Properties

Label 840.2.bg.h.361.1
Level $840$
Weight $2$
Character 840.361
Analytic conductor $6.707$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(121,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bg (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(1.32288 - 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 840.361
Dual form 840.2.bg.h.121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-1.32288 - 2.29129i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(0.822876 - 1.42526i) q^{11} +0.645751 q^{13} -1.00000 q^{15} +(2.82288 - 4.88936i) q^{17} +(-0.500000 - 0.866025i) q^{19} +2.64575 q^{21} +(-0.822876 - 1.42526i) q^{23} +(-0.500000 + 0.866025i) q^{25} +1.00000 q^{27} +3.64575 q^{29} +(2.50000 - 4.33013i) q^{31} +(0.822876 + 1.42526i) q^{33} +(1.32288 - 2.29129i) q^{35} +(1.32288 + 2.29129i) q^{37} +(-0.322876 + 0.559237i) q^{39} +8.93725 q^{41} +0.645751 q^{43} +(0.500000 - 0.866025i) q^{45} +(-4.29150 - 7.43310i) q^{47} +(-3.50000 + 6.06218i) q^{49} +(2.82288 + 4.88936i) q^{51} +(-0.354249 + 0.613577i) q^{53} +1.64575 q^{55} +1.00000 q^{57} +(3.82288 - 6.62141i) q^{59} +(7.29150 + 12.6293i) q^{61} +(-1.32288 + 2.29129i) q^{63} +(0.322876 + 0.559237i) q^{65} +(2.96863 - 5.14181i) q^{67} +1.64575 q^{69} -6.35425 q^{71} +(6.32288 - 10.9515i) q^{73} +(-0.500000 - 0.866025i) q^{75} -4.35425 q^{77} +(6.50000 + 11.2583i) q^{79} +(-0.500000 + 0.866025i) q^{81} -2.93725 q^{83} +5.64575 q^{85} +(-1.82288 + 3.15731i) q^{87} +(-5.46863 - 9.47194i) q^{89} +(-0.854249 - 1.47960i) q^{91} +(2.50000 + 4.33013i) q^{93} +(0.500000 - 0.866025i) q^{95} -14.5830 q^{97} -1.64575 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{5} - 2 q^{9} - 2 q^{11} - 8 q^{13} - 4 q^{15} + 6 q^{17} - 2 q^{19} + 2 q^{23} - 2 q^{25} + 4 q^{27} + 4 q^{29} + 10 q^{31} - 2 q^{33} + 4 q^{39} + 4 q^{41} - 8 q^{43} + 2 q^{45} + 4 q^{47}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −1.32288 2.29129i −0.500000 0.866025i
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 0.822876 1.42526i 0.248106 0.429733i −0.714894 0.699233i \(-0.753525\pi\)
0.963000 + 0.269500i \(0.0868584\pi\)
\(12\) 0 0
\(13\) 0.645751 0.179099 0.0895496 0.995982i \(-0.471457\pi\)
0.0895496 + 0.995982i \(0.471457\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 2.82288 4.88936i 0.684648 1.18584i −0.288899 0.957359i \(-0.593289\pi\)
0.973547 0.228486i \(-0.0733774\pi\)
\(18\) 0 0
\(19\) −0.500000 0.866025i −0.114708 0.198680i 0.802955 0.596040i \(-0.203260\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) 2.64575 0.577350
\(22\) 0 0
\(23\) −0.822876 1.42526i −0.171581 0.297188i 0.767391 0.641179i \(-0.221554\pi\)
−0.938973 + 0.343991i \(0.888221\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.64575 0.676999 0.338500 0.940967i \(-0.390081\pi\)
0.338500 + 0.940967i \(0.390081\pi\)
\(30\) 0 0
\(31\) 2.50000 4.33013i 0.449013 0.777714i −0.549309 0.835619i \(-0.685109\pi\)
0.998322 + 0.0579057i \(0.0184423\pi\)
\(32\) 0 0
\(33\) 0.822876 + 1.42526i 0.143244 + 0.248106i
\(34\) 0 0
\(35\) 1.32288 2.29129i 0.223607 0.387298i
\(36\) 0 0
\(37\) 1.32288 + 2.29129i 0.217479 + 0.376685i 0.954037 0.299690i \(-0.0968832\pi\)
−0.736557 + 0.676375i \(0.763550\pi\)
\(38\) 0 0
\(39\) −0.322876 + 0.559237i −0.0517015 + 0.0895496i
\(40\) 0 0
\(41\) 8.93725 1.39576 0.697882 0.716212i \(-0.254126\pi\)
0.697882 + 0.716212i \(0.254126\pi\)
\(42\) 0 0
\(43\) 0.645751 0.0984762 0.0492381 0.998787i \(-0.484321\pi\)
0.0492381 + 0.998787i \(0.484321\pi\)
\(44\) 0 0
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) 0 0
\(47\) −4.29150 7.43310i −0.625980 1.08423i −0.988350 0.152195i \(-0.951366\pi\)
0.362370 0.932034i \(-0.381968\pi\)
\(48\) 0 0
\(49\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(50\) 0 0
\(51\) 2.82288 + 4.88936i 0.395282 + 0.684648i
\(52\) 0 0
\(53\) −0.354249 + 0.613577i −0.0486598 + 0.0842812i −0.889329 0.457267i \(-0.848828\pi\)
0.840670 + 0.541548i \(0.182162\pi\)
\(54\) 0 0
\(55\) 1.64575 0.221913
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) 3.82288 6.62141i 0.497696 0.862035i −0.502300 0.864693i \(-0.667513\pi\)
0.999996 + 0.00265837i \(0.000846186\pi\)
\(60\) 0 0
\(61\) 7.29150 + 12.6293i 0.933581 + 1.61701i 0.777145 + 0.629322i \(0.216667\pi\)
0.156437 + 0.987688i \(0.449999\pi\)
\(62\) 0 0
\(63\) −1.32288 + 2.29129i −0.166667 + 0.288675i
\(64\) 0 0
\(65\) 0.322876 + 0.559237i 0.0400478 + 0.0693648i
\(66\) 0 0
\(67\) 2.96863 5.14181i 0.362676 0.628172i −0.625725 0.780044i \(-0.715197\pi\)
0.988400 + 0.151872i \(0.0485300\pi\)
\(68\) 0 0
\(69\) 1.64575 0.198125
\(70\) 0 0
\(71\) −6.35425 −0.754111 −0.377055 0.926191i \(-0.623063\pi\)
−0.377055 + 0.926191i \(0.623063\pi\)
\(72\) 0 0
\(73\) 6.32288 10.9515i 0.740037 1.28178i −0.212441 0.977174i \(-0.568141\pi\)
0.952478 0.304607i \(-0.0985252\pi\)
\(74\) 0 0
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) 0 0
\(77\) −4.35425 −0.496213
\(78\) 0 0
\(79\) 6.50000 + 11.2583i 0.731307 + 1.26666i 0.956325 + 0.292306i \(0.0944227\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −2.93725 −0.322406 −0.161203 0.986921i \(-0.551537\pi\)
