Properties

Label 840.2.bt.b.433.3
Level $840$
Weight $2$
Character 840.433
Analytic conductor $6.707$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(97,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bt (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.3
Character \(\chi\) \(=\) 840.433
Dual form 840.2.bt.b.97.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(-0.600524 + 2.15392i) q^{5} +(-0.367100 - 2.62016i) q^{7} -1.00000i q^{9} +4.78670 q^{11} +(0.368427 - 0.368427i) q^{13} +(-1.09842 - 1.94769i) q^{15} +(-1.10849 - 1.10849i) q^{17} +5.13150 q^{19} +(2.11231 + 1.59315i) q^{21} +(2.14942 + 2.14942i) q^{23} +(-4.27874 - 2.58696i) q^{25} +(0.707107 + 0.707107i) q^{27} +9.26310i q^{29} +8.98258i q^{31} +(-3.38471 + 3.38471i) q^{33} +(5.86407 + 0.782765i) q^{35} +(3.69797 - 3.69797i) q^{37} +0.521035i q^{39} -1.99873i q^{41} +(-1.62357 - 1.62357i) q^{43} +(2.15392 + 0.600524i) q^{45} +(7.81238 + 7.81238i) q^{47} +(-6.73047 + 1.92372i) q^{49} +1.56764 q^{51} +(0.588481 + 0.588481i) q^{53} +(-2.87453 + 10.3102i) q^{55} +(-3.62852 + 3.62852i) q^{57} +2.58034 q^{59} -1.56334i q^{61} +(-2.62016 + 0.367100i) q^{63} +(0.572313 + 1.01481i) q^{65} +(-6.06196 + 6.06196i) q^{67} -3.03974 q^{69} +7.74766 q^{71} +(-2.10421 + 2.10421i) q^{73} +(4.85479 - 1.19627i) q^{75} +(-1.75720 - 12.5419i) q^{77} -4.57977i q^{79} -1.00000 q^{81} +(6.55378 - 6.55378i) q^{83} +(3.05327 - 1.72192i) q^{85} +(-6.55000 - 6.55000i) q^{87} +8.77219 q^{89} +(-1.10059 - 0.830088i) q^{91} +(-6.35165 - 6.35165i) q^{93} +(-3.08159 + 11.0528i) q^{95} +(0.711808 + 0.711808i) q^{97} -4.78670i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{11} - 16 q^{13} + 4 q^{15} - 20 q^{17} - 8 q^{19} + 24 q^{23} - 4 q^{25} + 4 q^{37} - 16 q^{43} + 4 q^{45} + 24 q^{47} - 36 q^{49} + 16 q^{53} - 28 q^{55} + 4 q^{57} - 8 q^{59} + 4 q^{63} + 24 q^{65}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) −0.600524 + 2.15392i −0.268562 + 0.963262i
\(6\) 0 0
\(7\) −0.367100 2.62016i −0.138751 0.990327i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 4.78670 1.44324 0.721622 0.692287i \(-0.243397\pi\)
0.721622 + 0.692287i \(0.243397\pi\)
\(12\) 0 0
\(13\) 0.368427 0.368427i 0.102183 0.102183i −0.654167 0.756350i \(-0.726981\pi\)
0.756350 + 0.654167i \(0.226981\pi\)
\(14\) 0 0
\(15\) −1.09842 1.94769i −0.283610 0.502890i
\(16\) 0 0
\(17\) −1.10849 1.10849i −0.268848 0.268848i 0.559788 0.828636i \(-0.310883\pi\)
−0.828636 + 0.559788i \(0.810883\pi\)
\(18\) 0 0
\(19\) 5.13150 1.17725 0.588624 0.808407i \(-0.299670\pi\)
0.588624 + 0.808407i \(0.299670\pi\)
\(20\) 0 0
\(21\) 2.11231 + 1.59315i 0.460944 + 0.347655i
\(22\) 0 0
\(23\) 2.14942 + 2.14942i 0.448186 + 0.448186i 0.894751 0.446565i \(-0.147353\pi\)
−0.446565 + 0.894751i \(0.647353\pi\)
\(24\) 0 0
\(25\) −4.27874 2.58696i −0.855748 0.517392i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 9.26310i 1.72011i 0.510198 + 0.860057i \(0.329572\pi\)
−0.510198 + 0.860057i \(0.670428\pi\)
\(30\) 0 0
\(31\) 8.98258i 1.61332i 0.591016 + 0.806660i \(0.298727\pi\)
−0.591016 + 0.806660i \(0.701273\pi\)
\(32\) 0 0
\(33\) −3.38471 + 3.38471i −0.589202 + 0.589202i
\(34\) 0 0
\(35\) 5.86407 + 0.782765i 0.991208 + 0.132311i
\(36\) 0 0
\(37\) 3.69797 3.69797i 0.607942 0.607942i −0.334466 0.942408i \(-0.608556\pi\)
0.942408 + 0.334466i \(0.108556\pi\)
\(38\) 0 0
\(39\) 0.521035i 0.0834323i
\(40\) 0 0
\(41\) 1.99873i 0.312149i −0.987745 0.156075i \(-0.950116\pi\)
0.987745 0.156075i \(-0.0498841\pi\)
\(42\) 0 0
\(43\) −1.62357 1.62357i −0.247592 0.247592i 0.572390 0.819982i \(-0.306016\pi\)
−0.819982 + 0.572390i \(0.806016\pi\)
\(44\) 0 0
\(45\) 2.15392 + 0.600524i 0.321087 + 0.0895208i
\(46\) 0 0
\(47\) 7.81238 + 7.81238i 1.13955 + 1.13955i 0.988530 + 0.151023i \(0.0482567\pi\)
0.151023 + 0.988530i \(0.451743\pi\)
\(48\) 0 0
\(49\) −6.73047 + 1.92372i −0.961496 + 0.274817i
\(50\) 0 0
\(51\) 1.56764 0.219513
\(52\) 0 0
\(53\) 0.588481 + 0.588481i 0.0808340 + 0.0808340i 0.746368 0.665534i \(-0.231796\pi\)
−0.665534 + 0.746368i \(0.731796\pi\)
\(54\) 0 0
\(55\) −2.87453 + 10.3102i −0.387601 + 1.39022i
\(56\) 0 0
\(57\) −3.62852 + 3.62852i −0.480609 + 0.480609i
\(58\) 0 0
\(59\) 2.58034 0.335932 0.167966 0.985793i \(-0.446280\pi\)
0.167966 + 0.985793i \(0.446280\pi\)
\(60\) 0 0
\(61\) 1.56334i 0.200165i −0.994979 0.100083i \(-0.968089\pi\)
0.994979 0.100083i \(-0.0319107\pi\)
\(62\) 0 0
\(63\) −2.62016 + 0.367100i −0.330109 + 0.0462503i
\(64\) 0 0
\(65\) 0.572313 + 1.01481i 0.0709867 + 0.125872i
\(66\) 0 0
\(67\) −6.06196 + 6.06196i −0.740586 + 0.740586i −0.972691 0.232105i \(-0.925439\pi\)
0.232105 + 0.972691i \(0.425439\pi\)
\(68\) 0 0
\(69\) −3.03974 −0.365942
\(70\) 0 0
\(71\) 7.74766 0.919478 0.459739 0.888054i \(-0.347943\pi\)
0.459739 + 0.888054i \(0.347943\pi\)
\(72\) 0 0
\(73\) −2.10421 + 2.10421i −0.246279 + 0.246279i −0.819441 0.573163i \(-0.805716\pi\)
0.573163 + 0.819441i \(0.305716\pi\)
\(74\) 0 0
\(75\) 4.85479 1.19627i 0.560582 0.138133i
\(76\) 0 0
\(77\) −1.75720 12.5419i −0.200251 1.42928i
\(78\) 0 0
\(79\) 4.57977i 0.515265i −0.966243 0.257632i \(-0.917058\pi\)
