Properties

Label 840.2.cc.c.289.1
Level $840$
Weight $2$
Character 840.289
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(289,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.1
Character \(\chi\) \(=\) 840.289
Dual form 840.2.cc.c.529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{3} +(-2.17066 - 0.536884i) q^{5} +(-0.933675 + 2.47553i) q^{7} +(0.500000 - 0.866025i) q^{9} +(-2.87680 - 4.98276i) q^{11} +4.56531i q^{13} +(2.14829 - 0.620374i) q^{15} +(4.23940 - 2.44762i) q^{17} +(2.68072 - 4.64314i) q^{19} +(-0.429179 - 2.61071i) q^{21} +(0.775297 + 0.447618i) q^{23} +(4.42351 + 2.33078i) q^{25} +1.00000i q^{27} +4.20085 q^{29} +(1.74075 + 3.01506i) q^{31} +(4.98276 + 2.87680i) q^{33} +(3.35576 - 4.87226i) q^{35} +(-3.89750 - 2.25022i) q^{37} +(-2.28265 - 3.95367i) q^{39} +8.67682 q^{41} -8.57420i q^{43} +(-1.55028 + 1.61140i) q^{45} +(-3.14064 - 1.81325i) q^{47} +(-5.25650 - 4.62268i) q^{49} +(-2.44762 + 4.23940i) q^{51} +(11.9248 - 6.88476i) q^{53} +(3.56938 + 12.3604i) q^{55} +5.36144i q^{57} +(3.50176 + 6.06523i) q^{59} +(3.04955 - 5.28198i) q^{61} +(1.67704 + 2.04635i) q^{63} +(2.45104 - 9.90972i) q^{65} +(-7.75980 + 4.48012i) q^{67} -0.895236 q^{69} -5.38928 q^{71} +(7.10518 - 4.10218i) q^{73} +(-4.99626 + 0.193239i) q^{75} +(15.0210 - 2.46932i) q^{77} +(6.64226 - 11.5047i) q^{79} +(-0.500000 - 0.866025i) q^{81} -3.44085i q^{83} +(-10.5164 + 3.03688i) q^{85} +(-3.63804 + 2.10042i) q^{87} +(-1.88139 + 3.25866i) q^{89} +(-11.3016 - 4.26251i) q^{91} +(-3.01506 - 1.74075i) q^{93} +(-8.31175 + 8.63944i) q^{95} +4.32089i q^{97} -5.75359 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{5} + 12 q^{9} - 8 q^{11} + 8 q^{19} + 12 q^{21} + 2 q^{25} - 24 q^{29} + 4 q^{31} + 30 q^{35} + 4 q^{39} + 32 q^{41} - 2 q^{45} - 12 q^{49} - 20 q^{51} + 12 q^{55} - 4 q^{59} + 32 q^{61} + 22 q^{65}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) −2.17066 0.536884i −0.970748 0.240102i
\(6\) 0 0
\(7\) −0.933675 + 2.47553i −0.352896 + 0.935663i
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −2.87680 4.98276i −0.867387 1.50236i −0.864657 0.502362i \(-0.832464\pi\)
−0.00272961 0.999996i \(-0.500869\pi\)
\(12\) 0 0
\(13\) 4.56531i 1.26619i 0.774075 + 0.633094i \(0.218216\pi\)
−0.774075 + 0.633094i \(0.781784\pi\)
\(14\) 0 0
\(15\) 2.14829 0.620374i 0.554685 0.160180i
\(16\) 0 0
\(17\) 4.23940 2.44762i 1.02821 0.593635i 0.111735 0.993738i \(-0.464359\pi\)
0.916470 + 0.400104i \(0.131026\pi\)
\(18\) 0 0
\(19\) 2.68072 4.64314i 0.614999 1.06521i −0.375386 0.926869i \(-0.622490\pi\)
0.990385 0.138341i \(-0.0441770\pi\)
\(20\) 0 0
\(21\) −0.429179 2.61071i −0.0936546 0.569704i
\(22\) 0 0
\(23\) 0.775297 + 0.447618i 0.161661 + 0.0933348i 0.578648 0.815578i \(-0.303581\pi\)
−0.416987 + 0.908912i \(0.636914\pi\)
\(24\) 0 0
\(25\) 4.42351 + 2.33078i 0.884702 + 0.466156i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 4.20085 0.780078 0.390039 0.920798i \(-0.372462\pi\)
0.390039 + 0.920798i \(0.372462\pi\)
\(30\) 0 0
\(31\) 1.74075 + 3.01506i 0.312648 + 0.541521i 0.978935 0.204174i \(-0.0654508\pi\)
−0.666287 + 0.745695i \(0.732117\pi\)
\(32\) 0 0
\(33\) 4.98276 + 2.87680i 0.867387 + 0.500786i
\(34\) 0 0
\(35\) 3.35576 4.87226i 0.567227 0.823561i
\(36\) 0 0
\(37\) −3.89750 2.25022i −0.640745 0.369934i 0.144156 0.989555i \(-0.453953\pi\)
−0.784901 + 0.619621i \(0.787286\pi\)
\(38\) 0 0
\(39\) −2.28265 3.95367i −0.365517 0.633094i
\(40\) 0 0
\(41\) 8.67682 1.35509 0.677546 0.735481i \(-0.263044\pi\)
0.677546 + 0.735481i \(0.263044\pi\)
\(42\) 0 0
\(43\) 8.57420i 1.30755i −0.756688 0.653777i \(-0.773184\pi\)
0.756688 0.653777i \(-0.226816\pi\)
\(44\) 0 0
\(45\) −1.55028 + 1.61140i −0.231103 + 0.240214i
\(46\) 0 0
\(47\) −3.14064 1.81325i −0.458110 0.264490i 0.253139 0.967430i \(-0.418537\pi\)
−0.711249 + 0.702940i \(0.751870\pi\)
\(48\) 0 0
\(49\) −5.25650 4.62268i −0.750929 0.660383i
\(50\) 0 0
\(51\) −2.44762 + 4.23940i −0.342735 + 0.593635i
\(52\) 0 0
\(53\) 11.9248 6.88476i 1.63799 0.945694i 0.656467 0.754355i \(-0.272050\pi\)
0.981524 0.191340i \(-0.0612832\pi\)
\(54\) 0 0
\(55\) 3.56938 + 12.3604i 0.481295 + 1.66667i
\(56\) 0 0
\(57\) 5.36144i 0.710140i
\(58\) 0 0
\(59\) 3.50176 + 6.06523i 0.455891 + 0.789626i 0.998739 0.0502051i \(-0.0159875\pi\)
−0.542848 + 0.839831i \(0.682654\pi\)
\(60\) 0 0
\(61\) 3.04955 5.28198i 0.390455 0.676288i −0.602054 0.798455i \(-0.705651\pi\)
0.992510 + 0.122167i \(0.0389843\pi\)
\(62\) 0 0
\(63\) 1.67704 + 2.04635i 0.211287 + 0.257816i
\(64\) 0 0
\(65\) 2.45104 9.90972i 0.304014 1.22915i
\(66\) 0 0
\(67\) −7.75980 + 4.48012i −0.948010 + 0.547334i −0.892462 0.451122i \(-0.851024\pi\)
−0.0555479 + 0.998456i \(0.517691\pi\)
\(68\) 0 0
\(69\) −0.895236 −0.107774
\(70\) 0 0
\(71\) −5.38928 −0.639589 −0.319795 0.947487i \(-0.603614\pi\)
−0.319795 + 0.947487i \(0.603614\pi\)
\(72\) 0 0
\(73\) 7.10518 4.10218i 0.831598 0.480123i −0.0228013 0.999740i \(-0.507259\pi\)
0.854400 + 0.519617i \(0.173925\pi\)
\(74\) 0 0
\(75\) −4.99626 + 0.193239i −0.576919 + 0.0223134i
\(76\) 0 0
\(77\) 15.0210 2.46932i 1.71180 0.281406i
\(78\) 0 0
\(79\) 6.64226 11.5047i 0.747312 1.29438i −0.201795 0.979428i \(-0.564677\pi\)
0.949107 0.314955i \(-0.101989\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 3.44085i 0.377682i −0.982008 0.188841i \(-0.939527\pi\)
