Properties

Label 840.2.cc.c.289.11
Level $840$
Weight $2$
Character 840.289
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(289,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.11
Character \(\chi\) \(=\) 840.289
Dual form 840.2.cc.c.529.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{3} +(1.55028 + 1.61140i) q^{5} +(0.933675 - 2.47553i) q^{7} +(0.500000 - 0.866025i) q^{9} +(-2.87680 - 4.98276i) q^{11} -4.56531i q^{13} +(2.14829 + 0.620374i) q^{15} +(-4.23940 + 2.44762i) q^{17} +(2.68072 - 4.64314i) q^{19} +(-0.429179 - 2.61071i) q^{21} +(-0.775297 - 0.447618i) q^{23} +(-0.193239 + 4.99626i) q^{25} -1.00000i q^{27} +4.20085 q^{29} +(1.74075 + 3.01506i) q^{31} +(-4.98276 - 2.87680i) q^{33} +(5.43654 - 2.33325i) q^{35} +(3.89750 + 2.25022i) q^{37} +(-2.28265 - 3.95367i) q^{39} +8.67682 q^{41} +8.57420i q^{43} +(2.17066 - 0.536884i) q^{45} +(3.14064 + 1.81325i) q^{47} +(-5.25650 - 4.62268i) q^{49} +(-2.44762 + 4.23940i) q^{51} +(-11.9248 + 6.88476i) q^{53} +(3.56938 - 12.3604i) q^{55} -5.36144i q^{57} +(3.50176 + 6.06523i) q^{59} +(3.04955 - 5.28198i) q^{61} +(-1.67704 - 2.04635i) q^{63} +(7.35655 - 7.07752i) q^{65} +(7.75980 - 4.48012i) q^{67} -0.895236 q^{69} -5.38928 q^{71} +(-7.10518 + 4.10218i) q^{73} +(2.33078 + 4.42351i) q^{75} +(-15.0210 + 2.46932i) q^{77} +(6.64226 - 11.5047i) q^{79} +(-0.500000 - 0.866025i) q^{81} +3.44085i q^{83} +(-10.5164 - 3.03688i) q^{85} +(3.63804 - 2.10042i) q^{87} +(-1.88139 + 3.25866i) q^{89} +(-11.3016 - 4.26251i) q^{91} +(3.01506 + 1.74075i) q^{93} +(11.6378 - 2.87847i) q^{95} -4.32089i q^{97} -5.75359 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{5} + 12 q^{9} - 8 q^{11} + 8 q^{19} + 12 q^{21} + 2 q^{25} - 24 q^{29} + 4 q^{31} + 30 q^{35} + 4 q^{39} + 32 q^{41} - 2 q^{45} - 12 q^{49} - 20 q^{51} + 12 q^{55} - 4 q^{59} + 32 q^{61} + 22 q^{65}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0 0
\(5\) 1.55028 + 1.61140i 0.693308 + 0.720641i
\(6\) 0 0
\(7\) 0.933675 2.47553i 0.352896 0.935663i
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −2.87680 4.98276i −0.867387 1.50236i −0.864657 0.502362i \(-0.832464\pi\)
−0.00272961 0.999996i \(-0.500869\pi\)
\(12\) 0 0
\(13\) 4.56531i 1.26619i −0.774075 0.633094i \(-0.781784\pi\)
0.774075 0.633094i \(-0.218216\pi\)
\(14\) 0 0
\(15\) 2.14829 + 0.620374i 0.554685 + 0.160180i
\(16\) 0 0
\(17\) −4.23940 + 2.44762i −1.02821 + 0.593635i −0.916470 0.400104i \(-0.868974\pi\)
−0.111735 + 0.993738i \(0.535641\pi\)
\(18\) 0 0
\(19\) 2.68072 4.64314i 0.614999 1.06521i −0.375386 0.926869i \(-0.622490\pi\)
0.990385 0.138341i \(-0.0441770\pi\)
\(20\) 0 0
\(21\) −0.429179 2.61071i −0.0936546 0.569704i
\(22\) 0 0
\(23\) −0.775297 0.447618i −0.161661 0.0933348i 0.416987 0.908912i \(-0.363086\pi\)
−0.578648 + 0.815578i \(0.696419\pi\)
\(24\) 0 0
\(25\) −0.193239 + 4.99626i −0.0386479 + 0.999253i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 4.20085 0.780078 0.390039 0.920798i \(-0.372462\pi\)
0.390039 + 0.920798i \(0.372462\pi\)
\(30\) 0 0
\(31\) 1.74075 + 3.01506i 0.312648 + 0.541521i 0.978935 0.204174i \(-0.0654508\pi\)
−0.666287 + 0.745695i \(0.732117\pi\)
\(32\) 0 0
\(33\) −4.98276 2.87680i −0.867387 0.500786i
\(34\) 0 0
\(35\) 5.43654 2.33325i 0.918943 0.394391i
\(36\) 0 0
\(37\) 3.89750 + 2.25022i 0.640745 + 0.369934i 0.784901 0.619621i \(-0.212714\pi\)
−0.144156 + 0.989555i \(0.546047\pi\)
\(38\) 0 0
\(39\) −2.28265 3.95367i −0.365517 0.633094i
\(40\) 0 0
\(41\) 8.67682 1.35509 0.677546 0.735481i \(-0.263044\pi\)
0.677546 + 0.735481i \(0.263044\pi\)
\(42\) 0 0
\(43\) 8.57420i 1.30755i 0.756688 + 0.653777i \(0.226816\pi\)
−0.756688 + 0.653777i \(0.773184\pi\)
\(44\) 0 0
\(45\) 2.17066 0.536884i 0.323583 0.0800339i
\(46\) 0 0
\(47\) 3.14064 + 1.81325i 0.458110 + 0.264490i 0.711249 0.702940i \(-0.248130\pi\)
−0.253139 + 0.967430i \(0.581463\pi\)
\(48\) 0 0
\(49\) −5.25650 4.62268i −0.750929 0.660383i
\(50\) 0 0
\(51\) −2.44762 + 4.23940i −0.342735 + 0.593635i
\(52\) 0 0
\(53\) −11.9248 + 6.88476i −1.63799 + 0.945694i −0.656467 + 0.754355i \(0.727950\pi\)
−0.981524 + 0.191340i \(0.938717\pi\)
\(54\) 0 0
\(55\) 3.56938 12.3604i 0.481295 1.66667i
\(56\) 0 0
\(57\) 5.36144i 0.710140i
\(58\) 0 0
\(59\) 3.50176 + 6.06523i 0.455891 + 0.789626i 0.998739 0.0502051i \(-0.0159875\pi\)
−0.542848 + 0.839831i \(0.682654\pi\)
\(60\) 0 0
\(61\) 3.04955 5.28198i 0.390455 0.676288i −0.602054 0.798455i \(-0.705651\pi\)
0.992510 + 0.122167i \(0.0389843\pi\)
\(62\) 0 0
\(63\) −1.67704 2.04635i −0.211287 0.257816i
\(64\) 0 0
\(65\) 7.35655 7.07752i 0.912468 0.877859i
\(66\) 0 0
\(67\) 7.75980 4.48012i 0.948010 0.547334i 0.0555479 0.998456i \(-0.482309\pi\)
0.892462 + 0.451122i \(0.148976\pi\)
\(68\) 0 0
\(69\) −0.895236 −0.107774
\(70\) 0 0
\(71\) −5.38928 −0.639589 −0.319795 0.947487i \(-0.603614\pi\)
−0.319795 + 0.947487i \(0.603614\pi\)
\(72\) 0 0
\(73\) −7.10518 + 4.10218i −0.831598 + 0.480123i −0.854400 0.519617i \(-0.826075\pi\)
0.0228013 + 0.999740i \(0.492741\pi\)
\(74\) 0 0
\(75\) 2.33078 + 4.42351i 0.269136 + 0.510783i
\(76\) 0 0
\(77\) −15.0210 + 2.46932i −1.71180 + 0.281406i
\(78\) 0 0
\(79\) 6.64226 11.5047i 0.747312 1.29438i −0.201795 0.979428i \(-0.564677\pi\)