0.966243 0.257632i \(-0.0829423\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 6.55378 6.55378i 0.719371 0.719371i −0.249105 0.968476i \(-0.580137\pi\)
0.968476 + 0.249105i \(0.0801365\pi\)
\(84\) 0 0
\(85\) 3.05327 1.72192i 0.331174 0.186769i
\(86\) 0 0
\(87\) −6.55000 6.55000i −0.702234 0.702234i
\(88\) 0 0
\(89\) 8.77219 0.929851 0.464925 0.885350i \(-0.346081\pi\)
0.464925 + 0.885350i \(0.346081\pi\)
\(90\) 0 0
\(91\) −1.10059 0.830088i −0.115373 0.0870169i
\(92\) 0 0
\(93\) −6.35165 6.35165i −0.658635 0.658635i
\(94\) 0 0
\(95\) −3.08159 + 11.0528i −0.316165 + 1.13400i
\(96\) 0 0
\(97\) 0.711808 + 0.711808i 0.0722731 + 0.0722731i 0.742319 0.670046i \(-0.233726\pi\)
−0.670046 + 0.742319i \(0.733726\pi\)
\(98\) 0 0
\(99\) 4.78670i 0.481082i
\(100\) 0 0
\(101\) 8.16606i 0.812554i −0.913750 0.406277i \(-0.866827\pi\)
0.913750 0.406277i \(-0.133173\pi\)
\(102\) 0 0
\(103\) 1.23701 1.23701i 0.121886 0.121886i −0.643533 0.765419i \(-0.722532\pi\)
0.765419 + 0.643533i \(0.222532\pi\)
\(104\) 0 0
\(105\) −4.70002 + 3.59302i −0.458675 + 0.350643i
\(106\) 0 0
\(107\) 12.0450 12.0450i 1.16444 1.16444i 0.180946 0.983493i \(-0.442084\pi\)
0.983493 0.180946i \(-0.0579158\pi\)
\(108\) 0 0
\(109\) 18.4026i 1.76265i 0.472512 + 0.881324i \(0.343347\pi\)
−0.472512 + 0.881324i \(0.656653\pi\)
\(110\) 0 0
\(111\) 5.22972i 0.496383i
\(112\) 0 0
\(113\) −1.12534 1.12534i −0.105864 0.105864i 0.652191 0.758055i \(-0.273850\pi\)
−0.758055 + 0.652191i \(0.773850\pi\)
\(114\) 0 0
\(115\) −5.92046 + 3.33890i −0.552086 + 0.311354i
\(116\) 0 0
\(117\) −0.368427 0.368427i −0.0340611 0.0340611i
\(118\) 0 0
\(119\) −2.49749 + 3.31134i −0.228945 + 0.303550i
\(120\) 0 0
\(121\) 11.9125 1.08296
\(122\) 0 0
\(123\) 1.41332 + 1.41332i 0.127434 + 0.127434i
\(124\) 0 0
\(125\) 8.14159 7.66254i 0.728206 0.685358i
\(126\) 0 0
\(127\) 14.0690 14.0690i 1.24842 1.24842i 0.292002 0.956418i \(-0.405678\pi\)
0.956418 0.292002i \(-0.0943215\pi\)
\(128\) 0 0
\(129\) 2.29607 0.202158
\(130\) 0 0
\(131\) 10.9757i 0.958951i −0.877555 0.479476i \(-0.840827\pi\)
0.877555 0.479476i \(-0.159173\pi\)
\(132\) 0 0
\(133\) −1.88378 13.4454i −0.163344 1.16586i
\(134\) 0 0
\(135\) −1.94769 + 1.09842i −0.167630 + 0.0945367i
\(136\) 0 0
\(137\) −14.4981 + 14.4981i −1.23866 + 1.23866i −0.278109 + 0.960549i \(0.589708\pi\)
−0.960549 + 0.278109i \(0.910292\pi\)
\(138\) 0 0
\(139\) 11.3904 0.966124 0.483062 0.875586i \(-0.339525\pi\)
0.483062 + 0.875586i \(0.339525\pi\)
\(140\) 0 0
\(141\) −11.0484 −0.930441
\(142\) 0 0
\(143\) 1.76355 1.76355i 0.147476 0.147476i
\(144\) 0 0
\(145\) −19.9520 5.56271i −1.65692 0.461958i
\(146\) 0 0
\(147\) 3.39889 6.11944i 0.280336 0.504723i
\(148\) 0 0
\(149\) 10.9050i 0.893375i 0.894690 + 0.446688i \(0.147396\pi\)
−0.894690 + 0.446688i \(0.852604\pi\)
\(150\) 0 0
\(151\) −18.0691 −1.47045 −0.735223 0.677826i \(-0.762922\pi\)
−0.735223 + 0.677826i \(0.762922\pi\)
\(152\) 0 0
\(153\) −1.10849 + 1.10849i −0.0896160 + 0.0896160i
\(154\) 0 0
\(155\) −19.3478 5.39426i −1.55405 0.433277i
\(156\) 0 0
\(157\) −1.32204 1.32204i −0.105511 0.105511i 0.652381 0.757891i \(-0.273770\pi\)
−0.757891 + 0.652381i \(0.773770\pi\)
\(158\) 0 0
\(159\) −0.832237 −0.0660007
\(160\) 0 0
\(161\) 4.84278 6.42088i 0.381664 0.506037i
\(162\) 0 0
\(163\) −11.8037 11.8037i −0.924536 0.924536i 0.0728096 0.997346i \(-0.476803\pi\)
−0.997346 + 0.0728096i \(0.976803\pi\)
\(164\) 0 0
\(165\) −5.25779 9.32299i −0.409319 0.725794i
\(166\) 0 0
\(167\) −14.8889 14.8889i −1.15214 1.15214i −0.986123 0.166017i \(-0.946909\pi\)
−0.166017 0.986123i \(-0.553091\pi\)
\(168\) 0 0
\(169\) 12.7285i 0.979117i
\(170\) 0 0
\(171\) 5.13150i 0.392416i
\(172\) 0 0
\(173\) −14.6178 + 14.6178i −1.11137 + 1.11137i −0.118407 + 0.992965i \(0.537779\pi\)
−0.992965 + 0.118407i \(0.962221\pi\)
\(174\) 0 0
\(175\) −5.20752 + 12.1607i −0.393652 + 0.919260i
\(176\) 0 0
\(177\) −1.82458 + 1.82458i −0.137144 + 0.137144i
\(178\) 0 0
\(179\) 6.38689i 0.477379i 0.971096 + 0.238689i \(0.0767177\pi\)
−0.971096 + 0.238689i \(0.923282\pi\)
\(180\) 0 0
\(181\) 18.5609i 1.37962i −0.723990 0.689811i \(-0.757694\pi\)
0.723990 0.689811i \(-0.242306\pi\)
\(182\) 0 0
\(183\) 1.10545 + 1.10545i 0.0817171 + 0.0817171i
\(184\) 0 0
\(185\) 5.74441 + 10.1858i 0.422337 + 0.748878i
\(186\) 0 0
\(187\) −5.30600 5.30600i −0.388013 0.388013i
\(188\) 0 0
\(189\) 1.59315 2.11231i 0.115885 0.153648i
\(190\) 0 0
\(191\) 19.6607 1.42260 0.711301 0.702888i \(-0.248106\pi\)
0.711301 + 0.702888i \(0.248106\pi\)
\(192\) 0 0
\(193\) −15.4398 15.4398i −1.11138 1.11138i −0.992964 0.118419i \(-0.962217\pi\)
−0.118419 0.992964i \(-0.537783\pi\)
\(194\) 0 0
\(195\) −1.12227 0.312894i −0.0803672 0.0224068i
\(196\) 0 0
\(197\) −2.12674 + 2.12674i −0.151524 + 0.151524i −0.778798 0.627274i \(-0.784170\pi\)
0.627274 + 0.778798i \(0.284170\pi\)
\(198\) 0 0
\(199\) −3.94924 −0.279954 −0.139977 0.990155i \(-0.544703\pi\)
−0.139977 + 0.990155i \(0.544703\pi\)
\(200\) 0 0
\(201\) 8.57290i 0.604686i
\(202\) 0 0
\(203\) 24.2708 3.40048i 1.70348 0.238667i
\(204\) 0 0
\(205\) 4.30511 + 1.20029i 0.300682 + 0.0838316i