0.982008 0.188841i \(-0.0604731\pi\)
\(84\) 0 0
\(85\) −10.5164 + 3.03688i −1.14066 + 0.329396i
\(86\) 0 0
\(87\) −3.63804 + 2.10042i −0.390039 + 0.225189i
\(88\) 0 0
\(89\) −1.88139 + 3.25866i −0.199427 + 0.345417i −0.948343 0.317248i \(-0.897241\pi\)
0.748916 + 0.662665i \(0.230575\pi\)
\(90\) 0 0
\(91\) −11.3016 4.26251i −1.18473 0.446833i
\(92\) 0 0
\(93\) −3.01506 1.74075i −0.312648 0.180507i
\(94\) 0 0
\(95\) −8.31175 + 8.63944i −0.852768 + 0.886388i
\(96\) 0 0
\(97\) 4.32089i 0.438720i 0.975644 + 0.219360i \(0.0703969\pi\)
−0.975644 + 0.219360i \(0.929603\pi\)
\(98\) 0 0
\(99\) −5.75359 −0.578258
\(100\) 0 0
\(101\) 0.497171 + 0.861126i 0.0494704 + 0.0856852i 0.889700 0.456545i \(-0.150913\pi\)
−0.840230 + 0.542230i \(0.817580\pi\)
\(102\) 0 0
\(103\) 11.3609 + 6.55920i 1.11942 + 0.646297i 0.941253 0.337703i \(-0.109650\pi\)
0.178167 + 0.984000i \(0.442983\pi\)
\(104\) 0 0
\(105\) −0.470046 + 5.89738i −0.0458718 + 0.575525i
\(106\) 0 0
\(107\) −13.1202 7.57495i −1.26838 0.732298i −0.293697 0.955899i \(-0.594886\pi\)
−0.974681 + 0.223600i \(0.928219\pi\)
\(108\) 0 0
\(109\) 6.74295 + 11.6791i 0.645857 + 1.11866i 0.984103 + 0.177600i \(0.0568333\pi\)
−0.338245 + 0.941058i \(0.609833\pi\)
\(110\) 0 0
\(111\) 4.50044 0.427163
\(112\) 0 0
\(113\) 12.1854i 1.14631i −0.819448 0.573153i \(-0.805720\pi\)
0.819448 0.573153i \(-0.194280\pi\)
\(114\) 0 0
\(115\) −1.44259 1.38787i −0.134522 0.129419i
\(116\) 0 0
\(117\) 3.95367 + 2.28265i 0.365517 + 0.211031i
\(118\) 0 0
\(119\) 2.10093 + 12.7800i 0.192592 + 1.17154i
\(120\) 0 0
\(121\) −11.0519 + 19.1425i −1.00472 + 1.74023i
\(122\) 0 0
\(123\) −7.51434 + 4.33841i −0.677546 + 0.391181i
\(124\) 0 0
\(125\) −8.35057 7.43424i −0.746898 0.664939i
\(126\) 0 0
\(127\) 2.35791i 0.209231i 0.994513 + 0.104616i \(0.0333612\pi\)
−0.994513 + 0.104616i \(0.966639\pi\)
\(128\) 0 0
\(129\) 4.28710 + 7.42547i 0.377458 + 0.653777i
\(130\) 0 0
\(131\) 0.0773948 0.134052i 0.00676201 0.0117121i −0.862625 0.505845i \(-0.831181\pi\)
0.869387 + 0.494132i \(0.164514\pi\)
\(132\) 0 0
\(133\) 8.99132 + 10.9714i 0.779646 + 0.951340i
\(134\) 0 0
\(135\) 0.536884 2.17066i 0.0462076 0.186820i
\(136\) 0 0
\(137\) −18.9231 + 10.9253i −1.61671 + 0.933410i −0.628951 + 0.777445i \(0.716515\pi\)
−0.987763 + 0.155965i \(0.950151\pi\)
\(138\) 0 0
\(139\) 6.93562 0.588271 0.294136 0.955764i \(-0.404968\pi\)
0.294136 + 0.955764i \(0.404968\pi\)
\(140\) 0 0
\(141\) 3.62650 0.305406
\(142\) 0 0
\(143\) 22.7478 13.1335i 1.90227 1.09828i
\(144\) 0 0
\(145\) −9.11860 2.25537i −0.757259 0.187298i
\(146\) 0 0
\(147\) 6.86361 + 1.37511i 0.566101 + 0.113417i
\(148\) 0 0
\(149\) 3.52660 6.10826i 0.288911 0.500408i −0.684639 0.728882i \(-0.740040\pi\)
0.973550 + 0.228474i \(0.0733736\pi\)
\(150\) 0 0
\(151\) −9.57640 16.5868i −0.779316 1.34982i −0.932336 0.361592i \(-0.882233\pi\)
0.153020 0.988223i \(-0.451100\pi\)
\(152\) 0 0
\(153\) 4.89524i 0.395756i
\(154\) 0 0
\(155\) −2.15983 7.47925i −0.173482 0.600748i
\(156\) 0 0
\(157\) 4.15924 2.40134i 0.331943 0.191648i −0.324760 0.945796i \(-0.605284\pi\)
0.656704 + 0.754149i \(0.271950\pi\)
\(158\) 0 0
\(159\) −6.88476 + 11.9248i −0.545997 + 0.945694i
\(160\) 0 0
\(161\) −1.83197 + 1.50134i −0.144379 + 0.118322i
\(162\) 0 0
\(163\) −3.70943 2.14164i −0.290545 0.167746i 0.347643 0.937627i \(-0.386982\pi\)
−0.638188 + 0.769881i \(0.720316\pi\)
\(164\) 0 0
\(165\) −9.27136 8.91970i −0.721774 0.694398i
\(166\) 0 0
\(167\) 8.70217i 0.673394i −0.941613 0.336697i \(-0.890690\pi\)
0.941613 0.336697i \(-0.109310\pi\)
\(168\) 0 0
\(169\) −7.84204 −0.603234
\(170\) 0 0
\(171\) −2.68072 4.64314i −0.205000 0.355070i
\(172\) 0 0
\(173\) −8.55693 4.94034i −0.650571 0.375607i 0.138104 0.990418i \(-0.455899\pi\)
−0.788675 + 0.614810i \(0.789233\pi\)
\(174\) 0 0
\(175\) −9.90004 + 8.77435i −0.748373 + 0.663278i
\(176\) 0 0
\(177\) −6.06523 3.50176i −0.455891 0.263209i
\(178\) 0 0
\(179\) 2.85195 + 4.93973i 0.213165 + 0.369213i 0.952703 0.303902i \(-0.0982894\pi\)
−0.739538 + 0.673114i \(0.764956\pi\)
\(180\) 0 0
\(181\) −14.7881 −1.09919 −0.549597 0.835430i \(-0.685219\pi\)
−0.549597 + 0.835430i \(0.685219\pi\)
\(182\) 0 0
\(183\) 6.09911i 0.450859i
\(184\) 0 0
\(185\) 7.25203 + 6.97697i 0.533180 + 0.512957i
\(186\) 0 0
\(187\) −24.3918 14.0826i −1.78370 1.02982i
\(188\) 0 0
\(189\) −2.47553 0.933675i −0.180068 0.0679148i
\(190\) 0 0
\(191\) 0.882834 1.52911i 0.0638796 0.110643i −0.832317 0.554300i \(-0.812986\pi\)
0.896196 + 0.443657i \(0.146319\pi\)
\(192\) 0 0
\(193\) 10.3958 6.00200i 0.748304 0.432034i −0.0767766 0.997048i \(-0.524463\pi\)
0.825081 + 0.565015i \(0.191130\pi\)
\(194\) 0 0
\(195\) 2.83220 + 9.80759i 0.202818 + 0.702336i
\(196\) 0 0
\(197\) 9.65235i 0.687702i −0.939024 0.343851i \(-0.888269\pi\)
0.939024 0.343851i \(-0.111731\pi\)
\(198\) 0 0
\(199\) 3.09283 + 5.35695i 0.219245 + 0.379744i 0.954577 0.297963i \(-0.0963072\pi\)
−0.735332 + 0.677707i \(0.762974\pi\)
\(200\) 0 0
\(201\) 4.48012 7.75980i 0.316003 0.547334i
\(202\) 0 0
\(203\) −3.92222 + 10.3993i −0.275286 + 0.729890i
\(204\) 0 0
\(205\) −18.8344 4.65844i −1.31545 0.325360i
\(206\) 0 0
\(207\) 0.775297 0.447618i 0.0538869 0.0311116i