−0.161203 + 0.986921i \(0.551537\pi\)
\(84\) 0 0
\(85\) 5.64575 0.612368
\(86\) 0 0
\(87\) −1.82288 + 3.15731i −0.195433 + 0.338500i
\(88\) 0 0
\(89\) −5.46863 9.47194i −0.579673 1.00402i −0.995517 0.0945873i \(-0.969847\pi\)
0.415843 0.909436i \(-0.363486\pi\)
\(90\) 0 0
\(91\) −0.854249 1.47960i −0.0895496 0.155104i
\(92\) 0 0
\(93\) 2.50000 + 4.33013i 0.259238 + 0.449013i
\(94\) 0 0
\(95\) 0.500000 0.866025i 0.0512989 0.0888523i
\(96\) 0 0
\(97\) −14.5830 −1.48068 −0.740340 0.672233i \(-0.765335\pi\)
−0.740340 + 0.672233i \(0.765335\pi\)
\(98\) 0 0
\(99\) −1.64575 −0.165404
\(100\) 0 0
\(101\) 8.46863 14.6681i 0.842660 1.45953i −0.0449782 0.998988i \(-0.514322\pi\)
0.887638 0.460542i \(-0.152345\pi\)
\(102\) 0 0
\(103\) −0.677124 1.17281i −0.0667190 0.115561i 0.830736 0.556666i \(-0.187920\pi\)
−0.897455 + 0.441106i \(0.854586\pi\)
\(104\) 0 0
\(105\) 1.32288 + 2.29129i 0.129099 + 0.223607i
\(106\) 0 0
\(107\) −6.11438 10.5904i −0.591099 1.02381i −0.994085 0.108608i \(-0.965361\pi\)
0.402985 0.915206i \(-0.367973\pi\)
\(108\) 0 0
\(109\) −0.791503 + 1.37092i −0.0758122 + 0.131311i −0.901439 0.432906i \(-0.857488\pi\)
0.825627 + 0.564216i \(0.190822\pi\)
\(110\) 0 0
\(111\) −2.64575 −0.251124
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 0.822876 1.42526i 0.0767336 0.132906i
\(116\) 0 0
\(117\) −0.322876 0.559237i −0.0298499 0.0517015i
\(118\) 0 0
\(119\) −14.9373 −1.36930
\(120\) 0 0
\(121\) 4.14575 + 7.18065i 0.376886 + 0.652787i
\(122\) 0 0
\(123\) −4.46863 + 7.73989i −0.402923 + 0.697882i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −7.22876 −0.641448 −0.320724 0.947173i \(-0.603926\pi\)
−0.320724 + 0.947173i \(0.603926\pi\)
\(128\) 0 0
\(129\) −0.322876 + 0.559237i −0.0284276 + 0.0492381i
\(130\) 0 0
\(131\) 4.64575 + 8.04668i 0.405901 + 0.703041i 0.994426 0.105438i \(-0.0336244\pi\)
−0.588525 + 0.808479i \(0.700291\pi\)
\(132\) 0 0
\(133\) −1.32288 + 2.29129i −0.114708 + 0.198680i
\(134\) 0 0
\(135\) 0.500000 + 0.866025i 0.0430331 + 0.0745356i
\(136\) 0 0
\(137\) −1.17712 + 2.03884i −0.100569 + 0.174190i −0.911919 0.410370i \(-0.865399\pi\)
0.811351 + 0.584560i \(0.198733\pi\)
\(138\) 0 0
\(139\) −3.70850 −0.314551 −0.157275 0.987555i \(-0.550271\pi\)
−0.157275 + 0.987555i \(0.550271\pi\)
\(140\) 0 0
\(141\) 8.58301 0.722819
\(142\) 0 0
\(143\) 0.531373 0.920365i 0.0444356 0.0769648i
\(144\) 0 0
\(145\) 1.82288 + 3.15731i 0.151382 + 0.262201i
\(146\) 0 0
\(147\) −3.50000 6.06218i −0.288675 0.500000i
\(148\) 0 0
\(149\) −3.29150 5.70105i −0.269650 0.467048i 0.699121 0.715003i \(-0.253575\pi\)
−0.968772 + 0.247955i \(0.920241\pi\)
\(150\) 0 0
\(151\) −8.29150 + 14.3613i −0.674753 + 1.16871i 0.301788 + 0.953375i \(0.402416\pi\)
−0.976541 + 0.215331i \(0.930917\pi\)
\(152\) 0 0
\(153\) −5.64575 −0.456432
\(154\) 0 0
\(155\) 5.00000 0.401610
\(156\) 0 0
\(157\) −5.93725 + 10.2836i −0.473844 + 0.820723i −0.999552 0.0299429i \(-0.990467\pi\)
0.525707 + 0.850666i \(0.323801\pi\)
\(158\) 0 0
\(159\) −0.354249 0.613577i −0.0280937 0.0486598i
\(160\) 0 0
\(161\) −2.17712 + 3.77089i −0.171581 + 0.297188i
\(162\) 0 0
\(163\) 4.00000 + 6.92820i 0.313304 + 0.542659i 0.979076 0.203497i \(-0.0652307\pi\)
−0.665771 + 0.746156i \(0.731897\pi\)
\(164\) 0 0
\(165\) −0.822876 + 1.42526i −0.0640608 + 0.110957i
\(166\) 0 0
\(167\) −17.5203 −1.35576 −0.677879 0.735173i \(-0.737101\pi\)
−0.677879 + 0.735173i \(0.737101\pi\)
\(168\) 0 0
\(169\) −12.5830 −0.967923
\(170\) 0 0
\(171\) −0.500000 + 0.866025i −0.0382360 + 0.0662266i
\(172\) 0 0
\(173\) 0.354249 + 0.613577i 0.0269330 + 0.0466494i 0.879178 0.476494i \(-0.158093\pi\)
−0.852245 + 0.523143i \(0.824759\pi\)
\(174\) 0 0
\(175\) 2.64575 0.200000
\(176\) 0 0
\(177\) 3.82288 + 6.62141i 0.287345 + 0.497696i
\(178\) 0 0
\(179\) −3.00000 + 5.19615i −0.224231 + 0.388379i −0.956088 0.293079i \(-0.905320\pi\)
0.731858 + 0.681457i \(0.238654\pi\)
\(180\) 0 0
\(181\) −20.2915 −1.50826 −0.754128 0.656728i \(-0.771940\pi\)
−0.754128 + 0.656728i \(0.771940\pi\)
\(182\) 0 0
\(183\) −14.5830 −1.07801
\(184\) 0 0
\(185\) −1.32288 + 2.29129i −0.0972598 + 0.168459i
\(186\) 0 0
\(187\) −4.64575 8.04668i −0.339731 0.588431i
\(188\) 0 0
\(189\) −1.32288 2.29129i −0.0962250 0.166667i
\(190\) 0 0
\(191\) 10.2915 + 17.8254i 0.744667 + 1.28980i 0.950350 + 0.311182i \(0.100725\pi\)
−0.205683 + 0.978619i \(0.565942\pi\)
\(192\) 0 0
\(193\) 4.96863 8.60591i 0.357650 0.619467i −0.629918 0.776662i \(-0.716912\pi\)
0.987568 + 0.157194i \(0.0502449\pi\)
\(194\) 0 0
\(195\) −0.645751 −0.0462432
\(196\) 0 0
\(197\) 7.06275 0.503200 0.251600 0.967831i \(-0.419043\pi\)
0.251600 + 0.967831i \(0.419043\pi\)
\(198\) 0 0
\(199\) −2.29150 + 3.96900i −0.162440 + 0.281355i −0.935743 0.352682i \(-0.885270\pi\)
0.773303 + 0.634037i \(0.218603\pi\)
\(200\) 0 0
\(201\) 2.96863 + 5.14181i 0.209391 + 0.362676i
\(202\) 0 0
\(203\) −4.82288 8.35347i −0.338500 0.586298i
\(204\) 0 0
\(205\) 4.46863 + 7.73989i 0.312102 + 0.540577i
\(206\) 0 0
\(207\) −0.822876 + 1.42526i −0.0571938 + 0.0990626i
\(208\) 0 0
