Properties

Label 8330.2.a.cw.1.4
Level $8330$
Weight $2$
Character 8330.1
Self dual yes
Analytic conductor $66.515$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,10,2,10,10,2,0,10,12,10,-2,2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 19x^{8} + 38x^{7} + 100x^{6} - 194x^{5} - 151x^{4} + 282x^{3} + 85x^{2} - 108x - 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.664810\) of defining polynomial
Character \(\chi\) \(=\) 8330.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -0.664810 q^{3} +1.00000 q^{4} +1.00000 q^{5} -0.664810 q^{6} +1.00000 q^{8} -2.55803 q^{9} +1.00000 q^{10} -6.52002 q^{11} -0.664810 q^{12} -3.80618 q^{13} -0.664810 q^{15} +1.00000 q^{16} +1.00000 q^{17} -2.55803 q^{18} +6.05101 q^{19} +1.00000 q^{20} -6.52002 q^{22} -6.84921 q^{23} -0.664810 q^{24} +1.00000 q^{25} -3.80618 q^{26} +3.69503 q^{27} +9.62358 q^{29} -0.664810 q^{30} -8.49111 q^{31} +1.00000 q^{32} +4.33458 q^{33} +1.00000 q^{34} -2.55803 q^{36} -1.65916 q^{37} +6.05101 q^{38} +2.53039 q^{39} +1.00000 q^{40} +3.59766 q^{41} +11.1719 q^{43} -6.52002 q^{44} -2.55803 q^{45} -6.84921 q^{46} -2.67800 q^{47} -0.664810 q^{48} +1.00000 q^{50} -0.664810 q^{51} -3.80618 q^{52} +13.4462 q^{53} +3.69503 q^{54} -6.52002 q^{55} -4.02277 q^{57} +9.62358 q^{58} -0.344598 q^{59} -0.664810 q^{60} -11.5881 q^{61} -8.49111 q^{62} +1.00000 q^{64} -3.80618 q^{65} +4.33458 q^{66} +3.71729 q^{67} +1.00000 q^{68} +4.55343 q^{69} +0.0105838 q^{71} -2.55803 q^{72} -7.93373 q^{73} -1.65916 q^{74} -0.664810 q^{75} +6.05101 q^{76} +2.53039 q^{78} -0.721203 q^{79} +1.00000 q^{80} +5.21758 q^{81} +3.59766 q^{82} +6.22935 q^{83} +1.00000 q^{85} +11.1719 q^{86} -6.39786 q^{87} -6.52002 q^{88} +6.23763 q^{89} -2.55803 q^{90} -6.84921 q^{92} +5.64498 q^{93} -2.67800 q^{94} +6.05101 q^{95} -0.664810 q^{96} -17.8419 q^{97} +16.6784 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{2} + 2 q^{3} + 10 q^{4} + 10 q^{5} + 2 q^{6} + 10 q^{8} + 12 q^{9} + 10 q^{10} - 2 q^{11} + 2 q^{12} + 4 q^{13} + 2 q^{15} + 10 q^{16} + 10 q^{17} + 12 q^{18} + 14 q^{19} + 10 q^{20} - 2 q^{22}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.664810 −0.383828 −0.191914 0.981412i \(-0.561470\pi\)
−0.191914 + 0.981412i \(0.561470\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −0.664810 −0.271408
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −2.55803 −0.852676
\(10\) 1.00000 0.316228
\(11\) −6.52002 −1.96586 −0.982931 0.183977i \(-0.941103\pi\)
−0.982931 + 0.183977i \(0.941103\pi\)
\(12\) −0.664810 −0.191914
\(13\) −3.80618 −1.05565 −0.527823 0.849355i \(-0.676991\pi\)
−0.527823 + 0.849355i \(0.676991\pi\)
\(14\) 0 0
\(15\) −0.664810 −0.171653
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −2.55803 −0.602933
\(19\) 6.05101 1.38820 0.694098 0.719880i \(-0.255803\pi\)
0.694098 + 0.719880i \(0.255803\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) −6.52002 −1.39007
\(23\) −6.84921 −1.42816 −0.714079 0.700065i \(-0.753154\pi\)
−0.714079 + 0.700065i \(0.753154\pi\)
\(24\) −0.664810 −0.135704
\(25\) 1.00000 0.200000
\(26\) −3.80618 −0.746454
\(27\) 3.69503 0.711110
\(28\) 0 0
\(29\) 9.62358 1.78705 0.893527 0.449009i \(-0.148223\pi\)
0.893527 + 0.449009i \(0.148223\pi\)
\(30\) −0.664810 −0.121377
\(31\) −8.49111 −1.52505 −0.762524 0.646960i \(-0.776040\pi\)
−0.762524 + 0.646960i \(0.776040\pi\)
\(32\) 1.00000 0.176777
\(33\) 4.33458 0.754553
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) −2.55803 −0.426338
\(37\) −1.65916 −0.272765 −0.136382 0.990656i \(-0.543548\pi\)
−0.136382 + 0.990656i \(0.543548\pi\)
\(38\) 6.05101 0.981603
\(39\) 2.53039 0.405187
\(40\) 1.00000 0.158114
\(41\) 3.59766 0.561860 0.280930 0.959728i \(-0.409357\pi\)
0.280930 + 0.959728i \(0.409357\pi\)
\(42\) 0 0
\(43\) 11.1719 1.70370 0.851851 0.523784i \(-0.175480\pi\)
0.851851 + 0.523784i \(0.175480\pi\)
\(44\) −6.52002 −0.982931
\(45\) −2.55803 −0.381328
\(46\) −6.84921 −1.00986
\(47\) −2.67800 −0.390627 −0.195313 0.980741i \(-0.562572\pi\)
−0.195313 + 0.980741i \(0.562572\pi\)
\(48\) −0.664810 −0.0959571
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) −0.664810 −0.0930921
\(52\) −3.80618 −0.527823
\(53\) 13.4462 1.84698 0.923488 0.383628i \(-0.125326\pi\)
0.923488 + 0.383628i \(0.125326\pi\)
\(54\) 3.69503 0.502830
\(55\) −6.52002 −0.879160
\(56\) 0 0
\(57\) −4.02277 −0.532829
\(58\) 9.62358 1.26364
\(59\) −0.344598 −0.0448629 −0.0224314 0.999748i \(-0.507141\pi\)
−0.0224314 + 0.999748i \(0.507141\pi\)
\(60\) −0.664810 −0.0858267
\(61\) −11.5881 −1.48371 −0.741855 0.670560i \(-0.766054\pi\)
−0.741855 + 0.670560i \(0.766054\pi\)
\(62\) −8.49111 −1.07837
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.80618 −0.472099
\(66\) 4.33458 0.533550
\(67\) 3.71729 0.454140 0.227070 0.973878i \(-0.427085\pi\)
0.227070 + 0.973878i \(0.427085\pi\)
\(68\) 1.00000 0.121268
