924i
\(838\) 0 0
\(839\) −14.6942 −0.507299 −0.253650 0.967296i \(-0.581631\pi\)
−0.253650 + 0.967296i \(0.581631\pi\)
\(840\) 0 0
\(841\) 10.0769 0.347478
\(842\) 0 0
\(843\) 2.73073 + 1.57659i 0.0940514 + 0.0543006i
\(844\) 0 0
\(845\) −0.280981 + 2.06161i −0.00966602 + 0.0709216i
\(846\) 0 0
\(847\) −37.2198 71.4384i −1.27889 2.45465i
\(848\) 0 0
\(849\) −3.37879 5.85224i −0.115960 0.200848i
\(850\) 0 0
\(851\) 0.794601 1.37629i 0.0272386 0.0471786i
\(852\) 0 0
\(853\) 10.3635i 0.354839i −0.984135 0.177420i \(-0.943225\pi\)
0.984135 0.177420i \(-0.0567750\pi\)
\(854\) 0 0
\(855\) −7.82820 6.06367i −0.267719 0.207373i
\(856\) 0 0
\(857\) 10.2373 + 5.91051i 0.349699 + 0.201899i 0.664553 0.747241i \(-0.268622\pi\)
−0.314853 + 0.949140i \(0.601955\pi\)
\(858\) 0 0
\(859\) 6.63018 + 11.4838i 0.226219 + 0.391822i 0.956684 0.291127i \(-0.0940302\pi\)
−0.730466 + 0.682949i \(0.760697\pi\)
\(860\) 0 0
\(861\) −22.7920 14.5091i −0.776750 0.494468i
\(862\) 0 0
\(863\) −41.8247 + 24.1475i −1.42373 + 0.821990i −0.996615 0.0822074i \(-0.973803\pi\)
−0.427114 + 0.904198i \(0.640470\pi\)
\(864\) 0 0
\(865\) 11.1423 + 27.2504i 0.378849 + 0.926542i
\(866\) 0 0
\(867\) 13.1030i 0.445002i
\(868\) 0 0
\(869\) 35.1334 1.19182
\(870\) 0 0
\(871\) 18.7738 32.5172i 0.636127 1.10180i
\(872\) 0 0
\(873\) −8.60380 + 4.96741i −0.291195 + 0.168121i
\(874\) 0 0
\(875\) 12.8574 26.6400i 0.434659 0.900595i
\(876\) 0 0
\(877\) −45.4274 + 26.2275i −1.53397 + 0.885640i −0.534801 + 0.844978i \(0.679613\pi\)
−0.999173 + 0.0406624i \(0.987053\pi\)
\(878\) 0 0
\(879\) 11.9107 20.6299i 0.401736 0.695828i
\(880\) 0 0
\(881\) 39.9109 1.34463 0.672316 0.740264i \(-0.265300\pi\)
0.672316 + 0.740264i \(0.265300\pi\)
\(882\) 0 0
\(883\) 16.5805i 0.557977i 0.960294 + 0.278988i \(0.0899991\pi\)
−0.960294 + 0.278988i \(0.910001\pi\)
\(884\) 0 0
\(885\) −9.88163 24.1673i −0.332167 0.812375i
\(886\) 0 0
\(887\) 2.68503 1.55020i 0.0901546 0.0520508i −0.454245 0.890877i \(-0.650091\pi\)
0.544399 + 0.838826i \(0.316758\pi\)
\(888\) 0 0
\(889\) 1.28786 29.7321i 0.0431935 0.997183i
\(890\) 0 0
\(891\) 3.21893 + 5.57535i 0.107838 + 0.186781i
\(892\) 0 0
\(893\) −6.55629 3.78528i −0.219398 0.126669i
\(894\) 0 0
\(895\) 4.09146 + 3.16922i 0.136762 + 0.105935i
\(896\) 0 0
\(897\) 7.03830i 0.235002i
\(898\) 0 0
\(899\) −18.9756 + 32.8667i −0.632872 + 1.09617i
\(900\) 0 0
\(901\) 6.43469 + 11.1452i 0.214371 + 0.371301i
\(902\) 0 0
\(903\) −13.8724 + 21.7919i −0.461645 + 0.725189i
\(904\) 0 0
\(905\) −0.924635 + 6.78423i −0.0307359 + 0.225516i
\(906\) 0 0
\(907\) −46.7805 27.0087i −1.55332 0.896810i −0.997868 0.0652613i \(-0.979212\pi\)
−0.555452 0.831549i \(-0.687455\pi\)
\(908\) 0 0
\(909\) −3.09768 −0.102743
\(910\) 0 0
\(911\) 37.7405 1.25040 0.625199 0.780466i \(-0.285018\pi\)
0.625199 + 0.780466i \(0.285018\pi\)
\(912\) 0 0
\(913\) −85.3589 49.2820i −2.82497 1.63100i
\(914\) 0 0
\(915\) 10.9190 + 1.48816i 0.360969 + 0.0491971i
\(916\) 0 0
\(917\) −13.2241 25.3818i −0.436697 0.838182i
\(918\) 0 0
\(919\) 2.96944 + 5.14321i 0.0979527 + 0.169659i 0.910837 0.412766i \(-0.135437\pi\)
−0.812884 + 0.582425i \(0.802104\pi\)
\(920\) 0 0
\(921\) 16.5467 28.6598i 0.545234 0.944373i
\(922\) 0 0
\(923\) 36.2399i 1.19285i
\(924\) 0 0
\(925\) 3.79761 0.980558i 0.124865 0.0322405i
\(926\) 0 0
\(927\) 13.2104 + 7.62702i 0.433886 + 0.250504i
\(928\) 0 0
\(929\) 17.4419 + 30.2102i 0.572249 + 0.991164i 0.996335 + 0.0855421i \(0.0272622\pi\)