\(208\) 0 0
\(209\) −30.8475 −2.13377
\(210\) 0 0
\(211\) 21.5996 1.48698 0.743488 0.668749i \(-0.233170\pi\)
0.743488 + 0.668749i \(0.233170\pi\)
\(212\) 0 0
\(213\) 4.66725 2.69464i 0.319795 0.184634i
\(214\) 0 0
\(215\) −4.60335 + 18.6117i −0.313946 + 1.26930i
\(216\) 0 0
\(217\) −9.08918 + 1.49419i −0.617013 + 0.101432i
\(218\) 0 0
\(219\) −4.10218 + 7.10518i −0.277199 + 0.480123i
\(220\) 0 0
\(221\) 11.1741 + 19.3542i 0.751653 + 1.30190i
\(222\) 0 0
\(223\) 20.4794i 1.37140i 0.727884 + 0.685700i \(0.240504\pi\)
−0.727884 + 0.685700i \(0.759496\pi\)
\(224\) 0 0
\(225\) 4.23027 2.66548i 0.282018 0.177699i
\(226\) 0 0
\(227\) 13.2474 7.64837i 0.879258 0.507640i 0.00884444 0.999961i \(-0.497185\pi\)
0.870414 + 0.492321i \(0.163851\pi\)
\(228\) 0 0
\(229\) 1.86287 3.22659i 0.123102 0.213219i −0.797887 0.602807i \(-0.794049\pi\)
0.920990 + 0.389587i \(0.127382\pi\)
\(230\) 0 0
\(231\) −11.7739 + 9.64898i −0.774664 + 0.634856i
\(232\) 0 0
\(233\) 4.99613 + 2.88452i 0.327308 + 0.188971i 0.654645 0.755936i \(-0.272818\pi\)
−0.327338 + 0.944907i \(0.606151\pi\)
\(234\) 0 0
\(235\) 5.84375 + 5.62211i 0.381204 + 0.366746i
\(236\) 0 0
\(237\) 13.2845i 0.862922i
\(238\) 0 0
\(239\) −15.6895 −1.01487 −0.507435 0.861690i \(-0.669406\pi\)
−0.507435 + 0.861690i \(0.669406\pi\)
\(240\) 0 0
\(241\) 8.63222 + 14.9515i 0.556050 + 0.963108i 0.997821 + 0.0659796i \(0.0210172\pi\)
−0.441770 + 0.897128i \(0.645649\pi\)
\(242\) 0 0
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 8.92823 + 12.8564i 0.570404 + 0.821365i
\(246\) 0 0
\(247\) 21.1974 + 12.2383i 1.34876 + 0.778705i
\(248\) 0 0
\(249\) 1.72042 + 2.97986i 0.109027 + 0.188841i
\(250\) 0 0
\(251\) −18.7038 −1.18057 −0.590286 0.807194i \(-0.700985\pi\)
−0.590286 + 0.807194i \(0.700985\pi\)
\(252\) 0 0
\(253\) 5.15082i 0.323829i
\(254\) 0 0
\(255\) 7.58901 7.88820i 0.475242 0.493978i
\(256\) 0 0
\(257\) 5.46653 + 3.15610i 0.340993 + 0.196872i 0.660711 0.750640i \(-0.270255\pi\)
−0.319718 + 0.947513i \(0.603588\pi\)
\(258\) 0 0
\(259\) 9.20949 7.54740i 0.572250 0.468973i
\(260\) 0 0
\(261\) 2.10042 3.63804i 0.130013 0.225189i
\(262\) 0 0
\(263\) 18.0459 10.4188i 1.11276 0.642451i 0.173215 0.984884i \(-0.444584\pi\)
0.939542 + 0.342433i \(0.111251\pi\)
\(264\) 0 0
\(265\) −29.5809 + 8.54225i −1.81714 + 0.524746i
\(266\) 0 0
\(267\) 3.76278i 0.230278i
\(268\) 0 0
\(269\) −13.7544 23.8232i −0.838618 1.45253i −0.891050 0.453904i \(-0.850031\pi\)
0.0524327 0.998624i \(-0.483302\pi\)
\(270\) 0 0
\(271\) −13.8331 + 23.9596i −0.840299 + 1.45544i 0.0493424 + 0.998782i \(0.484287\pi\)
−0.889642 + 0.456659i \(0.849046\pi\)
\(272\) 0 0
\(273\) 11.9187 1.95934i 0.721352 0.118584i
\(274\) 0 0
\(275\) −1.11182 28.7465i −0.0670454 1.73348i
\(276\) 0 0
\(277\) −4.33597 + 2.50337i −0.260523 + 0.150413i −0.624573 0.780966i \(-0.714727\pi\)
0.364050 + 0.931379i \(0.381394\pi\)
\(278\) 0 0
\(279\) 3.48150 0.208432
\(280\) 0 0
\(281\) 30.4051 1.81381 0.906907 0.421332i \(-0.138437\pi\)
0.906907 + 0.421332i \(0.138437\pi\)
\(282\) 0 0
\(283\) 19.4012 11.2013i 1.15328 0.665847i 0.203597 0.979055i \(-0.434737\pi\)
0.949685 + 0.313208i \(0.101404\pi\)
\(284\) 0 0
\(285\) 2.87847 11.6378i 0.170506 0.689367i
\(286\) 0 0
\(287\) −8.10132 + 21.4797i −0.478206 + 1.26791i
\(288\) 0 0
\(289\) 3.48167 6.03042i 0.204804 0.354731i
\(290\) 0 0
\(291\) −2.16044 3.74200i −0.126647 0.219360i
\(292\) 0 0
\(293\) 20.7429i 1.21181i 0.795536 + 0.605906i \(0.207189\pi\)
−0.795536 + 0.605906i \(0.792811\pi\)
\(294\) 0 0
\(295\) −4.34480 15.0456i −0.252964 0.875987i
\(296\) 0 0
\(297\) 4.98276 2.87680i 0.289129 0.166929i
\(298\) 0 0
\(299\) −2.04351 + 3.53947i −0.118179 + 0.204693i
\(300\) 0 0
\(301\) 21.2257 + 8.00551i 1.22343 + 0.461430i
\(302\) 0 0
\(303\) −0.861126 0.497171i −0.0494704 0.0285617i
\(304\) 0 0
\(305\) −9.45535 + 9.82812i −0.541412 + 0.562756i
\(306\) 0 0
\(307\) 8.12145i 0.463516i 0.972774 + 0.231758i \(0.0744477\pi\)
−0.972774 + 0.231758i \(0.925552\pi\)
\(308\) 0 0
\(309\) −13.1184 −0.746279
\(310\) 0 0
\(311\) −6.81835 11.8097i −0.386633 0.669668i 0.605361 0.795951i \(-0.293029\pi\)
−0.991994 + 0.126283i \(0.959695\pi\)
\(312\) 0 0
\(313\) −8.05335 4.64960i −0.455202 0.262811i 0.254823 0.966988i \(-0.417983\pi\)
−0.710025 + 0.704177i \(0.751316\pi\)
\(314\) 0 0
\(315\) −2.54162 5.34230i −0.143204 0.301005i
\(316\) 0 0
\(317\) −14.9071 8.60662i −0.837266 0.483396i 0.0190676 0.999818i \(-0.493930\pi\)
−0.856334 + 0.516422i \(0.827264\pi\)
\(318\) 0 0
\(319\) −12.0850 20.9318i −0.676629 1.17196i
\(320\) 0 0
\(321\) 15.1499 0.845585
\(322\) 0 0
\(323\) 26.2455i 1.46034i
\(324\) 0 0
\(325\) −10.6407 + 20.1947i −0.590242 + 1.12020i
\(326\) 0 0
\(327\) −11.6791 6.74295i −0.645857 0.372886i
\(328\) 0 0
\(329\) 7.42109 6.08177i 0.409138 0.335299i
\(330\) 0 0
\(331\) −1.25092 + 2.16666i −0.0687569 + 0.119090i −0.898354 0.439272i \(-0.855237\pi\)
0.829597 + 0.558362i \(0.188570\pi\)
\(332\) 0 0
\(333\) −3.89750 + 2.25022i −0.213582 + 0.123311i
\(334\) 0 0
\(335\) 19.2492 5.55870i 1.05169 0.303704i
\(336\) 0 0
\(337\) 6.69015i 0.364436i 0.983258 + 0.182218i \(0.0583276\pi\)
−0.983258 + 0.182218i \(0.941672\pi\)
\(338\) 0 0
\(339\) 6.09270 + 10.5529i 0.330910 + 0.573153i
\(340\) 0 0
\(341\) 10.0156 17.3475i 0.542373 0.939417i