\(69\) 4.55343 0.548168
\(70\) 0 0
\(71\) 0.0105838 0.00125607 0.000628034 1.00000i \(-0.499800\pi\)
0.000628034 1.00000i \(0.499800\pi\)
\(72\) −2.55803 −0.301466
\(73\) −7.93373 −0.928573 −0.464286 0.885685i \(-0.653689\pi\)
−0.464286 + 0.885685i \(0.653689\pi\)
\(74\) −1.65916 −0.192874
\(75\) −0.664810 −0.0767657
\(76\) 6.05101 0.694098
\(77\) 0 0
\(78\) 2.53039 0.286510
\(79\) −0.721203 −0.0811417 −0.0405709 0.999177i \(-0.512918\pi\)
−0.0405709 + 0.999177i \(0.512918\pi\)
\(80\) 1.00000 0.111803
\(81\) 5.21758 0.579732
\(82\) 3.59766 0.397295
\(83\) 6.22935 0.683760 0.341880 0.939744i \(-0.388936\pi\)
0.341880 + 0.939744i \(0.388936\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 11.1719 1.20470
\(87\) −6.39786 −0.685922
\(88\) −6.52002 −0.695037
\(89\) 6.23763 0.661187 0.330594 0.943773i \(-0.392751\pi\)
0.330594 + 0.943773i \(0.392751\pi\)
\(90\) −2.55803 −0.269640
\(91\) 0 0
\(92\) −6.84921 −0.714079
\(93\) 5.64498 0.585357
\(94\) −2.67800 −0.276215
\(95\) 6.05101 0.620820
\(96\) −0.664810 −0.0678519
\(97\) −17.8419 −1.81157 −0.905783 0.423741i \(-0.860717\pi\)
−0.905783 + 0.423741i \(0.860717\pi\)
\(98\) 0 0
\(99\) 16.6784 1.67624
\(100\) 1.00000 0.100000
\(101\) 16.0871 1.60073 0.800365 0.599513i \(-0.204639\pi\)
0.800365 + 0.599513i \(0.204639\pi\)
\(102\) −0.664810 −0.0658260
\(103\) 4.93380 0.486142 0.243071 0.970009i \(-0.421845\pi\)
0.243071 + 0.970009i \(0.421845\pi\)
\(104\) −3.80618 −0.373227
\(105\) 0 0
\(106\) 13.4462 1.30601
\(107\) 13.9312 1.34678 0.673390 0.739288i \(-0.264838\pi\)
0.673390 + 0.739288i \(0.264838\pi\)
\(108\) 3.69503 0.355555
\(109\) 11.2257 1.07522 0.537612 0.843192i \(-0.319327\pi\)
0.537612 + 0.843192i \(0.319327\pi\)
\(110\) −6.52002 −0.621660
\(111\) 1.10303 0.104695
\(112\) 0 0
\(113\) 19.4266 1.82750 0.913750 0.406277i \(-0.133173\pi\)
0.913750 + 0.406277i \(0.133173\pi\)
\(114\) −4.02277 −0.376767
\(115\) −6.84921 −0.638692
\(116\) 9.62358 0.893527
\(117\) 9.73632 0.900123
\(118\) −0.344598 −0.0317228
\(119\) 0 0
\(120\) −0.664810 −0.0606886
\(121\) 31.5107 2.86461
\(122\) −11.5881 −1.04914
\(123\) −2.39176 −0.215658
\(124\) −8.49111 −0.762524
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −2.65044 −0.235189 −0.117594 0.993062i \(-0.537518\pi\)
−0.117594 + 0.993062i \(0.537518\pi\)
\(128\) 1.00000 0.0883883
\(129\) −7.42721 −0.653929
\(130\) −3.80618 −0.333824
\(131\) −2.25944 −0.197408 −0.0987039 0.995117i \(-0.531470\pi\)
−0.0987039 + 0.995117i \(0.531470\pi\)
\(132\) 4.33458 0.377277
\(133\) 0 0
\(134\) 3.71729 0.321125
\(135\) 3.69503 0.318018
\(136\) 1.00000 0.0857493
\(137\) −5.27898 −0.451014 −0.225507 0.974242i \(-0.572404\pi\)
−0.225507 + 0.974242i \(0.572404\pi\)
\(138\) 4.55343 0.387613
\(139\) 13.2515 1.12398 0.561988 0.827145i \(-0.310037\pi\)
0.561988 + 0.827145i \(0.310037\pi\)
\(140\) 0 0
\(141\) 1.78036 0.149934
\(142\) 0.0105838 0.000888174 0
\(143\) 24.8164 2.07525
\(144\) −2.55803 −0.213169
\(145\) 9.62358 0.799195
\(146\) −7.93373 −0.656600
\(147\) 0 0
\(148\) −1.65916 −0.136382
\(149\) 10.1867 0.834531 0.417265 0.908785i \(-0.362989\pi\)
0.417265 + 0.908785i \(0.362989\pi\)
\(150\) −0.664810 −0.0542815
\(151\) −10.3022 −0.838377 −0.419189 0.907899i \(-0.637685\pi\)
−0.419189 + 0.907899i \(0.637685\pi\)
\(152\) 6.05101 0.490802
\(153\) −2.55803 −0.206804
\(154\) 0 0
\(155\) −8.49111 −0.682022
\(156\) 2.53039 0.202593
\(157\) 7.23839 0.577687 0.288843 0.957376i \(-0.406729\pi\)
0.288843 + 0.957376i \(0.406729\pi\)
\(158\) −0.721203 −0.0573759
\(159\) −8.93916 −0.708922
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) 5.21758 0.409932
\(163\) 9.45112 0.740269 0.370135 0.928978i \(-0.379312\pi\)
0.370135 + 0.928978i \(0.379312\pi\)
\(164\) 3.59766 0.280930
\(165\) 4.33458 0.337447
\(166\) 6.22935 0.483491
\(167\) 7.30161 0.565016 0.282508 0.959265i \(-0.408834\pi\)
0.282508 + 0.959265i \(0.408834\pi\)
\(168\) 0 0
\(169\) 1.48704 0.114388
\(170\) 1.00000 0.0766965
\(171\) −15.4786 −1.18368
\(172\) 11.1719 0.851851
\(173\) −14.0587 −1.06886 −0.534430 0.845212i \(-0.679474\pi\)
−0.534430 + 0.845212i \(0.679474\pi\)
\(174\) −6.39786 −0.485020
\(175\) 0 0
\(176\) −6.52002 −0.491465
\(177\) 0.229093 0.0172197
\(178\) 6.23763 0.467530
\(179\) −25.3304 −1.89329 −0.946643 0.322283i \(-0.895550\pi\)
−0.946643 + 0.322283i \(0.895550\pi\)
\(180\) −2.55803 −0.190664
\(181\) 24.9847 1.85710 0.928549 0.371209i \(-0.121057\pi\)
0.928549 + 0.371209i \(0.121057\pi\)
\(182\) 0 0
\(183\) 7.70392 0.569490
\(184\) −6.84921 −0.504930
\(185\) −1.65916 −0.121984
\(186\) 5.64498 0.413910
\(187\) −6.52002 −0.476791
\(188\) −2.67800 −0.195313
\(189\) 0 0
\(190\) 6.05101 0.438986
\(191\) −3.19120 −0.230907 −0.115454 0.993313i \(-0.536832\pi\)
−0.115454 + 0.993313i \(0.536832\pi\)
\(192\) −0.664810 −0.0479786
\(193\) 10.6813 0.768858 0.384429 0.923155i \(-0.374398\pi\)
