Properties

Label 8330.2.a.cw.1.3
Level $8330$
Weight $2$
Character 8330.1
Self dual yes
Analytic conductor $66.515$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,10,2,10,10,2,0,10,12,10,-2,2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 19x^{8} + 38x^{7} + 100x^{6} - 194x^{5} - 151x^{4} + 282x^{3} + 85x^{2} - 108x - 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.18925\) of defining polynomial
Character \(\chi\) \(=\) 8330.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.18925 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.18925 q^{6} +1.00000 q^{8} -1.58568 q^{9} +1.00000 q^{10} +3.88703 q^{11} -1.18925 q^{12} -4.93935 q^{13} -1.18925 q^{15} +1.00000 q^{16} +1.00000 q^{17} -1.58568 q^{18} -0.599423 q^{19} +1.00000 q^{20} +3.88703 q^{22} +8.10107 q^{23} -1.18925 q^{24} +1.00000 q^{25} -4.93935 q^{26} +5.45353 q^{27} -2.81843 q^{29} -1.18925 q^{30} +5.25434 q^{31} +1.00000 q^{32} -4.62265 q^{33} +1.00000 q^{34} -1.58568 q^{36} -8.25283 q^{37} -0.599423 q^{38} +5.87412 q^{39} +1.00000 q^{40} -11.2863 q^{41} +10.7710 q^{43} +3.88703 q^{44} -1.58568 q^{45} +8.10107 q^{46} +6.09168 q^{47} -1.18925 q^{48} +1.00000 q^{50} -1.18925 q^{51} -4.93935 q^{52} -3.62503 q^{53} +5.45353 q^{54} +3.88703 q^{55} +0.712863 q^{57} -2.81843 q^{58} -5.61745 q^{59} -1.18925 q^{60} -2.50763 q^{61} +5.25434 q^{62} +1.00000 q^{64} -4.93935 q^{65} -4.62265 q^{66} -12.6500 q^{67} +1.00000 q^{68} -9.63420 q^{69} +16.1938 q^{71} -1.58568 q^{72} +11.5564 q^{73} -8.25283 q^{74} -1.18925 q^{75} -0.599423 q^{76} +5.87412 q^{78} +16.3602 q^{79} +1.00000 q^{80} -1.72855 q^{81} -11.2863 q^{82} -6.37518 q^{83} +1.00000 q^{85} +10.7710 q^{86} +3.35181 q^{87} +3.88703 q^{88} +3.22268 q^{89} -1.58568 q^{90} +8.10107 q^{92} -6.24873 q^{93} +6.09168 q^{94} -0.599423 q^{95} -1.18925 q^{96} -0.283036 q^{97} -6.16360 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{2} + 2 q^{3} + 10 q^{4} + 10 q^{5} + 2 q^{6} + 10 q^{8} + 12 q^{9} + 10 q^{10} - 2 q^{11} + 2 q^{12} + 4 q^{13} + 2 q^{15} + 10 q^{16} + 10 q^{17} + 12 q^{18} + 14 q^{19} + 10 q^{20} - 2 q^{22}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.18925 −0.686614 −0.343307 0.939223i \(-0.611547\pi\)
−0.343307 + 0.939223i \(0.611547\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −1.18925 −0.485509
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −1.58568 −0.528562
\(10\) 1.00000 0.316228
\(11\) 3.88703 1.17198 0.585991 0.810317i \(-0.300705\pi\)
0.585991 + 0.810317i \(0.300705\pi\)
\(12\) −1.18925 −0.343307
\(13\) −4.93935 −1.36993 −0.684965 0.728576i \(-0.740183\pi\)
−0.684965 + 0.728576i \(0.740183\pi\)
\(14\) 0 0
\(15\) −1.18925 −0.307063
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −1.58568 −0.373749
\(19\) −0.599423 −0.137517 −0.0687585 0.997633i \(-0.521904\pi\)
−0.0687585 + 0.997633i \(0.521904\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 3.88703 0.828717
\(23\) 8.10107 1.68919 0.844595 0.535406i \(-0.179841\pi\)
0.844595 + 0.535406i \(0.179841\pi\)
\(24\) −1.18925 −0.242755
\(25\) 1.00000 0.200000
\(26\) −4.93935 −0.968687
\(27\) 5.45353 1.04953
\(28\) 0 0
\(29\) −2.81843 −0.523369 −0.261684 0.965154i \(-0.584278\pi\)
−0.261684 + 0.965154i \(0.584278\pi\)
\(30\) −1.18925 −0.217126
\(31\) 5.25434 0.943708 0.471854 0.881677i \(-0.343585\pi\)
0.471854 + 0.881677i \(0.343585\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.62265 −0.804699
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) −1.58568 −0.264281
\(37\) −8.25283 −1.35676 −0.678379 0.734712i \(-0.737317\pi\)
−0.678379 + 0.734712i \(0.737317\pi\)
\(38\) −0.599423 −0.0972392
\(39\) 5.87412 0.940613
\(40\) 1.00000 0.158114
\(41\) −11.2863 −1.76262 −0.881311 0.472536i \(-0.843339\pi\)
−0.881311 + 0.472536i \(0.843339\pi\)
\(42\) 0 0
\(43\) 10.7710 1.64256 0.821279 0.570527i \(-0.193261\pi\)