\(209\) −1.64575 −0.113839
\(210\) 0 0
\(211\) 16.5830 1.14162 0.570811 0.821082i \(-0.306629\pi\)
0.570811 + 0.821082i \(0.306629\pi\)
\(212\) 0 0
\(213\) 3.17712 5.50294i 0.217693 0.377055i
\(214\) 0 0
\(215\) 0.322876 + 0.559237i 0.0220199 + 0.0381396i
\(216\) 0 0
\(217\) −13.2288 −0.898027
\(218\) 0 0
\(219\) 6.32288 + 10.9515i 0.427260 + 0.740037i
\(220\) 0 0
\(221\) 1.82288 3.15731i 0.122620 0.212384i
\(222\) 0 0
\(223\) 3.29150 0.220415 0.110208 0.993909i \(-0.464848\pi\)
0.110208 + 0.993909i \(0.464848\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 3.46863 6.00784i 0.230221 0.398754i −0.727652 0.685946i \(-0.759388\pi\)
0.957873 + 0.287192i \(0.0927218\pi\)
\(228\) 0 0
\(229\) −3.79150 6.56708i −0.250550 0.433965i 0.713128 0.701034i \(-0.247278\pi\)
−0.963677 + 0.267070i \(0.913945\pi\)
\(230\) 0 0
\(231\) 2.17712 3.77089i 0.143244 0.248106i
\(232\) 0 0
\(233\) −4.64575 8.04668i −0.304353 0.527155i 0.672764 0.739857i \(-0.265107\pi\)
−0.977117 + 0.212702i \(0.931774\pi\)
\(234\) 0 0
\(235\) 4.29150 7.43310i 0.279947 0.484882i
\(236\) 0 0
\(237\) −13.0000 −0.844441
\(238\) 0 0
\(239\) −8.58301 −0.555188 −0.277594 0.960698i \(-0.589537\pi\)
−0.277594 + 0.960698i \(0.589537\pi\)
\(240\) 0 0
\(241\) −8.93725 + 15.4798i −0.575699 + 0.997140i 0.420266 + 0.907401i \(0.361937\pi\)
−0.995965 + 0.0897393i \(0.971397\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) −7.00000 −0.447214
\(246\) 0 0
\(247\) −0.322876 0.559237i −0.0205441 0.0355834i
\(248\) 0 0
\(249\) 1.46863 2.54374i 0.0930705 0.161203i
\(250\) 0 0
\(251\) 28.8118 1.81858 0.909291 0.416161i \(-0.136625\pi\)
0.909291 + 0.416161i \(0.136625\pi\)
\(252\) 0 0
\(253\) −2.70850 −0.170282
\(254\) 0 0
\(255\) −2.82288 + 4.88936i −0.176775 + 0.306184i
\(256\) 0 0
\(257\) 9.11438 + 15.7866i 0.568539 + 0.984739i 0.996711 + 0.0810414i \(0.0258246\pi\)
−0.428171 + 0.903698i \(0.640842\pi\)
\(258\) 0 0
\(259\) 3.50000 6.06218i 0.217479 0.376685i
\(260\) 0 0
\(261\) −1.82288 3.15731i −0.112833 0.195433i
\(262\) 0 0
\(263\) −14.9373 + 25.8721i −0.921071 + 1.59534i −0.123309 + 0.992368i \(0.539351\pi\)
−0.797762 + 0.602973i \(0.793983\pi\)
\(264\) 0 0
\(265\) −0.708497 −0.0435226
\(266\) 0 0
\(267\) 10.9373 0.669349
\(268\) 0 0
\(269\) 12.6458 21.9031i 0.771025 1.33545i −0.165977 0.986130i \(-0.553078\pi\)
0.937002 0.349325i \(-0.113589\pi\)
\(270\) 0 0
\(271\) 1.00000 + 1.73205i 0.0607457 + 0.105215i 0.894799 0.446469i \(-0.147319\pi\)
−0.834053 + 0.551684i \(0.813985\pi\)
\(272\) 0 0
\(273\) 1.70850 0.103403
\(274\) 0 0
\(275\) 0.822876 + 1.42526i 0.0496213 + 0.0859466i
\(276\) 0 0
\(277\) −9.90588 + 17.1575i −0.595187 + 1.03089i 0.398334 + 0.917241i \(0.369589\pi\)
−0.993520 + 0.113653i \(0.963745\pi\)
\(278\) 0 0
\(279\) −5.00000 −0.299342
\(280\) 0 0
\(281\) 12.0000 0.715860 0.357930 0.933748i \(-0.383483\pi\)
0.357930 + 0.933748i \(0.383483\pi\)
\(282\) 0 0
\(283\) 13.9059 24.0857i 0.826619 1.43175i −0.0740570 0.997254i \(-0.523595\pi\)
0.900676 0.434492i \(-0.143072\pi\)
\(284\) 0 0
\(285\) 0.500000 + 0.866025i 0.0296174 + 0.0512989i
\(286\) 0 0
\(287\) −11.8229 20.4778i −0.697882 1.20877i
\(288\) 0 0
\(289\) −7.43725 12.8817i −0.437486 0.757747i
\(290\) 0 0
\(291\) 7.29150 12.6293i 0.427435 0.740340i
\(292\) 0 0
\(293\) −24.0000 −1.40209 −0.701047 0.713115i \(-0.747284\pi\)
−0.701047 + 0.713115i \(0.747284\pi\)
\(294\) 0 0
\(295\) 7.64575 0.445153
\(296\) 0 0
\(297\) 0.822876 1.42526i 0.0477481 0.0827021i
\(298\) 0 0
\(299\) −0.531373 0.920365i −0.0307301 0.0532261i
\(300\) 0 0
\(301\) −0.854249 1.47960i −0.0492381 0.0852828i
\(302\) 0 0
\(303\) 8.46863 + 14.6681i 0.486510 + 0.842660i
\(304\) 0 0
\(305\) −7.29150 + 12.6293i −0.417510 + 0.723149i
\(306\) 0 0
\(307\) −4.06275 −0.231873 −0.115937 0.993257i \(-0.536987\pi\)
−0.115937 + 0.993257i \(0.536987\pi\)
\(308\) 0 0
\(309\) 1.35425 0.0770405
\(310\) 0 0
\(311\) 9.17712 15.8952i 0.520387 0.901337i −0.479332 0.877634i \(-0.659121\pi\)
0.999719 0.0237031i \(-0.00754563\pi\)
\(312\) 0 0
\(313\) 2.38562 + 4.13202i 0.134843 + 0.233555i 0.925538 0.378656i \(-0.123614\pi\)
−0.790694 + 0.612211i \(0.790280\pi\)
\(314\) 0 0
\(315\) −2.64575 −0.149071
\(316\) 0 0
\(317\) 2.11438 + 3.66221i 0.118755 + 0.205690i 0.919275 0.393617i \(-0.128776\pi\)
−0.800519 + 0.599307i \(0.795443\pi\)
\(318\) 0 0
\(319\) 3.00000 5.19615i 0.167968 0.290929i
\(320\) 0 0
\(321\) 12.2288 0.682543
\(322\) 0 0
\(323\) −5.64575 −0.314138
\(324\) 0 0
\(325\) −0.322876 + 0.559237i −0.0179099 + 0.0310209i
\(326\) 0 0
\(327\) −0.791503 1.37092i −0.0437702 0.0758122i
\(328\) 0 0
\(329\) −11.3542 + 19.6661i −0.625980 + 1.08423i
\(330\) 0 0
\(331\) 11.1458 + 19.3050i 0.612626 + 1.06110i 0.990796 + 0.135363i \(0.0432201\pi\)
−0.378170 + 0.925736i \(0.623447\pi\)
\(332\) 0 0
\(333\) 1.32288 2.29129i 0.0724931 0.125562i
\(334\) 0 0
\(335\) 5.93725 0.324387
\(336\) 0 0
\(337\) 2.06275 0.112365 0.0561825 0.998421i \(-0.482107\pi\)
0.0561825 + 0.998421i \(0.482107\pi\)
\(338\) 0 0
\(339\) −1.00000 + 1.73205i −0.0543125 + 0.0940721i
\(340\) 0 0
\(341\) −4.11438 7.12631i −0.222806 0.385911i