0.949107 0.314955i \(-0.101989\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 3.44085i 0.377682i 0.982008 + 0.188841i \(0.0604731\pi\)
−0.982008 + 0.188841i \(0.939527\pi\)
\(84\) 0 0
\(85\) −10.5164 3.03688i −1.14066 0.329396i
\(86\) 0 0
\(87\) 3.63804 2.10042i 0.390039 0.225189i
\(88\) 0 0
\(89\) −1.88139 + 3.25866i −0.199427 + 0.345417i −0.948343 0.317248i \(-0.897241\pi\)
0.748916 + 0.662665i \(0.230575\pi\)
\(90\) 0 0
\(91\) −11.3016 4.26251i −1.18473 0.446833i
\(92\) 0 0
\(93\) 3.01506 + 1.74075i 0.312648 + 0.180507i
\(94\) 0 0
\(95\) 11.6378 2.87847i 1.19402 0.295325i
\(96\) 0 0
\(97\) 4.32089i 0.438720i −0.975644 0.219360i \(-0.929603\pi\)
0.975644 0.219360i \(-0.0703969\pi\)
\(98\) 0 0
\(99\) −5.75359 −0.578258
\(100\) 0 0
\(101\) 0.497171 + 0.861126i 0.0494704 + 0.0856852i 0.889700 0.456545i \(-0.150913\pi\)
−0.840230 + 0.542230i \(0.817580\pi\)
\(102\) 0 0
\(103\) −11.3609 6.55920i −1.11942 0.646297i −0.178167 0.984000i \(-0.557017\pi\)
−0.941253 + 0.337703i \(0.890350\pi\)
\(104\) 0 0
\(105\) 3.54156 4.73892i 0.345620 0.462471i
\(106\) 0 0
\(107\) 13.1202 + 7.57495i 1.26838 + 0.732298i 0.974681 0.223600i \(-0.0717810\pi\)
0.293697 + 0.955899i \(0.405114\pi\)
\(108\) 0 0
\(109\) 6.74295 + 11.6791i 0.645857 + 1.11866i 0.984103 + 0.177600i \(0.0568333\pi\)
−0.338245 + 0.941058i \(0.609833\pi\)
\(110\) 0 0
\(111\) 4.50044 0.427163
\(112\) 0 0
\(113\) 12.1854i 1.14631i 0.819448 + 0.573153i \(0.194280\pi\)
−0.819448 + 0.573153i \(0.805720\pi\)
\(114\) 0 0
\(115\) −0.480637 1.94325i −0.0448197 0.181209i
\(116\) 0 0
\(117\) −3.95367 2.28265i −0.365517 0.211031i
\(118\) 0 0
\(119\) 2.10093 + 12.7800i 0.192592 + 1.17154i
\(120\) 0 0
\(121\) −11.0519 + 19.1425i −1.00472 + 1.74023i
\(122\) 0 0
\(123\) 7.51434 4.33841i 0.677546 0.391181i
\(124\) 0 0
\(125\) −8.35057 + 7.43424i −0.746898 + 0.664939i
\(126\) 0 0
\(127\) 2.35791i 0.209231i −0.994513 0.104616i \(-0.966639\pi\)
0.994513 0.104616i \(-0.0333612\pi\)
\(128\) 0 0
\(129\) 4.28710 + 7.42547i 0.377458 + 0.653777i
\(130\) 0 0
\(131\) 0.0773948 0.134052i 0.00676201 0.0117121i −0.862625 0.505845i \(-0.831181\pi\)
0.869387 + 0.494132i \(0.164514\pi\)
\(132\) 0 0
\(133\) −8.99132 10.9714i −0.779646 0.951340i
\(134\) 0 0
\(135\) 1.61140 1.55028i 0.138687 0.133427i
\(136\) 0 0
\(137\) 18.9231 10.9253i 1.61671 0.933410i 0.628951 0.777445i \(-0.283485\pi\)
0.987763 0.155965i \(-0.0498487\pi\)
\(138\) 0 0
\(139\) 6.93562 0.588271 0.294136 0.955764i \(-0.404968\pi\)
0.294136 + 0.955764i \(0.404968\pi\)
\(140\) 0 0
\(141\) 3.62650 0.305406
\(142\) 0 0
\(143\) −22.7478 + 13.1335i −1.90227 + 1.09828i
\(144\) 0 0
\(145\) 6.51251 + 6.76926i 0.540834 + 0.562156i
\(146\) 0 0
\(147\) −6.86361 1.37511i −0.566101 0.113417i
\(148\) 0 0
\(149\) 3.52660 6.10826i 0.288911 0.500408i −0.684639 0.728882i \(-0.740040\pi\)
0.973550 + 0.228474i \(0.0733736\pi\)
\(150\) 0 0
\(151\) −9.57640 16.5868i −0.779316 1.34982i −0.932336 0.361592i \(-0.882233\pi\)
0.153020 0.988223i \(-0.451100\pi\)
\(152\) 0 0
\(153\) 4.89524i 0.395756i
\(154\) 0 0
\(155\) −2.15983 + 7.47925i −0.173482 + 0.600748i
\(156\) 0 0
\(157\) −4.15924 + 2.40134i −0.331943 + 0.191648i −0.656704 0.754149i \(-0.728050\pi\)
0.324760 + 0.945796i \(0.394716\pi\)
\(158\) 0 0
\(159\) −6.88476 + 11.9248i −0.545997 + 0.945694i
\(160\) 0 0
\(161\) −1.83197 + 1.50134i −0.144379 + 0.118322i
\(162\) 0 0
\(163\) 3.70943 + 2.14164i 0.290545 + 0.167746i 0.638188 0.769881i \(-0.279684\pi\)
−0.347643 + 0.937627i \(0.613018\pi\)
\(164\) 0 0
\(165\) −3.08901 12.4891i −0.240479 0.972274i
\(166\) 0 0
\(167\) 8.70217i 0.673394i 0.941613 + 0.336697i \(0.109310\pi\)
−0.941613 + 0.336697i \(0.890690\pi\)
\(168\) 0 0
\(169\) −7.84204 −0.603234
\(170\) 0 0
\(171\) −2.68072 4.64314i −0.205000 0.355070i
\(172\) 0 0
\(173\) 8.55693 + 4.94034i 0.650571 + 0.375607i 0.788675 0.614810i \(-0.210767\pi\)
−0.138104 + 0.990418i \(0.544101\pi\)
\(174\) 0 0
\(175\) 12.1880 + 5.14326i 0.921325 + 0.388794i
\(176\) 0 0
\(177\) 6.06523 + 3.50176i 0.455891 + 0.263209i
\(178\) 0 0
\(179\) 2.85195 + 4.93973i 0.213165 + 0.369213i 0.952703 0.303902i \(-0.0982894\pi\)
−0.739538 + 0.673114i \(0.764956\pi\)
\(180\) 0 0
\(181\) −14.7881 −1.09919 −0.549597 0.835430i \(-0.685219\pi\)
−0.549597 + 0.835430i \(0.685219\pi\)
\(182\) 0 0
\(183\) 6.09911i 0.450859i
\(184\) 0 0
\(185\) 2.41622 + 9.76893i 0.177644 + 0.718226i
\(186\) 0 0
\(187\) 24.3918 + 14.0826i 1.78370 + 1.02982i
\(188\) 0 0
\(189\) −2.47553 0.933675i −0.180068 0.0679148i
\(190\) 0 0
\(191\) 0.882834 1.52911i 0.0638796 0.110643i −0.832317 0.554300i \(-0.812986\pi\)
0.896196 + 0.443657i \(0.146319\pi\)
\(192\) 0 0
\(193\) −10.3958 + 6.00200i −0.748304 + 0.432034i −0.825081 0.565015i \(-0.808870\pi\)
0.0767766 + 0.997048i \(0.475537\pi\)
\(194\) 0 0
\(195\) 2.83220 9.80759i 0.202818 0.702336i
\(196\) 0 0
\(197\) 9.65235i 0.687702i 0.939024 + 0.343851i \(0.111731\pi\)
−0.939024 + 0.343851i \(0.888269\pi\)
\(198\) 0 0
\(199\) 3.09283 + 5.35695i 0.219245 + 0.379744i 0.954577 0.297963i \(-0.0963072\pi\)
−0.735332 + 0.677707i \(0.762974\pi\)
\(200\) 0 0
\(201\) 4.48012 7.75980i 0.316003 0.547334i
\(202\) 0 0
\(203\) 3.92222 10.3993i 0.275286 0.729890i
\(204\) 0 0
\(205\) 13.4515 + 13.9818i 0.939496 + 0.976535i
\(206\) 0 0
\(207\) −0.775297 + 0.447618i −0.0538869 + 0.0311116i