0.384429 + 0.923155i \(0.374398\pi\)
\(194\) −17.8419 −1.28097
\(195\) 2.53039 0.181205
\(196\) 0 0
\(197\) 0.486090 0.0346325 0.0173162 0.999850i \(-0.494488\pi\)
0.0173162 + 0.999850i \(0.494488\pi\)
\(198\) 16.6784 1.18528
\(199\) −7.10223 −0.503464 −0.251732 0.967797i \(-0.581000\pi\)
−0.251732 + 0.967797i \(0.581000\pi\)
\(200\) 1.00000 0.0707107
\(201\) −2.47130 −0.174312
\(202\) 16.0871 1.13189
\(203\) 0 0
\(204\) −0.664810 −0.0465460
\(205\) 3.59766 0.251272
\(206\) 4.93380 0.343754
\(207\) 17.5205 1.21776
\(208\) −3.80618 −0.263911
\(209\) −39.4527 −2.72900
\(210\) 0 0
\(211\) −3.98703 −0.274478 −0.137239 0.990538i \(-0.543823\pi\)
−0.137239 + 0.990538i \(0.543823\pi\)
\(212\) 13.4462 0.923488
\(213\) −0.00703623 −0.000482115 0
\(214\) 13.9312 0.952317
\(215\) 11.1719 0.761919
\(216\) 3.69503 0.251415
\(217\) 0 0
\(218\) 11.2257 0.760298
\(219\) 5.27443 0.356413
\(220\) −6.52002 −0.439580
\(221\) −3.80618 −0.256032
\(222\) 1.10303 0.0740304
\(223\) 18.3655 1.22985 0.614923 0.788587i \(-0.289187\pi\)
0.614923 + 0.788587i \(0.289187\pi\)
\(224\) 0 0
\(225\) −2.55803 −0.170535
\(226\) 19.4266 1.29224
\(227\) −4.36764 −0.289890 −0.144945 0.989440i \(-0.546301\pi\)
−0.144945 + 0.989440i \(0.546301\pi\)
\(228\) −4.02277 −0.266415
\(229\) 3.25162 0.214873 0.107437 0.994212i \(-0.465736\pi\)
0.107437 + 0.994212i \(0.465736\pi\)
\(230\) −6.84921 −0.451623
\(231\) 0 0
\(232\) 9.62358 0.631819
\(233\) −28.1326 −1.84303 −0.921513 0.388348i \(-0.873046\pi\)
−0.921513 + 0.388348i \(0.873046\pi\)
\(234\) 9.73632 0.636483
\(235\) −2.67800 −0.174694
\(236\) −0.344598 −0.0224314
\(237\) 0.479464 0.0311445
\(238\) 0 0
\(239\) −7.08790 −0.458478 −0.229239 0.973370i \(-0.573624\pi\)
−0.229239 + 0.973370i \(0.573624\pi\)
\(240\) −0.664810 −0.0429133
\(241\) −9.35178 −0.602401 −0.301200 0.953561i \(-0.597387\pi\)
−0.301200 + 0.953561i \(0.597387\pi\)
\(242\) 31.5107 2.02559
\(243\) −14.5538 −0.933627
\(244\) −11.5881 −0.741855
\(245\) 0 0
\(246\) −2.39176 −0.152493
\(247\) −23.0313 −1.46544
\(248\) −8.49111 −0.539186
\(249\) −4.14134 −0.262447
\(250\) 1.00000 0.0632456
\(251\) −10.9824 −0.693201 −0.346600 0.938013i \(-0.612664\pi\)
−0.346600 + 0.938013i \(0.612664\pi\)
\(252\) 0 0
\(253\) 44.6570 2.80756
\(254\) −2.65044 −0.166303
\(255\) −0.664810 −0.0416320
\(256\) 1.00000 0.0625000
\(257\) 8.15432 0.508652 0.254326 0.967118i \(-0.418146\pi\)
0.254326 + 0.967118i \(0.418146\pi\)
\(258\) −7.42721 −0.462398
\(259\) 0 0
\(260\) −3.80618 −0.236050
\(261\) −24.6174 −1.52378
\(262\) −2.25944 −0.139588
\(263\) −12.4275 −0.766311 −0.383156 0.923684i \(-0.625163\pi\)
−0.383156 + 0.923684i \(0.625163\pi\)
\(264\) 4.33458 0.266775
\(265\) 13.4462 0.825993
\(266\) 0 0
\(267\) −4.14684 −0.253782
\(268\) 3.71729 0.227070
\(269\) 13.1703 0.803006 0.401503 0.915858i \(-0.368488\pi\)
0.401503 + 0.915858i \(0.368488\pi\)
\(270\) 3.69503 0.224873
\(271\) 22.2437 1.35121 0.675605 0.737264i \(-0.263882\pi\)
0.675605 + 0.737264i \(0.263882\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) −5.27898 −0.318915
\(275\) −6.52002 −0.393172
\(276\) 4.55343 0.274084
\(277\) 6.76821 0.406662 0.203331 0.979110i \(-0.434823\pi\)
0.203331 + 0.979110i \(0.434823\pi\)
\(278\) 13.2515 0.794771
\(279\) 21.7205 1.30037
\(280\) 0 0
\(281\) 13.3358 0.795547 0.397774 0.917484i \(-0.369783\pi\)
0.397774 + 0.917484i \(0.369783\pi\)
\(282\) 1.78036 0.106019
\(283\) −24.7738 −1.47265 −0.736325 0.676628i \(-0.763441\pi\)
−0.736325 + 0.676628i \(0.763441\pi\)
\(284\) 0.0105838 0.000628034 0
\(285\) −4.02277 −0.238289
\(286\) 24.8164 1.46743
\(287\) 0 0
\(288\) −2.55803 −0.150733
\(289\) 1.00000 0.0588235
\(290\) 9.62358 0.565116
\(291\) 11.8615 0.695331
\(292\) −7.93373 −0.464286
\(293\) −1.20069 −0.0701449 −0.0350724 0.999385i \(-0.511166\pi\)
−0.0350724 + 0.999385i \(0.511166\pi\)
\(294\) 0 0
\(295\) −0.344598 −0.0200633
\(296\) −1.65916 −0.0964369
\(297\) −24.0917 −1.39794
\(298\) 10.1867 0.590102
\(299\) 26.0693 1.50763
\(300\) −0.664810 −0.0383828
\(301\) 0 0
\(302\) −10.3022 −0.592822
\(303\) −10.6949 −0.614406
\(304\) 6.05101 0.347049
\(305\) −11.5881 −0.663535
\(306\) −2.55803 −0.146233
\(307\) 1.65968 0.0947230 0.0473615 0.998878i \(-0.484919\pi\)
0.0473615 + 0.998878i \(0.484919\pi\)
\(308\) 0 0
\(309\) −3.28004 −0.186595
\(310\) −8.49111 −0.482262
\(311\) −9.27450 −0.525908 −0.262954 0.964808i \(-0.584697\pi\)
−0.262954 + 0.964808i \(0.584697\pi\)
\(312\) 2.53039 0.143255
\(313\) −1.10553 −0.0624884 −0.0312442 0.999512i \(-0.509947\pi\)
−0.0312442 + 0.999512i \(0.509947\pi\)
\(314\) 7.23839 0.408486
\(315\) 0 0
\(316\) −0.721203 −0.0405709
\(317\) 24.5824 1.38069 0.690343 0.723482i \(-0.257460\pi\)
0.690343 + 0.723482i \(0.257460\pi\)
\(318\) −8.93916 −0.501283
\(319\) −62.7460 −3.51310
\(320\) 1.00000 0.0559017
\(321\) −9.26160 −0.516932
\(322\) 0 0
\(323\) 6.05101 0.336687