\(206\) 0 0
\(207\) 2.14942 2.14942i 0.149395 0.149395i
\(208\) 0 0
\(209\) 24.5630 1.69906
\(210\) 0 0
\(211\) −18.1393 −1.24876 −0.624381 0.781120i \(-0.714649\pi\)
−0.624381 + 0.781120i \(0.714649\pi\)
\(212\) 0 0
\(213\) −5.47843 + 5.47843i −0.375376 + 0.375376i
\(214\) 0 0
\(215\) 4.47203 2.52204i 0.304990 0.172002i
\(216\) 0 0
\(217\) 23.5358 3.29751i 1.59771 0.223849i
\(218\) 0 0
\(219\) 2.97580i 0.201086i
\(220\) 0 0
\(221\) −0.816794 −0.0549435
\(222\) 0 0
\(223\) −11.5740 + 11.5740i −0.775055 + 0.775055i −0.978985 0.203931i \(-0.934628\pi\)
0.203931 + 0.978985i \(0.434628\pi\)
\(224\) 0 0
\(225\) −2.58696 + 4.27874i −0.172464 + 0.285249i
\(226\) 0 0
\(227\) −10.9495 10.9495i −0.726742 0.726742i 0.243227 0.969969i \(-0.421794\pi\)
−0.969969 + 0.243227i \(0.921794\pi\)
\(228\) 0 0
\(229\) 12.3859 0.818484 0.409242 0.912426i \(-0.365793\pi\)
0.409242 + 0.912426i \(0.365793\pi\)
\(230\) 0 0
\(231\) 10.1110 + 7.62595i 0.665255 + 0.501751i
\(232\) 0 0
\(233\) −4.46761 4.46761i −0.292683 0.292683i 0.545456 0.838139i \(-0.316356\pi\)
−0.838139 + 0.545456i \(0.816356\pi\)
\(234\) 0 0
\(235\) −21.5188 + 12.1357i −1.40373 + 0.791647i
\(236\) 0 0
\(237\) 3.23839 + 3.23839i 0.210356 + 0.210356i
\(238\) 0 0
\(239\) 19.8745i 1.28557i 0.766046 + 0.642786i \(0.222222\pi\)
−0.766046 + 0.642786i \(0.777778\pi\)
\(240\) 0 0
\(241\) 25.8710i 1.66650i −0.552897 0.833250i \(-0.686478\pi\)
0.552897 0.833250i \(-0.313522\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) −0.101732 15.6521i −0.00649939 0.999979i
\(246\) 0 0
\(247\) 1.89058 1.89058i 0.120295 0.120295i
\(248\) 0 0
\(249\) 9.26845i 0.587364i
\(250\) 0 0
\(251\) 0.651258i 0.0411070i 0.999789 + 0.0205535i \(0.00654285\pi\)
−0.999789 + 0.0205535i \(0.993457\pi\)
\(252\) 0 0
\(253\) 10.2886 + 10.2886i 0.646842 + 0.646842i
\(254\) 0 0
\(255\) −0.941405 + 3.37657i −0.0589531 + 0.211449i
\(256\) 0 0
\(257\) −8.31784 8.31784i −0.518852 0.518852i 0.398372 0.917224i \(-0.369575\pi\)
−0.917224 + 0.398372i \(0.869575\pi\)
\(258\) 0 0
\(259\) −11.0468 8.33174i −0.686414 0.517709i
\(260\) 0 0
\(261\) 9.26310 0.573371
\(262\) 0 0
\(263\) 8.19445 + 8.19445i 0.505291 + 0.505291i 0.913077 0.407786i \(-0.133699\pi\)
−0.407786 + 0.913077i \(0.633699\pi\)
\(264\) 0 0
\(265\) −1.62094 + 0.914143i −0.0995734 + 0.0561554i
\(266\) 0 0
\(267\) −6.20288 + 6.20288i −0.379610 + 0.379610i
\(268\) 0 0
\(269\) 4.87565 0.297273 0.148637 0.988892i \(-0.452512\pi\)
0.148637 + 0.988892i \(0.452512\pi\)
\(270\) 0 0
\(271\) 19.5666i 1.18859i −0.804248 0.594293i \(-0.797432\pi\)
0.804248 0.594293i \(-0.202568\pi\)
\(272\) 0 0
\(273\) 1.36519 0.191272i 0.0826253 0.0115763i
\(274\) 0 0
\(275\) −20.4811 12.3830i −1.23505 0.746724i
\(276\) 0 0
\(277\) 10.8235 10.8235i 0.650319 0.650319i −0.302751 0.953070i \(-0.597905\pi\)
0.953070 + 0.302751i \(0.0979051\pi\)
\(278\) 0 0
\(279\) 8.98258 0.537773
\(280\) 0 0
\(281\) −0.484103 −0.0288791 −0.0144396 0.999896i \(-0.504596\pi\)
−0.0144396 + 0.999896i \(0.504596\pi\)
\(282\) 0 0
\(283\) 17.1672 17.1672i 1.02048 1.02048i 0.0206963 0.999786i \(-0.493412\pi\)
0.999786 0.0206963i \(-0.00658831\pi\)
\(284\) 0 0
\(285\) −5.63653 9.99456i −0.333879 0.592026i
\(286\) 0 0
\(287\) −5.23700 + 0.733734i −0.309130 + 0.0433110i
\(288\) 0 0
\(289\) 14.5425i 0.855442i
\(290\) 0 0
\(291\) −1.00665 −0.0590107
\(292\) 0 0
\(293\) −16.8967 + 16.8967i −0.987117 + 0.987117i −0.999918 0.0128009i \(-0.995925\pi\)
0.0128009 + 0.999918i \(0.495925\pi\)
\(294\) 0 0
\(295\) −1.54956 + 5.55785i −0.0902187 + 0.323590i
\(296\) 0 0
\(297\) 3.38471 + 3.38471i 0.196401 + 0.196401i
\(298\) 0 0
\(299\) 1.58381 0.0915942
\(300\) 0 0
\(301\) −3.65800 + 4.85002i −0.210843 + 0.279551i
\(302\) 0 0
\(303\) 5.77428 + 5.77428i 0.331724 + 0.331724i
\(304\) 0 0
\(305\) 3.36731 + 0.938823i 0.192812 + 0.0537568i
\(306\) 0 0
\(307\) 16.8244 + 16.8244i 0.960221 + 0.960221i 0.999239 0.0390173i \(-0.0124227\pi\)
−0.0390173 + 0.999239i \(0.512423\pi\)
\(308\) 0 0
\(309\) 1.74939i 0.0995194i
\(310\) 0 0
\(311\) 21.4211i 1.21468i 0.794442 + 0.607340i \(0.207763\pi\)
−0.794442 + 0.607340i \(0.792237\pi\)
\(312\) 0 0
\(313\) 8.97166 8.97166i 0.507108 0.507108i −0.406530 0.913638i \(-0.633261\pi\)
0.913638 + 0.406530i \(0.133261\pi\)
\(314\) 0 0
\(315\) 0.782765 5.86407i 0.0441038 0.330403i
\(316\) 0 0
\(317\) −3.50718 + 3.50718i −0.196983 + 0.196983i −0.798705 0.601722i \(-0.794481\pi\)
0.601722 + 0.798705i \(0.294481\pi\)
\(318\) 0 0
\(319\) 44.3397i 2.48255i
\(320\) 0 0
\(321\) 17.0343i 0.950760i
\(322\) 0 0
\(323\) −5.68821 5.68821i −0.316501 0.316501i
\(324\) 0 0
\(325\) −2.52951 + 0.623298i −0.140312 + 0.0345744i
\(326\) 0 0
\(327\) −13.0126 13.0126i −0.719598 0.719598i
\(328\) 0 0
\(329\) 17.6018 23.3376i 0.970417 1.28664i
\(330\) 0 0
\(331\) 12.6388 0.694692 0.347346 0.937737i \(-0.387083\pi\)
0.347346 + 0.937737i \(0.387083\pi\)
\(332\) 0 0
\(333\) −3.69797 3.69797i −0.202647 0.202647i
\(334\) 0 0
\(335\) −9.41662 16.6973i −0.514485 0.912272i
\(336\) 0 0
\(337\) −12.0081 + 12.0081i −0.654122 + 0.654122i −0.953983 0.299861i \(-0.903060\pi\)