\(342\) 0 0
\(343\) 18.5203 1.00000
\(344\) 0 0
\(345\) 0.822876 + 1.42526i 0.0443021 + 0.0767336i
\(346\) 0 0
\(347\) −2.70850 + 4.69126i −0.145400 + 0.251840i −0.929522 0.368767i \(-0.879780\pi\)
0.784122 + 0.620606i \(0.213113\pi\)
\(348\) 0 0
\(349\) −15.1660 −0.811818 −0.405909 0.913914i \(-0.633045\pi\)
−0.405909 + 0.913914i \(0.633045\pi\)
\(350\) 0 0
\(351\) 0.645751 0.0344677
\(352\) 0 0
\(353\) 6.17712 10.6991i 0.328775 0.569455i −0.653494 0.756932i \(-0.726698\pi\)
0.982269 + 0.187476i \(0.0600308\pi\)
\(354\) 0 0
\(355\) −3.17712 5.50294i −0.168624 0.292066i
\(356\) 0 0
\(357\) 7.46863 12.9360i 0.395282 0.684648i
\(358\) 0 0
\(359\) 15.1144 + 26.1789i 0.797706 + 1.38167i 0.921106 + 0.389311i \(0.127287\pi\)
−0.123400 + 0.992357i \(0.539380\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 0 0
\(363\) −8.29150 −0.435191
\(364\) 0 0
\(365\) 12.6458 0.661909
\(366\) 0 0
\(367\) −1.03137 + 1.78639i −0.0538372 + 0.0932488i −0.891688 0.452650i \(-0.850479\pi\)
0.837851 + 0.545899i \(0.183812\pi\)
\(368\) 0 0
\(369\) −4.46863 7.73989i −0.232627 0.402923i
\(370\) 0 0
\(371\) 1.87451 0.0973196
\(372\) 0 0
\(373\) 7.03137 + 12.1787i 0.364071 + 0.630589i 0.988627 0.150391i \(-0.0480533\pi\)
−0.624556 + 0.780980i \(0.714720\pi\)
\(374\) 0 0
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) 0 0
\(377\) 2.35425 0.121250
\(378\) 0 0
\(379\) 14.1660 0.727659 0.363830 0.931466i \(-0.381469\pi\)
0.363830 + 0.931466i \(0.381469\pi\)
\(380\) 0 0
\(381\) 3.61438 6.26029i 0.185170 0.320724i
\(382\) 0 0
\(383\) 10.9373 + 18.9439i 0.558868 + 0.967987i 0.997591 + 0.0693651i \(0.0220973\pi\)
−0.438724 + 0.898622i \(0.644569\pi\)
\(384\) 0 0
\(385\) −2.17712 3.77089i −0.110957 0.192182i
\(386\) 0 0
\(387\) −0.322876 0.559237i −0.0164127 0.0284276i
\(388\) 0 0
\(389\) 9.40588 16.2915i 0.476897 0.826010i −0.522752 0.852485i \(-0.675095\pi\)
0.999649 + 0.0264746i \(0.00842810\pi\)
\(390\) 0 0
\(391\) −9.29150 −0.469891
\(392\) 0 0
\(393\) −9.29150 −0.468694
\(394\) 0 0
\(395\) −6.50000 + 11.2583i −0.327050 + 0.566468i
\(396\) 0 0
\(397\) 15.3229 + 26.5400i 0.769033 + 1.33200i 0.938088 + 0.346398i \(0.112595\pi\)
−0.169055 + 0.985607i \(0.554071\pi\)
\(398\) 0 0
\(399\) −1.32288 2.29129i −0.0662266 0.114708i
\(400\) 0 0
\(401\) −10.3542 17.9341i −0.517067 0.895585i −0.999804 0.0198201i \(-0.993691\pi\)
0.482737 0.875765i \(-0.339643\pi\)
\(402\) 0 0
\(403\) 1.61438 2.79619i 0.0804179 0.139288i
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 4.35425 0.215832
\(408\) 0 0
\(409\) 17.3745 30.0935i 0.859114 1.48803i −0.0136609 0.999907i \(-0.504349\pi\)
0.872775 0.488123i \(-0.162318\pi\)
\(410\) 0 0
\(411\) −1.17712 2.03884i −0.0580633 0.100569i
\(412\) 0 0
\(413\) −20.2288 −0.995392
\(414\) 0 0
\(415\) −1.46863 2.54374i −0.0720921 0.124867i
\(416\) 0 0
\(417\) 1.85425 3.21165i 0.0908029 0.157275i
\(418\) 0 0
\(419\) 14.7085 0.718557 0.359279 0.933230i \(-0.383023\pi\)
0.359279 + 0.933230i \(0.383023\pi\)
\(420\) 0 0
\(421\) −11.5830 −0.564521 −0.282261 0.959338i \(-0.591084\pi\)
−0.282261 + 0.959338i \(0.591084\pi\)
\(422\) 0 0
\(423\) −4.29150 + 7.43310i −0.208660 + 0.361410i
\(424\) 0 0
\(425\) 2.82288 + 4.88936i 0.136930 + 0.237169i
\(426\) 0 0
\(427\) 19.2915 33.4139i 0.933581 1.61701i
\(428\) 0 0
\(429\) 0.531373 + 0.920365i 0.0256549 + 0.0444356i
\(430\) 0 0
\(431\) −10.6458 + 18.4390i −0.512788 + 0.888175i 0.487102 + 0.873345i \(0.338054\pi\)
−0.999890 + 0.0148296i \(0.995279\pi\)
\(432\) 0 0
\(433\) −2.77124 −0.133177 −0.0665887 0.997781i \(-0.521212\pi\)
−0.0665887 + 0.997781i \(0.521212\pi\)
\(434\) 0 0
\(435\) −3.64575 −0.174800
\(436\) 0 0
\(437\) −0.822876 + 1.42526i −0.0393635 + 0.0681795i
\(438\) 0 0
\(439\) −15.3542 26.5943i −0.732818 1.26928i −0.955674 0.294427i \(-0.904871\pi\)
0.222856 0.974851i \(-0.428462\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 0 0
\(443\) −11.6458 20.1710i −0.553306 0.958355i −0.998033 0.0626884i \(-0.980033\pi\)
0.444727 0.895666i \(-0.353301\pi\)
\(444\) 0 0
\(445\) 5.46863 9.47194i 0.259238 0.449013i
\(446\) 0 0
\(447\) 6.58301 0.311365
\(448\) 0 0
\(449\) 12.5830 0.593829 0.296914 0.954904i \(-0.404042\pi\)
0.296914 + 0.954904i \(0.404042\pi\)
\(450\) 0 0
\(451\) 7.35425 12.7379i 0.346298 0.599806i
\(452\) 0 0
\(453\) −8.29150 14.3613i −0.389569 0.674753i
\(454\) 0 0
\(455\) 0.854249 1.47960i 0.0400478 0.0693648i
\(456\) 0 0
\(457\) −17.6144 30.5090i −0.823966 1.42715i −0.902707 0.430256i \(-0.858423\pi\)
0.0787412 0.996895i \(-0.474910\pi\)
\(458\) 0 0
\(459\) 2.82288 4.88936i 0.131761 0.228216i
\(460\) 0 0
\(461\) −7.64575 −0.356098 −0.178049 0.984022i \(-0.556979\pi\)
−0.178049 + 0.984022i \(0.556979\pi\)
\(462\) 0 0
\(463\) 25.1033 1.16665 0.583324 0.812240i \(-0.301752\pi\)
0.583324 + 0.812240i \(0.301752\pi\)
\(464\) 0 0
\(465\) −2.50000 + 4.33013i −0.115935 + 0.200805i
\(466\) 0 0
\(467\) 11.0000 + 19.0526i 0.509019 + 0.881647i 0.999945 + 0.0104461i \(0.00332515\pi\)
−0.490926 + 0.871201i \(0.663342\pi\)
\(468\) 0 0
\(469\) −15.7085 −0.725351
\(470\) 0 0
\(471\) −5.93725 10.2836i −0.273574 0.473844i