−0.424086 + 0.905622i \(0.639404\pi\)
\(930\) 0 0
\(931\) 13.1197 + 28.0847i 0.429981 + 0.920439i
\(932\) 0 0
\(933\) −10.5601 + 6.09688i −0.345722 + 0.199603i
\(934\) 0 0
\(935\) −10.7553 26.3039i −0.351735 0.860230i
\(936\) 0 0
\(937\) 0.324265i 0.0105933i 0.999986 + 0.00529664i \(0.00168598\pi\)
−0.999986 + 0.00529664i \(0.998314\pi\)
\(938\) 0 0
\(939\) 5.84625 0.190785
\(940\) 0 0
\(941\) 2.05593 3.56098i 0.0670214 0.116085i −0.830567 0.556918i \(-0.811984\pi\)
0.897589 + 0.440834i \(0.145317\pi\)
\(942\) 0 0
\(943\) −17.9169 + 10.3443i −0.583455 + 0.336858i
\(944\) 0 0
\(945\) 5.82182 + 1.05185i 0.189384 + 0.0342167i
\(946\) 0 0
\(947\) −0.839535 + 0.484706i −0.0272812 + 0.0157508i −0.513579 0.858043i \(-0.671681\pi\)
0.486297 + 0.873793i \(0.338347\pi\)
\(948\) 0 0
\(949\) 8.85710 15.3410i 0.287514 0.497988i
\(950\) 0 0
\(951\) 6.38865 0.207166
\(952\) 0 0
\(953\) 46.5994i 1.50950i −0.656011 0.754752i \(-0.727757\pi\)
0.656011 0.754752i \(-0.272243\pi\)
\(954\) 0 0
\(955\) −52.9180 + 21.6373i −1.71239 + 0.700168i
\(956\) 0 0
\(957\) 34.8524 20.1220i 1.12662 0.650453i
\(958\) 0 0
\(959\) −3.14267 2.00058i −0.101482 0.0646021i
\(960\) 0 0
\(961\) −2.92900 5.07318i −0.0944840 0.163651i
\(962\) 0 0
\(963\) −2.05902 1.18877i −0.0663508 0.0383077i
\(964\) 0 0
\(965\) −29.7544 + 38.4129i −0.957828 + 1.23656i
\(966\) 0 0
\(967\) 11.3945i 0.366421i 0.983074 + 0.183211i \(0.0586490\pi\)
−0.983074 + 0.183211i \(0.941351\pi\)
\(968\) 0 0
\(969\) −4.37089 + 7.57060i −0.140413 + 0.243203i
\(970\) 0 0
\(971\) −21.4249 37.1091i −0.687558 1.19089i −0.972625 0.232379i \(-0.925349\pi\)
0.285067 0.958508i \(-0.407984\pi\)
\(972\) 0 0
\(973\) 14.1769 + 0.614080i 0.454491 + 0.0196865i
\(974\) 0 0
\(975\) 12.3943 12.1704i 0.396935 0.389765i
\(976\) 0 0
\(977\) −10.9311 6.31107i −0.349717 0.201909i 0.314844 0.949144i \(-0.398048\pi\)
−0.664561 + 0.747234i \(0.731381\pi\)
\(978\) 0 0
\(979\) 65.2862 2.08656
\(980\) 0 0
\(981\) 14.4076 0.460000
\(982\) 0 0
\(983\) −24.7997 14.3181i −0.790988 0.456677i 0.0493222 0.998783i \(-0.484294\pi\)
−0.840310 + 0.542106i \(0.817627\pi\)
\(984\) 0 0
\(985\) −24.9576 3.40152i −0.795216 0.108381i
\(986\) 0 0
\(987\) 4.51891 + 0.195739i 0.143838 + 0.00623043i
\(988\) 0 0
\(989\) 9.89042 + 17.1307i 0.314497 + 0.544725i
\(990\) 0 0
\(991\) 21.5883 37.3921i 0.685776 1.18780i −0.287417 0.957806i \(-0.592796\pi\)
0.973192 0.229993i \(-0.0738703\pi\)
\(992\) 0 0
\(993\) 23.2577i 0.738060i
\(994\) 0 0
\(995\) −12.7118 9.84648i −0.402992 0.312155i
\(996\) 0 0
\(997\) −7.47512 4.31576i −0.236739 0.136682i 0.376938 0.926239i \(-0.376977\pi\)
−0.613677 + 0.789557i \(0.710310\pi\)
\(998\) 0 0
\(999\) 0.392216 + 0.679339i 0.0124092 + 0.0214933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.di.g.529.4 24
4.3 odd 2 840.2.cc.c.529.9 yes 24
5.4 even 2 inner 1680.2.di.g.529.8 24
7.2 even 3 inner 1680.2.di.g.289.8 24
20.19 odd 2 840.2.cc.c.529.5 yes 24
28.23 odd 6 840.2.cc.c.289.5 24
35.9 even 6 inner 1680.2.di.g.289.4 24
140.79 odd 6 840.2.cc.c.289.9 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.cc.c.289.5 24 28.23 odd 6
840.2.cc.c.289.9 yes 24 140.79 odd 6
840.2.cc.c.529.5 yes 24 20.19 odd 2
840.2.cc.c.529.9 yes 24 4.3 odd 2
1680.2.di.g.289.4 24 35.9 even 6 inner
1680.2.di.g.289.8 24 7.2 even 3 inner
1680.2.di.g.529.4 24 1.1 even 1 trivial
1680.2.di.g.529.8 24 5.4 even 2 inner