\(324\) 5.21758 0.289866
\(325\) −3.80618 −0.211129
\(326\) 9.45112 0.523449
\(327\) −7.46294 −0.412702
\(328\) 3.59766 0.198648
\(329\) 0 0
\(330\) 4.33458 0.238611
\(331\) 0.712529 0.0391641 0.0195821 0.999808i \(-0.493766\pi\)
0.0195821 + 0.999808i \(0.493766\pi\)
\(332\) 6.22935 0.341880
\(333\) 4.24418 0.232580
\(334\) 7.30161 0.399527
\(335\) 3.71729 0.203097
\(336\) 0 0
\(337\) 22.0953 1.20361 0.601804 0.798644i \(-0.294449\pi\)
0.601804 + 0.798644i \(0.294449\pi\)
\(338\) 1.48704 0.0808842
\(339\) −12.9150 −0.701447
\(340\) 1.00000 0.0542326
\(341\) 55.3622 2.99803
\(342\) −15.4786 −0.836989
\(343\) 0 0
\(344\) 11.1719 0.602350
\(345\) 4.55343 0.245148
\(346\) −14.0587 −0.755799
\(347\) 17.0139 0.913354 0.456677 0.889633i \(-0.349040\pi\)
0.456677 + 0.889633i \(0.349040\pi\)
\(348\) −6.39786 −0.342961
\(349\) 2.84986 0.152550 0.0762748 0.997087i \(-0.475697\pi\)
0.0762748 + 0.997087i \(0.475697\pi\)
\(350\) 0 0
\(351\) −14.0640 −0.750680
\(352\) −6.52002 −0.347518
\(353\) −25.4548 −1.35482 −0.677411 0.735604i \(-0.736898\pi\)
−0.677411 + 0.735604i \(0.736898\pi\)
\(354\) 0.229093 0.0121761
\(355\) 0.0105838 0.000561731 0
\(356\) 6.23763 0.330594
\(357\) 0 0
\(358\) −25.3304 −1.33876
\(359\) 23.7835 1.25525 0.627624 0.778517i \(-0.284028\pi\)
0.627624 + 0.778517i \(0.284028\pi\)
\(360\) −2.55803 −0.134820
\(361\) 17.6147 0.927089
\(362\) 24.9847 1.31317
\(363\) −20.9486 −1.09952
\(364\) 0 0
\(365\) −7.93373 −0.415270
\(366\) 7.70392 0.402690
\(367\) −13.8863 −0.724858 −0.362429 0.932011i \(-0.618052\pi\)
−0.362429 + 0.932011i \(0.618052\pi\)
\(368\) −6.84921 −0.357040
\(369\) −9.20292 −0.479085
\(370\) −1.65916 −0.0862558
\(371\) 0 0
\(372\) 5.64498 0.292678
\(373\) 0.0122696 0.000635294 0 0.000317647 1.00000i \(-0.499899\pi\)
0.000317647 1.00000i \(0.499899\pi\)
\(374\) −6.52002 −0.337142
\(375\) −0.664810 −0.0343307
\(376\) −2.67800 −0.138107
\(377\) −36.6291 −1.88650
\(378\) 0 0
\(379\) 18.3892 0.944589 0.472295 0.881441i \(-0.343426\pi\)
0.472295 + 0.881441i \(0.343426\pi\)
\(380\) 6.05101 0.310410
\(381\) 1.76204 0.0902721
\(382\) −3.19120 −0.163276
\(383\) −2.61159 −0.133446 −0.0667229 0.997772i \(-0.521254\pi\)
−0.0667229 + 0.997772i \(0.521254\pi\)
\(384\) −0.664810 −0.0339260
\(385\) 0 0
\(386\) 10.6813 0.543665
\(387\) −28.5781 −1.45271
\(388\) −17.8419 −0.905783
\(389\) 4.11167 0.208470 0.104235 0.994553i \(-0.466761\pi\)
0.104235 + 0.994553i \(0.466761\pi\)
\(390\) 2.53039 0.128131
\(391\) −6.84921 −0.346379
\(392\) 0 0
\(393\) 1.50210 0.0757707
\(394\) 0.486090 0.0244889
\(395\) −0.721203 −0.0362877
\(396\) 16.6784 0.838121
\(397\) 14.2693 0.716157 0.358079 0.933691i \(-0.383432\pi\)
0.358079 + 0.933691i \(0.383432\pi\)
\(398\) −7.10223 −0.356003
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −23.9281 −1.19491 −0.597456 0.801902i \(-0.703822\pi\)
−0.597456 + 0.801902i \(0.703822\pi\)
\(402\) −2.47130 −0.123257
\(403\) 32.3187 1.60991
\(404\) 16.0871 0.800365
\(405\) 5.21758 0.259264
\(406\) 0 0
\(407\) 10.8178 0.536217
\(408\) −0.664810 −0.0329130
\(409\) 17.0097 0.841073 0.420537 0.907276i \(-0.361842\pi\)
0.420537 + 0.907276i \(0.361842\pi\)
\(410\) 3.59766 0.177676
\(411\) 3.50952 0.173112
\(412\) 4.93380 0.243071
\(413\) 0 0
\(414\) 17.5205 0.861084
\(415\) 6.22935 0.305787
\(416\) −3.80618 −0.186614
\(417\) −8.80972 −0.431414
\(418\) −39.4527 −1.92970
\(419\) 27.3533 1.33630 0.668149 0.744027i \(-0.267087\pi\)
0.668149 + 0.744027i \(0.267087\pi\)
\(420\) 0 0
\(421\) −6.29686 −0.306890 −0.153445 0.988157i \(-0.549037\pi\)
−0.153445 + 0.988157i \(0.549037\pi\)
\(422\) −3.98703 −0.194086
\(423\) 6.85040 0.333078
\(424\) 13.4462 0.653004
\(425\) 1.00000 0.0485071
\(426\) −0.00703623 −0.000340906 0
\(427\) 0 0
\(428\) 13.9312 0.673390
\(429\) −16.4982 −0.796541
\(430\) 11.1719 0.538758
\(431\) −8.15799 −0.392956 −0.196478 0.980508i \(-0.562950\pi\)
−0.196478 + 0.980508i \(0.562950\pi\)
\(432\) 3.69503 0.177777
\(433\) −38.0191 −1.82708 −0.913542 0.406745i \(-0.866664\pi\)
−0.913542 + 0.406745i \(0.866664\pi\)
\(434\) 0 0
\(435\) −6.39786 −0.306754
\(436\) 11.2257 0.537612
\(437\) −41.4446 −1.98256
\(438\) 5.27443 0.252022
\(439\) 22.1533 1.05732 0.528660 0.848833i \(-0.322695\pi\)
0.528660 + 0.848833i \(0.322695\pi\)
\(440\) −6.52002 −0.310830
\(441\) 0 0
\(442\) −3.80618 −0.181042
\(443\) 11.6498 0.553500 0.276750 0.960942i \(-0.410743\pi\)
0.276750 + 0.960942i \(0.410743\pi\)
\(444\) 1.10303 0.0523474
\(445\) 6.23763 0.295692
\(446\) 18.3655 0.869632
\(447\) −6.77225 −0.320317
\(448\) 0 0
\(449\) −30.5371 −1.44113 −0.720567 0.693386i \(-0.756118\pi\)
−0.720567 + 0.693386i \(0.756118\pi\)
\(450\) −2.55803 −0.120587
\(451\) −23.4568 −1.10454
\(452\) 19.4266 0.913750
\(453\) 6.84898 0.321793
\(454\) −4.36764 −0.204983
\(455\) 0 0
\(456\) −4.02277 −0.188384
\(457\) 4.92342 0.230308 0.115154 0.993348i \(-0.463264\pi\)