0.299861 + 0.953983i \(0.403060\pi\)
\(338\) 0 0
\(339\) 1.59148 0.0864372
\(340\) 0 0
\(341\) 42.9969i 2.32841i
\(342\) 0 0
\(343\) 7.51122 + 16.9287i 0.405568 + 0.914065i
\(344\) 0 0
\(345\) 1.82544 6.54736i 0.0982783 0.352498i
\(346\) 0 0
\(347\) −9.70461 + 9.70461i −0.520971 + 0.520971i −0.917865 0.396894i \(-0.870088\pi\)
0.396894 + 0.917865i \(0.370088\pi\)
\(348\) 0 0
\(349\) −8.05641 −0.431250 −0.215625 0.976476i \(-0.569179\pi\)
−0.215625 + 0.976476i \(0.569179\pi\)
\(350\) 0 0
\(351\) 0.521035 0.0278108
\(352\) 0 0
\(353\) −9.57556 + 9.57556i −0.509656 + 0.509656i −0.914421 0.404765i \(-0.867353\pi\)
0.404765 + 0.914421i \(0.367353\pi\)
\(354\) 0 0
\(355\) −4.65266 + 16.6878i −0.246937 + 0.885699i
\(356\) 0 0
\(357\) −0.575481 4.10747i −0.0304577 0.217390i
\(358\) 0 0
\(359\) 30.7707i 1.62402i −0.583646 0.812008i \(-0.698375\pi\)
0.583646 0.812008i \(-0.301625\pi\)
\(360\) 0 0
\(361\) 7.33232 0.385912
\(362\) 0 0
\(363\) −8.42341 + 8.42341i −0.442115 + 0.442115i
\(364\) 0 0
\(365\) −3.26866 5.79592i −0.171090 0.303372i
\(366\) 0 0
\(367\) 7.66858 + 7.66858i 0.400296 + 0.400296i 0.878337 0.478041i \(-0.158653\pi\)
−0.478041 + 0.878337i \(0.658653\pi\)
\(368\) 0 0
\(369\) −1.99873 −0.104050
\(370\) 0 0
\(371\) 1.32588 1.75794i 0.0688364 0.0912679i
\(372\) 0 0
\(373\) 2.47820 + 2.47820i 0.128316 + 0.128316i 0.768348 0.640032i \(-0.221079\pi\)
−0.640032 + 0.768348i \(0.721079\pi\)
\(374\) 0 0
\(375\) −0.338746 + 11.1752i −0.0174928 + 0.577085i
\(376\) 0 0
\(377\) 3.41278 + 3.41278i 0.175767 + 0.175767i
\(378\) 0 0
\(379\) 24.5502i 1.26106i −0.776165 0.630530i \(-0.782838\pi\)
0.776165 0.630530i \(-0.217162\pi\)
\(380\) 0 0
\(381\) 19.8965i 1.01933i
\(382\) 0 0
\(383\) −23.3694 + 23.3694i −1.19412 + 1.19412i −0.218219 + 0.975900i \(0.570025\pi\)
−0.975900 + 0.218219i \(0.929975\pi\)
\(384\) 0 0
\(385\) 28.0695 + 3.74686i 1.43056 + 0.190958i
\(386\) 0 0
\(387\) −1.62357 + 1.62357i −0.0825306 + 0.0825306i
\(388\) 0 0
\(389\) 22.9858i 1.16543i −0.812678 0.582713i \(-0.801991\pi\)
0.812678 0.582713i \(-0.198009\pi\)
\(390\) 0 0
\(391\) 4.76522i 0.240988i
\(392\) 0 0
\(393\) 7.76099 + 7.76099i 0.391490 + 0.391490i
\(394\) 0 0
\(395\) 9.86446 + 2.75026i 0.496335 + 0.138381i
\(396\) 0 0
\(397\) 17.0798 + 17.0798i 0.857212 + 0.857212i 0.991009 0.133797i \(-0.0427169\pi\)
−0.133797 + 0.991009i \(0.542717\pi\)
\(398\) 0 0
\(399\) 10.8393 + 8.17527i 0.542645 + 0.409276i
\(400\) 0 0
\(401\) 23.0321 1.15017 0.575085 0.818094i \(-0.304969\pi\)
0.575085 + 0.818094i \(0.304969\pi\)
\(402\) 0 0
\(403\) 3.30943 + 3.30943i 0.164854 + 0.164854i
\(404\) 0 0
\(405\) 0.600524 2.15392i 0.0298403 0.107029i
\(406\) 0 0
\(407\) 17.7011 17.7011i 0.877409 0.877409i
\(408\) 0 0
\(409\) −11.0331 −0.545550 −0.272775 0.962078i \(-0.587942\pi\)
−0.272775 + 0.962078i \(0.587942\pi\)
\(410\) 0 0
\(411\) 20.5034i 1.01136i
\(412\) 0 0
\(413\) −0.947244 6.76091i −0.0466108 0.332683i
\(414\) 0 0
\(415\) 10.1806 + 18.0520i 0.499747 + 0.886139i
\(416\) 0 0
\(417\) −8.05426 + 8.05426i −0.394419 + 0.394419i
\(418\) 0 0
\(419\) −4.45079 −0.217435 −0.108718 0.994073i \(-0.534674\pi\)
−0.108718 + 0.994073i \(0.534674\pi\)
\(420\) 0 0
\(421\) 22.3309 1.08834 0.544170 0.838975i \(-0.316845\pi\)
0.544170 + 0.838975i \(0.316845\pi\)
\(422\) 0 0
\(423\) 7.81238 7.81238i 0.379851 0.379851i
\(424\) 0 0
\(425\) 1.87532 + 7.61055i 0.0909663 + 0.369166i
\(426\) 0 0
\(427\) −4.09620 + 0.573902i −0.198229 + 0.0277731i
\(428\) 0 0
\(429\) 2.49404i 0.120413i
\(430\) 0 0
\(431\) −30.9684 −1.49170 −0.745848 0.666116i \(-0.767956\pi\)
−0.745848 + 0.666116i \(0.767956\pi\)
\(432\) 0 0
\(433\) −20.1887 + 20.1887i −0.970207 + 0.970207i −0.999569 0.0293622i \(-0.990652\pi\)
0.0293622 + 0.999569i \(0.490652\pi\)
\(434\) 0 0
\(435\) 18.0416 10.1747i 0.865029 0.487842i
\(436\) 0 0
\(437\) 11.0298 + 11.0298i 0.527625 + 0.527625i
\(438\) 0 0
\(439\) −33.1411 −1.58174 −0.790868 0.611986i \(-0.790371\pi\)
−0.790868 + 0.611986i \(0.790371\pi\)
\(440\) 0 0
\(441\) 1.92372 + 6.73047i 0.0916058 + 0.320499i
\(442\) 0 0
\(443\) 4.78296 + 4.78296i 0.227245 + 0.227245i 0.811541 0.584296i \(-0.198629\pi\)
−0.584296 + 0.811541i \(0.698629\pi\)
\(444\) 0 0
\(445\) −5.26791 + 18.8946i −0.249723 + 0.895690i
\(446\) 0 0
\(447\) −7.71102 7.71102i −0.364719 0.364719i
\(448\) 0 0
\(449\) 27.0892i 1.27842i 0.769034 + 0.639208i \(0.220738\pi\)
−0.769034 + 0.639208i \(0.779262\pi\)
\(450\) 0 0
\(451\) 9.56733i 0.450508i
\(452\) 0 0
\(453\) 12.7768 12.7768i 0.600307 0.600307i
\(454\) 0 0
\(455\) 2.44887 1.87209i 0.114805 0.0877649i
\(456\) 0 0
\(457\) 25.8202 25.8202i 1.20782 1.20782i 0.236086 0.971732i \(-0.424135\pi\)
0.971732 0.236086i \(-0.0758647\pi\)
\(458\) 0 0
\(459\) 1.56764i 0.0731711i
\(460\) 0 0
\(461\) 41.1231i 1.91529i −0.287948 0.957646i \(-0.592973\pi\)
0.287948 0.957646i \(-0.407027\pi\)
\(462\) 0 0
\(463\) −5.46544 5.46544i −0.254000 0.254000i 0.568608 0.822609i \(-0.307482\pi\)
−0.822609 + 0.568608i \(0.807482\pi\)
\(464\) 0 0
\(465\) 17.4953 9.86662i 0.811323 0.457554i
\(466\) 0 0
\(467\) 11.2697 + 11.2697i 0.521500 + 0.521500i 0.918024 0.396525i \(-0.129784\pi\)