\(208\) 0 0
\(209\) −30.8475 −2.13377
\(210\) 0 0
\(211\) 21.5996 1.48698 0.743488 0.668749i \(-0.233170\pi\)
0.743488 + 0.668749i \(0.233170\pi\)
\(212\) 0 0
\(213\) −4.66725 + 2.69464i −0.319795 + 0.184634i
\(214\) 0 0
\(215\) −13.8165 + 13.2924i −0.942277 + 0.906537i
\(216\) 0 0
\(217\) 9.08918 1.49419i 0.617013 0.101432i
\(218\) 0 0
\(219\) −4.10218 + 7.10518i −0.277199 + 0.480123i
\(220\) 0 0
\(221\) 11.1741 + 19.3542i 0.751653 + 1.30190i
\(222\) 0 0
\(223\) 20.4794i 1.37140i −0.727884 0.685700i \(-0.759496\pi\)
0.727884 0.685700i \(-0.240504\pi\)
\(224\) 0 0
\(225\) 4.23027 + 2.66548i 0.282018 + 0.177699i
\(226\) 0 0
\(227\) −13.2474 + 7.64837i −0.879258 + 0.507640i −0.870414 0.492321i \(-0.836149\pi\)
−0.00884444 + 0.999961i \(0.502815\pi\)
\(228\) 0 0
\(229\) 1.86287 3.22659i 0.123102 0.213219i −0.797887 0.602807i \(-0.794049\pi\)
0.920990 + 0.389587i \(0.127382\pi\)
\(230\) 0 0
\(231\) −11.7739 + 9.64898i −0.774664 + 0.634856i
\(232\) 0 0
\(233\) −4.99613 2.88452i −0.327308 0.188971i 0.327338 0.944907i \(-0.393849\pi\)
−0.654645 + 0.755936i \(0.727182\pi\)
\(234\) 0 0
\(235\) 1.94701 + 7.87189i 0.127009 + 0.513506i
\(236\) 0 0
\(237\) 13.2845i 0.862922i
\(238\) 0 0
\(239\) −15.6895 −1.01487 −0.507435 0.861690i \(-0.669406\pi\)
−0.507435 + 0.861690i \(0.669406\pi\)
\(240\) 0 0
\(241\) 8.63222 + 14.9515i 0.556050 + 0.963108i 0.997821 + 0.0659796i \(0.0210172\pi\)
−0.441770 + 0.897128i \(0.645649\pi\)
\(242\) 0 0
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 0 0
\(245\) −0.700072 15.6368i −0.0447260 0.998999i
\(246\) 0 0
\(247\) −21.1974 12.2383i −1.34876 0.778705i
\(248\) 0 0
\(249\) 1.72042 + 2.97986i 0.109027 + 0.188841i
\(250\) 0 0
\(251\) −18.7038 −1.18057 −0.590286 0.807194i \(-0.700985\pi\)
−0.590286 + 0.807194i \(0.700985\pi\)
\(252\) 0 0
\(253\) 5.15082i 0.323829i
\(254\) 0 0
\(255\) −10.6259 + 2.62817i −0.665419 + 0.164583i
\(256\) 0 0
\(257\) −5.46653 3.15610i −0.340993 0.196872i 0.319718 0.947513i \(-0.396412\pi\)
−0.660711 + 0.750640i \(0.729745\pi\)
\(258\) 0 0
\(259\) 9.20949 7.54740i 0.572250 0.468973i
\(260\) 0 0
\(261\) 2.10042 3.63804i 0.130013 0.225189i
\(262\) 0 0
\(263\) −18.0459 + 10.4188i −1.11276 + 0.642451i −0.939542 0.342433i \(-0.888749\pi\)
−0.173215 + 0.984884i \(0.555416\pi\)
\(264\) 0 0
\(265\) −29.5809 8.54225i −1.81714 0.524746i
\(266\) 0 0
\(267\) 3.76278i 0.230278i
\(268\) 0 0
\(269\) −13.7544 23.8232i −0.838618 1.45253i −0.891050 0.453904i \(-0.850031\pi\)
0.0524327 0.998624i \(-0.483302\pi\)
\(270\) 0 0
\(271\) −13.8331 + 23.9596i −0.840299 + 1.45544i 0.0493424 + 0.998782i \(0.484287\pi\)
−0.889642 + 0.456659i \(0.849046\pi\)
\(272\) 0 0
\(273\) −11.9187 + 1.95934i −0.721352 + 0.118584i
\(274\) 0 0
\(275\) 25.4511 13.4104i 1.53476 0.808676i
\(276\) 0 0
\(277\) 4.33597 2.50337i 0.260523 0.150413i −0.364050 0.931379i \(-0.618606\pi\)
0.624573 + 0.780966i \(0.285273\pi\)
\(278\) 0 0
\(279\) 3.48150 0.208432
\(280\) 0 0
\(281\) 30.4051 1.81381 0.906907 0.421332i \(-0.138437\pi\)
0.906907 + 0.421332i \(0.138437\pi\)
\(282\) 0 0
\(283\) −19.4012 + 11.2013i −1.15328 + 0.665847i −0.949685 0.313208i \(-0.898596\pi\)
−0.203597 + 0.979055i \(0.565263\pi\)
\(284\) 0 0
\(285\) 8.63944 8.31175i 0.511756 0.492346i
\(286\) 0 0
\(287\) 8.10132 21.4797i 0.478206 1.26791i
\(288\) 0 0
\(289\) 3.48167 6.03042i 0.204804 0.354731i
\(290\) 0 0
\(291\) −2.16044 3.74200i −0.126647 0.219360i
\(292\) 0 0
\(293\) 20.7429i 1.21181i −0.795536 0.605906i \(-0.792811\pi\)
0.795536 0.605906i \(-0.207189\pi\)
\(294\) 0 0
\(295\) −4.34480 + 15.0456i −0.252964 + 0.875987i
\(296\) 0 0
\(297\) −4.98276 + 2.87680i −0.289129 + 0.166929i
\(298\) 0 0
\(299\) −2.04351 + 3.53947i −0.118179 + 0.204693i
\(300\) 0 0
\(301\) 21.2257 + 8.00551i 1.22343 + 0.461430i
\(302\) 0 0
\(303\) 0.861126 + 0.497171i 0.0494704 + 0.0285617i
\(304\) 0 0
\(305\) 13.2391 3.27451i 0.758067 0.187498i
\(306\) 0 0
\(307\) 8.12145i 0.463516i −0.972774 0.231758i \(-0.925552\pi\)
0.972774 0.231758i \(-0.0744477\pi\)
\(308\) 0 0
\(309\) −13.1184 −0.746279
\(310\) 0 0
\(311\) −6.81835 11.8097i −0.386633 0.669668i 0.605361 0.795951i \(-0.293029\pi\)
−0.991994 + 0.126283i \(0.959695\pi\)
\(312\) 0 0
\(313\) 8.05335 + 4.64960i 0.455202 + 0.262811i 0.710025 0.704177i \(-0.248684\pi\)
−0.254823 + 0.966988i \(0.582017\pi\)
\(314\) 0 0
\(315\) 0.697616 5.87480i 0.0393062 0.331008i
\(316\) 0 0
\(317\) 14.9071 + 8.60662i 0.837266 + 0.483396i 0.856334 0.516422i \(-0.172736\pi\)
−0.0190676 + 0.999818i \(0.506070\pi\)
\(318\) 0 0
\(319\) −12.0850 20.9318i −0.676629 1.17196i
\(320\) 0 0
\(321\) 15.1499 0.845585
\(322\) 0 0
\(323\) 26.2455i 1.46034i
\(324\) 0 0
\(325\) 22.8095 + 0.882198i 1.26524 + 0.0489355i
\(326\) 0 0
\(327\) 11.6791 + 6.74295i 0.645857 + 0.372886i
\(328\) 0 0
\(329\) 7.42109 6.08177i 0.409138 0.335299i
\(330\) 0 0
\(331\) −1.25092 + 2.16666i −0.0687569 + 0.119090i −0.898354 0.439272i \(-0.855237\pi\)
0.829597 + 0.558362i \(0.188570\pi\)
\(332\) 0 0
\(333\) 3.89750 2.25022i 0.213582 0.123311i
\(334\) 0 0
\(335\) 19.2492 + 5.55870i 1.05169 + 0.303704i
\(336\) 0 0
\(337\) 6.69015i 0.364436i −0.983258 0.182218i \(-0.941672\pi\)
0.983258 0.182218i \(-0.0583276\pi\)
\(338\) 0 0
\(339\) 6.09270 + 10.5529i 0.330910 + 0.573153i