\(342\) 0 0
\(343\) 16.3514 8.69656i 0.882895 0.469570i
\(344\) 0 0
\(345\) 1.94325 + 0.480637i 0.104621 + 0.0258767i
\(346\) 0 0
\(347\) 2.36917 1.36784i 0.127184 0.0734296i −0.435058 0.900402i \(-0.643272\pi\)
0.562242 + 0.826973i \(0.309939\pi\)
\(348\) 0 0
\(349\) 17.7486 0.950059 0.475030 0.879970i \(-0.342437\pi\)
0.475030 + 0.879970i \(0.342437\pi\)
\(350\) 0 0
\(351\) −4.56531 −0.243678
\(352\) 0 0
\(353\) 8.71230 5.03005i 0.463709 0.267722i −0.249894 0.968273i \(-0.580396\pi\)
0.713602 + 0.700551i \(0.247062\pi\)
\(354\) 0 0
\(355\) 11.6983 + 2.89341i 0.620880 + 0.153567i
\(356\) 0 0
\(357\) −8.20948 10.0174i −0.434492 0.530176i
\(358\) 0 0
\(359\) 5.97529 10.3495i 0.315364 0.546226i −0.664151 0.747598i \(-0.731207\pi\)
0.979515 + 0.201373i \(0.0645402\pi\)
\(360\) 0 0
\(361\) −4.87251 8.43943i −0.256448 0.444181i
\(362\) 0 0
\(363\) 22.1038i 1.16015i
\(364\) 0 0
\(365\) −17.6253 + 5.08977i −0.922551 + 0.266411i
\(366\) 0 0
\(367\) 29.0403 16.7664i 1.51589 0.875201i 0.516067 0.856548i \(-0.327395\pi\)
0.999826 0.0186533i \(-0.00593788\pi\)
\(368\) 0 0
\(369\) 4.33841 7.51434i 0.225849 0.391181i
\(370\) 0 0
\(371\) 5.90959 + 35.9482i 0.306811 + 1.86634i
\(372\) 0 0
\(373\) −16.2921 9.40624i −0.843572 0.487036i 0.0149049 0.999889i \(-0.495255\pi\)
−0.858477 + 0.512852i \(0.828589\pi\)
\(374\) 0 0
\(375\) 10.9489 + 2.26296i 0.565400 + 0.116859i
\(376\) 0 0
\(377\) 19.1782i 0.987726i
\(378\) 0 0
\(379\) 21.2269 1.09035 0.545176 0.838322i \(-0.316463\pi\)
0.545176 + 0.838322i \(0.316463\pi\)
\(380\) 0 0
\(381\) −1.17896 2.04201i −0.0603998 0.104616i
\(382\) 0 0
\(383\) 8.14310 + 4.70142i 0.416093 + 0.240232i 0.693404 0.720549i \(-0.256110\pi\)
−0.277311 + 0.960780i \(0.589443\pi\)
\(384\) 0 0
\(385\) −33.9311 2.70445i −1.72929 0.137832i
\(386\) 0 0
\(387\) −7.42547 4.28710i −0.377458 0.217926i
\(388\) 0 0
\(389\) 7.20963 + 12.4874i 0.365543 + 0.633139i 0.988863 0.148828i \(-0.0475501\pi\)
−0.623320 + 0.781967i \(0.714217\pi\)
\(390\) 0 0
\(391\) 4.38239 0.221627
\(392\) 0 0
\(393\) 0.154790i 0.00780810i
\(394\) 0 0
\(395\) −20.5948 + 21.4067i −1.03624 + 1.07709i
\(396\) 0 0
\(397\) 1.54528 + 0.892166i 0.0775552 + 0.0447765i 0.538276 0.842769i \(-0.319076\pi\)
−0.460721 + 0.887545i \(0.652409\pi\)
\(398\) 0 0
\(399\) −13.2724 5.00584i −0.664451 0.250605i
\(400\) 0 0
\(401\) 18.9425 32.8094i 0.945944 1.63842i 0.192095 0.981376i \(-0.438472\pi\)
0.753849 0.657048i \(-0.228195\pi\)
\(402\) 0 0
\(403\) −13.7647 + 7.94705i −0.685668 + 0.395871i
\(404\) 0 0
\(405\) 0.620374 + 2.14829i 0.0308266 + 0.106749i
\(406\) 0 0
\(407\) 25.8937i 1.28350i
\(408\) 0 0
\(409\) −1.55846 2.69933i −0.0770609 0.133473i 0.824920 0.565250i \(-0.191220\pi\)
−0.901981 + 0.431777i \(0.857887\pi\)
\(410\) 0 0
\(411\) 10.9253 18.9231i 0.538904 0.933410i
\(412\) 0 0
\(413\) −18.2842 + 3.00577i −0.899705 + 0.147904i
\(414\) 0 0
\(415\) −1.84734 + 7.46891i −0.0906822 + 0.366634i
\(416\) 0 0
\(417\) −6.00642 + 3.46781i −0.294136 + 0.169819i
\(418\) 0 0
\(419\) 9.00616 0.439980 0.219990 0.975502i \(-0.429398\pi\)
0.219990 + 0.975502i \(0.429398\pi\)
\(420\) 0 0
\(421\) 33.2819 1.62206 0.811031 0.585003i \(-0.198907\pi\)
0.811031 + 0.585003i \(0.198907\pi\)
\(422\) 0 0
\(423\) −3.14064 + 1.81325i −0.152703 + 0.0881632i
\(424\) 0 0
\(425\) 24.4579 0.945953i 1.18638 0.0458854i
\(426\) 0 0
\(427\) 10.2284 + 12.4809i 0.494988 + 0.603994i
\(428\) 0 0
\(429\) −13.1335 + 22.7478i −0.634090 + 1.09828i
\(430\) 0 0
\(431\) 2.23003 + 3.86253i 0.107417 + 0.186051i 0.914723 0.404081i \(-0.132409\pi\)
−0.807306 + 0.590133i \(0.799075\pi\)
\(432\) 0 0
\(433\) 37.1411i 1.78489i −0.451159 0.892444i \(-0.648989\pi\)
0.451159 0.892444i \(-0.351011\pi\)
\(434\) 0 0
\(435\) 9.02463 2.60610i 0.432698 0.124953i
\(436\) 0 0
\(437\) 4.15671 2.39987i 0.198842 0.114802i
\(438\) 0 0
\(439\) 19.4909 33.7593i 0.930251 1.61124i 0.147360 0.989083i \(-0.452922\pi\)
0.782891 0.622159i \(-0.213744\pi\)
\(440\) 0 0
\(441\) −6.63161 + 2.24093i −0.315791 + 0.106711i
\(442\) 0 0
\(443\) 29.0837 + 16.7915i 1.38181 + 0.797786i 0.992373 0.123268i \(-0.0393376\pi\)
0.389433 + 0.921055i \(0.372671\pi\)
\(444\) 0 0
\(445\) 5.83337 6.06335i 0.276528 0.287430i
\(446\) 0 0
\(447\) 7.05321i 0.333605i
\(448\) 0 0
\(449\) 13.7170 0.647347 0.323674 0.946169i \(-0.395082\pi\)
0.323674 + 0.946169i \(0.395082\pi\)
\(450\) 0 0
\(451\) −24.9614 43.2345i −1.17539 2.03583i
\(452\) 0 0
\(453\) 16.5868 + 9.57640i 0.779316 + 0.449938i
\(454\) 0 0
\(455\) 22.2434 + 15.3201i 1.04278 + 0.718217i
\(456\) 0 0
\(457\) −20.1117 11.6115i −0.940787 0.543164i −0.0505802 0.998720i \(-0.516107\pi\)
−0.890207 + 0.455556i \(0.849440\pi\)
\(458\) 0 0
\(459\) 2.44762 + 4.23940i 0.114245 + 0.197878i
\(460\) 0 0
\(461\) −28.2837 −1.31730 −0.658651 0.752449i \(-0.728873\pi\)
−0.658651 + 0.752449i \(0.728873\pi\)
\(462\) 0 0
\(463\) 17.4485i 0.810901i 0.914117 + 0.405450i \(0.132885\pi\)
−0.914117 + 0.405450i \(0.867115\pi\)
\(464\) 0 0
\(465\) 5.61009 + 5.39731i 0.260162 + 0.250294i
\(466\) 0 0
\(467\) −20.4002 11.7781i −0.944009 0.545024i −0.0527945 0.998605i \(-0.516813\pi\)
−0.891215 + 0.453581i \(0.850146\pi\)
\(468\) 0 0
\(469\) −3.84555 23.3926i −0.177571 1.08017i
\(470\) 0 0