−0.396525 + 0.918024i \(0.629784\pi\)
\(468\) 0 0
\(469\) 18.1086 + 13.6579i 0.836179 + 0.630665i
\(470\) 0 0
\(471\) 1.86965 0.0861491
\(472\) 0 0
\(473\) −7.77154 7.77154i −0.357336 0.357336i
\(474\) 0 0
\(475\) −21.9564 13.2750i −1.00743 0.609099i
\(476\) 0 0
\(477\) 0.588481 0.588481i 0.0269447 0.0269447i
\(478\) 0 0
\(479\) −16.3285 −0.746069 −0.373034 0.927818i \(-0.621683\pi\)
−0.373034 + 0.927818i \(0.621683\pi\)
\(480\) 0 0
\(481\) 2.72486i 0.124243i
\(482\) 0 0
\(483\) 1.11589 + 7.96461i 0.0507748 + 0.362402i
\(484\) 0 0
\(485\) −1.96063 + 1.10572i −0.0890278 + 0.0502081i
\(486\) 0 0
\(487\) 10.4003 10.4003i 0.471285 0.471285i −0.431045 0.902330i \(-0.641855\pi\)
0.902330 + 0.431045i \(0.141855\pi\)
\(488\) 0 0
\(489\) 16.6929 0.754881
\(490\) 0 0
\(491\) −8.45492 −0.381565 −0.190783 0.981632i \(-0.561103\pi\)
−0.190783 + 0.981632i \(0.561103\pi\)
\(492\) 0 0
\(493\) 10.2680 10.2680i 0.462449 0.462449i
\(494\) 0 0
\(495\) 10.3102 + 2.87453i 0.463408 + 0.129200i
\(496\) 0 0
\(497\) −2.84417 20.3001i −0.127578 0.910585i
\(498\) 0 0
\(499\) 0.399381i 0.0178788i 0.999960 + 0.00893938i \(0.00284553\pi\)
−0.999960 + 0.00893938i \(0.997154\pi\)
\(500\) 0 0
\(501\) 21.0561 0.940718
\(502\) 0 0
\(503\) −7.84578 + 7.84578i −0.349826 + 0.349826i −0.860045 0.510219i \(-0.829564\pi\)
0.510219 + 0.860045i \(0.329564\pi\)
\(504\) 0 0
\(505\) 17.5890 + 4.90392i 0.782702 + 0.218221i
\(506\) 0 0
\(507\) −9.00042 9.00042i −0.399723 0.399723i
\(508\) 0 0
\(509\) 6.99940 0.310243 0.155121 0.987895i \(-0.450423\pi\)
0.155121 + 0.987895i \(0.450423\pi\)
\(510\) 0 0
\(511\) 6.28581 + 4.74090i 0.278068 + 0.209725i
\(512\) 0 0
\(513\) 3.62852 + 3.62852i 0.160203 + 0.160203i
\(514\) 0 0
\(515\) 1.92156 + 3.40727i 0.0846741 + 0.150142i
\(516\) 0 0
\(517\) 37.3955 + 37.3955i 1.64465 + 1.64465i
\(518\) 0 0
\(519\) 20.6727i 0.907431i
\(520\) 0 0
\(521\) 37.1920i 1.62941i 0.579874 + 0.814706i \(0.303102\pi\)
−0.579874 + 0.814706i \(0.696898\pi\)
\(522\) 0 0
\(523\) 8.17019 8.17019i 0.357258 0.357258i −0.505544 0.862801i \(-0.668708\pi\)
0.862801 + 0.505544i \(0.168708\pi\)
\(524\) 0 0
\(525\) −4.91661 12.2812i −0.214578 0.535994i
\(526\) 0 0
\(527\) 9.95709 9.95709i 0.433738 0.433738i
\(528\) 0 0
\(529\) 13.7600i 0.598259i
\(530\) 0 0
\(531\) 2.58034i 0.111977i
\(532\) 0 0
\(533\) −0.736387 0.736387i −0.0318965 0.0318965i
\(534\) 0 0
\(535\) 18.7107 + 33.1774i 0.808935 + 1.43438i
\(536\) 0 0
\(537\) −4.51621 4.51621i −0.194889 0.194889i
\(538\) 0 0
\(539\) −32.2168 + 9.20828i −1.38767 + 0.396629i
\(540\) 0 0
\(541\) −18.2129 −0.783033 −0.391516 0.920171i \(-0.628049\pi\)
−0.391516 + 0.920171i \(0.628049\pi\)
\(542\) 0 0
\(543\) 13.1245 + 13.1245i 0.563228 + 0.563228i
\(544\) 0 0
\(545\) −39.6377 11.0512i −1.69789 0.473381i
\(546\) 0 0
\(547\) 13.6985 13.6985i 0.585704 0.585704i −0.350761 0.936465i \(-0.614077\pi\)
0.936465 + 0.350761i \(0.114077\pi\)
\(548\) 0 0
\(549\) −1.56334 −0.0667217
\(550\) 0 0
\(551\) 47.5336i 2.02500i
\(552\) 0 0
\(553\) −11.9997 + 1.68123i −0.510281 + 0.0714934i
\(554\) 0 0
\(555\) −11.2644 3.14057i −0.478147 0.133310i
\(556\) 0 0
\(557\) −13.3482 + 13.3482i −0.565581 + 0.565581i −0.930887 0.365307i \(-0.880964\pi\)
0.365307 + 0.930887i \(0.380964\pi\)
\(558\) 0 0
\(559\) −1.19633 −0.0505995
\(560\) 0 0
\(561\) 7.50382 0.316812
\(562\) 0 0
\(563\) 13.1421 13.1421i 0.553873 0.553873i −0.373683 0.927556i \(-0.621905\pi\)
0.927556 + 0.373683i \(0.121905\pi\)
\(564\) 0 0
\(565\) 3.09970 1.74811i 0.130405 0.0735434i
\(566\) 0 0
\(567\) 0.367100 + 2.62016i 0.0154168 + 0.110036i
\(568\) 0 0
\(569\) 5.34566i 0.224102i 0.993702 + 0.112051i \(0.0357419\pi\)
−0.993702 + 0.112051i \(0.964258\pi\)
\(570\) 0 0
\(571\) 9.81737 0.410844 0.205422 0.978673i \(-0.434143\pi\)
0.205422 + 0.978673i \(0.434143\pi\)
\(572\) 0 0
\(573\) −13.9022 + 13.9022i −0.580775 + 0.580775i
\(574\) 0 0
\(575\) −3.63635 14.7573i −0.151646 0.615422i
\(576\) 0 0
\(577\) −20.6021 20.6021i −0.857678 0.857678i 0.133386 0.991064i \(-0.457415\pi\)
−0.991064 + 0.133386i \(0.957415\pi\)
\(578\) 0 0
\(579\) 21.8352 0.907440
\(580\) 0 0
\(581\) −19.5779 14.7661i −0.812226 0.612600i
\(582\) 0 0
\(583\) 2.81688 + 2.81688i 0.116663 + 0.116663i
\(584\) 0 0
\(585\) 1.01481 0.572313i 0.0419573 0.0236622i
\(586\) 0 0
\(587\) 9.64312 + 9.64312i 0.398014 + 0.398014i 0.877532 0.479518i \(-0.159188\pi\)
−0.479518 + 0.877532i \(0.659188\pi\)
\(588\) 0 0
\(589\) 46.0942i 1.89928i
\(590\) 0 0
\(591\) 3.00766i 0.123719i
\(592\) 0 0
\(593\) 9.48652 9.48652i 0.389565 0.389565i −0.484967 0.874532i \(-0.661169\pi\)
0.874532 + 0.484967i \(0.161169\pi\)
\(594\) 0 0
\(595\) −5.63256 7.36793i −0.230913 0.302056i
\(596\) 0 0
\(597\) 2.79253 2.79253i 0.114291 0.114291i
\(598\) 0 0
\(599\) 6.91294i 0.282455i 0.989977 + 0.141227i \(0.0451049\pi\)
−0.989977 + 0.141227i \(0.954895\pi\)
\(600\) 0 0
\(601\) 6.24955i 0.254924i −0.991843 0.127462i \(-0.959317\pi\)
0.991843 0.127462i \(-0.0406831\pi\)
\(602\) 0 0
\(603\) 6.06196 + 6.06196i 0.246862 + 0.246862i
\(604\) 0 0
\(605\) −7.15375 + 25.6586i −0.290841 + 1.04317i