\(340\) 0 0
\(341\) 10.0156 17.3475i 0.542373 0.939417i
\(342\) 0 0
\(343\) −16.3514 + 8.69656i −0.882895 + 0.469570i
\(344\) 0 0
\(345\) −1.38787 1.44259i −0.0747204 0.0776662i
\(346\) 0 0
\(347\) −2.36917 + 1.36784i −0.127184 + 0.0734296i −0.562242 0.826973i \(-0.690061\pi\)
0.435058 + 0.900402i \(0.356728\pi\)
\(348\) 0 0
\(349\) 17.7486 0.950059 0.475030 0.879970i \(-0.342437\pi\)
0.475030 + 0.879970i \(0.342437\pi\)
\(350\) 0 0
\(351\) −4.56531 −0.243678
\(352\) 0 0
\(353\) −8.71230 + 5.03005i −0.463709 + 0.267722i −0.713602 0.700551i \(-0.752938\pi\)
0.249894 + 0.968273i \(0.419604\pi\)
\(354\) 0 0
\(355\) −8.35491 8.68430i −0.443432 0.460915i
\(356\) 0 0
\(357\) 8.20948 + 10.0174i 0.434492 + 0.530176i
\(358\) 0 0
\(359\) 5.97529 10.3495i 0.315364 0.546226i −0.664151 0.747598i \(-0.731207\pi\)
0.979515 + 0.201373i \(0.0645402\pi\)
\(360\) 0 0
\(361\) −4.87251 8.43943i −0.256448 0.444181i
\(362\) 0 0
\(363\) 22.1038i 1.16015i
\(364\) 0 0
\(365\) −17.6253 5.08977i −0.922551 0.266411i
\(366\) 0 0
\(367\) −29.0403 + 16.7664i −1.51589 + 0.875201i −0.516067 + 0.856548i \(0.672605\pi\)
−0.999826 + 0.0186533i \(0.994062\pi\)
\(368\) 0 0
\(369\) 4.33841 7.51434i 0.225849 0.391181i
\(370\) 0 0
\(371\) 5.90959 + 35.9482i 0.306811 + 1.86634i
\(372\) 0 0
\(373\) 16.2921 + 9.40624i 0.843572 + 0.487036i 0.858477 0.512852i \(-0.171411\pi\)
−0.0149049 + 0.999889i \(0.504745\pi\)
\(374\) 0 0
\(375\) −3.51469 + 10.6135i −0.181498 + 0.548080i
\(376\) 0 0
\(377\) 19.1782i 0.987726i
\(378\) 0 0
\(379\) 21.2269 1.09035 0.545176 0.838322i \(-0.316463\pi\)
0.545176 + 0.838322i \(0.316463\pi\)
\(380\) 0 0
\(381\) −1.17896 2.04201i −0.0603998 0.104616i
\(382\) 0 0
\(383\) −8.14310 4.70142i −0.416093 0.240232i 0.277311 0.960780i \(-0.410557\pi\)
−0.693404 + 0.720549i \(0.743890\pi\)
\(384\) 0 0
\(385\) −27.2658 20.3767i −1.38960 1.03849i
\(386\) 0 0
\(387\) 7.42547 + 4.28710i 0.377458 + 0.217926i
\(388\) 0 0
\(389\) 7.20963 + 12.4874i 0.365543 + 0.633139i 0.988863 0.148828i \(-0.0475501\pi\)
−0.623320 + 0.781967i \(0.714217\pi\)
\(390\) 0 0
\(391\) 4.38239 0.221627
\(392\) 0 0
\(393\) 0.154790i 0.00780810i
\(394\) 0 0
\(395\) 28.8361 7.13224i 1.45090 0.358862i
\(396\) 0 0
\(397\) −1.54528 0.892166i −0.0775552 0.0447765i 0.460721 0.887545i \(-0.347591\pi\)
−0.538276 + 0.842769i \(0.680924\pi\)
\(398\) 0 0
\(399\) −13.2724 5.00584i −0.664451 0.250605i
\(400\) 0 0
\(401\) 18.9425 32.8094i 0.945944 1.63842i 0.192095 0.981376i \(-0.438472\pi\)
0.753849 0.657048i \(-0.228195\pi\)
\(402\) 0 0
\(403\) 13.7647 7.94705i 0.685668 0.395871i
\(404\) 0 0
\(405\) 0.620374 2.14829i 0.0308266 0.106749i
\(406\) 0 0
\(407\) 25.8937i 1.28350i
\(408\) 0 0
\(409\) −1.55846 2.69933i −0.0770609 0.133473i 0.824920 0.565250i \(-0.191220\pi\)
−0.901981 + 0.431777i \(0.857887\pi\)
\(410\) 0 0
\(411\) 10.9253 18.9231i 0.538904 0.933410i
\(412\) 0 0
\(413\) 18.2842 3.00577i 0.899705 0.147904i
\(414\) 0 0
\(415\) −5.54459 + 5.33429i −0.272173 + 0.261850i
\(416\) 0 0
\(417\) 6.00642 3.46781i 0.294136 0.169819i
\(418\) 0 0
\(419\) 9.00616 0.439980 0.219990 0.975502i \(-0.429398\pi\)
0.219990 + 0.975502i \(0.429398\pi\)
\(420\) 0 0
\(421\) 33.2819 1.62206 0.811031 0.585003i \(-0.198907\pi\)
0.811031 + 0.585003i \(0.198907\pi\)
\(422\) 0 0
\(423\) 3.14064 1.81325i 0.152703 0.0881632i
\(424\) 0 0
\(425\) −11.4097 21.6541i −0.553453 1.05038i
\(426\) 0 0
\(427\) −10.2284 12.4809i −0.494988 0.603994i
\(428\) 0 0
\(429\) −13.1335 + 22.7478i −0.634090 + 1.09828i
\(430\) 0 0
\(431\) 2.23003 + 3.86253i 0.107417 + 0.186051i 0.914723 0.404081i \(-0.132409\pi\)
−0.807306 + 0.590133i \(0.799075\pi\)
\(432\) 0 0
\(433\) 37.1411i 1.78489i 0.451159 + 0.892444i \(0.351011\pi\)
−0.451159 + 0.892444i \(0.648989\pi\)
\(434\) 0 0
\(435\) 9.02463 + 2.60610i 0.432698 + 0.124953i
\(436\) 0 0
\(437\) −4.15671 + 2.39987i −0.198842 + 0.114802i
\(438\) 0 0
\(439\) 19.4909 33.7593i 0.930251 1.61124i 0.147360 0.989083i \(-0.452922\pi\)
0.782891 0.622159i \(-0.213744\pi\)
\(440\) 0 0
\(441\) −6.63161 + 2.24093i −0.315791 + 0.106711i
\(442\) 0 0
\(443\) −29.0837 16.7915i −1.38181 0.797786i −0.389433 0.921055i \(-0.627329\pi\)
−0.992373 + 0.123268i \(0.960662\pi\)
\(444\) 0 0
\(445\) −8.16770 + 2.02017i −0.387186 + 0.0957654i
\(446\) 0 0
\(447\) 7.05321i 0.333605i
\(448\) 0 0
\(449\) 13.7170 0.647347 0.323674 0.946169i \(-0.395082\pi\)
0.323674 + 0.946169i \(0.395082\pi\)
\(450\) 0 0
\(451\) −24.9614 43.2345i −1.17539 2.03583i
\(452\) 0 0
\(453\) −16.5868 9.57640i −0.779316 0.449938i
\(454\) 0 0
\(455\) −10.6520 24.8195i −0.499374 1.16355i
\(456\) 0 0
\(457\) 20.1117 + 11.6115i 0.940787 + 0.543164i 0.890207 0.455556i \(-0.150560\pi\)
0.0505802 + 0.998720i \(0.483893\pi\)
\(458\) 0 0
\(459\) 2.44762 + 4.23940i 0.114245 + 0.197878i
\(460\) 0 0
\(461\) −28.2837 −1.31730 −0.658651 0.752449i \(-0.728873\pi\)
−0.658651 + 0.752449i \(0.728873\pi\)
\(462\) 0 0
\(463\) 17.4485i 0.810901i −0.914117 0.405450i \(-0.867115\pi\)
0.914117 0.405450i \(-0.132885\pi\)
\(464\) 0 0
\(465\) 1.86916 + 7.55714i 0.0866802 + 0.350454i
\(466\) 0 0
\(467\) 20.4002 + 11.7781i 0.944009 + 0.545024i 0.891215 0.453581i \(-0.149854\pi\)
0.0527945 + 0.998605i \(0.483187\pi\)
\(468\) 0 0
\(469\) −3.84555 23.3926i −0.177571 1.08017i