0.115154 + 0.993348i \(0.463264\pi\)
\(458\) 3.25162 0.151938
\(459\) 3.69503 0.172469
\(460\) −6.84921 −0.319346
\(461\) −29.7319 −1.38475 −0.692377 0.721536i \(-0.743436\pi\)
−0.692377 + 0.721536i \(0.743436\pi\)
\(462\) 0 0
\(463\) 18.1930 0.845502 0.422751 0.906246i \(-0.361064\pi\)
0.422751 + 0.906246i \(0.361064\pi\)
\(464\) 9.62358 0.446764
\(465\) 5.64498 0.261779
\(466\) −28.1326 −1.30322
\(467\) 14.3738 0.665140 0.332570 0.943079i \(-0.392084\pi\)
0.332570 + 0.943079i \(0.392084\pi\)
\(468\) 9.73632 0.450062
\(469\) 0 0
\(470\) −2.67800 −0.123527
\(471\) −4.81216 −0.221733
\(472\) −0.344598 −0.0158614
\(473\) −72.8412 −3.34924
\(474\) 0.479464 0.0220225
\(475\) 6.05101 0.277639
\(476\) 0 0
\(477\) −34.3957 −1.57487
\(478\) −7.08790 −0.324193
\(479\) −32.1649 −1.46965 −0.734825 0.678257i \(-0.762736\pi\)
−0.734825 + 0.678257i \(0.762736\pi\)
\(480\) −0.664810 −0.0303443
\(481\) 6.31508 0.287943
\(482\) −9.35178 −0.425962
\(483\) 0 0
\(484\) 31.5107 1.43230
\(485\) −17.8419 −0.810157
\(486\) −14.5538 −0.660174
\(487\) 8.05695 0.365095 0.182548 0.983197i \(-0.441566\pi\)
0.182548 + 0.983197i \(0.441566\pi\)
\(488\) −11.5881 −0.524571
\(489\) −6.28321 −0.284136
\(490\) 0 0
\(491\) −38.8366 −1.75267 −0.876335 0.481703i \(-0.840018\pi\)
−0.876335 + 0.481703i \(0.840018\pi\)
\(492\) −2.39176 −0.107829
\(493\) 9.62358 0.433424
\(494\) −23.0313 −1.03622
\(495\) 16.6784 0.749638
\(496\) −8.49111 −0.381262
\(497\) 0 0
\(498\) −4.14134 −0.185578
\(499\) 25.5511 1.14382 0.571912 0.820315i \(-0.306202\pi\)
0.571912 + 0.820315i \(0.306202\pi\)
\(500\) 1.00000 0.0447214
\(501\) −4.85419 −0.216869
\(502\) −10.9824 −0.490167
\(503\) 8.21895 0.366465 0.183232 0.983070i \(-0.441344\pi\)
0.183232 + 0.983070i \(0.441344\pi\)
\(504\) 0 0
\(505\) 16.0871 0.715868
\(506\) 44.6570 1.98525
\(507\) −0.988599 −0.0439052
\(508\) −2.65044 −0.117594
\(509\) −11.3042 −0.501052 −0.250526 0.968110i \(-0.580604\pi\)
−0.250526 + 0.968110i \(0.580604\pi\)
\(510\) −0.664810 −0.0294383
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 22.3587 0.987160
\(514\) 8.15432 0.359672
\(515\) 4.93380 0.217409
\(516\) −7.42721 −0.326965
\(517\) 17.4606 0.767918
\(518\) 0 0
\(519\) 9.34635 0.410259
\(520\) −3.80618 −0.166912
\(521\) −5.13750 −0.225078 −0.112539 0.993647i \(-0.535898\pi\)
−0.112539 + 0.993647i \(0.535898\pi\)
\(522\) −24.6174 −1.07747
\(523\) −17.1699 −0.750787 −0.375394 0.926865i \(-0.622492\pi\)
−0.375394 + 0.926865i \(0.622492\pi\)
\(524\) −2.25944 −0.0987039
\(525\) 0 0
\(526\) −12.4275 −0.541864
\(527\) −8.49111 −0.369878
\(528\) 4.33458 0.188638
\(529\) 23.9117 1.03964
\(530\) 13.4462 0.584065
\(531\) 0.881492 0.0382535
\(532\) 0 0
\(533\) −13.6934 −0.593125
\(534\) −4.14684 −0.179451
\(535\) 13.9312 0.602298
\(536\) 3.71729 0.160563
\(537\) 16.8399 0.726697
\(538\) 13.1703 0.567811
\(539\) 0 0
\(540\) 3.69503 0.159009
\(541\) 35.4584 1.52448 0.762238 0.647296i \(-0.224100\pi\)
0.762238 + 0.647296i \(0.224100\pi\)
\(542\) 22.2437 0.955450
\(543\) −16.6101 −0.712807
\(544\) 1.00000 0.0428746
\(545\) 11.2257 0.480855
\(546\) 0 0
\(547\) 10.3432 0.442241 0.221121 0.975246i \(-0.429029\pi\)
0.221121 + 0.975246i \(0.429029\pi\)
\(548\) −5.27898 −0.225507
\(549\) 29.6428 1.26512
\(550\) −6.52002 −0.278015
\(551\) 58.2324 2.48078
\(552\) 4.55343 0.193807
\(553\) 0 0
\(554\) 6.76821 0.287554
\(555\) 1.10303 0.0468210
\(556\) 13.2515 0.561988
\(557\) −13.5080 −0.572352 −0.286176 0.958177i \(-0.592384\pi\)
−0.286176 + 0.958177i \(0.592384\pi\)
\(558\) 21.7205 0.919501
\(559\) −42.5224 −1.79851
\(560\) 0 0
\(561\) 4.33458 0.183006
\(562\) 13.3358 0.562537
\(563\) −24.7467 −1.04295 −0.521474 0.853267i \(-0.674618\pi\)
−0.521474 + 0.853267i \(0.674618\pi\)
\(564\) 1.78036 0.0749669
\(565\) 19.4266 0.817283
\(566\) −24.7738 −1.04132
\(567\) 0 0
\(568\) 0.0105838 0.000444087 0
\(569\) −1.24375 −0.0521409 −0.0260705 0.999660i \(-0.508299\pi\)
−0.0260705 + 0.999660i \(0.508299\pi\)
\(570\) −4.02277 −0.168495
\(571\) 11.1564 0.466880 0.233440 0.972371i \(-0.425002\pi\)
0.233440 + 0.972371i \(0.425002\pi\)
\(572\) 24.8164 1.03763
\(573\) 2.12154 0.0886288
\(574\) 0 0
\(575\) −6.84921 −0.285632
\(576\) −2.55803 −0.106584
\(577\) 22.1393 0.921671 0.460836 0.887485i \(-0.347550\pi\)
0.460836 + 0.887485i \(0.347550\pi\)
\(578\) 1.00000 0.0415945
\(579\) −7.10105 −0.295110
\(580\) 9.62358 0.399598
\(581\) 0 0
\(582\) 11.8615 0.491673
\(583\) −87.6694 −3.63090
\(584\) −7.93373 −0.328300
\(585\) 9.73632 0.402547
\(586\) −1.20069 −0.0495999
\(587\) −32.3171 −1.33387 −0.666935 0.745116i \(-0.732394\pi\)
−0.666935 + 0.745116i \(0.732394\pi\)
\(588\) 0 0
\(589\) −51.3797 −2.11707
\(590\) −0.344598 −0.0141869
\(591\) −0.323158 −0.0132929
\(592\) −1.65916 −0.0681912
\(593\) 43.3915 1.78188 0.890938 0.454124i \(-0.150048\pi\)
0.890938 + 0.454124i \(0.150048\pi\)