\(606\) 0 0
\(607\) −3.64513 3.64513i −0.147951 0.147951i 0.629251 0.777202i \(-0.283362\pi\)
−0.777202 + 0.629251i \(0.783362\pi\)
\(608\) 0 0
\(609\) −14.7575 + 19.5666i −0.598006 + 0.792877i
\(610\) 0 0
\(611\) 5.75659 0.232887
\(612\) 0 0
\(613\) −5.81420 5.81420i −0.234833 0.234833i 0.579873 0.814707i \(-0.303102\pi\)
−0.814707 + 0.579873i \(0.803102\pi\)
\(614\) 0 0
\(615\) −3.89290 + 2.19544i −0.156977 + 0.0885287i
\(616\) 0 0
\(617\) −10.6689 + 10.6689i −0.429514 + 0.429514i −0.888463 0.458949i \(-0.848226\pi\)
0.458949 + 0.888463i \(0.348226\pi\)
\(618\) 0 0
\(619\) 10.1962 0.409821 0.204911 0.978781i \(-0.434310\pi\)
0.204911 + 0.978781i \(0.434310\pi\)
\(620\) 0 0
\(621\) 3.03974i 0.121981i
\(622\) 0 0
\(623\) −3.22027 22.9845i −0.129018 0.920856i
\(624\) 0 0
\(625\) 11.6153 + 22.1379i 0.464611 + 0.885515i
\(626\) 0 0
\(627\) −17.3686 + 17.3686i −0.693637 + 0.693637i
\(628\) 0 0
\(629\) −8.19831 −0.326888
\(630\) 0 0
\(631\) −44.6173 −1.77619 −0.888093 0.459664i \(-0.847970\pi\)
−0.888093 + 0.459664i \(0.847970\pi\)
\(632\) 0 0
\(633\) 12.8264 12.8264i 0.509805 0.509805i
\(634\) 0 0
\(635\) 21.8547 + 38.7522i 0.867277 + 1.53783i
\(636\) 0 0
\(637\) −1.77094 + 3.18844i −0.0701671 + 0.126331i
\(638\) 0 0
\(639\) 7.74766i 0.306493i
\(640\) 0 0
\(641\) −38.0232 −1.50182 −0.750912 0.660402i \(-0.770386\pi\)
−0.750912 + 0.660402i \(0.770386\pi\)
\(642\) 0 0
\(643\) 8.15689 8.15689i 0.321676 0.321676i −0.527734 0.849410i \(-0.676958\pi\)
0.849410 + 0.527734i \(0.176958\pi\)
\(644\) 0 0
\(645\) −1.37885 + 4.94556i −0.0542920 + 0.194731i
\(646\) 0 0
\(647\) −11.4123 11.4123i −0.448663 0.448663i 0.446247 0.894910i \(-0.352760\pi\)
−0.894910 + 0.446247i \(0.852760\pi\)
\(648\) 0 0
\(649\) 12.3513 0.484832
\(650\) 0 0
\(651\) −14.3106 + 18.9740i −0.560878 + 0.743650i
\(652\) 0 0
\(653\) −32.4649 32.4649i −1.27045 1.27045i −0.945852 0.324597i \(-0.894771\pi\)
−0.324597 0.945852i \(-0.605229\pi\)
\(654\) 0 0
\(655\) 23.6408 + 6.59117i 0.923722 + 0.257538i
\(656\) 0 0
\(657\) 2.10421 + 2.10421i 0.0820929 + 0.0820929i
\(658\) 0 0
\(659\) 44.2780i 1.72483i −0.506205 0.862413i \(-0.668952\pi\)
0.506205 0.862413i \(-0.331048\pi\)
\(660\) 0 0
\(661\) 9.13975i 0.355495i 0.984076 + 0.177748i \(0.0568811\pi\)
−0.984076 + 0.177748i \(0.943119\pi\)
\(662\) 0 0
\(663\) 0.577561 0.577561i 0.0224306 0.0224306i
\(664\) 0 0
\(665\) 30.0915 + 4.01676i 1.16690 + 0.155763i
\(666\) 0 0
\(667\) −19.9103 + 19.9103i −0.770930 + 0.770930i
\(668\) 0 0
\(669\) 16.3682i 0.632830i
\(670\) 0 0
\(671\) 7.48324i 0.288887i
\(672\) 0 0
\(673\) −21.1984 21.1984i −0.817139 0.817139i 0.168553 0.985693i \(-0.446091\pi\)
−0.985693 + 0.168553i \(0.946091\pi\)
\(674\) 0 0
\(675\) −1.19627 4.85479i −0.0460444 0.186861i
\(676\) 0 0
\(677\) 8.39277 + 8.39277i 0.322560 + 0.322560i 0.849748 0.527188i \(-0.176754\pi\)
−0.527188 + 0.849748i \(0.676754\pi\)
\(678\) 0 0
\(679\) 1.60374 2.12635i 0.0615461 0.0816020i
\(680\) 0 0
\(681\) 15.4849 0.593382
\(682\) 0 0
\(683\) 1.61458 + 1.61458i 0.0617801 + 0.0617801i 0.737322 0.675542i \(-0.236090\pi\)
−0.675542 + 0.737322i \(0.736090\pi\)
\(684\) 0 0
\(685\) −22.5213 39.9343i −0.860496 1.52581i
\(686\) 0 0
\(687\) −8.75816 + 8.75816i −0.334145 + 0.334145i
\(688\) 0 0
\(689\) 0.433624 0.0165198
\(690\) 0 0
\(691\) 42.7439i 1.62605i −0.582226 0.813027i \(-0.697818\pi\)
0.582226 0.813027i \(-0.302182\pi\)
\(692\) 0 0
\(693\) −12.5419 + 1.75720i −0.476428 + 0.0667505i
\(694\) 0 0
\(695\) −6.84023 + 24.5341i −0.259465 + 0.930631i
\(696\) 0 0
\(697\) −2.21557 + 2.21557i −0.0839207 + 0.0839207i
\(698\) 0 0
\(699\) 6.31815 0.238975
\(700\) 0 0
\(701\) 5.34758 0.201975 0.100988 0.994888i \(-0.467800\pi\)
0.100988 + 0.994888i \(0.467800\pi\)
\(702\) 0 0
\(703\) 18.9761 18.9761i 0.715698 0.715698i
\(704\) 0 0
\(705\) 6.63482 23.7973i 0.249882 0.896259i
\(706\) 0 0
\(707\) −21.3964 + 2.99776i −0.804694 + 0.112742i
\(708\) 0 0
\(709\) 2.85514i 0.107227i 0.998562 + 0.0536136i \(0.0170739\pi\)
−0.998562 + 0.0536136i \(0.982926\pi\)
\(710\) 0 0
\(711\) −4.57977 −0.171755
\(712\) 0 0
\(713\) −19.3074 + 19.3074i −0.723067 + 0.723067i
\(714\) 0 0
\(715\) 2.73949 + 4.85760i 0.102451 + 0.181664i
\(716\) 0 0
\(717\) −14.0534 14.0534i −0.524833 0.524833i
\(718\) 0 0
\(719\) −32.1527 −1.19909 −0.599546 0.800340i \(-0.704652\pi\)
−0.599546 + 0.800340i \(0.704652\pi\)
\(720\) 0 0
\(721\) −3.69526 2.78705i −0.137619 0.103795i
\(722\) 0 0
\(723\) 18.2936 + 18.2936i 0.680346 + 0.680346i
\(724\) 0 0
\(725\) 23.9633 39.6344i 0.889974 1.47198i
\(726\) 0 0
\(727\) 4.41008 + 4.41008i 0.163561 + 0.163561i 0.784142 0.620581i \(-0.213103\pi\)
−0.620581 + 0.784142i \(0.713103\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 3.59941i 0.133129i
\(732\) 0 0
\(733\) 32.0676 32.0676i 1.18444 1.18444i 0.205862 0.978581i \(-0.434000\pi\)
0.978581 0.205862i \(-0.0659998\pi\)
\(734\) 0 0
\(735\) 11.1397 + 10.9958i 0.410893 + 0.405586i
\(736\) 0 0
\(737\) −29.0168 + 29.0168i −1.06885 + 1.06885i
\(738\) 0 0
\(739\) 8.17500i 0.300722i −0.988631 0.150361i \(-0.951956\pi\)
0.988631 0.150361i \(-0.0480437\pi\)