\(472\) 0 0
\(473\) 0.531373 0.920365i 0.0244326 0.0423184i
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) 0.708497 0.0324399
\(478\) 0 0
\(479\) −5.29150 + 9.16515i −0.241775 + 0.418766i −0.961220 0.275783i \(-0.911063\pi\)
0.719445 + 0.694549i \(0.244396\pi\)
\(480\) 0 0
\(481\) 0.854249 + 1.47960i 0.0389504 + 0.0674641i
\(482\) 0 0
\(483\) −2.17712 3.77089i −0.0990626 0.171581i
\(484\) 0 0
\(485\) −7.29150 12.6293i −0.331090 0.573465i
\(486\) 0 0
\(487\) −10.6771 + 18.4933i −0.483827 + 0.838012i −0.999827 0.0185757i \(-0.994087\pi\)
0.516001 + 0.856588i \(0.327420\pi\)
\(488\) 0 0
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) 28.4575 1.28427 0.642135 0.766592i \(-0.278049\pi\)
0.642135 + 0.766592i \(0.278049\pi\)
\(492\) 0 0
\(493\) 10.2915 17.8254i 0.463506 0.802816i
\(494\) 0 0
\(495\) −0.822876 1.42526i −0.0369855 0.0640608i
\(496\) 0 0
\(497\) 8.40588 + 14.5594i 0.377055 + 0.653079i
\(498\) 0 0
\(499\) 15.7915 + 27.3517i 0.706925 + 1.22443i 0.965992 + 0.258570i \(0.0832514\pi\)
−0.259068 + 0.965859i \(0.583415\pi\)
\(500\) 0 0
\(501\) 8.76013 15.1730i 0.391374 0.677879i
\(502\) 0 0
\(503\) 41.2915 1.84110 0.920549 0.390628i \(-0.127742\pi\)
0.920549 + 0.390628i \(0.127742\pi\)
\(504\) 0 0
\(505\) 16.9373 0.753698
\(506\) 0 0
\(507\) 6.29150 10.8972i 0.279415 0.483962i
\(508\) 0 0
\(509\) 7.93725 + 13.7477i 0.351813 + 0.609357i 0.986567 0.163357i \(-0.0522321\pi\)
−0.634754 + 0.772714i \(0.718899\pi\)
\(510\) 0 0
\(511\) −33.4575 −1.48007
\(512\) 0 0
\(513\) −0.500000 0.866025i −0.0220755 0.0382360i
\(514\) 0 0
\(515\) 0.677124 1.17281i 0.0298377 0.0516803i
\(516\) 0 0
\(517\) −14.1255 −0.621238
\(518\) 0 0
\(519\) −0.708497 −0.0310996
\(520\) 0 0
\(521\) −8.35425 + 14.4700i −0.366006 + 0.633941i −0.988937 0.148335i \(-0.952608\pi\)
0.622931 + 0.782277i \(0.285942\pi\)
\(522\) 0 0
\(523\) −3.61438 6.26029i −0.158046 0.273743i 0.776118 0.630588i \(-0.217186\pi\)
−0.934164 + 0.356844i \(0.883853\pi\)
\(524\) 0 0
\(525\) −1.32288 + 2.29129i −0.0577350 + 0.100000i
\(526\) 0 0
\(527\) −14.1144 24.4468i −0.614832 1.06492i
\(528\) 0 0
\(529\) 10.1458 17.5730i 0.441120 0.764042i
\(530\) 0 0
\(531\) −7.64575 −0.331797
\(532\) 0 0
\(533\) 5.77124 0.249980
\(534\) 0 0
\(535\) 6.11438 10.5904i 0.264348 0.457864i
\(536\) 0 0
\(537\) −3.00000 5.19615i −0.129460 0.224231i
\(538\) 0 0
\(539\) 5.76013 + 9.97684i 0.248106 + 0.429733i
\(540\) 0 0
\(541\) 15.5000 + 26.8468i 0.666397 + 1.15423i 0.978905 + 0.204318i \(0.0654977\pi\)
−0.312507 + 0.949915i \(0.601169\pi\)
\(542\) 0 0
\(543\) 10.1458 17.5730i 0.435396 0.754128i
\(544\) 0 0
\(545\) −1.58301 −0.0678085
\(546\) 0 0
\(547\) 35.2915 1.50896 0.754478 0.656326i \(-0.227890\pi\)
0.754478 + 0.656326i \(0.227890\pi\)
\(548\) 0 0
\(549\) 7.29150 12.6293i 0.311194 0.539003i
\(550\) 0 0
\(551\) −1.82288 3.15731i −0.0776571 0.134506i
\(552\) 0 0
\(553\) 17.1974 29.7867i 0.731307 1.26666i
\(554\) 0 0
\(555\) −1.32288 2.29129i −0.0561529 0.0972598i
\(556\) 0 0
\(557\) −10.2915 + 17.8254i −0.436065 + 0.755287i −0.997382 0.0723143i \(-0.976962\pi\)
0.561317 + 0.827601i \(0.310295\pi\)
\(558\) 0 0
\(559\) 0.416995 0.0176370
\(560\) 0 0
\(561\) 9.29150 0.392288
\(562\) 0 0
\(563\) −5.58301 + 9.67005i −0.235296 + 0.407544i −0.959359 0.282190i \(-0.908939\pi\)
0.724063 + 0.689734i \(0.242272\pi\)
\(564\) 0 0
\(565\) 1.00000 + 1.73205i 0.0420703 + 0.0728679i
\(566\) 0 0
\(567\) 2.64575 0.111111
\(568\) 0 0
\(569\) −5.53137 9.58062i −0.231887 0.401640i 0.726476 0.687192i \(-0.241157\pi\)
−0.958363 + 0.285551i \(0.907823\pi\)
\(570\) 0 0
\(571\) −18.5000 + 32.0429i −0.774201 + 1.34096i 0.161042 + 0.986948i \(0.448515\pi\)
−0.935243 + 0.354008i \(0.884819\pi\)
\(572\) 0 0
\(573\) −20.5830 −0.859867
\(574\) 0 0
\(575\) 1.64575 0.0686326
\(576\) 0 0
\(577\) −22.9686 + 39.7828i −0.956196 + 1.65618i −0.224590 + 0.974453i \(0.572104\pi\)
−0.731606 + 0.681728i \(0.761229\pi\)
\(578\) 0 0
\(579\) 4.96863 + 8.60591i 0.206489 + 0.357650i
\(580\) 0 0
\(581\) 3.88562 + 6.73009i 0.161203 + 0.279211i
\(582\) 0 0
\(583\) 0.583005 + 1.00979i 0.0241456 + 0.0418214i
\(584\) 0 0
\(585\) 0.322876 0.559237i 0.0133493 0.0231216i
\(586\) 0 0
\(587\) 19.5203 0.805687 0.402844 0.915269i \(-0.368022\pi\)
0.402844 + 0.915269i \(0.368022\pi\)
\(588\) 0 0
\(589\) −5.00000 −0.206021
\(590\) 0 0
\(591\) −3.53137 + 6.11652i −0.145261 + 0.251600i
\(592\) 0 0
\(593\) 15.1144 + 26.1789i 0.620673 + 1.07504i 0.989361 + 0.145484i \(0.0464739\pi\)
−0.368687 + 0.929553i \(0.620193\pi\)
\(594\) 0 0
\(595\) −7.46863 12.9360i −0.306184 0.530326i
\(596\) 0 0
\(597\) −2.29150 3.96900i −0.0937850 0.162440i
\(598\) 0 0
\(599\) −11.6458 + 20.1710i −0.475832 + 0.824166i −0.999617 0.0276849i \(-0.991186\pi\)
0.523784 + 0.851851i \(0.324520\pi\)
\(600\) 0 0
\(601\) −28.1660 −1.14892 −0.574458 0.818534i \(-0.694787\pi\)
−0.574458 + 0.818534i \(0.694787\pi\)
\(602\) 0 0
\(603\) −5.93725 −0.241784
\(604\) 0 0
\(605\) −4.14575 + 7.18065i −0.168549 + 0.291935i
\(606\) 0 0
\(607\) −5.03137 8.71459i −0.204217 0.353714i 0.745666 0.666320i \(-0.232132\pi\)