\(471\) −2.40134 + 4.15924i −0.110648 + 0.191648i
\(472\) 0 0
\(473\) −42.7232 + 24.6662i −1.96441 + 1.13415i
\(474\) 0 0
\(475\) 22.6803 14.2908i 1.04065 0.655708i
\(476\) 0 0
\(477\) 13.7695i 0.630463i
\(478\) 0 0
\(479\) −5.52709 9.57320i −0.252539 0.437410i 0.711685 0.702499i \(-0.247932\pi\)
−0.964224 + 0.265088i \(0.914599\pi\)
\(480\) 0 0
\(481\) 10.2730 17.7933i 0.468407 0.811304i
\(482\) 0 0
\(483\) 0.835859 2.21618i 0.0380329 0.100840i
\(484\) 0 0
\(485\) 2.31981 9.37917i 0.105337 0.425886i
\(486\) 0 0
\(487\) 10.1849 5.88025i 0.461521 0.266460i −0.251162 0.967945i \(-0.580813\pi\)
0.712684 + 0.701485i \(0.247479\pi\)
\(488\) 0 0
\(489\) 4.28328 0.193697
\(490\) 0 0
\(491\) −17.8544 −0.805759 −0.402880 0.915253i \(-0.631991\pi\)
−0.402880 + 0.915253i \(0.631991\pi\)
\(492\) 0 0
\(493\) 17.8091 10.2821i 0.802080 0.463081i
\(494\) 0 0
\(495\) 12.4891 + 3.08901i 0.561343 + 0.138841i
\(496\) 0 0
\(497\) 5.03183 13.3413i 0.225708 0.598440i
\(498\) 0 0
\(499\) 4.26332 7.38429i 0.190853 0.330566i −0.754680 0.656093i \(-0.772208\pi\)
0.945533 + 0.325526i \(0.105541\pi\)
\(500\) 0 0
\(501\) 4.35109 + 7.53630i 0.194392 + 0.336697i
\(502\) 0 0
\(503\) 32.6513i 1.45585i 0.685657 + 0.727925i \(0.259515\pi\)
−0.685657 + 0.727925i \(0.740485\pi\)
\(504\) 0 0
\(505\) −0.616864 2.13613i −0.0274501 0.0950566i
\(506\) 0 0
\(507\) 6.79141 3.92102i 0.301617 0.174139i
\(508\) 0 0
\(509\) −19.2556 + 33.3517i −0.853490 + 1.47829i 0.0245493 + 0.999699i \(0.492185\pi\)
−0.878039 + 0.478589i \(0.841148\pi\)
\(510\) 0 0
\(511\) 3.52114 + 21.4192i 0.155766 + 0.947529i
\(512\) 0 0
\(513\) 4.64314 + 2.68072i 0.205000 + 0.118357i
\(514\) 0 0
\(515\) −21.1390 20.3372i −0.931497 0.896166i
\(516\) 0 0
\(517\) 20.8654i 0.917660i
\(518\) 0 0
\(519\) 9.88069 0.433714
\(520\) 0 0
\(521\) −14.8743 25.7630i −0.651654 1.12870i −0.982721 0.185091i \(-0.940742\pi\)
0.331067 0.943607i \(-0.392591\pi\)
\(522\) 0 0
\(523\) −1.81046 1.04527i −0.0791659 0.0457064i 0.459895 0.887974i \(-0.347887\pi\)
−0.539060 + 0.842267i \(0.681221\pi\)
\(524\) 0 0
\(525\) 4.18652 12.5488i 0.182714 0.547676i
\(526\) 0 0
\(527\) 14.7594 + 8.52137i 0.642932 + 0.371197i
\(528\) 0 0
\(529\) −11.0993 19.2245i −0.482577 0.835848i
\(530\) 0 0
\(531\) 7.00352 0.303927
\(532\) 0 0
\(533\) 39.6123i 1.71580i
\(534\) 0 0
\(535\) 24.4126 + 23.4867i 1.05545 + 1.01542i
\(536\) 0 0
\(537\) −4.93973 2.85195i −0.213165 0.123071i
\(538\) 0 0
\(539\) −7.91181 + 39.4904i −0.340786 + 1.70097i
\(540\) 0 0
\(541\) −14.0639 + 24.3593i −0.604653 + 1.04729i 0.387453 + 0.921889i \(0.373355\pi\)
−0.992106 + 0.125400i \(0.959979\pi\)
\(542\) 0 0
\(543\) 12.8069 7.39407i 0.549597 0.317310i
\(544\) 0 0
\(545\) −8.36630 28.9716i −0.358373 1.24101i
\(546\) 0 0
\(547\) 29.9829i 1.28198i −0.767550 0.640989i \(-0.778525\pi\)
0.767550 0.640989i \(-0.221475\pi\)
\(548\) 0 0
\(549\) −3.04955 5.28198i −0.130152 0.225429i
\(550\) 0 0
\(551\) 11.2613 19.5051i 0.479747 0.830946i
\(552\) 0 0
\(553\) 22.2786 + 27.1848i 0.947382 + 1.15601i
\(554\) 0 0
\(555\) −9.76893 2.41622i −0.414668 0.102563i
\(556\) 0 0
\(557\) −4.59121 + 2.65073i −0.194536 + 0.112315i −0.594104 0.804388i \(-0.702493\pi\)
0.399568 + 0.916703i \(0.369160\pi\)
\(558\) 0 0
\(559\) 39.1439 1.65561
\(560\) 0 0
\(561\) 28.1652 1.18914
\(562\) 0 0
\(563\) −17.6714 + 10.2026i −0.744760 + 0.429987i −0.823797 0.566884i \(-0.808149\pi\)
0.0790375 + 0.996872i \(0.474815\pi\)
\(564\) 0 0
\(565\) −6.54215 + 26.4503i −0.275230 + 1.11277i
\(566\) 0 0
\(567\) 2.61071 0.429179i 0.109640 0.0180238i
\(568\) 0 0
\(569\) −12.3418 + 21.3766i −0.517395 + 0.896154i 0.482401 + 0.875950i \(0.339765\pi\)
−0.999796 + 0.0202035i \(0.993569\pi\)
\(570\) 0 0
\(571\) −10.2615 17.7734i −0.429429 0.743793i 0.567394 0.823447i \(-0.307952\pi\)
−0.996823 + 0.0796540i \(0.974618\pi\)
\(572\) 0 0
\(573\) 1.76567i 0.0737618i
\(574\) 0 0
\(575\) 2.38623 + 3.78709i 0.0995129 + 0.157933i
\(576\) 0 0
\(577\) −5.76228 + 3.32685i −0.239887 + 0.138499i −0.615125 0.788430i \(-0.710894\pi\)
0.375238 + 0.926929i \(0.377561\pi\)
\(578\) 0 0
\(579\) −6.00200 + 10.3958i −0.249435 + 0.432034i
\(580\) 0 0
\(581\) 8.51793 + 3.21263i 0.353383 + 0.133282i
\(582\) 0 0
\(583\) −68.6102 39.6121i −2.84154 1.64057i
\(584\) 0 0
\(585\) −7.35655 7.07752i −0.304156 0.292620i
\(586\) 0 0
\(587\) 11.7672i 0.485683i 0.970066 + 0.242842i \(0.0780796\pi\)
−0.970066 + 0.242842i \(0.921920\pi\)
\(588\) 0 0
\(589\) 18.6658 0.769112
\(590\) 0 0
\(591\) 4.82618 + 8.35918i 0.198522 + 0.343851i
\(592\) 0 0
\(593\) −2.54283 1.46810i −0.104421 0.0602877i 0.446880 0.894594i \(-0.352535\pi\)
−0.551301 + 0.834306i \(0.685868\pi\)
\(594\) 0 0
\(595\) 2.30099 28.8691i 0.0943312 1.18352i
\(596\) 0 0
\(597\) −5.35695 3.09283i −0.219245 0.126581i
\(598\) 0 0
\(599\) 0.668246 + 1.15744i 0.0273038 + 0.0472915i 0.879354 0.476168i \(-0.157975\pi\)
−0.852051 + 0.523459i \(0.824641\pi\)
\(600\) 0 0
\(601\) −32.1493 −1.31140 −0.655699 0.755023i \(-0.727626\pi\)
−0.655699 + 0.755023i \(0.727626\pi\)
\(602\) 0 0
\(603\) 8.96024i 0.364889i
\(604\) 0 0
\(605\) 34.2672 35.6182i 1.39316 1.44809i
\(606\) 0 0
\(607\) 23.5128 + 13.5751i 0.954355 + 0.550997i 0.894431 0.447206i \(-0.147581\pi\)
0.0599239 + 0.998203i \(0.480914\pi\)
\(608\) 0 0