\(740\) 0 0
\(741\) 2.67369i 0.0982205i
\(742\) 0 0
\(743\) 6.15599 + 6.15599i 0.225841 + 0.225841i 0.810953 0.585111i \(-0.198949\pi\)
−0.585111 + 0.810953i \(0.698949\pi\)
\(744\) 0 0
\(745\) −23.4886 6.54874i −0.860555 0.239927i
\(746\) 0 0
\(747\) −6.55378 6.55378i −0.239790 0.239790i
\(748\) 0 0
\(749\) −35.9817 27.1382i −1.31474 0.991609i
\(750\) 0 0
\(751\) −35.1964 −1.28433 −0.642167 0.766565i \(-0.721964\pi\)
−0.642167 + 0.766565i \(0.721964\pi\)
\(752\) 0 0
\(753\) −0.460509 0.460509i −0.0167819 0.0167819i
\(754\) 0 0
\(755\) 10.8510 38.9195i 0.394907 1.41642i
\(756\) 0 0
\(757\) −25.1623 + 25.1623i −0.914539 + 0.914539i −0.996625 0.0820858i \(-0.973842\pi\)
0.0820858 + 0.996625i \(0.473842\pi\)
\(758\) 0 0
\(759\) −14.5503 −0.528144
\(760\) 0 0
\(761\) 7.64863i 0.277263i 0.990344 + 0.138631i \(0.0442703\pi\)
−0.990344 + 0.138631i \(0.955730\pi\)
\(762\) 0 0
\(763\) 48.2177 6.75559i 1.74560 0.244569i
\(764\) 0 0
\(765\) −1.72192 3.05327i −0.0622562 0.110391i
\(766\) 0 0
\(767\) 0.950668 0.950668i 0.0343266 0.0343266i
\(768\) 0 0
\(769\) −2.07227 −0.0747281 −0.0373641 0.999302i \(-0.511896\pi\)
−0.0373641 + 0.999302i \(0.511896\pi\)
\(770\) 0 0
\(771\) 11.7632 0.423641
\(772\) 0 0
\(773\) 25.7947 25.7947i 0.927772 0.927772i −0.0697902 0.997562i \(-0.522233\pi\)
0.997562 + 0.0697902i \(0.0222330\pi\)
\(774\) 0 0
\(775\) 23.2376 38.4342i 0.834719 1.38060i
\(776\) 0 0
\(777\) 13.7027 1.91983i 0.491581 0.0688735i
\(778\) 0 0
\(779\) 10.2565i 0.367477i
\(780\) 0 0
\(781\) 37.0857 1.32703
\(782\) 0 0
\(783\) −6.55000 + 6.55000i −0.234078 + 0.234078i
\(784\) 0 0
\(785\) 3.64150 2.05366i 0.129971 0.0732982i
\(786\) 0 0
\(787\) 31.0775 + 31.0775i 1.10779 + 1.10779i 0.993440 + 0.114354i \(0.0364798\pi\)
0.114354 + 0.993440i \(0.463520\pi\)
\(788\) 0 0
\(789\) −11.5887 −0.412569
\(790\) 0 0
\(791\) −2.53547 + 3.36170i −0.0901509 + 0.119528i
\(792\) 0 0
\(793\) −0.575977 0.575977i −0.0204535 0.0204535i
\(794\) 0 0
\(795\) 0.499778 1.79257i 0.0177253 0.0635760i
\(796\) 0 0
\(797\) −21.1554 21.1554i −0.749364 0.749364i 0.224996 0.974360i \(-0.427763\pi\)
−0.974360 + 0.224996i \(0.927763\pi\)
\(798\) 0 0
\(799\) 17.3199i 0.612733i
\(800\) 0 0
\(801\) 8.77219i 0.309950i
\(802\) 0 0
\(803\) −10.0722 + 10.0722i −0.355440 + 0.355440i
\(804\) 0 0
\(805\) 10.9219 + 14.2869i 0.384945 + 0.503545i
\(806\) 0 0
\(807\) −3.44760 + 3.44760i −0.121361 + 0.121361i
\(808\) 0 0
\(809\) 38.1380i 1.34086i −0.741972 0.670430i \(-0.766110\pi\)
0.741972 0.670430i \(-0.233890\pi\)
\(810\) 0 0
\(811\) 12.2397i 0.429794i 0.976637 + 0.214897i \(0.0689416\pi\)
−0.976637 + 0.214897i \(0.931058\pi\)
\(812\) 0 0
\(813\) 13.8357 + 13.8357i 0.485238 + 0.485238i
\(814\) 0 0
\(815\) 32.5126 18.3358i 1.13887 0.642275i
\(816\) 0 0
\(817\) −8.33135 8.33135i −0.291477 0.291477i
\(818\) 0 0
\(819\) −0.830088 + 1.10059i −0.0290056 + 0.0384576i
\(820\) 0 0
\(821\) −7.07229 −0.246824 −0.123412 0.992355i \(-0.539384\pi\)
−0.123412 + 0.992355i \(0.539384\pi\)
\(822\) 0 0
\(823\) −7.10521 7.10521i −0.247672 0.247672i 0.572343 0.820015i \(-0.306035\pi\)
−0.820015 + 0.572343i \(0.806035\pi\)
\(824\) 0 0
\(825\) 23.2384 5.72619i 0.809057 0.199360i
\(826\) 0 0
\(827\) 2.18508 2.18508i 0.0759827 0.0759827i −0.668094 0.744077i \(-0.732890\pi\)
0.744077 + 0.668094i \(0.232890\pi\)
\(828\) 0 0
\(829\) −52.7377 −1.83166 −0.915828 0.401571i \(-0.868464\pi\)
−0.915828 + 0.401571i \(0.868464\pi\)
\(830\) 0 0
\(831\) 15.3067i 0.530983i
\(832\) 0 0
\(833\) 9.59308 + 5.32823i 0.332380 + 0.184612i
\(834\) 0 0
\(835\) 41.0107 23.1284i 1.41923 0.800391i
\(836\) 0 0
\(837\) −6.35165 + 6.35165i −0.219545 + 0.219545i
\(838\) 0 0
\(839\) 53.5395 1.84839 0.924194 0.381924i \(-0.124738\pi\)
0.924194 + 0.381924i \(0.124738\pi\)
\(840\) 0 0
\(841\) −56.8050 −1.95879
\(842\) 0 0
\(843\) 0.342312 0.342312i 0.0117899 0.0117899i
\(844\) 0 0
\(845\) −27.4162 7.64378i −0.943147 0.262954i
\(846\) 0 0
\(847\) −4.37308 31.2127i −0.150261 1.07248i
\(848\) 0 0
\(849\) 24.2780i 0.833220i
\(850\) 0 0
\(851\) 15.8970 0.544942
\(852\) 0 0
\(853\) −5.97907 + 5.97907i −0.204720 + 0.204720i −0.802019 0.597299i \(-0.796241\pi\)
0.597299 + 0.802019i \(0.296241\pi\)
\(854\) 0 0
\(855\) 11.0528 + 3.08159i 0.377999 + 0.105388i
\(856\) 0 0
\(857\) −9.97564 9.97564i −0.340761 0.340761i 0.515892 0.856654i \(-0.327461\pi\)
−0.856654 + 0.515892i \(0.827461\pi\)
\(858\) 0 0
\(859\) −37.8454 −1.29127 −0.645634 0.763647i \(-0.723407\pi\)
−0.645634 + 0.763647i \(0.723407\pi\)
\(860\) 0 0
\(861\) 3.18429 4.22194i 0.108520 0.143883i
\(862\) 0 0
\(863\) −21.4922 21.4922i −0.731602 0.731602i 0.239335 0.970937i \(-0.423071\pi\)
−0.970937 + 0.239335i \(0.923071\pi\)
\(864\) 0 0
\(865\) −22.7073 40.2640i −0.772070 1.36902i
\(866\) 0 0
\(867\) 10.2831 + 10.2831i 0.349233 + 0.349233i
\(868\) 0 0
\(869\) 21.9220i 0.743653i
\(870\) 0 0
\(871\) 4.46678i 0.151351i
\(872\) 0 0
\(873\) 0.711808 0.711808i 0.0240910 0.0240910i
\(874\) 0 0
\(875\) −23.0658 18.5194i −0.779768 0.626069i
\(876\) 0 0
\(877\) −36.6256 + 36.6256i −1.23676 + 1.23676i −0.275438 + 0.961319i \(0.588823\pi\)