−0.949883 + 0.312606i \(0.898798\pi\)
\(608\) 0 0
\(609\) 9.64575 0.390866
\(610\) 0 0
\(611\) −2.77124 4.79993i −0.112113 0.194185i
\(612\) 0 0
\(613\) 17.2915 29.9498i 0.698397 1.20966i −0.270625 0.962685i \(-0.587230\pi\)
0.969022 0.246975i \(-0.0794364\pi\)
\(614\) 0 0
\(615\) −8.93725 −0.360385
\(616\) 0 0
\(617\) 45.0405 1.81326 0.906631 0.421923i \(-0.138645\pi\)
0.906631 + 0.421923i \(0.138645\pi\)
\(618\) 0 0
\(619\) −13.4373 + 23.2740i −0.540089 + 0.935461i 0.458810 + 0.888535i \(0.348276\pi\)
−0.998898 + 0.0469266i \(0.985057\pi\)
\(620\) 0 0
\(621\) −0.822876 1.42526i −0.0330209 0.0571938i
\(622\) 0 0
\(623\) −14.4686 + 25.0604i −0.579673 + 1.00402i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0.822876 1.42526i 0.0328625 0.0569195i
\(628\) 0 0
\(629\) 14.9373 0.595587
\(630\) 0 0
\(631\) −42.3320 −1.68521 −0.842606 0.538531i \(-0.818979\pi\)
−0.842606 + 0.538531i \(0.818979\pi\)
\(632\) 0 0
\(633\) −8.29150 + 14.3613i −0.329558 + 0.570811i
\(634\) 0 0
\(635\) −3.61438 6.26029i −0.143432 0.248432i
\(636\) 0 0
\(637\) −2.26013 + 3.91466i −0.0895496 + 0.155104i
\(638\) 0 0
\(639\) 3.17712 + 5.50294i 0.125685 + 0.217693i
\(640\) 0 0
\(641\) −7.11438 + 12.3225i −0.281001 + 0.486708i −0.971632 0.236500i \(-0.924000\pi\)
0.690631 + 0.723208i \(0.257333\pi\)
\(642\) 0 0
\(643\) 36.5203 1.44022 0.720109 0.693861i \(-0.244092\pi\)
0.720109 + 0.693861i \(0.244092\pi\)
\(644\) 0 0
\(645\) −0.645751 −0.0254264
\(646\) 0 0
\(647\) 9.82288 17.0137i 0.386177 0.668878i −0.605755 0.795652i \(-0.707129\pi\)
0.991932 + 0.126773i \(0.0404620\pi\)
\(648\) 0 0
\(649\) −6.29150 10.8972i −0.246963 0.427753i
\(650\) 0 0
\(651\) 6.61438 11.4564i 0.259238 0.449013i
\(652\) 0 0
\(653\) 16.4059 + 28.4158i 0.642012 + 1.11200i 0.984983 + 0.172651i \(0.0552333\pi\)
−0.342971 + 0.939346i \(0.611433\pi\)
\(654\) 0 0
\(655\) −4.64575 + 8.04668i −0.181525 + 0.314410i
\(656\) 0 0
\(657\) −12.6458 −0.493358
\(658\) 0 0
\(659\) −33.1660 −1.29196 −0.645982 0.763352i \(-0.723552\pi\)
−0.645982 + 0.763352i \(0.723552\pi\)
\(660\) 0 0
\(661\) 9.85425 17.0681i 0.383286 0.663871i −0.608244 0.793750i \(-0.708126\pi\)
0.991530 + 0.129880i \(0.0414591\pi\)
\(662\) 0 0
\(663\) 1.82288 + 3.15731i 0.0707946 + 0.122620i
\(664\) 0 0
\(665\) −2.64575 −0.102598
\(666\) 0 0
\(667\) −3.00000 5.19615i −0.116160 0.201196i
\(668\) 0 0
\(669\) −1.64575 + 2.85052i −0.0636284 + 0.110208i
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 0 0
\(673\) −24.6458 −0.950024 −0.475012 0.879979i \(-0.657556\pi\)
−0.475012 + 0.879979i \(0.657556\pi\)
\(674\) 0 0
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) 17.0516 + 29.5343i 0.655347 + 1.13510i 0.981807 + 0.189884i \(0.0608111\pi\)
−0.326459 + 0.945211i \(0.605856\pi\)
\(678\) 0 0
\(679\) 19.2915 + 33.4139i 0.740340 + 1.28231i
\(680\) 0 0
\(681\) 3.46863 + 6.00784i 0.132918 + 0.230221i
\(682\) 0 0
\(683\) −14.4686 + 25.0604i −0.553627 + 0.958909i 0.444382 + 0.895837i \(0.353423\pi\)
−0.998009 + 0.0630722i \(0.979910\pi\)
\(684\) 0 0
\(685\) −2.35425 −0.0899512
\(686\) 0 0
\(687\) 7.58301 0.289310
\(688\) 0 0
\(689\) −0.228757 + 0.396218i −0.00871493 + 0.0150947i
\(690\) 0 0
\(691\) −12.1458 21.0371i −0.462046 0.800287i 0.537017 0.843572i \(-0.319551\pi\)
−0.999063 + 0.0432842i \(0.986218\pi\)
\(692\) 0 0
\(693\) 2.17712 + 3.77089i 0.0827021 + 0.143244i
\(694\) 0 0
\(695\) −1.85425 3.21165i −0.0703357 0.121825i
\(696\) 0 0
\(697\) 25.2288 43.6975i 0.955607 1.65516i
\(698\) 0 0
\(699\) 9.29150 0.351437
\(700\) 0 0
\(701\) −47.3948 −1.79008 −0.895038 0.445990i \(-0.852852\pi\)
−0.895038 + 0.445990i \(0.852852\pi\)
\(702\) 0 0
\(703\) 1.32288 2.29129i 0.0498932 0.0864176i
\(704\) 0 0
\(705\) 4.29150 + 7.43310i 0.161627 + 0.279947i
\(706\) 0 0
\(707\) −44.8118 −1.68532
\(708\) 0 0
\(709\) 14.5830 + 25.2585i 0.547676 + 0.948603i 0.998433 + 0.0559564i \(0.0178208\pi\)
−0.450757 + 0.892647i \(0.648846\pi\)
\(710\) 0 0
\(711\) 6.50000 11.2583i 0.243769 0.422220i
\(712\) 0 0
\(713\) −8.22876 −0.308169
\(714\) 0 0
\(715\) 1.06275 0.0397444
\(716\) 0 0
\(717\) 4.29150 7.43310i 0.160269 0.277594i
\(718\) 0 0
\(719\) −5.35425 9.27383i −0.199680 0.345856i 0.748745 0.662858i \(-0.230657\pi\)
−0.948425 + 0.317003i \(0.897324\pi\)
\(720\) 0 0
\(721\) −1.79150 + 3.10297i −0.0667190 + 0.115561i
\(722\) 0 0
\(723\) −8.93725 15.4798i −0.332380 0.575699i
\(724\) 0 0
\(725\) −1.82288 + 3.15731i −0.0676999 + 0.117260i
\(726\) 0 0
\(727\) −9.81176 −0.363898 −0.181949 0.983308i \(-0.558241\pi\)
−0.181949 + 0.983308i \(0.558241\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 1.82288 3.15731i 0.0674215 0.116777i
\(732\) 0 0
\(733\) 3.90588 + 6.76518i 0.144267 + 0.249878i 0.929099 0.369831i \(-0.120584\pi\)
−0.784832 + 0.619708i \(0.787251\pi\)
\(734\) 0 0
\(735\) 3.50000 6.06218i 0.129099 0.223607i
\(736\) 0 0
\(737\) −4.88562 8.46215i −0.179964 0.311707i
\(738\) 0 0
\(739\) −5.43725 + 9.41760i −0.200013 + 0.346432i −0.948532 0.316681i \(-0.897432\pi\)
0.748520 + 0.663113i \(0.230765\pi\)
\(740\) 0 0
\(741\) 0.645751 0.0237223
\(742\) 0 0