\(609\) −1.80292 10.9672i −0.0730579 0.444413i
\(610\) 0 0
\(611\) 8.27805 14.3380i 0.334894 0.580053i
\(612\) 0 0
\(613\) −23.2529 + 13.4251i −0.939177 + 0.542234i −0.889702 0.456541i \(-0.849088\pi\)
−0.0494749 + 0.998775i \(0.515755\pi\)
\(614\) 0 0
\(615\) 18.6403 5.38287i 0.751649 0.217058i
\(616\) 0 0
\(617\) 7.17896i 0.289014i 0.989504 + 0.144507i \(0.0461596\pi\)
−0.989504 + 0.144507i \(0.953840\pi\)
\(618\) 0 0
\(619\) 19.7003 + 34.1219i 0.791821 + 1.37147i 0.924838 + 0.380361i \(0.124200\pi\)
−0.133017 + 0.991114i \(0.542466\pi\)
\(620\) 0 0
\(621\) −0.447618 + 0.775297i −0.0179623 + 0.0311116i
\(622\) 0 0
\(623\) −6.31031 7.69996i −0.252817 0.308492i
\(624\) 0 0
\(625\) 14.1349 + 20.6205i 0.565396 + 0.824819i
\(626\) 0 0
\(627\) 26.7148 15.4238i 1.06688 0.615966i
\(628\) 0 0
\(629\) −22.0307 −0.878423
\(630\) 0 0
\(631\) −5.52238 −0.219842 −0.109921 0.993940i \(-0.535060\pi\)
−0.109921 + 0.993940i \(0.535060\pi\)
\(632\) 0 0
\(633\) −18.7058 + 10.7998i −0.743488 + 0.429253i
\(634\) 0 0
\(635\) 1.26593 5.11822i 0.0502367 0.203111i
\(636\) 0 0
\(637\) 21.1040 23.9976i 0.836169 0.950818i
\(638\) 0 0
\(639\) −2.69464 + 4.66725i −0.106598 + 0.184634i
\(640\) 0 0
\(641\) 9.97180 + 17.2717i 0.393862 + 0.682189i 0.992955 0.118490i \(-0.0378054\pi\)
−0.599093 + 0.800679i \(0.704472\pi\)
\(642\) 0 0
\(643\) 11.7541i 0.463537i 0.972771 + 0.231769i \(0.0744512\pi\)
−0.972771 + 0.231769i \(0.925549\pi\)
\(644\) 0 0
\(645\) −5.31921 18.4198i −0.209444 0.725280i
\(646\) 0 0
\(647\) −9.60514 + 5.54553i −0.377617 + 0.218017i −0.676781 0.736184i \(-0.736626\pi\)
0.299164 + 0.954202i \(0.403292\pi\)
\(648\) 0 0
\(649\) 20.1477 34.8969i 0.790867 1.36982i
\(650\) 0 0
\(651\) 7.12436 5.83859i 0.279226 0.228832i
\(652\) 0 0
\(653\) −7.06171 4.07708i −0.276346 0.159549i 0.355422 0.934706i \(-0.384337\pi\)
−0.631768 + 0.775157i \(0.717671\pi\)
\(654\) 0 0
\(655\) −0.239968 + 0.249428i −0.00937632 + 0.00974597i
\(656\) 0 0
\(657\) 8.20435i 0.320082i
\(658\) 0 0
\(659\) −17.1502 −0.668075 −0.334038 0.942560i \(-0.608411\pi\)
−0.334038 + 0.942560i \(0.608411\pi\)
\(660\) 0 0
\(661\) 7.58270 + 13.1336i 0.294933 + 0.510839i 0.974969 0.222340i \(-0.0713694\pi\)
−0.680036 + 0.733178i \(0.738036\pi\)
\(662\) 0 0
\(663\) −19.3542 11.1741i −0.751653 0.433967i
\(664\) 0 0
\(665\) −13.6267 28.6424i −0.528422 1.11071i
\(666\) 0 0
\(667\) 3.25690 + 1.88037i 0.126108 + 0.0728084i
\(668\) 0 0
\(669\) −10.2397 17.7356i −0.395889 0.685700i
\(670\) 0 0
\(671\) −35.0918 −1.35470
\(672\) 0 0
\(673\) 24.8223i 0.956830i −0.878134 0.478415i \(-0.841212\pi\)
0.878134 0.478415i \(-0.158788\pi\)
\(674\) 0 0
\(675\) −2.33078 + 4.42351i −0.0897118 + 0.170261i
\(676\) 0 0
\(677\) −14.2448 8.22425i −0.547473 0.316084i 0.200629 0.979667i \(-0.435701\pi\)
−0.748102 + 0.663584i \(0.769035\pi\)
\(678\) 0 0
\(679\) −10.6965 4.03430i −0.410494 0.154822i
\(680\) 0 0
\(681\) −7.64837 + 13.2474i −0.293086 + 0.507640i
\(682\) 0 0
\(683\) 33.8256 19.5292i 1.29430 0.747264i 0.314886 0.949130i \(-0.398034\pi\)
0.979413 + 0.201866i \(0.0647004\pi\)
\(684\) 0 0
\(685\) 46.9413 13.5555i 1.79353 0.517930i
\(686\) 0 0
\(687\) 3.72575i 0.142146i
\(688\) 0 0
\(689\) 31.4311 + 54.4402i 1.19743 + 2.07401i
\(690\) 0 0
\(691\) −18.4837 + 32.0147i −0.703154 + 1.21790i 0.264200 + 0.964468i \(0.414892\pi\)
−0.967354 + 0.253430i \(0.918441\pi\)
\(692\) 0 0
\(693\) 5.37198 14.2432i 0.204065 0.541054i
\(694\) 0 0
\(695\) −15.0549 3.72362i −0.571063 0.141245i
\(696\) 0 0
\(697\) 36.7845 21.2375i 1.39331 0.804429i
\(698\) 0 0
\(699\) −5.76904 −0.218205
\(700\) 0 0
\(701\) 23.1619 0.874814 0.437407 0.899264i \(-0.355897\pi\)
0.437407 + 0.899264i \(0.355897\pi\)
\(702\) 0 0
\(703\) −20.8962 + 12.0644i −0.788115 + 0.455018i
\(704\) 0 0
\(705\) −7.87189 1.94701i −0.296473 0.0733286i
\(706\) 0 0
\(707\) −2.59594 + 0.426751i −0.0976303 + 0.0160496i
\(708\) 0 0
\(709\) −0.712591 + 1.23424i −0.0267619 + 0.0463530i −0.879096 0.476644i \(-0.841853\pi\)
0.852334 + 0.522997i \(0.175186\pi\)
\(710\) 0 0
\(711\) −6.64226 11.5047i −0.249104 0.431461i
\(712\) 0 0
\(713\) 3.11676i 0.116724i
\(714\) 0 0
\(715\) −56.4289 + 16.2953i −2.11032 + 0.609411i
\(716\) 0 0
\(717\) 13.5875 7.84476i 0.507435 0.292968i
\(718\) 0 0
\(719\) −14.3137 + 24.7920i −0.533811 + 0.924587i 0.465409 + 0.885096i \(0.345907\pi\)
−0.999220 + 0.0394917i \(0.987426\pi\)
\(720\) 0 0
\(721\) −26.8448 + 22.0000i −0.999754 + 0.819323i
\(722\) 0 0
\(723\) −14.9515 8.63222i −0.556050 0.321036i
\(724\) 0 0
\(725\) 18.5825 + 9.79126i 0.690137 + 0.363638i
\(726\) 0 0
\(727\) 7.81682i 0.289910i −0.989438 0.144955i \(-0.953696\pi\)
0.989438 0.144955i \(-0.0463037\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −20.9864 36.3494i −0.776209 1.34443i
\(732\) 0 0
\(733\) 20.9269 + 12.0822i 0.772954 + 0.446265i 0.833927 0.551874i \(-0.186087\pi\)
−0.0609737 + 0.998139i \(0.519421\pi\)
\(734\) 0 0
\(735\) −14.1603 6.66984i −0.522309 0.246021i
\(736\) 0 0
\(737\) 44.6467 + 25.7768i 1.64458 + 0.949501i
\(738\) 0 0
\(739\) −5.90892 10.2346i −0.217363 0.376484i 0.736638 0.676287i \(-0.236412\pi\)
−0.954001 + 0.299803i \(0.903079\pi\)
\(740\) 0 0
\(741\) −24.4766 −0.899171
\(742\) 0 0
\(743\) 3.25596i 0.119450i −0.998215 0.0597248i \(-0.980978\pi\)