−0.961319 + 0.275438i \(0.911177\pi\)
\(878\) 0 0
\(879\) 23.8956i 0.805978i
\(880\) 0 0
\(881\) 48.5757i 1.63656i −0.574822 0.818279i \(-0.694929\pi\)
0.574822 0.818279i \(-0.305071\pi\)
\(882\) 0 0
\(883\) 24.1579 + 24.1579i 0.812977 + 0.812977i 0.985079 0.172102i \(-0.0550558\pi\)
−0.172102 + 0.985079i \(0.555056\pi\)
\(884\) 0 0
\(885\) −2.83429 5.02570i −0.0952736 0.168937i
\(886\) 0 0
\(887\) 31.8432 + 31.8432i 1.06919 + 1.06919i 0.997421 + 0.0717686i \(0.0228643\pi\)
0.0717686 + 0.997421i \(0.477136\pi\)
\(888\) 0 0
\(889\) −42.0277 31.6982i −1.40956 1.06313i
\(890\) 0 0
\(891\) −4.78670 −0.160361
\(892\) 0 0
\(893\) 40.0893 + 40.0893i 1.34154 + 1.34154i
\(894\) 0 0
\(895\) −13.7568 3.83548i −0.459841 0.128206i
\(896\) 0 0
\(897\) −1.11992 + 1.11992i −0.0373932 + 0.0373932i
\(898\) 0 0
\(899\) −83.2065 −2.77509
\(900\) 0 0
\(901\) 1.30465i 0.0434641i
\(902\) 0 0
\(903\) −0.842888 6.01608i −0.0280496 0.200202i
\(904\) 0 0
\(905\) 39.9787 + 11.1463i 1.32894 + 0.370515i
\(906\) 0 0
\(907\) 26.0574 26.0574i 0.865220 0.865220i −0.126718 0.991939i \(-0.540444\pi\)
0.991939 + 0.126718i \(0.0404444\pi\)
\(908\) 0 0
\(909\) −8.16606 −0.270851
\(910\) 0 0
\(911\) −9.08581 −0.301026 −0.150513 0.988608i \(-0.548093\pi\)
−0.150513 + 0.988608i \(0.548093\pi\)
\(912\) 0 0
\(913\) 31.3710 31.3710i 1.03823 1.03823i
\(914\) 0 0
\(915\) −3.04489 + 1.71720i −0.100661 + 0.0567688i
\(916\) 0 0
\(917\) −28.7581 + 4.02918i −0.949676 + 0.133055i
\(918\) 0 0
\(919\) 37.7755i 1.24610i −0.782183 0.623049i \(-0.785894\pi\)
0.782183 0.623049i \(-0.214106\pi\)
\(920\) 0 0
\(921\) −23.7933 −0.784017
\(922\) 0 0
\(923\) 2.85445 2.85445i 0.0939553 0.0939553i
\(924\) 0 0
\(925\) −25.3891 + 6.25615i −0.834790 + 0.205701i
\(926\) 0 0
\(927\) −1.23701 1.23701i −0.0406286 0.0406286i
\(928\) 0 0
\(929\) 20.3341 0.667140 0.333570 0.942725i \(-0.391747\pi\)
0.333570 + 0.942725i \(0.391747\pi\)
\(930\) 0 0
\(931\) −34.5375 + 9.87158i −1.13192 + 0.323528i
\(932\) 0 0
\(933\) −15.1470 15.1470i −0.495891 0.495891i
\(934\) 0 0
\(935\) 14.6151 8.24232i 0.477964 0.269553i
\(936\) 0 0
\(937\) 19.7285 + 19.7285i 0.644502 + 0.644502i 0.951659 0.307157i \(-0.0993777\pi\)
−0.307157 + 0.951659i \(0.599378\pi\)
\(938\) 0 0
\(939\) 12.6878i 0.414052i
\(940\) 0 0
\(941\) 10.4805i 0.341656i −0.985301 0.170828i \(-0.945356\pi\)
0.985301 0.170828i \(-0.0546442\pi\)
\(942\) 0 0
\(943\) 4.29612 4.29612i 0.139901 0.139901i
\(944\) 0 0
\(945\) 3.59302 + 4.70002i 0.116881 + 0.152892i
\(946\) 0 0
\(947\) −27.0886 + 27.0886i −0.880262 + 0.880262i −0.993561 0.113299i \(-0.963858\pi\)
0.113299 + 0.993561i \(0.463858\pi\)
\(948\) 0 0
\(949\) 1.55049i 0.0503311i
\(950\) 0 0
\(951\) 4.95990i 0.160836i
\(952\) 0 0
\(953\) 29.8729 + 29.8729i 0.967679 + 0.967679i 0.999494 0.0318151i \(-0.0101288\pi\)
−0.0318151 + 0.999494i \(0.510129\pi\)
\(954\) 0 0
\(955\) −11.8068 + 42.3477i −0.382057 + 1.37034i
\(956\) 0 0
\(957\) −31.3529 31.3529i −1.01349 1.01349i
\(958\) 0 0
\(959\) 43.3097 + 32.6651i 1.39854 + 1.05481i
\(960\) 0 0
\(961\) −49.6868 −1.60280
\(962\) 0 0
\(963\) −12.0450 12.0450i −0.388146 0.388146i
\(964\) 0 0
\(965\) 42.5281 23.9842i 1.36903 0.772077i
\(966\) 0 0
\(967\) −7.87697 + 7.87697i −0.253306 + 0.253306i −0.822325 0.569019i \(-0.807323\pi\)
0.569019 + 0.822325i \(0.307323\pi\)
\(968\) 0 0
\(969\) 8.04434 0.258422
\(970\) 0 0
\(971\) 44.6424i 1.43264i 0.697770 + 0.716322i \(0.254176\pi\)
−0.697770 + 0.716322i \(0.745824\pi\)
\(972\) 0 0
\(973\) −4.18143 29.8448i −0.134051 0.956779i
\(974\) 0 0
\(975\) 1.34790 2.22937i 0.0431672 0.0713971i
\(976\) 0 0
\(977\) −12.6826 + 12.6826i −0.405754 + 0.405754i −0.880255 0.474501i \(-0.842628\pi\)
0.474501 + 0.880255i \(0.342628\pi\)
\(978\) 0 0
\(979\) 41.9899 1.34200
\(980\) 0 0
\(981\) 18.4026 0.587550
\(982\) 0 0
\(983\) −15.3018 + 15.3018i −0.488051 + 0.488051i −0.907691 0.419640i \(-0.862156\pi\)
0.419640 + 0.907691i \(0.362156\pi\)
\(984\) 0 0
\(985\) −3.30367 5.85798i −0.105264 0.186651i
\(986\) 0 0
\(987\) 4.05586 + 28.9485i 0.129099 + 0.921441i
\(988\) 0 0
\(989\) 6.97947i 0.221934i
\(990\) 0 0
\(991\) 38.4563 1.22160 0.610802 0.791784i \(-0.290847\pi\)
0.610802 + 0.791784i \(0.290847\pi\)
\(992\) 0 0
\(993\) −8.93699 + 8.93699i −0.283607 + 0.283607i
\(994\) 0 0
\(995\) 2.37161 8.50634i 0.0751851 0.269669i
\(996\) 0 0
\(997\) −10.4066 10.4066i −0.329581 0.329581i 0.522846 0.852427i \(-0.324870\pi\)
−0.852427 + 0.522846i \(0.824870\pi\)
\(998\) 0 0
\(999\) 5.22972 0.165461
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bt.b.433.3 yes 24
4.3 odd 2 1680.2.cz.e.433.8 24
5.2 odd 4 840.2.bt.a.97.10 24
7.6 odd 2 840.2.bt.a.433.10 yes 24
20.7 even 4 1680.2.cz.f.97.5 24
28.27 even 2 1680.2.cz.f.433.5 24
35.27 even 4 inner 840.2.bt.b.97.3 yes 24
140.27 odd 4 1680.2.cz.e.97.8 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.10 24 5.2 odd 4
840.2.bt.a.433.10 yes 24 7.6 odd 2
840.2.bt.b.97.3 yes 24 35.27 even 4 inner
840.2.bt.b.433.3 yes 24 1.1 even 1 trivial
1680.2.cz.e.97.8 24 140.27 odd 4
1680.2.cz.e.433.8 24 4.3 odd 2
1680.2.cz.f.97.5 24 20.7 even 4
1680.2.cz.f.433.5 24 28.27 even 2