\(470\) 0 0
\(471\) −2.40134 + 4.15924i −0.110648 + 0.191648i
\(472\) 0 0
\(473\) 42.7232 24.6662i 1.96441 1.13415i
\(474\) 0 0
\(475\) 22.6803 + 14.2908i 1.04065 + 0.655708i
\(476\) 0 0
\(477\) 13.7695i 0.630463i
\(478\) 0 0
\(479\) −5.52709 9.57320i −0.252539 0.437410i 0.711685 0.702499i \(-0.247932\pi\)
−0.964224 + 0.265088i \(0.914599\pi\)
\(480\) 0 0
\(481\) 10.2730 17.7933i 0.468407 0.811304i
\(482\) 0 0
\(483\) −0.835859 + 2.21618i −0.0380329 + 0.100840i
\(484\) 0 0
\(485\) 6.96269 6.69860i 0.316160 0.304168i
\(486\) 0 0
\(487\) −10.1849 + 5.88025i −0.461521 + 0.266460i −0.712684 0.701485i \(-0.752521\pi\)
0.251162 + 0.967945i \(0.419187\pi\)
\(488\) 0 0
\(489\) 4.28328 0.193697
\(490\) 0 0
\(491\) −17.8544 −0.805759 −0.402880 0.915253i \(-0.631991\pi\)
−0.402880 + 0.915253i \(0.631991\pi\)
\(492\) 0 0
\(493\) −17.8091 + 10.2821i −0.802080 + 0.463081i
\(494\) 0 0
\(495\) −8.91970 9.27136i −0.400911 0.416717i
\(496\) 0 0
\(497\) −5.03183 + 13.3413i −0.225708 + 0.598440i
\(498\) 0 0
\(499\) 4.26332 7.38429i 0.190853 0.330566i −0.754680 0.656093i \(-0.772208\pi\)
0.945533 + 0.325526i \(0.105541\pi\)
\(500\) 0 0
\(501\) 4.35109 + 7.53630i 0.194392 + 0.336697i
\(502\) 0 0
\(503\) 32.6513i 1.45585i −0.685657 0.727925i \(-0.740485\pi\)
0.685657 0.727925i \(-0.259515\pi\)
\(504\) 0 0
\(505\) −0.616864 + 2.13613i −0.0274501 + 0.0950566i
\(506\) 0 0
\(507\) −6.79141 + 3.92102i −0.301617 + 0.174139i
\(508\) 0 0
\(509\) −19.2556 + 33.3517i −0.853490 + 1.47829i 0.0245493 + 0.999699i \(0.492185\pi\)
−0.878039 + 0.478589i \(0.841148\pi\)
\(510\) 0 0
\(511\) 3.52114 + 21.4192i 0.155766 + 0.947529i
\(512\) 0 0
\(513\) −4.64314 2.68072i −0.205000 0.118357i
\(514\) 0 0
\(515\) −7.04305 28.4755i −0.310354 1.25478i
\(516\) 0 0
\(517\) 20.8654i 0.917660i
\(518\) 0 0
\(519\) 9.88069 0.433714
\(520\) 0 0
\(521\) −14.8743 25.7630i −0.651654 1.12870i −0.982721 0.185091i \(-0.940742\pi\)
0.331067 0.943607i \(-0.392591\pi\)
\(522\) 0 0
\(523\) 1.81046 + 1.04527i 0.0791659 + 0.0457064i 0.539060 0.842267i \(-0.318779\pi\)
−0.459895 + 0.887974i \(0.652113\pi\)
\(524\) 0 0
\(525\) 13.1267 1.63980i 0.572897 0.0715668i
\(526\) 0 0
\(527\) −14.7594 8.52137i −0.642932 0.371197i
\(528\) 0 0
\(529\) −11.0993 19.2245i −0.482577 0.835848i
\(530\) 0 0
\(531\) 7.00352 0.303927
\(532\) 0 0
\(533\) 39.6123i 1.71580i
\(534\) 0 0
\(535\) 8.13374 + 32.8853i 0.351652 + 1.42175i
\(536\) 0 0
\(537\) 4.93973 + 2.85195i 0.213165 + 0.123071i
\(538\) 0 0
\(539\) −7.91181 + 39.4904i −0.340786 + 1.70097i
\(540\) 0 0
\(541\) −14.0639 + 24.3593i −0.604653 + 1.04729i 0.387453 + 0.921889i \(0.373355\pi\)
−0.992106 + 0.125400i \(0.959979\pi\)
\(542\) 0 0
\(543\) −12.8069 + 7.39407i −0.549597 + 0.317310i
\(544\) 0 0
\(545\) −8.36630 + 28.9716i −0.358373 + 1.24101i
\(546\) 0 0
\(547\) 29.9829i 1.28198i 0.767550 + 0.640989i \(0.221475\pi\)
−0.767550 + 0.640989i \(0.778525\pi\)
\(548\) 0 0
\(549\) −3.04955 5.28198i −0.130152 0.225429i
\(550\) 0 0
\(551\) 11.2613 19.5051i 0.479747 0.830946i
\(552\) 0 0
\(553\) −22.2786 27.1848i −0.947382 1.15601i
\(554\) 0 0
\(555\) 6.97697 + 7.25203i 0.296156 + 0.307832i
\(556\) 0 0
\(557\) 4.59121 2.65073i 0.194536 0.112315i −0.399568 0.916703i \(-0.630840\pi\)
0.594104 + 0.804388i \(0.297507\pi\)
\(558\) 0 0
\(559\) 39.1439 1.65561
\(560\) 0 0
\(561\) 28.1652 1.18914
\(562\) 0 0
\(563\) 17.6714 10.2026i 0.744760 0.429987i −0.0790375 0.996872i \(-0.525185\pi\)
0.823797 + 0.566884i \(0.191851\pi\)
\(564\) 0 0
\(565\) −19.6356 + 18.8908i −0.826076 + 0.794744i
\(566\) 0 0
\(567\) −2.61071 + 0.429179i −0.109640 + 0.0180238i
\(568\) 0 0
\(569\) −12.3418 + 21.3766i −0.517395 + 0.896154i 0.482401 + 0.875950i \(0.339765\pi\)
−0.999796 + 0.0202035i \(0.993569\pi\)
\(570\) 0 0
\(571\) −10.2615 17.7734i −0.429429 0.743793i 0.567394 0.823447i \(-0.307952\pi\)
−0.996823 + 0.0796540i \(0.974618\pi\)
\(572\) 0 0
\(573\) 1.76567i 0.0737618i
\(574\) 0 0
\(575\) 2.38623 3.78709i 0.0995129 0.157933i
\(576\) 0 0
\(577\) 5.76228 3.32685i 0.239887 0.138499i −0.375238 0.926929i \(-0.622439\pi\)
0.615125 + 0.788430i \(0.289106\pi\)
\(578\) 0 0
\(579\) −6.00200 + 10.3958i −0.249435 + 0.432034i
\(580\) 0 0
\(581\) 8.51793 + 3.21263i 0.353383 + 0.133282i
\(582\) 0 0
\(583\) 68.6102 + 39.6121i 2.84154 + 1.64057i
\(584\) 0 0
\(585\) −2.45104 9.90972i −0.101338 0.409717i
\(586\) 0 0
\(587\) 11.7672i 0.485683i −0.970066 0.242842i \(-0.921920\pi\)
0.970066 0.242842i \(-0.0780796\pi\)
\(588\) 0 0
\(589\) 18.6658 0.769112
\(590\) 0 0
\(591\) 4.82618 + 8.35918i 0.198522 + 0.343851i
\(592\) 0 0
\(593\) 2.54283 + 1.46810i 0.104421 + 0.0602877i 0.551301 0.834306i \(-0.314132\pi\)
−0.446880 + 0.894594i \(0.647465\pi\)
\(594\) 0 0
\(595\) −17.3367 + 23.1981i −0.710737 + 0.951031i
\(596\) 0 0
\(597\) 5.35695 + 3.09283i 0.219245 + 0.126581i
\(598\) 0 0
\(599\) 0.668246 + 1.15744i 0.0273038 + 0.0472915i 0.879354 0.476168i \(-0.157975\pi\)
−0.852051 + 0.523459i \(0.824641\pi\)
\(600\) 0 0
\(601\) −32.1493 −1.31140 −0.655699 0.755023i \(-0.727626\pi\)
−0.655699 + 0.755023i \(0.727626\pi\)
\(602\) 0 0
\(603\) 8.96024i 0.364889i
\(604\) 0 0
\(605\) −47.9799 + 11.8672i −1.95066 + 0.482470i
\(606\) 0 0
\(607\) −23.5128 13.5751i −0.954355 0.550997i −0.0599239 0.998203i \(-0.519086\pi\)