\(594\) −24.0917 −0.988495
\(595\) 0 0
\(596\) 10.1867 0.417265
\(597\) 4.72164 0.193244
\(598\) 26.0693 1.06605
\(599\) 8.53846 0.348872 0.174436 0.984669i \(-0.444190\pi\)
0.174436 + 0.984669i \(0.444190\pi\)
\(600\) −0.664810 −0.0271408
\(601\) 15.8289 0.645674 0.322837 0.946455i \(-0.395363\pi\)
0.322837 + 0.946455i \(0.395363\pi\)
\(602\) 0 0
\(603\) −9.50894 −0.387234
\(604\) −10.3022 −0.419189
\(605\) 31.5107 1.28109
\(606\) −10.6949 −0.434451
\(607\) 24.6895 1.00212 0.501059 0.865413i \(-0.332944\pi\)
0.501059 + 0.865413i \(0.332944\pi\)
\(608\) 6.05101 0.245401
\(609\) 0 0
\(610\) −11.5881 −0.469190
\(611\) 10.1930 0.412364
\(612\) −2.55803 −0.103402
\(613\) −3.79420 −0.153246 −0.0766231 0.997060i \(-0.524414\pi\)
−0.0766231 + 0.997060i \(0.524414\pi\)
\(614\) 1.65968 0.0669793
\(615\) −2.39176 −0.0964452
\(616\) 0 0
\(617\) 26.4180 1.06355 0.531775 0.846886i \(-0.321525\pi\)
0.531775 + 0.846886i \(0.321525\pi\)
\(618\) −3.28004 −0.131943
\(619\) 2.16086 0.0868523 0.0434262 0.999057i \(-0.486173\pi\)
0.0434262 + 0.999057i \(0.486173\pi\)
\(620\) −8.49111 −0.341011
\(621\) −25.3081 −1.01558
\(622\) −9.27450 −0.371873
\(623\) 0 0
\(624\) 2.53039 0.101297
\(625\) 1.00000 0.0400000
\(626\) −1.10553 −0.0441860
\(627\) 26.2286 1.04747
\(628\) 7.23839 0.288843
\(629\) −1.65916 −0.0661551
\(630\) 0 0
\(631\) −5.38707 −0.214456 −0.107228 0.994234i \(-0.534197\pi\)
−0.107228 + 0.994234i \(0.534197\pi\)
\(632\) −0.721203 −0.0286879
\(633\) 2.65062 0.105353
\(634\) 24.5824 0.976292
\(635\) −2.65044 −0.105180
\(636\) −8.93916 −0.354461
\(637\) 0 0
\(638\) −62.7460 −2.48414
\(639\) −0.0270737 −0.00107102
\(640\) 1.00000 0.0395285
\(641\) −36.6389 −1.44715 −0.723574 0.690247i \(-0.757502\pi\)
−0.723574 + 0.690247i \(0.757502\pi\)
\(642\) −9.26160 −0.365526
\(643\) 6.88063 0.271346 0.135673 0.990754i \(-0.456680\pi\)
0.135673 + 0.990754i \(0.456680\pi\)
\(644\) 0 0
\(645\) −7.42721 −0.292446
\(646\) 6.05101 0.238074
\(647\) 23.9917 0.943210 0.471605 0.881810i \(-0.343675\pi\)
0.471605 + 0.881810i \(0.343675\pi\)
\(648\) 5.21758 0.204966
\(649\) 2.24679 0.0881942
\(650\) −3.80618 −0.149291
\(651\) 0 0
\(652\) 9.45112 0.370135
\(653\) 3.68368 0.144153 0.0720767 0.997399i \(-0.477037\pi\)
0.0720767 + 0.997399i \(0.477037\pi\)
\(654\) −7.46294 −0.291824
\(655\) −2.25944 −0.0882834
\(656\) 3.59766 0.140465
\(657\) 20.2947 0.791772
\(658\) 0 0
\(659\) 15.3093 0.596366 0.298183 0.954509i \(-0.403619\pi\)
0.298183 + 0.954509i \(0.403619\pi\)
\(660\) 4.33458 0.168723
\(661\) 33.2293 1.29247 0.646234 0.763139i \(-0.276343\pi\)
0.646234 + 0.763139i \(0.276343\pi\)
\(662\) 0.712529 0.0276932
\(663\) 2.53039 0.0982722
\(664\) 6.22935 0.241746
\(665\) 0 0
\(666\) 4.24418 0.164459
\(667\) −65.9139 −2.55220
\(668\) 7.30161 0.282508
\(669\) −12.2096 −0.472050
\(670\) 3.71729 0.143612
\(671\) 75.5550 2.91677
\(672\) 0 0
\(673\) 39.2272 1.51210 0.756049 0.654514i \(-0.227127\pi\)
0.756049 + 0.654514i \(0.227127\pi\)
\(674\) 22.0953 0.851079
\(675\) 3.69503 0.142222
\(676\) 1.48704 0.0571938
\(677\) −17.8082 −0.684425 −0.342213 0.939623i \(-0.611176\pi\)
−0.342213 + 0.939623i \(0.611176\pi\)
\(678\) −12.9150 −0.495998
\(679\) 0 0
\(680\) 1.00000 0.0383482
\(681\) 2.90365 0.111268
\(682\) 55.3622 2.11993
\(683\) 17.1689 0.656949 0.328474 0.944513i \(-0.393466\pi\)
0.328474 + 0.944513i \(0.393466\pi\)
\(684\) −15.4786 −0.591841
\(685\) −5.27898 −0.201700
\(686\) 0 0
\(687\) −2.16171 −0.0824744
\(688\) 11.1719 0.425925
\(689\) −51.1787 −1.94975
\(690\) 4.55343 0.173346
\(691\) −39.1575 −1.48962 −0.744812 0.667275i \(-0.767461\pi\)
−0.744812 + 0.667275i \(0.767461\pi\)
\(692\) −14.0587 −0.534430
\(693\) 0 0
\(694\) 17.0139 0.645839
\(695\) 13.2515 0.502657
\(696\) −6.39786 −0.242510
\(697\) 3.59766 0.136271
\(698\) 2.84986 0.107869
\(699\) 18.7028 0.707406
\(700\) 0 0
\(701\) 26.0042 0.982163 0.491082 0.871113i \(-0.336602\pi\)
0.491082 + 0.871113i \(0.336602\pi\)
\(702\) −14.0640 −0.530811
\(703\) −10.0396 −0.378651
\(704\) −6.52002 −0.245733
\(705\) 1.78036 0.0670524
\(706\) −25.4548 −0.958004
\(707\) 0 0
\(708\) 0.229093 0.00860983
\(709\) 12.7581 0.479141 0.239570 0.970879i \(-0.422993\pi\)
0.239570 + 0.970879i \(0.422993\pi\)
\(710\) 0.0105838 0.000397204 0
\(711\) 1.84486 0.0691876
\(712\) 6.23763 0.233765
\(713\) 58.1574 2.17801
\(714\) 0 0
\(715\) 24.8164 0.928081
\(716\) −25.3304 −0.946643
\(717\) 4.71211 0.175977
\(718\) 23.7835 0.887594
\(719\) −39.6642 −1.47923 −0.739613 0.673033i \(-0.764991\pi\)
−0.739613 + 0.673033i \(0.764991\pi\)
\(720\) −2.55803 −0.0953320
\(721\) 0 0
\(722\) 17.6147 0.655551
\(723\) 6.21716 0.231219
\(724\) 24.9847 0.928549
\(725\) 9.62358 0.357411
\(726\) −20.9486 −0.777477
\(727\) −12.3643 −0.458565 −0.229283 0.973360i \(-0.573638\pi\)
−0.229283 + 0.973360i \(0.573638\pi\)
\(728\) 0 0
\(729\) −5.97723 −0.221379
