L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.600 + 2.15i)5-s + (−0.367 − 2.62i)7-s − 1.00i·9-s + 4.78·11-s + (0.368 − 0.368i)13-s + (−1.09 − 1.94i)15-s + (−1.10 − 1.10i)17-s + 5.13·19-s + (2.11 + 1.59i)21-s + (2.14 + 2.14i)23-s + (−4.27 − 2.58i)25-s + (0.707 + 0.707i)27-s + 9.26i·29-s + 8.98i·31-s + ⋯ |
L(s) = 1 | + (−0.408 + 0.408i)3-s + (−0.268 + 0.963i)5-s + (−0.138 − 0.990i)7-s − 0.333i·9-s + 1.44·11-s + (0.102 − 0.102i)13-s + (−0.283 − 0.502i)15-s + (−0.268 − 0.268i)17-s + 1.17·19-s + (0.460 + 0.347i)21-s + (0.448 + 0.448i)23-s + (−0.855 − 0.517i)25-s + (0.136 + 0.136i)27-s + 1.72i·29-s + 1.61i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.633 - 0.773i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.633 - 0.773i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22631 + 0.580716i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22631 + 0.580716i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.600 - 2.15i)T \) |
| 7 | \( 1 + (0.367 + 2.62i)T \) |
good | 11 | \( 1 - 4.78T + 11T^{2} \) |
| 13 | \( 1 + (-0.368 + 0.368i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.10 + 1.10i)T + 17iT^{2} \) |
| 19 | \( 1 - 5.13T + 19T^{2} \) |
| 23 | \( 1 + (-2.14 - 2.14i)T + 23iT^{2} \) |
| 29 | \( 1 - 9.26iT - 29T^{2} \) |
| 31 | \( 1 - 8.98iT - 31T^{2} \) |
| 37 | \( 1 + (-3.69 + 3.69i)T - 37iT^{2} \) |
| 41 | \( 1 + 1.99iT - 41T^{2} \) |
| 43 | \( 1 + (1.62 + 1.62i)T + 43iT^{2} \) |
| 47 | \( 1 + (-7.81 - 7.81i)T + 47iT^{2} \) |
| 53 | \( 1 + (-0.588 - 0.588i)T + 53iT^{2} \) |
| 59 | \( 1 - 2.58T + 59T^{2} \) |
| 61 | \( 1 + 1.56iT - 61T^{2} \) |
| 67 | \( 1 + (6.06 - 6.06i)T - 67iT^{2} \) |
| 71 | \( 1 - 7.74T + 71T^{2} \) |
| 73 | \( 1 + (2.10 - 2.10i)T - 73iT^{2} \) |
| 79 | \( 1 + 4.57iT - 79T^{2} \) |
| 83 | \( 1 + (-6.55 + 6.55i)T - 83iT^{2} \) |
| 89 | \( 1 - 8.77T + 89T^{2} \) |
| 97 | \( 1 + (-0.711 - 0.711i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48051683081908213930200415184, −9.581095481771049949336732382095, −8.837168213067738589648203540185, −7.35056532427540728545325638186, −7.02285713762759900184364179217, −6.09981971142973950749513470758, −4.88505353949197873343004624941, −3.80277557910490561498656481705, −3.19239003193224215253799156396, −1.18816000058293985895881593725,
0.891687608571707782156265141054, 2.21068090929998723833710437958, 3.79996754762648689403489805759, 4.77034652974091645010349964349, 5.80830051216102326408653480574, 6.41005473303773531754844938730, 7.60484659670927000786688250136, 8.446084592663607598475982405802, 9.240767739089976609061148745494, 9.792128727795357197536012646723