−0.894431 + 0.447206i \(0.852419\pi\)
\(608\) 0 0
\(609\) −1.80292 10.9672i −0.0730579 0.444413i
\(610\) 0 0
\(611\) 8.27805 14.3380i 0.334894 0.580053i
\(612\) 0 0
\(613\) 23.2529 13.4251i 0.939177 0.542234i 0.0494749 0.998775i \(-0.484245\pi\)
0.889702 + 0.456541i \(0.150912\pi\)
\(614\) 0 0
\(615\) 18.6403 + 5.38287i 0.751649 + 0.217058i
\(616\) 0 0
\(617\) 7.17896i 0.289014i −0.989504 0.144507i \(-0.953840\pi\)
0.989504 0.144507i \(-0.0461596\pi\)
\(618\) 0 0
\(619\) 19.7003 + 34.1219i 0.791821 + 1.37147i 0.924838 + 0.380361i \(0.124200\pi\)
−0.133017 + 0.991114i \(0.542466\pi\)
\(620\) 0 0
\(621\) −0.447618 + 0.775297i −0.0179623 + 0.0311116i
\(622\) 0 0
\(623\) 6.31031 + 7.69996i 0.252817 + 0.308492i
\(624\) 0 0
\(625\) −24.9253 1.93095i −0.997013 0.0772380i
\(626\) 0 0
\(627\) −26.7148 + 15.4238i −1.06688 + 0.615966i
\(628\) 0 0
\(629\) −22.0307 −0.878423
\(630\) 0 0
\(631\) −5.52238 −0.219842 −0.109921 0.993940i \(-0.535060\pi\)
−0.109921 + 0.993940i \(0.535060\pi\)
\(632\) 0 0
\(633\) 18.7058 10.7998i 0.743488 0.429253i
\(634\) 0 0
\(635\) 3.79955 3.65544i 0.150781 0.145062i
\(636\) 0 0
\(637\) −21.1040 + 23.9976i −0.836169 + 0.950818i
\(638\) 0 0
\(639\) −2.69464 + 4.66725i −0.106598 + 0.184634i
\(640\) 0 0
\(641\) 9.97180 + 17.2717i 0.393862 + 0.682189i 0.992955 0.118490i \(-0.0378054\pi\)
−0.599093 + 0.800679i \(0.704472\pi\)
\(642\) 0 0
\(643\) 11.7541i 0.463537i −0.972771 0.231769i \(-0.925549\pi\)
0.972771 0.231769i \(-0.0744512\pi\)
\(644\) 0 0
\(645\) −5.31921 + 18.4198i −0.209444 + 0.725280i
\(646\) 0 0
\(647\) 9.60514 5.54553i 0.377617 0.218017i −0.299164 0.954202i \(-0.596708\pi\)
0.676781 + 0.736184i \(0.263374\pi\)
\(648\) 0 0
\(649\) 20.1477 34.8969i 0.790867 1.36982i
\(650\) 0 0
\(651\) 7.12436 5.83859i 0.279226 0.228832i
\(652\) 0 0
\(653\) 7.06171 + 4.07708i 0.276346 + 0.159549i 0.631768 0.775157i \(-0.282329\pi\)
−0.355422 + 0.934706i \(0.615663\pi\)
\(654\) 0 0
\(655\) 0.335995 0.0831040i 0.0131284 0.00324714i
\(656\) 0 0
\(657\) 8.20435i 0.320082i
\(658\) 0 0
\(659\) −17.1502 −0.668075 −0.334038 0.942560i \(-0.608411\pi\)
−0.334038 + 0.942560i \(0.608411\pi\)
\(660\) 0 0
\(661\) 7.58270 + 13.1336i 0.294933 + 0.510839i 0.974969 0.222340i \(-0.0713694\pi\)
−0.680036 + 0.733178i \(0.738036\pi\)
\(662\) 0 0
\(663\) 19.3542 + 11.1741i 0.751653 + 0.433967i
\(664\) 0 0
\(665\) 3.74023 31.4974i 0.145040 1.22142i
\(666\) 0 0
\(667\) −3.25690 1.88037i −0.126108 0.0728084i
\(668\) 0 0
\(669\) −10.2397 17.7356i −0.395889 0.685700i
\(670\) 0 0
\(671\) −35.0918 −1.35470
\(672\) 0 0
\(673\) 24.8223i 0.956830i 0.878134 + 0.478415i \(0.158788\pi\)
−0.878134 + 0.478415i \(0.841212\pi\)
\(674\) 0 0
\(675\) 4.99626 + 0.193239i 0.192306 + 0.00743779i
\(676\) 0 0
\(677\) 14.2448 + 8.22425i 0.547473 + 0.316084i 0.748102 0.663584i \(-0.230965\pi\)
−0.200629 + 0.979667i \(0.564299\pi\)
\(678\) 0 0
\(679\) −10.6965 4.03430i −0.410494 0.154822i
\(680\) 0 0
\(681\) −7.64837 + 13.2474i −0.293086 + 0.507640i
\(682\) 0 0
\(683\) −33.8256 + 19.5292i −1.29430 + 0.747264i −0.979413 0.201866i \(-0.935300\pi\)
−0.314886 + 0.949130i \(0.601966\pi\)
\(684\) 0 0
\(685\) 46.9413 + 13.5555i 1.79353 + 0.517930i
\(686\) 0 0
\(687\) 3.72575i 0.142146i
\(688\) 0 0
\(689\) 31.4311 + 54.4402i 1.19743 + 2.07401i
\(690\) 0 0
\(691\) −18.4837 + 32.0147i −0.703154 + 1.21790i 0.264200 + 0.964468i \(0.414892\pi\)
−0.967354 + 0.253430i \(0.918441\pi\)
\(692\) 0 0
\(693\) −5.37198 + 14.2432i −0.204065 + 0.541054i
\(694\) 0 0
\(695\) 10.7522 + 11.1761i 0.407853 + 0.423933i
\(696\) 0 0
\(697\) −36.7845 + 21.2375i −1.39331 + 0.804429i
\(698\) 0 0
\(699\) −5.76904 −0.218205
\(700\) 0 0
\(701\) 23.1619 0.874814 0.437407 0.899264i \(-0.355897\pi\)
0.437407 + 0.899264i \(0.355897\pi\)
\(702\) 0 0
\(703\) 20.8962 12.0644i 0.788115 0.455018i
\(704\) 0 0
\(705\) 5.62211 + 5.84375i 0.211741 + 0.220088i
\(706\) 0 0
\(707\) 2.59594 0.426751i 0.0976303 0.0160496i
\(708\) 0 0
\(709\) −0.712591 + 1.23424i −0.0267619 + 0.0463530i −0.879096 0.476644i \(-0.841853\pi\)
0.852334 + 0.522997i \(0.175186\pi\)
\(710\) 0 0
\(711\) −6.64226 11.5047i −0.249104 0.431461i
\(712\) 0 0
\(713\) 3.11676i 0.116724i
\(714\) 0 0
\(715\) −56.4289 16.2953i −2.11032 0.609411i
\(716\) 0 0
\(717\) −13.5875 + 7.84476i −0.507435 + 0.292968i
\(718\) 0 0
\(719\) −14.3137 + 24.7920i −0.533811 + 0.924587i 0.465409 + 0.885096i \(0.345907\pi\)
−0.999220 + 0.0394917i \(0.987426\pi\)
\(720\) 0 0
\(721\) −26.8448 + 22.0000i −0.999754 + 0.819323i
\(722\) 0 0
\(723\) 14.9515 + 8.63222i 0.556050 + 0.321036i
\(724\) 0 0
\(725\) −0.811770 + 20.9885i −0.0301484 + 0.779495i
\(726\) 0 0
\(727\) 7.81682i 0.289910i 0.989438 + 0.144955i \(0.0463037\pi\)
−0.989438 + 0.144955i \(0.953696\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −20.9864 36.3494i −0.776209 1.34443i
\(732\) 0 0
\(733\) −20.9269 12.0822i −0.772954 0.446265i 0.0609737 0.998139i \(-0.480579\pi\)
−0.833927 + 0.551874i \(0.813913\pi\)
\(734\) 0 0
\(735\) −8.42469 13.1918i −0.310749 0.486588i
\(736\) 0 0
\(737\) −44.6467 25.7768i −1.64458 0.949501i
\(738\) 0 0
\(739\) −5.90892 10.2346i −0.217363 0.376484i 0.736638 0.676287i \(-0.236412\pi\)
−0.954001 + 0.299803i \(0.903079\pi\)
\(740\) 0 0
\(741\) −24.4766 −0.899171