\(730\) −7.93373 −0.293641
\(731\) 11.1719 0.413208
\(732\) 7.70392 0.284745
\(733\) −43.4894 −1.60632 −0.803158 0.595766i \(-0.796849\pi\)
−0.803158 + 0.595766i \(0.796849\pi\)
\(734\) −13.8863 −0.512552
\(735\) 0 0
\(736\) −6.84921 −0.252465
\(737\) −24.2368 −0.892776
\(738\) −9.20292 −0.338764
\(739\) 19.0251 0.699849 0.349925 0.936778i \(-0.386207\pi\)
0.349925 + 0.936778i \(0.386207\pi\)
\(740\) −1.65916 −0.0609920
\(741\) 15.3114 0.562479
\(742\) 0 0
\(743\) 28.2320 1.03573 0.517865 0.855462i \(-0.326727\pi\)
0.517865 + 0.855462i \(0.326727\pi\)
\(744\) 5.64498 0.206955
\(745\) 10.1867 0.373213
\(746\) 0.0122696 0.000449220 0
\(747\) −15.9348 −0.583026
\(748\) −6.52002 −0.238396
\(749\) 0 0
\(750\) −0.664810 −0.0242754
\(751\) 49.1270 1.79267 0.896334 0.443379i \(-0.146220\pi\)
0.896334 + 0.443379i \(0.146220\pi\)
\(752\) −2.67800 −0.0976567
\(753\) 7.30119 0.266070
\(754\) −36.6291 −1.33395
\(755\) −10.3022 −0.374934
\(756\) 0 0
\(757\) 31.3820 1.14060 0.570299 0.821437i \(-0.306827\pi\)
0.570299 + 0.821437i \(0.306827\pi\)
\(758\) 18.3892 0.667925
\(759\) −29.6884 −1.07762
\(760\) 6.05101 0.219493
\(761\) 38.1464 1.38281 0.691403 0.722469i \(-0.256993\pi\)
0.691403 + 0.722469i \(0.256993\pi\)
\(762\) 1.76204 0.0638320
\(763\) 0 0
\(764\) −3.19120 −0.115454
\(765\) −2.55803 −0.0924857
\(766\) −2.61159 −0.0943605
\(767\) 1.31160 0.0473593
\(768\) −0.664810 −0.0239893
\(769\) −29.9068 −1.07847 −0.539233 0.842157i \(-0.681286\pi\)
−0.539233 + 0.842157i \(0.681286\pi\)
\(770\) 0 0
\(771\) −5.42108 −0.195235
\(772\) 10.6813 0.384429
\(773\) 29.8061 1.07205 0.536026 0.844202i \(-0.319925\pi\)
0.536026 + 0.844202i \(0.319925\pi\)
\(774\) −28.5781 −1.02722
\(775\) −8.49111 −0.305010
\(776\) −17.8419 −0.640486
\(777\) 0 0
\(778\) 4.11167 0.147410
\(779\) 21.7695 0.779973
\(780\) 2.53039 0.0906025
\(781\) −0.0690067 −0.00246925
\(782\) −6.84921 −0.244927
\(783\) 35.5595 1.27079
\(784\) 0 0
\(785\) 7.23839 0.258349
\(786\) 1.50210 0.0535780
\(787\) 51.2500 1.82687 0.913433 0.406989i \(-0.133421\pi\)
0.913433 + 0.406989i \(0.133421\pi\)
\(788\) 0.486090 0.0173162
\(789\) 8.26192 0.294132
\(790\) −0.721203 −0.0256593
\(791\) 0 0
\(792\) 16.6784 0.592641
\(793\) 44.1066 1.56627
\(794\) 14.2693 0.506399
\(795\) −8.93916 −0.317039
\(796\) −7.10223 −0.251732
\(797\) 23.1273 0.819211 0.409605 0.912263i \(-0.365666\pi\)
0.409605 + 0.912263i \(0.365666\pi\)
\(798\) 0 0
\(799\) −2.67800 −0.0947409
\(800\) 1.00000 0.0353553
\(801\) −15.9560 −0.563778
\(802\) −23.9281 −0.844930
\(803\) 51.7281 1.82545
\(804\) −2.47130 −0.0871559
\(805\) 0 0
\(806\) 32.3187 1.13838
\(807\) −8.75574 −0.308217
\(808\) 16.0871 0.565944
\(809\) 8.53616 0.300115 0.150058 0.988677i \(-0.452054\pi\)
0.150058 + 0.988677i \(0.452054\pi\)
\(810\) 5.21758 0.183327
\(811\) −32.3685 −1.13661 −0.568305 0.822818i \(-0.692401\pi\)
−0.568305 + 0.822818i \(0.692401\pi\)
\(812\) 0 0
\(813\) −14.7879 −0.518633
\(814\) 10.8178 0.379163
\(815\) 9.45112 0.331058
\(816\) −0.664810 −0.0232730
\(817\) 67.6014 2.36507
\(818\) 17.0097 0.594729
\(819\) 0 0
\(820\) 3.59766 0.125636
\(821\) −37.4067 −1.30550 −0.652751 0.757573i \(-0.726385\pi\)
−0.652751 + 0.757573i \(0.726385\pi\)
\(822\) 3.50952 0.122409
\(823\) 29.3865 1.02435 0.512174 0.858882i \(-0.328840\pi\)
0.512174 + 0.858882i \(0.328840\pi\)
\(824\) 4.93380 0.171877
\(825\) 4.33458 0.150911
\(826\) 0 0
\(827\) −20.1831 −0.701835 −0.350918 0.936406i \(-0.614130\pi\)
−0.350918 + 0.936406i \(0.614130\pi\)
\(828\) 17.5205 0.608878
\(829\) −20.5850 −0.714948 −0.357474 0.933923i \(-0.616362\pi\)
−0.357474 + 0.933923i \(0.616362\pi\)
\(830\) 6.22935 0.216224
\(831\) −4.49958 −0.156089
\(832\) −3.80618 −0.131956
\(833\) 0 0
\(834\) −8.80972 −0.305056
\(835\) 7.30161 0.252683
\(836\) −39.4527 −1.36450
\(837\) −31.3749 −1.08448
\(838\) 27.3533 0.944906
\(839\) −48.6129 −1.67830 −0.839152 0.543897i \(-0.816948\pi\)
−0.839152 + 0.543897i \(0.816948\pi\)
\(840\) 0 0
\(841\) 63.6133 2.19356
\(842\) −6.29686 −0.217004
\(843\) −8.86578 −0.305354
\(844\) −3.98703 −0.137239
\(845\) 1.48704 0.0511557
\(846\) 6.85040 0.235522
\(847\) 0 0
\(848\) 13.4462 0.461744
\(849\) 16.4699 0.565245
\(850\) 1.00000 0.0342997
\(851\) 11.3639 0.389551
\(852\) −0.00703623 −0.000241057 0
\(853\) −4.82501 −0.165205 −0.0826026 0.996583i \(-0.526323\pi\)
−0.0826026 + 0.996583i \(0.526323\pi\)
\(854\) 0 0
\(855\) −15.4786 −0.529358
\(856\) 13.9312 0.476158
\(857\) −22.2382 −0.759644 −0.379822 0.925060i \(-0.624015\pi\)
−0.379822 + 0.925060i \(0.624015\pi\)
\(858\) −16.4982 −0.563240
\(859\) −36.0342 −1.22947 −0.614736 0.788733i \(-0.710737\pi\)
−0.614736 + 0.788733i \(0.710737\pi\)
\(860\) 11.1719 0.380959
\(861\) 0 0
\(862\) −8.15799 −0.277862
\(863\) 29.0548 0.989038 0.494519 0.869167i \(-0.335344\pi\)
0.494519 + 0.869167i \(0.335344\pi\)
\(864\) 3.69503 0.125708