0.998215 0.0597248i \(-0.0190223\pi\)
\(744\) 0 0
\(745\) −10.9345 + 11.3656i −0.400608 + 0.416402i
\(746\) 0 0
\(747\) −2.97986 1.72042i −0.109027 0.0629470i
\(748\) 0 0
\(749\) 31.0020 25.4069i 1.13279 0.928349i
\(750\) 0 0
\(751\) −23.3000 + 40.3568i −0.850229 + 1.47264i 0.0307729 + 0.999526i \(0.490203\pi\)
−0.881002 + 0.473113i \(0.843130\pi\)
\(752\) 0 0
\(753\) 16.1979 9.35189i 0.590286 0.340802i
\(754\) 0 0
\(755\) 11.8819 + 41.1457i 0.432427 + 1.49745i
\(756\) 0 0
\(757\) 29.9847i 1.08981i 0.838497 + 0.544906i \(0.183435\pi\)
−0.838497 + 0.544906i \(0.816565\pi\)
\(758\) 0 0
\(759\) 2.57541 + 4.46074i 0.0934815 + 0.161915i
\(760\) 0 0
\(761\) −21.3504 + 36.9799i −0.773950 + 1.34052i 0.161432 + 0.986884i \(0.448389\pi\)
−0.935383 + 0.353638i \(0.884945\pi\)
\(762\) 0 0
\(763\) −35.2078 + 5.78787i −1.27461 + 0.209535i
\(764\) 0 0
\(765\) −2.62817 + 10.6259i −0.0950218 + 0.384180i
\(766\) 0 0
\(767\) −27.6896 + 15.9866i −0.999815 + 0.577244i
\(768\) 0 0
\(769\) 10.8840 0.392488 0.196244 0.980555i \(-0.437126\pi\)
0.196244 + 0.980555i \(0.437126\pi\)
\(770\) 0 0
\(771\) −6.31221 −0.227329
\(772\) 0 0
\(773\) −33.9903 + 19.6243i −1.22255 + 0.705838i −0.965460 0.260550i \(-0.916096\pi\)
−0.257087 + 0.966388i \(0.582763\pi\)
\(774\) 0 0
\(775\) 0.672762 + 17.3945i 0.0241663 + 0.624828i
\(776\) 0 0
\(777\) −4.20195 + 11.1410i −0.150744 + 0.399681i
\(778\) 0 0
\(779\) 23.2601 40.2877i 0.833380 1.44346i
\(780\) 0 0
\(781\) 15.5039 + 26.8535i 0.554772 + 0.960892i
\(782\) 0 0
\(783\) 4.20085i 0.150126i
\(784\) 0 0
\(785\) −10.3175 + 2.97946i −0.368248 + 0.106341i
\(786\) 0 0
\(787\) −21.7650 + 12.5661i −0.775840 + 0.447931i −0.834954 0.550320i \(-0.814506\pi\)
0.0591139 + 0.998251i \(0.481172\pi\)
\(788\) 0 0
\(789\) −10.4188 + 18.0459i −0.370919 + 0.642451i
\(790\) 0 0
\(791\) 30.1653 + 11.3772i 1.07256 + 0.404527i
\(792\) 0 0
\(793\) 24.1139 + 13.9222i 0.856309 + 0.494390i
\(794\) 0 0
\(795\) 21.3467 22.1882i 0.757088 0.786936i
\(796\) 0 0
\(797\) 3.81681i 0.135198i −0.997713 0.0675991i \(-0.978466\pi\)
0.997713 0.0675991i \(-0.0215339\pi\)
\(798\) 0 0
\(799\) −17.7526 −0.628041
\(800\) 0 0
\(801\) 1.88139 + 3.25866i 0.0664756 + 0.115139i
\(802\) 0 0
\(803\) −40.8803 23.6023i −1.44264 0.832906i
\(804\) 0 0
\(805\) 4.78262 2.27535i 0.168565 0.0801954i
\(806\) 0 0
\(807\) 23.8232 + 13.7544i 0.838618 + 0.484176i
\(808\) 0 0
\(809\) 8.69056 + 15.0525i 0.305544 + 0.529217i 0.977382 0.211480i \(-0.0678284\pi\)
−0.671839 + 0.740698i \(0.734495\pi\)
\(810\) 0 0
\(811\) 13.8289 0.485599 0.242799 0.970076i \(-0.421934\pi\)
0.242799 + 0.970076i \(0.421934\pi\)
\(812\) 0 0
\(813\) 27.6661i 0.970294i
\(814\) 0 0
\(815\) 6.90209 + 6.64030i 0.241770 + 0.232600i
\(816\) 0 0
\(817\) −39.8112 22.9850i −1.39282 0.804144i
\(818\) 0 0
\(819\) −9.34223 + 7.65618i −0.326444 + 0.267529i
\(820\) 0 0
\(821\) −12.5070 + 21.6627i −0.436496 + 0.756034i −0.997416 0.0718362i \(-0.977114\pi\)
0.560920 + 0.827870i \(0.310447\pi\)
\(822\) 0 0
\(823\) −12.0736 + 6.97068i −0.420859 + 0.242983i −0.695445 0.718580i \(-0.744793\pi\)
0.274586 + 0.961563i \(0.411459\pi\)
\(824\) 0 0
\(825\) 15.3361 + 24.3393i 0.533935 + 0.847385i
\(826\) 0 0
\(827\) 16.1987i 0.563284i 0.959520 + 0.281642i \(0.0908790\pi\)
−0.959520 + 0.281642i \(0.909121\pi\)
\(828\) 0 0
\(829\) −9.82862 17.0237i −0.341362 0.591256i 0.643324 0.765594i \(-0.277555\pi\)
−0.984686 + 0.174338i \(0.944222\pi\)
\(830\) 0 0
\(831\) 2.50337 4.33597i 0.0868410 0.150413i
\(832\) 0 0
\(833\) −33.5990 6.73147i −1.16414 0.233232i
\(834\) 0 0
\(835\) −4.67205 + 18.8894i −0.161683 + 0.653696i
\(836\) 0 0
\(837\) −3.01506 + 1.74075i −0.104216 + 0.0601691i
\(838\) 0 0
\(839\) −47.1449 −1.62762 −0.813811 0.581129i \(-0.802611\pi\)
−0.813811 + 0.581129i \(0.802611\pi\)
\(840\) 0 0
\(841\) −11.3529 −0.391479
\(842\) 0 0
\(843\) −26.3315 + 15.2025i −0.906907 + 0.523603i
\(844\) 0 0
\(845\) 17.0224 + 4.21027i 0.585588 + 0.144838i
\(846\) 0 0
\(847\) −37.0689 45.2322i −1.27370 1.55420i
\(848\) 0 0
\(849\) −11.2013 + 19.4012i −0.384427 + 0.665847i
\(850\) 0 0
\(851\) −2.01448 3.48918i −0.0690555 0.119608i
\(852\) 0 0
\(853\) 15.3410i 0.525266i −0.964896 0.262633i \(-0.915409\pi\)
0.964896 0.262633i \(-0.0845909\pi\)
\(854\) 0 0
\(855\) 3.32610 + 11.5179i 0.113750 + 0.393904i
\(856\) 0 0
\(857\) 9.02603 5.21118i 0.308323 0.178011i −0.337853 0.941199i \(-0.609701\pi\)
0.646176 + 0.763188i \(0.276367\pi\)
\(858\) 0 0
\(859\) −25.8513 + 44.7758i −0.882036 + 1.52773i −0.0329624 + 0.999457i \(0.510494\pi\)
−0.849074 + 0.528275i \(0.822839\pi\)
\(860\) 0 0
\(861\) −3.72391 22.6527i −0.126911 0.772000i
\(862\) 0 0
\(863\) −2.08282 1.20251i −0.0708999 0.0409341i 0.464131 0.885767i \(-0.346367\pi\)
−0.535031 + 0.844833i \(0.679700\pi\)
\(864\) 0 0
\(865\) 15.9218 + 15.3179i 0.541356 + 0.520823i
\(866\) 0 0
\(867\) 6.96333i 0.236487i
\(868\) 0 0
\(869\) −76.4337 −2.59284
\(870\) 0 0
\(871\) −20.4531 35.4259i −0.693028 1.20036i
\(872\) 0 0
\(873\) 3.74200 + 2.16044i 0.126647 + 0.0731200i
\(874\) 0 0
\(875\) 26.2004 13.7309i 0.885736 0.464190i
\(876\) 0 0
\(877\) −5.69818 3.28985i −0.192414 0.111090i 0.400698 0.916210i \(-0.368768\pi\)
−0.593112 + 0.805120i \(0.702101\pi\)
\(878\) 0 0
\(879\) −10.3714 17.9639i −0.349820 0.605906i
