Properties

Label 840.2.bg.h
Level $840$
Weight $2$
Character orbit 840.bg
Analytic conductor $6.707$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(121,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bg (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{3} - \beta_{2} q^{5} + (\beta_{3} + \beta_1) q^{7} + \beta_{2} q^{9} + ( - \beta_{2} + \beta_1 - 1) q^{11} + ( - \beta_{3} - 2) q^{13} - q^{15} + (3 \beta_{2} + \beta_1 + 3) q^{17}+ \cdots + (\beta_{3} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{5} - 2 q^{9} - 2 q^{11} - 8 q^{13} - 4 q^{15} + 6 q^{17} - 2 q^{19} + 2 q^{23} - 2 q^{25} + 4 q^{27} + 4 q^{29} + 10 q^{31} - 2 q^{33} + 4 q^{39} + 4 q^{41} - 8 q^{43} + 2 q^{45} + 4 q^{47}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 7\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 7\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(\beta_{2}\) \(1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
1.32288 + 2.29129i
−1.32288 2.29129i
1.32288 2.29129i
−1.32288 + 2.29129i
0 −0.500000 0.866025i 0 0.500000 0.866025i 0 −1.32288 + 2.29129i 0 −0.500000 + 0.866025i 0
121.2 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 1.32288 2.29129i 0 −0.500000 + 0.866025i 0
361.1 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 −1.32288 2.29129i 0 −0.500000 0.866025i 0
361.2 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 1.32288 + 2.29129i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 840.2.bg.h 4
3.b odd 2 1 2520.2.bi.j 4
4.b odd 2 1 1680.2.bg.s 4
7.c even 3 1 inner 840.2.bg.h 4
7.c even 3 1 5880.2.a.bq 2
7.d odd 6 1 5880.2.a.bo 2
21.h odd 6 1 2520.2.bi.j 4
28.g odd 6 1 1680.2.bg.s 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
840.2.bg.h 4 1.a even 1 1 trivial
840.2.bg.h 4 7.c even 3 1 inner
1680.2.bg.s 4 4.b odd 2 1
1680.2.bg.s 4 28.g odd 6 1
2520.2.bi.j 4 3.b odd 2 1
2520.2.bi.j 4 21.h odd 6 1
5880.2.a.bo 2 7.d odd 6 1
5880.2.a.bq 2 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{4} + 2T_{11}^{3} + 10T_{11}^{2} - 12T_{11} + 36 \) acting on \(S_{2}^{\mathrm{new}}(840, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 7T^{2} + 49 \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$13$ \( (T^{2} + 4 T - 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$19$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 2 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$29$ \( (T^{2} - 2 T - 6)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 5 T + 25)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 7T^{2} + 49 \) Copy content Toggle raw display
$41$ \( (T^{2} - 2 T - 62)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 4 T - 3)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 4 T^{3} + \cdots + 11664 \) Copy content Toggle raw display
$53$ \( T^{4} + 12 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$59$ \( T^{4} - 10 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$61$ \( T^{4} - 8 T^{3} + \cdots + 9216 \) Copy content Toggle raw display
$67$ \( T^{4} + 4 T^{3} + \cdots + 3481 \) Copy content Toggle raw display
$71$ \( (T^{2} + 18 T + 74)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 20 T^{3} + \cdots + 8649 \) Copy content Toggle raw display
$79$ \( (T^{2} - 13 T + 169)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 10 T - 38)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 6 T^{3} + \cdots + 2916 \) Copy content Toggle raw display
$97$ \( (T^{2} + 8 T - 96)^{2} \) Copy content Toggle raw display
show more
show less