\(742\) 0 0
\(743\) 3.25596i 0.119450i 0.998215 + 0.0597248i \(0.0190223\pi\)
−0.998215 + 0.0597248i \(0.980978\pi\)
\(744\) 0 0
\(745\) 15.3101 3.78675i 0.560919 0.138736i
\(746\) 0 0
\(747\) 2.97986 + 1.72042i 0.109027 + 0.0629470i
\(748\) 0 0
\(749\) 31.0020 25.4069i 1.13279 0.928349i
\(750\) 0 0
\(751\) −23.3000 + 40.3568i −0.850229 + 1.47264i 0.0307729 + 0.999526i \(0.490203\pi\)
−0.881002 + 0.473113i \(0.843130\pi\)
\(752\) 0 0
\(753\) −16.1979 + 9.35189i −0.590286 + 0.340802i
\(754\) 0 0
\(755\) 11.8819 41.1457i 0.432427 1.49745i
\(756\) 0 0
\(757\) 29.9847i 1.08981i −0.838497 0.544906i \(-0.816565\pi\)
0.838497 0.544906i \(-0.183435\pi\)
\(758\) 0 0
\(759\) 2.57541 + 4.46074i 0.0934815 + 0.161915i
\(760\) 0 0
\(761\) −21.3504 + 36.9799i −0.773950 + 1.34052i 0.161432 + 0.986884i \(0.448389\pi\)
−0.935383 + 0.353638i \(0.884945\pi\)
\(762\) 0 0
\(763\) 35.2078 5.78787i 1.27461 0.209535i
\(764\) 0 0
\(765\) −7.88820 + 7.58901i −0.285198 + 0.274381i
\(766\) 0 0
\(767\) 27.6896 15.9866i 0.999815 0.577244i
\(768\) 0 0
\(769\) 10.8840 0.392488 0.196244 0.980555i \(-0.437126\pi\)
0.196244 + 0.980555i \(0.437126\pi\)
\(770\) 0 0
\(771\) −6.31221 −0.227329
\(772\) 0 0
\(773\) 33.9903 19.6243i 1.22255 0.705838i 0.257087 0.966388i \(-0.417237\pi\)
0.965460 + 0.260550i \(0.0839040\pi\)
\(774\) 0 0
\(775\) −15.4004 + 8.11461i −0.553200 + 0.291485i
\(776\) 0 0
\(777\) 4.20195 11.1410i 0.150744 0.399681i
\(778\) 0 0
\(779\) 23.2601 40.2877i 0.833380 1.44346i
\(780\) 0 0
\(781\) 15.5039 + 26.8535i 0.554772 + 0.960892i
\(782\) 0 0
\(783\) 4.20085i 0.150126i
\(784\) 0 0
\(785\) −10.3175 2.97946i −0.368248 0.106341i
\(786\) 0 0
\(787\) 21.7650 12.5661i 0.775840 0.447931i −0.0591139 0.998251i \(-0.518828\pi\)
0.834954 + 0.550320i \(0.185494\pi\)
\(788\) 0 0
\(789\) −10.4188 + 18.0459i −0.370919 + 0.642451i
\(790\) 0 0
\(791\) 30.1653 + 11.3772i 1.07256 + 0.404527i
\(792\) 0 0
\(793\) −24.1139 13.9222i −0.856309 0.494390i
\(794\) 0 0
\(795\) −29.8889 + 7.39263i −1.06005 + 0.262190i
\(796\) 0 0
\(797\) 3.81681i 0.135198i 0.997713 + 0.0675991i \(0.0215339\pi\)
−0.997713 + 0.0675991i \(0.978466\pi\)
\(798\) 0 0
\(799\) −17.7526 −0.628041
\(800\) 0 0
\(801\) 1.88139 + 3.25866i 0.0664756 + 0.115139i
\(802\) 0 0
\(803\) 40.8803 + 23.6023i 1.44264 + 0.832906i
\(804\) 0 0
\(805\) −5.25933 0.624531i −0.185367 0.0220118i
\(806\) 0 0
\(807\) −23.8232 13.7544i −0.838618 0.484176i
\(808\) 0 0
\(809\) 8.69056 + 15.0525i 0.305544 + 0.529217i 0.977382 0.211480i \(-0.0678284\pi\)
−0.671839 + 0.740698i \(0.734495\pi\)
\(810\) 0 0
\(811\) 13.8289 0.485599 0.242799 0.970076i \(-0.421934\pi\)
0.242799 + 0.970076i \(0.421934\pi\)
\(812\) 0 0
\(813\) 27.6661i 0.970294i
\(814\) 0 0
\(815\) 2.29962 + 9.29754i 0.0805523 + 0.325679i
\(816\) 0 0
\(817\) 39.8112 + 22.9850i 1.39282 + 0.804144i
\(818\) 0 0
\(819\) −9.34223 + 7.65618i −0.326444 + 0.267529i
\(820\) 0 0
\(821\) −12.5070 + 21.6627i −0.436496 + 0.756034i −0.997416 0.0718362i \(-0.977114\pi\)
0.560920 + 0.827870i \(0.310447\pi\)
\(822\) 0 0
\(823\) 12.0736 6.97068i 0.420859 0.242983i −0.274586 0.961563i \(-0.588541\pi\)
0.695445 + 0.718580i \(0.255207\pi\)
\(824\) 0 0
\(825\) 15.3361 24.3393i 0.533935 0.847385i
\(826\) 0 0
\(827\) 16.1987i 0.563284i −0.959520 0.281642i \(-0.909121\pi\)
0.959520 0.281642i \(-0.0908790\pi\)
\(828\) 0 0
\(829\) −9.82862 17.0237i −0.341362 0.591256i 0.643324 0.765594i \(-0.277555\pi\)
−0.984686 + 0.174338i \(0.944222\pi\)
\(830\) 0 0
\(831\) 2.50337 4.33597i 0.0868410 0.150413i
\(832\) 0 0
\(833\) 33.5990 + 6.73147i 1.16414 + 0.233232i
\(834\) 0 0
\(835\) −14.0227 + 13.4908i −0.485276 + 0.466870i
\(836\) 0 0
\(837\) 3.01506 1.74075i 0.104216 0.0601691i
\(838\) 0 0
\(839\) −47.1449 −1.62762 −0.813811 0.581129i \(-0.802611\pi\)
−0.813811 + 0.581129i \(0.802611\pi\)
\(840\) 0 0
\(841\) −11.3529 −0.391479
\(842\) 0 0
\(843\) 26.3315 15.2025i 0.906907 0.523603i
\(844\) 0 0
\(845\) −12.1574 12.6367i −0.418227 0.434715i
\(846\) 0 0
\(847\) 37.0689 + 45.2322i 1.27370 + 1.55420i
\(848\) 0 0
\(849\) −11.2013 + 19.4012i −0.384427 + 0.665847i
\(850\) 0 0
\(851\) −2.01448 3.48918i −0.0690555 0.119608i
\(852\) 0 0
\(853\) 15.3410i 0.525266i 0.964896 + 0.262633i \(0.0845909\pi\)
−0.964896 + 0.262633i \(0.915409\pi\)
\(854\) 0 0
\(855\) 3.32610 11.5179i 0.113750 0.393904i
\(856\) 0 0
\(857\) −9.02603 + 5.21118i −0.308323 + 0.178011i −0.646176 0.763188i \(-0.723633\pi\)
0.337853 + 0.941199i \(0.390299\pi\)
\(858\) 0 0
\(859\) −25.8513 + 44.7758i −0.882036 + 1.52773i −0.0329624 + 0.999457i \(0.510494\pi\)
−0.849074 + 0.528275i \(0.822839\pi\)
\(860\) 0 0
\(861\) −3.72391 22.6527i −0.126911 0.772000i
\(862\) 0 0
\(863\) 2.08282 + 1.20251i 0.0708999 + 0.0409341i 0.535031 0.844833i \(-0.320300\pi\)
−0.464131 + 0.885767i \(0.653633\pi\)
\(864\) 0 0
\(865\) 5.30478 + 21.4476i 0.180368 + 0.729240i
\(866\) 0 0
\(867\) 6.96333i 0.236487i
\(868\) 0 0
\(869\) −76.4337 −2.59284
\(870\) 0 0
\(871\) −20.4531 35.4259i −0.693028 1.20036i
\(872\) 0 0
\(873\) −3.74200 2.16044i −0.126647 0.0731200i
\(874\) 0 0
\(875\) 10.6070 + 27.6133i 0.358581 + 0.933499i
\(876\) 0 0
\(877\) 5.69818 + 3.28985i 0.192414 + 0.111090i 0.593112 0.805120i \(-0.297899\pi\)
−0.400698 + 0.916210i \(0.631232\pi\)