\(743\) −39.6458 −1.45446 −0.727231 0.686393i \(-0.759193\pi\)
−0.727231 + 0.686393i \(0.759193\pi\)
\(744\) 0 0
\(745\) 3.29150 5.70105i 0.120591 0.208870i
\(746\) 0 0
\(747\) 1.46863 + 2.54374i 0.0537343 + 0.0930705i
\(748\) 0 0
\(749\) −16.1771 + 28.0196i −0.591099 + 1.02381i
\(750\) 0 0
\(751\) −22.3118 38.6451i −0.814168 1.41018i −0.909924 0.414775i \(-0.863860\pi\)
0.0957562 0.995405i \(-0.469473\pi\)
\(752\) 0 0
\(753\) −14.4059 + 24.9517i −0.524979 + 0.909291i
\(754\) 0 0
\(755\) −16.5830 −0.603517
\(756\) 0 0
\(757\) 3.41699 0.124193 0.0620964 0.998070i \(-0.480221\pi\)
0.0620964 + 0.998070i \(0.480221\pi\)
\(758\) 0 0
\(759\) 1.35425 2.34563i 0.0491561 0.0851409i
\(760\) 0 0
\(761\) −3.11438 5.39426i −0.112896 0.195542i 0.804041 0.594574i \(-0.202679\pi\)
−0.916937 + 0.399032i \(0.869346\pi\)
\(762\) 0 0
\(763\) 4.18824 0.151624
\(764\) 0 0
\(765\) −2.82288 4.88936i −0.102061 0.176775i
\(766\) 0 0
\(767\) 2.46863 4.27579i 0.0891370 0.154390i
\(768\) 0 0
\(769\) 49.4575 1.78348 0.891742 0.452545i \(-0.149484\pi\)
0.891742 + 0.452545i \(0.149484\pi\)
\(770\) 0 0
\(771\) −18.2288 −0.656493
\(772\) 0 0
\(773\) 8.88562 15.3903i 0.319594 0.553552i −0.660810 0.750554i \(-0.729787\pi\)
0.980403 + 0.197001i \(0.0631203\pi\)
\(774\) 0 0
\(775\) 2.50000 + 4.33013i 0.0898027 + 0.155543i
\(776\) 0 0
\(777\) 3.50000 + 6.06218i 0.125562 + 0.217479i
\(778\) 0 0
\(779\) −4.46863 7.73989i −0.160105 0.277310i
\(780\) 0 0
\(781\) −5.22876 + 9.05647i −0.187100 + 0.324066i
\(782\) 0 0
\(783\) 3.64575 0.130289
\(784\) 0 0
\(785\) −11.8745 −0.423819
\(786\) 0 0
\(787\) −20.3542 + 35.2546i −0.725551 + 1.25669i 0.233196 + 0.972430i \(0.425082\pi\)
−0.958747 + 0.284261i \(0.908252\pi\)
\(788\) 0 0
\(789\) −14.9373 25.8721i −0.531780 0.921071i
\(790\) 0 0
\(791\) −2.64575 4.58258i −0.0940721 0.162938i
\(792\) 0 0
\(793\) 4.70850 + 8.15536i 0.167204 + 0.289605i
\(794\) 0 0
\(795\) 0.354249 0.613577i 0.0125639 0.0217613i
\(796\) 0 0
\(797\) 6.10326 0.216189 0.108094 0.994141i \(-0.465525\pi\)
0.108094 + 0.994141i \(0.465525\pi\)
\(798\) 0 0
\(799\) −48.4575 −1.71430
\(800\) 0 0
\(801\) −5.46863 + 9.47194i −0.193224 + 0.334675i
\(802\) 0 0
\(803\) −10.4059 18.0235i −0.367216 0.636036i
\(804\) 0 0
\(805\) −4.35425 −0.153467
\(806\) 0 0
\(807\) 12.6458 + 21.9031i 0.445152 + 0.771025i
\(808\) 0 0
\(809\) −7.58301 + 13.1342i −0.266604 + 0.461772i −0.967983 0.251017i \(-0.919235\pi\)
0.701378 + 0.712789i \(0.252568\pi\)
\(810\) 0 0
\(811\) −41.0405 −1.44113 −0.720564 0.693389i \(-0.756117\pi\)
−0.720564 + 0.693389i \(0.756117\pi\)
\(812\) 0 0
\(813\) −2.00000 −0.0701431
\(814\) 0 0
\(815\) −4.00000 + 6.92820i −0.140114 + 0.242684i
\(816\) 0 0
\(817\) −0.322876 0.559237i −0.0112960 0.0195652i
\(818\) 0 0
\(819\) −0.854249 + 1.47960i −0.0298499 + 0.0517015i
\(820\) 0 0
\(821\) −24.3431 42.1635i −0.849581 1.47152i −0.881582 0.472030i \(-0.843521\pi\)
0.0320012 0.999488i \(-0.489812\pi\)
\(822\) 0 0
\(823\) −0.0627461 + 0.108679i −0.00218719 + 0.00378832i −0.867117 0.498105i \(-0.834030\pi\)
0.864930 + 0.501893i \(0.167363\pi\)
\(824\) 0 0
\(825\) −1.64575 −0.0572977
\(826\) 0 0
\(827\) 38.7085 1.34603 0.673013 0.739630i \(-0.265000\pi\)
0.673013 + 0.739630i \(0.265000\pi\)
\(828\) 0 0
\(829\) −11.7288 + 20.3148i −0.407357 + 0.705562i −0.994593 0.103853i \(-0.966883\pi\)
0.587236 + 0.809416i \(0.300216\pi\)
\(830\) 0 0
\(831\) −9.90588 17.1575i −0.343631 0.595187i
\(832\) 0 0
\(833\) 19.7601 + 34.2255i 0.684648 + 1.18584i
\(834\) 0 0
\(835\) −8.76013 15.1730i −0.303157 0.525083i
\(836\) 0 0
\(837\) 2.50000 4.33013i 0.0864126 0.149671i
\(838\) 0 0
\(839\) 9.77124 0.337341 0.168670 0.985673i \(-0.446053\pi\)
0.168670 + 0.985673i \(0.446053\pi\)
\(840\) 0 0
\(841\) −15.7085 −0.541672
\(842\) 0 0
\(843\) −6.00000 + 10.3923i −0.206651 + 0.357930i
\(844\) 0 0
\(845\) −6.29150 10.8972i −0.216434 0.374875i
\(846\) 0 0
\(847\) 10.9686 18.9982i 0.376886 0.652787i
\(848\) 0 0
\(849\) 13.9059 + 24.0857i 0.477249 + 0.826619i
\(850\) 0 0
\(851\) 2.17712 3.77089i 0.0746309 0.129264i
\(852\) 0 0
\(853\) −8.06275 −0.276063 −0.138032 0.990428i \(-0.544078\pi\)
−0.138032 + 0.990428i \(0.544078\pi\)
\(854\) 0 0
\(855\) −1.00000 −0.0341993
\(856\) 0 0
\(857\) −20.4686 + 35.4527i −0.699195 + 1.21104i 0.269551 + 0.962986i \(0.413125\pi\)
−0.968746 + 0.248055i \(0.920209\pi\)
\(858\) 0 0
\(859\) −8.64575 14.9749i −0.294989 0.510936i 0.679993 0.733218i \(-0.261983\pi\)
−0.974982 + 0.222282i \(0.928649\pi\)
\(860\) 0 0
\(861\) 23.6458 0.805845
\(862\) 0 0
\(863\) 5.22876 + 9.05647i 0.177989 + 0.308286i 0.941192 0.337873i \(-0.109708\pi\)
−0.763203 + 0.646159i \(0.776374\pi\)
\(864\) 0 0
\(865\) −0.354249 + 0.613577i −0.0120448 + 0.0208622i
\(866\) 0 0
\(867\) 14.8745 0.505165
\(868\) 0 0
\(869\) 21.3948 0.725768
\(870\) 0 0
\(871\) 1.91699 3.32033i 0.0649549 0.112505i
\(872\) 0 0
\(873\) 7.29150 + 12.6293i 0.246780 + 0.427435i
\(874\) 0 0
\(875\) 1.32288 + 2.29129i 0.0447214 + 0.0774597i
\(876\) 0 0
\(877\) 6.87451 + 11.9070i 0.232136 + 0.402071i 0.958436 0.285306i \(-0.0920953\pi\)
−0.726301 + 0.687377i \(0.758762\pi\)
\(878\) 0 0