\(865\) −14.0587 −0.478009
\(866\) −38.0191 −1.29194
\(867\) −0.664810 −0.0225781
\(868\) 0 0
\(869\) 4.70226 0.159513
\(870\) −6.39786 −0.216908
\(871\) −14.1487 −0.479411
\(872\) 11.2257 0.380149
\(873\) 45.6400 1.54468
\(874\) −41.4446 −1.40188
\(875\) 0 0
\(876\) 5.27443 0.178206
\(877\) −51.2995 −1.73226 −0.866130 0.499819i \(-0.833400\pi\)
−0.866130 + 0.499819i \(0.833400\pi\)
\(878\) 22.1533 0.747639
\(879\) 0.798229 0.0269236
\(880\) −6.52002 −0.219790
\(881\) 1.96766 0.0662922 0.0331461 0.999451i \(-0.489447\pi\)
0.0331461 + 0.999451i \(0.489447\pi\)
\(882\) 0 0
\(883\) −45.1553 −1.51960 −0.759798 0.650159i \(-0.774702\pi\)
−0.759798 + 0.650159i \(0.774702\pi\)
\(884\) −3.80618 −0.128016
\(885\) 0.229093 0.00770086
\(886\) 11.6498 0.391384
\(887\) −11.7817 −0.395591 −0.197795 0.980243i \(-0.563378\pi\)
−0.197795 + 0.980243i \(0.563378\pi\)
\(888\) 1.10303 0.0370152
\(889\) 0 0
\(890\) 6.23763 0.209086
\(891\) −34.0188 −1.13967
\(892\) 18.3655 0.614923
\(893\) −16.2046 −0.542267
\(894\) −6.77225 −0.226498
\(895\) −25.3304 −0.846703
\(896\) 0 0
\(897\) −17.3312 −0.578671
\(898\) −30.5371 −1.01903
\(899\) −81.7149 −2.72534
\(900\) −2.55803 −0.0852676
\(901\) 13.4462 0.447957
\(902\) −23.4568 −0.781027
\(903\) 0 0
\(904\) 19.4266 0.646119
\(905\) 24.9847 0.830520
\(906\) 6.84898 0.227542
\(907\) 6.94531 0.230615 0.115308 0.993330i \(-0.463215\pi\)
0.115308 + 0.993330i \(0.463215\pi\)
\(908\) −4.36764 −0.144945
\(909\) −41.1513 −1.36490
\(910\) 0 0
\(911\) 19.3452 0.640935 0.320468 0.947259i \(-0.396160\pi\)
0.320468 + 0.947259i \(0.396160\pi\)
\(912\) −4.02277 −0.133207
\(913\) −40.6155 −1.34418
\(914\) 4.92342 0.162852
\(915\) 7.70392 0.254684
\(916\) 3.25162 0.107437
\(917\) 0 0
\(918\) 3.69503 0.121954
\(919\) 57.3011 1.89019 0.945095 0.326796i \(-0.105969\pi\)
0.945095 + 0.326796i \(0.105969\pi\)
\(920\) −6.84921 −0.225812
\(921\) −1.10337 −0.0363574
\(922\) −29.7319 −0.979169
\(923\) −0.0402840 −0.00132596
\(924\) 0 0
\(925\) −1.65916 −0.0545529
\(926\) 18.1930 0.597860
\(927\) −12.6208 −0.414521
\(928\) 9.62358 0.315910
\(929\) −42.8599 −1.40619 −0.703093 0.711098i \(-0.748198\pi\)
−0.703093 + 0.711098i \(0.748198\pi\)
\(930\) 5.64498 0.185106
\(931\) 0 0
\(932\) −28.1326 −0.921513
\(933\) 6.16578 0.201859
\(934\) 14.3738 0.470325
\(935\) −6.52002 −0.213228
\(936\) 9.73632 0.318242
\(937\) 24.4116 0.797491 0.398745 0.917062i \(-0.369446\pi\)
0.398745 + 0.917062i \(0.369446\pi\)
\(938\) 0 0
\(939\) 0.734969 0.0239848
\(940\) −2.67800 −0.0873468
\(941\) 50.9708 1.66160 0.830801 0.556570i \(-0.187883\pi\)
0.830801 + 0.556570i \(0.187883\pi\)
\(942\) −4.81216 −0.156789
\(943\) −24.6411 −0.802426
\(944\) −0.344598 −0.0112157
\(945\) 0 0
\(946\) −72.8412 −2.36827
\(947\) −8.40434 −0.273104 −0.136552 0.990633i \(-0.543602\pi\)
−0.136552 + 0.990633i \(0.543602\pi\)
\(948\) 0.479464 0.0155723
\(949\) 30.1972 0.980244
\(950\) 6.05101 0.196321
\(951\) −16.3426 −0.529946
\(952\) 0 0
\(953\) 16.5830 0.537176 0.268588 0.963255i \(-0.413443\pi\)
0.268588 + 0.963255i \(0.413443\pi\)
\(954\) −34.3957 −1.11360
\(955\) −3.19120 −0.103265
\(956\) −7.08790 −0.229239
\(957\) 41.7142 1.34843
\(958\) −32.1649 −1.03920
\(959\) 0 0
\(960\) −0.664810 −0.0214567
\(961\) 41.0989 1.32577
\(962\) 6.31508 0.203606
\(963\) −35.6364 −1.14837
\(964\) −9.35178 −0.301200
\(965\) 10.6813 0.343844
\(966\) 0 0
\(967\) 10.0435 0.322976 0.161488 0.986875i \(-0.448371\pi\)
0.161488 + 0.986875i \(0.448371\pi\)
\(968\) 31.5107 1.01279
\(969\) −4.02277 −0.129230
\(970\) −17.8419 −0.572868
\(971\) −8.61844 −0.276579 −0.138289 0.990392i \(-0.544160\pi\)
−0.138289 + 0.990392i \(0.544160\pi\)
\(972\) −14.5538 −0.466814
\(973\) 0 0
\(974\) 8.05695 0.258161
\(975\) 2.53039 0.0810374
\(976\) −11.5881 −0.370927
\(977\) 45.5811 1.45827 0.729135 0.684370i \(-0.239923\pi\)
0.729135 + 0.684370i \(0.239923\pi\)
\(978\) −6.28321 −0.200915
\(979\) −40.6695 −1.29980
\(980\) 0 0
\(981\) −28.7156 −0.916817
\(982\) −38.8366 −1.23932
\(983\) −36.3190 −1.15840 −0.579198 0.815187i \(-0.696634\pi\)
−0.579198 + 0.815187i \(0.696634\pi\)
\(984\) −2.39176 −0.0762466
\(985\) 0.486090 0.0154881
\(986\) 9.62358 0.306477
\(987\) 0 0
\(988\) −23.0313 −0.732722
\(989\) −76.5188 −2.43316
\(990\) 16.6784 0.530074
\(991\) −33.3208 −1.05847 −0.529235 0.848476i \(-0.677521\pi\)
−0.529235 + 0.848476i \(0.677521\pi\)
\(992\) −8.49111 −0.269593
\(993\) −0.473697 −0.0150323
\(994\) 0 0
\(995\) −7.10223 −0.225156
\(996\) −4.14134 −0.131223
\(997\) −4.30519 −0.136347 −0.0681733 0.997673i \(-0.521717\pi\)
−0.0681733 + 0.997673i \(0.521717\pi\)
\(998\) 25.5511 0.808805
\(999\) −6.13066 −0.193966
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8330.2.a.cw.1.4 yes 10
7.6 odd 2 8330.2.a.cv.1.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8330.2.a.cv.1.7 10 7.6 odd 2
8330.2.a.cw.1.4 yes 10 1.1 even 1 trivial