\(880\) 0 0
\(881\) −30.3674 −1.02311 −0.511553 0.859252i \(-0.670929\pi\)
−0.511553 + 0.859252i \(0.670929\pi\)
\(882\) 0 0
\(883\) 13.1624i 0.442949i −0.975166 0.221475i \(-0.928913\pi\)
0.975166 0.221475i \(-0.0710870\pi\)
\(884\) 0 0
\(885\) 11.2855 + 10.8575i 0.379358 + 0.364969i
\(886\) 0 0
\(887\) −5.72166 3.30340i −0.192115 0.110917i 0.400858 0.916140i \(-0.368712\pi\)
−0.592972 + 0.805223i \(0.702046\pi\)
\(888\) 0 0
\(889\) −5.83709 2.20152i −0.195770 0.0738368i
\(890\) 0 0
\(891\) −2.87680 + 4.98276i −0.0963763 + 0.166929i
\(892\) 0 0
\(893\) −16.8384 + 9.72163i −0.563474 + 0.325322i
\(894\) 0 0
\(895\) −3.53856 12.2536i −0.118281 0.409594i
\(896\) 0 0
\(897\) 4.08703i 0.136462i
\(898\) 0 0
\(899\) 7.31262 + 12.6658i 0.243889 + 0.422429i
\(900\) 0 0
\(901\) 33.7025 58.3745i 1.12279 1.94474i
\(902\) 0 0
\(903\) −22.3847 + 3.67987i −0.744918 + 0.122458i
\(904\) 0 0
\(905\) 32.1000 + 7.93952i 1.06704 + 0.263918i
\(906\) 0 0
\(907\) −48.3941 + 27.9403i −1.60690 + 0.927743i −0.616840 + 0.787088i \(0.711587\pi\)
−0.990059 + 0.140655i \(0.955079\pi\)
\(908\) 0 0
\(909\) 0.994342 0.0329803
\(910\) 0 0
\(911\) 26.7182 0.885214 0.442607 0.896716i \(-0.354054\pi\)
0.442607 + 0.896716i \(0.354054\pi\)
\(912\) 0 0
\(913\) −17.1449 + 9.89863i −0.567414 + 0.327597i
\(914\) 0 0
\(915\) 3.27451 13.2391i 0.108252 0.437670i
\(916\) 0 0
\(917\) 0.259587 + 0.316754i 0.00857233 + 0.0104601i
\(918\) 0 0
\(919\) 16.7964 29.0922i 0.554061 0.959662i −0.443915 0.896069i \(-0.646411\pi\)
0.997976 0.0635928i \(-0.0202559\pi\)
\(920\) 0 0
\(921\) −4.06072 7.03338i −0.133805 0.231758i
\(922\) 0 0
\(923\) 24.6037i 0.809841i
\(924\) 0 0
\(925\) −11.9959 19.0381i −0.394421 0.625969i
\(926\) 0 0
\(927\) 11.3609 6.55920i 0.373140 0.215432i
\(928\) 0 0
\(929\) 16.9234 29.3122i 0.555239 0.961702i −0.442646 0.896697i \(-0.645960\pi\)
0.997885 0.0650058i \(-0.0207066\pi\)
\(930\) 0 0
\(931\) −35.5550 + 12.0146i −1.16527 + 0.393762i
\(932\) 0 0
\(933\) 11.8097 + 6.81835i 0.386633 + 0.223223i
\(934\) 0 0
\(935\) 45.3855 + 43.6641i 1.48426 + 1.42797i
\(936\) 0 0
\(937\) 51.6442i 1.68714i −0.537017 0.843571i \(-0.680449\pi\)
0.537017 0.843571i \(-0.319551\pi\)
\(938\) 0 0
\(939\) 9.29921 0.303468
\(940\) 0 0
\(941\) −25.2093 43.6638i −0.821800 1.42340i −0.904341 0.426812i \(-0.859637\pi\)
0.0825405 0.996588i \(-0.473697\pi\)
\(942\) 0 0
\(943\) 6.72711 + 3.88390i 0.219065 + 0.126477i
\(944\) 0 0
\(945\) 4.87226 + 3.35576i 0.158494 + 0.109163i
\(946\) 0 0
\(947\) 32.5284 + 18.7803i 1.05703 + 0.610277i 0.924609 0.380916i \(-0.124391\pi\)
0.132421 + 0.991194i \(0.457725\pi\)
\(948\) 0 0
\(949\) 18.7277 + 32.4373i 0.607927 + 1.05296i
\(950\) 0 0
\(951\) 17.2132 0.558178
\(952\) 0 0
\(953\) 17.9656i 0.581964i −0.956729 0.290982i \(-0.906018\pi\)
0.956729 0.290982i \(-0.0939820\pi\)
\(954\) 0 0
\(955\) −2.73729 + 2.84520i −0.0885765 + 0.0920686i
\(956\) 0 0
\(957\) 20.9318 + 12.0850i 0.676629 + 0.390652i
\(958\) 0 0
\(959\) −9.37781 57.0455i −0.302825 1.84209i
\(960\) 0 0
\(961\) 9.43959 16.3499i 0.304503 0.527415i
\(962\) 0 0
\(963\) −13.1202 + 7.57495i −0.422793 + 0.244099i
\(964\) 0 0
\(965\) −25.7880 + 7.44697i −0.830147 + 0.239727i
\(966\) 0 0
\(967\) 5.45276i 0.175349i 0.996149 + 0.0876745i \(0.0279435\pi\)
−0.996149 + 0.0876745i \(0.972056\pi\)
\(968\) 0 0
\(969\) 13.1228 + 22.7293i 0.421563 + 0.730169i
\(970\) 0 0
\(971\) −3.50688 + 6.07410i −0.112541 + 0.194927i −0.916794 0.399360i \(-0.869232\pi\)
0.804253 + 0.594287i \(0.202566\pi\)
\(972\) 0 0
\(973\) −6.47561 + 17.1693i −0.207599 + 0.550424i
\(974\) 0 0
\(975\) −0.882198 22.8095i −0.0282529 0.730488i
\(976\) 0 0
\(977\) 47.2149 27.2595i 1.51054 0.872109i 0.510613 0.859810i \(-0.329418\pi\)
0.999924 0.0122990i \(-0.00391500\pi\)
\(978\) 0 0
\(979\) 21.6495 0.691921
\(980\) 0 0
\(981\) 13.4859 0.430572
\(982\) 0 0
\(983\) −35.8110 + 20.6755i −1.14219 + 0.659446i −0.946973 0.321313i \(-0.895876\pi\)
−0.195221 + 0.980759i \(0.562542\pi\)
\(984\) 0 0
\(985\) −5.18219 + 20.9520i −0.165118 + 0.667585i
\(986\) 0 0
\(987\) −3.38597 + 8.97751i −0.107777 + 0.285757i
\(988\) 0 0
\(989\) 3.83796 6.64755i 0.122040 0.211380i
\(990\) 0 0
\(991\) 13.3930 + 23.1973i 0.425442 + 0.736887i 0.996462 0.0840496i \(-0.0267854\pi\)
−0.571020 + 0.820936i \(0.693452\pi\)
\(992\) 0 0
\(993\) 2.50184i 0.0793936i
\(994\) 0 0
\(995\) −3.83743 13.2886i −0.121655 0.421277i
\(996\) 0 0
\(997\) −35.8459 + 20.6956i −1.13525 + 0.655437i −0.945250 0.326347i \(-0.894182\pi\)
−0.190000 + 0.981784i \(0.560849\pi\)
\(998\) 0 0
\(999\) 2.25022 3.89750i 0.0711939 0.123311i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.cc.c.289.1 24
4.3 odd 2 1680.2.di.g.289.9 24
5.4 even 2 inner 840.2.cc.c.289.11 yes 24
7.4 even 3 inner 840.2.cc.c.529.11 yes 24
20.19 odd 2 1680.2.di.g.289.6 24
28.11 odd 6 1680.2.di.g.529.6 24
35.4 even 6 inner 840.2.cc.c.529.1 yes 24
140.39 odd 6 1680.2.di.g.529.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.cc.c.289.1 24 1.1 even 1 trivial
840.2.cc.c.289.11 yes 24 5.4 even 2 inner
840.2.cc.c.529.1 yes 24 35.4 even 6 inner
840.2.cc.c.529.11 yes 24 7.4 even 3 inner
1680.2.di.g.289.6 24 20.19 odd 2
1680.2.di.g.289.9 24 4.3 odd 2
1680.2.di.g.529.6 24 28.11 odd 6
1680.2.di.g.529.9 24 140.39 odd 6