\(878\) 0 0
\(879\) −10.3714 17.9639i −0.349820 0.605906i
\(880\) 0 0
\(881\) −30.3674 −1.02311 −0.511553 0.859252i \(-0.670929\pi\)
−0.511553 + 0.859252i \(0.670929\pi\)
\(882\) 0 0
\(883\) 13.1624i 0.442949i 0.975166 + 0.221475i \(0.0710870\pi\)
−0.975166 + 0.221475i \(0.928913\pi\)
\(884\) 0 0
\(885\) 3.76008 + 15.2023i 0.126394 + 0.511018i
\(886\) 0 0
\(887\) 5.72166 + 3.30340i 0.192115 + 0.110917i 0.592972 0.805223i \(-0.297954\pi\)
−0.400858 + 0.916140i \(0.631288\pi\)
\(888\) 0 0
\(889\) −5.83709 2.20152i −0.195770 0.0738368i
\(890\) 0 0
\(891\) −2.87680 + 4.98276i −0.0963763 + 0.166929i
\(892\) 0 0
\(893\) 16.8384 9.72163i 0.563474 0.325322i
\(894\) 0 0
\(895\) −3.53856 + 12.2536i −0.118281 + 0.409594i
\(896\) 0 0
\(897\) 4.08703i 0.136462i
\(898\) 0 0
\(899\) 7.31262 + 12.6658i 0.243889 + 0.422429i
\(900\) 0 0
\(901\) 33.7025 58.3745i 1.12279 1.94474i
\(902\) 0 0
\(903\) 22.3847 3.67987i 0.744918 0.122458i
\(904\) 0 0
\(905\) −22.9258 23.8297i −0.762080 0.792125i
\(906\) 0 0
\(907\) 48.3941 27.9403i 1.60690 0.927743i 0.616840 0.787088i \(-0.288413\pi\)
0.990059 0.140655i \(-0.0449208\pi\)
\(908\) 0 0
\(909\) 0.994342 0.0329803
\(910\) 0 0
\(911\) 26.7182 0.885214 0.442607 0.896716i \(-0.354054\pi\)
0.442607 + 0.896716i \(0.354054\pi\)
\(912\) 0 0
\(913\) 17.1449 9.89863i 0.567414 0.327597i
\(914\) 0 0
\(915\) 9.82812 9.45535i 0.324908 0.312584i
\(916\) 0 0
\(917\) −0.259587 0.316754i −0.00857233 0.0104601i
\(918\) 0 0
\(919\) 16.7964 29.0922i 0.554061 0.959662i −0.443915 0.896069i \(-0.646411\pi\)
0.997976 0.0635928i \(-0.0202559\pi\)
\(920\) 0 0
\(921\) −4.06072 7.03338i −0.133805 0.231758i
\(922\) 0 0
\(923\) 24.6037i 0.809841i
\(924\) 0 0
\(925\) −11.9959 + 19.0381i −0.394421 + 0.625969i
\(926\) 0 0
\(927\) −11.3609 + 6.55920i −0.373140 + 0.215432i
\(928\) 0 0
\(929\) 16.9234 29.3122i 0.555239 0.961702i −0.442646 0.896697i \(-0.645960\pi\)
0.997885 0.0650058i \(-0.0207066\pi\)
\(930\) 0 0
\(931\) −35.5550 + 12.0146i −1.16527 + 0.393762i
\(932\) 0 0
\(933\) −11.8097 6.81835i −0.386633 0.223223i
\(934\) 0 0
\(935\) 15.1214 + 61.1370i 0.494524 + 1.99939i
\(936\) 0 0
\(937\) 51.6442i 1.68714i 0.537017 + 0.843571i \(0.319551\pi\)
−0.537017 + 0.843571i \(0.680449\pi\)
\(938\) 0 0
\(939\) 9.29921 0.303468
\(940\) 0 0
\(941\) −25.2093 43.6638i −0.821800 1.42340i −0.904341 0.426812i \(-0.859637\pi\)
0.0825405 0.996588i \(-0.473697\pi\)
\(942\) 0 0
\(943\) −6.72711 3.88390i −0.219065 0.126477i
\(944\) 0 0
\(945\) −2.33325 5.43654i −0.0759006 0.176851i
\(946\) 0 0
\(947\) −32.5284 18.7803i −1.05703 0.610277i −0.132421 0.991194i \(-0.542275\pi\)
−0.924609 + 0.380916i \(0.875609\pi\)
\(948\) 0 0
\(949\) 18.7277 + 32.4373i 0.607927 + 1.05296i
\(950\) 0 0
\(951\) 17.2132 0.558178
\(952\) 0 0
\(953\) 17.9656i 0.581964i 0.956729 + 0.290982i \(0.0939820\pi\)
−0.956729 + 0.290982i \(0.906018\pi\)
\(954\) 0 0
\(955\) 3.83266 0.947958i 0.124022 0.0306752i
\(956\) 0 0
\(957\) −20.9318 12.0850i −0.676629 0.390652i
\(958\) 0 0
\(959\) −9.37781 57.0455i −0.302825 1.84209i
\(960\) 0 0
\(961\) 9.43959 16.3499i 0.304503 0.527415i
\(962\) 0 0
\(963\) 13.1202 7.57495i 0.422793 0.244099i
\(964\) 0 0
\(965\) −25.7880 7.44697i −0.830147 0.239727i
\(966\) 0 0
\(967\) 5.45276i 0.175349i −0.996149 0.0876745i \(-0.972056\pi\)
0.996149 0.0876745i \(-0.0279435\pi\)
\(968\) 0 0
\(969\) 13.1228 + 22.7293i 0.421563 + 0.730169i
\(970\) 0 0
\(971\) −3.50688 + 6.07410i −0.112541 + 0.194927i −0.916794 0.399360i \(-0.869232\pi\)
0.804253 + 0.594287i \(0.202566\pi\)
\(972\) 0 0
\(973\) 6.47561 17.1693i 0.207599 0.550424i
\(974\) 0 0
\(975\) 20.1947 10.6407i 0.646748 0.340776i
\(976\) 0 0
\(977\) −47.2149 + 27.2595i −1.51054 + 0.872109i −0.510613 + 0.859810i \(0.670582\pi\)
−0.999924 + 0.0122990i \(0.996085\pi\)
\(978\) 0 0
\(979\) 21.6495 0.691921
\(980\) 0 0
\(981\) 13.4859 0.430572
\(982\) 0 0
\(983\) 35.8110 20.6755i 1.14219 0.659446i 0.195221 0.980759i \(-0.437458\pi\)
0.946973 + 0.321313i \(0.104124\pi\)
\(984\) 0 0
\(985\) −15.5538 + 14.9639i −0.495586 + 0.476789i
\(986\) 0 0
\(987\) 3.38597 8.97751i 0.107777 0.285757i
\(988\) 0 0
\(989\) 3.83796 6.64755i 0.122040 0.211380i
\(990\) 0 0
\(991\) 13.3930 + 23.1973i 0.425442 + 0.736887i 0.996462 0.0840496i \(-0.0267854\pi\)
−0.571020 + 0.820936i \(0.693452\pi\)
\(992\) 0 0
\(993\) 2.50184i 0.0793936i
\(994\) 0 0
\(995\) −3.83743 + 13.2886i −0.121655 + 0.421277i
\(996\) 0 0
\(997\) 35.8459 20.6956i 1.13525 0.655437i 0.190000 0.981784i \(-0.439151\pi\)
0.945250 + 0.326347i \(0.105818\pi\)
\(998\) 0 0
\(999\) 2.25022 3.89750i 0.0711939 0.123311i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.cc.c.289.11 yes 24
4.3 odd 2 1680.2.di.g.289.6 24
5.4 even 2 inner 840.2.cc.c.289.1 24
7.4 even 3 inner 840.2.cc.c.529.1 yes 24
20.19 odd 2 1680.2.di.g.289.9 24
28.11 odd 6 1680.2.di.g.529.9 24
35.4 even 6 inner 840.2.cc.c.529.11 yes 24
140.39 odd 6 1680.2.di.g.529.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.cc.c.289.1 24 5.4 even 2 inner
840.2.cc.c.289.11 yes 24 1.1 even 1 trivial
840.2.cc.c.529.1 yes 24 7.4 even 3 inner
840.2.cc.c.529.11 yes 24 35.4 even 6 inner
1680.2.di.g.289.6 24 4.3 odd 2
1680.2.di.g.289.9 24 20.19 odd 2
1680.2.di.g.529.6 24 140.39 odd 6
1680.2.di.g.529.9 24 28.11 odd 6