\(879\) 12.0000 20.7846i 0.404750 0.701047i
\(880\) 0 0
\(881\) −21.1660 −0.713101 −0.356551 0.934276i \(-0.616047\pi\)
−0.356551 + 0.934276i \(0.616047\pi\)
\(882\) 0 0
\(883\) −45.8118 −1.54169 −0.770844 0.637024i \(-0.780165\pi\)
−0.770844 + 0.637024i \(0.780165\pi\)
\(884\) 0 0
\(885\) −3.82288 + 6.62141i −0.128505 + 0.222576i
\(886\) 0 0
\(887\) −2.05163 3.55353i −0.0688871 0.119316i 0.829525 0.558470i \(-0.188611\pi\)
−0.898412 + 0.439154i \(0.855278\pi\)
\(888\) 0 0
\(889\) 9.56275 + 16.5632i 0.320724 + 0.555511i
\(890\) 0 0
\(891\) 0.822876 + 1.42526i 0.0275674 + 0.0477481i
\(892\) 0 0
\(893\) −4.29150 + 7.43310i −0.143610 + 0.248739i
\(894\) 0 0
\(895\) −6.00000 −0.200558
\(896\) 0 0
\(897\) 1.06275 0.0354841
\(898\) 0 0
\(899\) 9.11438 15.7866i 0.303982 0.526511i
\(900\) 0 0
\(901\) 2.00000 + 3.46410i 0.0666297 + 0.115406i
\(902\) 0 0
\(903\) 1.70850 0.0568552
\(904\) 0 0
\(905\) −10.1458 17.5730i −0.337256 0.584145i
\(906\) 0 0
\(907\) −18.8431 + 32.6373i −0.625676 + 1.08370i 0.362734 + 0.931893i \(0.381843\pi\)
−0.988410 + 0.151810i \(0.951490\pi\)
\(908\) 0 0
\(909\) −16.9373 −0.561773
\(910\) 0 0
\(911\) −10.9373 −0.362367 −0.181184 0.983449i \(-0.557993\pi\)
−0.181184 + 0.983449i \(0.557993\pi\)
\(912\) 0 0
\(913\) −2.41699 + 4.18636i −0.0799909 + 0.138548i
\(914\) 0 0
\(915\) −7.29150 12.6293i −0.241050 0.417510i
\(916\) 0 0
\(917\) 12.2915 21.2895i 0.405901 0.703041i
\(918\) 0 0
\(919\) 18.4373 + 31.9343i 0.608189 + 1.05341i 0.991539 + 0.129811i \(0.0414370\pi\)
−0.383350 + 0.923603i \(0.625230\pi\)
\(920\) 0 0
\(921\) 2.03137 3.51844i 0.0669360 0.115937i
\(922\) 0 0
\(923\) −4.10326 −0.135061
\(924\) 0 0
\(925\) −2.64575 −0.0869918
\(926\) 0 0
\(927\) −0.677124 + 1.17281i −0.0222397 + 0.0385203i
\(928\) 0 0
\(929\) 0.822876 + 1.42526i 0.0269977 + 0.0467613i 0.879209 0.476437i \(-0.158072\pi\)
−0.852211 + 0.523198i \(0.824739\pi\)
\(930\) 0 0
\(931\) 7.00000 0.229416
\(932\) 0 0
\(933\) 9.17712 + 15.8952i 0.300446 + 0.520387i
\(934\) 0 0
\(935\) 4.64575 8.04668i 0.151932 0.263154i
\(936\) 0 0
\(937\) 47.9373 1.56604 0.783021 0.621995i \(-0.213678\pi\)
0.783021 + 0.621995i \(0.213678\pi\)
\(938\) 0 0
\(939\) −4.77124 −0.155704
\(940\) 0 0
\(941\) 2.88562 4.99804i 0.0940686 0.162932i −0.815151 0.579249i \(-0.803346\pi\)
0.909219 + 0.416317i \(0.136679\pi\)
\(942\) 0 0
\(943\) −7.35425 12.7379i −0.239487 0.414804i
\(944\) 0 0
\(945\) 1.32288 2.29129i 0.0430331 0.0745356i
\(946\) 0 0
\(947\) −10.5314 18.2409i −0.342224 0.592749i 0.642622 0.766184i \(-0.277847\pi\)
−0.984845 + 0.173435i \(0.944513\pi\)
\(948\) 0 0
\(949\) 4.08301 7.07197i 0.132540 0.229566i
\(950\) 0 0
\(951\) −4.22876 −0.137127
\(952\) 0 0
\(953\) −36.7085 −1.18910 −0.594552 0.804057i \(-0.702671\pi\)
−0.594552 + 0.804057i \(0.702671\pi\)
\(954\) 0 0
\(955\) −10.2915 + 17.8254i −0.333025 + 0.576817i
\(956\) 0 0
\(957\) 3.00000 + 5.19615i 0.0969762 + 0.167968i
\(958\) 0 0
\(959\) 6.22876 0.201137
\(960\) 0 0
\(961\) 3.00000 + 5.19615i 0.0967742 + 0.167618i
\(962\) 0 0
\(963\) −6.11438 + 10.5904i −0.197033 + 0.341271i
\(964\) 0 0
\(965\) 9.93725 0.319892
\(966\) 0 0
\(967\) 20.5203 0.659887 0.329944 0.944001i \(-0.392970\pi\)
0.329944 + 0.944001i \(0.392970\pi\)
\(968\) 0 0
\(969\) 2.82288 4.88936i 0.0906838 0.157069i
\(970\) 0 0
\(971\) 24.5830 + 42.5790i 0.788906 + 1.36643i 0.926638 + 0.375956i \(0.122686\pi\)
−0.137731 + 0.990470i \(0.543981\pi\)
\(972\) 0 0
\(973\) 4.90588 + 8.49723i 0.157275 + 0.272409i
\(974\) 0 0
\(975\) −0.322876 0.559237i −0.0103403 0.0179099i
\(976\) 0 0
\(977\) −11.4686 + 19.8642i −0.366914 + 0.635513i −0.989081 0.147371i \(-0.952919\pi\)
0.622167 + 0.782884i \(0.286252\pi\)
\(978\) 0 0
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) 1.58301 0.0505415
\(982\) 0 0
\(983\) 7.40588 12.8274i 0.236211 0.409129i −0.723413 0.690416i \(-0.757428\pi\)
0.959624 + 0.281286i \(0.0907610\pi\)
\(984\) 0 0
\(985\) 3.53137 + 6.11652i 0.112519 + 0.194888i
\(986\) 0 0
\(987\) −11.3542 19.6661i −0.361410 0.625980i
\(988\) 0 0
\(989\) −0.531373 0.920365i −0.0168967 0.0292659i
\(990\) 0 0
\(991\) −9.79150 + 16.9594i −0.311037 + 0.538732i −0.978587 0.205833i \(-0.934010\pi\)
0.667550 + 0.744565i \(0.267343\pi\)
\(992\) 0 0
\(993\) −22.2915 −0.707399
\(994\) 0 0
\(995\) −4.58301 −0.145291
\(996\) 0 0
\(997\) −23.9686 + 41.5149i −0.759094 + 1.31479i 0.184219 + 0.982885i \(0.441024\pi\)
−0.943313 + 0.331904i \(0.892309\pi\)
\(998\) 0 0
\(999\) 1.32288 + 2.29129i 0.0418539 + 0.0724931i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.bg.h.361.1 yes 4
3.2 odd 2 2520.2.bi.j.361.1 4
4.3 odd 2 1680.2.bg.s.1201.2 4
7.2 even 3 inner 840.2.bg.h.121.1 4
7.3 odd 6 5880.2.a.bo.1.1 2
7.4 even 3 5880.2.a.bq.1.1 2
21.2 odd 6 2520.2.bi.j.1801.1 4
28.23 odd 6 1680.2.bg.s.961.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bg.h.121.1 4 7.2 even 3 inner
840.2.bg.h.361.1 yes 4 1.1 even 1 trivial
1680.2.bg.s.961.2 4 28.23 odd 6
1680.2.bg.s.1201.2 4 4.3 odd 2
2520.2.bi.j.361.1 4 3.2 odd 2
2520.2.bi.j.1801.1 4 21.2 odd 6
5880.2.a.bo.1.1 2 7.3 odd 6
5880.2.a.bq.1.1 2 7.4 even 3