0.821279 + 0.570527i \(0.193261\pi\)
\(44\) 3.88703 0.585991
\(45\) −1.58568 −0.236380
\(46\) 8.10107 1.19444
\(47\) 6.09168 0.888562 0.444281 0.895887i \(-0.353459\pi\)
0.444281 + 0.895887i \(0.353459\pi\)
\(48\) −1.18925 −0.171653
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) −1.18925 −0.166528
\(52\) −4.93935 −0.684965
\(53\) −3.62503 −0.497937 −0.248968 0.968512i \(-0.580092\pi\)
−0.248968 + 0.968512i \(0.580092\pi\)
\(54\) 5.45353 0.742131
\(55\) 3.88703 0.524127
\(56\) 0 0
\(57\) 0.712863 0.0944211
\(58\) −2.81843 −0.370077
\(59\) −5.61745 −0.731330 −0.365665 0.930747i \(-0.619158\pi\)
−0.365665 + 0.930747i \(0.619158\pi\)
\(60\) −1.18925 −0.153531
\(61\) −2.50763 −0.321069 −0.160534 0.987030i \(-0.551322\pi\)
−0.160534 + 0.987030i \(0.551322\pi\)
\(62\) 5.25434 0.667302
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.93935 −0.612651
\(66\) −4.62265 −0.569008
\(67\) −12.6500 −1.54544 −0.772722 0.634745i \(-0.781105\pi\)
−0.772722 + 0.634745i \(0.781105\pi\)
\(68\) 1.00000 0.121268
\(69\) −9.63420 −1.15982
\(70\) 0 0
\(71\) 16.1938 1.92185 0.960927 0.276801i \(-0.0892744\pi\)
0.960927 + 0.276801i \(0.0892744\pi\)
\(72\) −1.58568 −0.186875
\(73\) 11.5564 1.35258 0.676289 0.736637i \(-0.263587\pi\)
0.676289 + 0.736637i \(0.263587\pi\)
\(74\) −8.25283 −0.959372
\(75\) −1.18925 −0.137323
\(76\) −0.599423 −0.0687585
\(77\) 0 0
\(78\) 5.87412 0.665114
\(79\) 16.3602 1.84067 0.920335 0.391132i \(-0.127916\pi\)
0.920335 + 0.391132i \(0.127916\pi\)
\(80\) 1.00000 0.111803
\(81\) −1.72855 −0.192061
\(82\) −11.2863 −1.24636
\(83\) −6.37518 −0.699767 −0.349883 0.936793i \(-0.613779\pi\)
−0.349883 + 0.936793i \(0.613779\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 10.7710 1.16146
\(87\) 3.35181 0.359352
\(88\) 3.88703 0.414358
\(89\) 3.22268 0.341603 0.170801 0.985305i \(-0.445364\pi\)
0.170801 + 0.985305i \(0.445364\pi\)
\(90\) −1.58568 −0.167146
\(91\) 0 0
\(92\) 8.10107 0.844595
\(93\) −6.24873 −0.647963
\(94\) 6.09168 0.628308
\(95\) −0.599423 −0.0614995
\(96\) −1.18925 −0.121377
\(97\) −0.283036 −0.0287380 −0.0143690 0.999897i \(-0.504574\pi\)
−0.0143690 + 0.999897i \(0.504574\pi\)
\(98\) 0 0
\(99\) −6.16360 −0.619465
\(100\) 1.00000 0.100000
\(101\) 0.287157 0.0285732 0.0142866 0.999898i \(-0.495452\pi\)
0.0142866 + 0.999898i \(0.495452\pi\)
\(102\) −1.18925 −0.117753
\(103\) −11.0654 −1.09030 −0.545151 0.838338i \(-0.683528\pi\)
−0.545151 + 0.838338i \(0.683528\pi\)
\(104\) −4.93935 −0.484343
\(105\) 0 0
\(106\) −3.62503 −0.352094
\(107\) −0.618021 −0.0597463 −0.0298732 0.999554i \(-0.509510\pi\)
−0.0298732 + 0.999554i \(0.509510\pi\)
\(108\) 5.45353 0.524766
\(109\) −6.43243 −0.616115 −0.308058 0.951368i \(-0.599679\pi\)
−0.308058 + 0.951368i \(0.599679\pi\)
\(110\) 3.88703 0.370613
\(111\) 9.81468 0.931568
\(112\) 0 0
\(113\) 20.1982 1.90008 0.950042 0.312122i \(-0.101040\pi\)
0.950042 + 0.312122i \(0.101040\pi\)
\(114\) 0.712863 0.0667658
\(115\) 8.10107 0.755429
\(116\) −2.81843 −0.261684
\(117\) 7.83226 0.724092
\(118\) −5.61745 −0.517128
\(119\) 0 0
\(120\) −1.18925 −0.108563
\(121\) 4.10898 0.373543
\(122\) −2.50763 −0.227030
\(123\) 13.4222 1.21024
\(124\) 5.25434 0.471854
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 4.98276 0.442148 0.221074 0.975257i \(-0.429044\pi\)
0.221074 + 0.975257i \(0.429044\pi\)
\(128\) 1.00000 0.0883883
\(129\) −12.8094 −1.12780
\(130\) −4.93935 −0.433210
\(131\) 18.7897 1.64166 0.820830 0.571173i \(-0.193511\pi\)
0.820830 + 0.571173i \(0.193511\pi\)
\(132\) −4.62265 −0.402350
\(133\) 0 0
\(134\) −12.6500 −1.09279
\(135\) 5.45353 0.469365
\(136\) 1.00000 0.0857493
\(137\) 12.4359 1.06247 0.531234 0.847225i \(-0.321728\pi\)
0.531234 + 0.847225i \(0.321728\pi\)
\(138\) −9.63420 −0.820117
\(139\) 9.16981 0.777773 0.388886 0.921286i \(-0.372860\pi\)
0.388886 + 0.921286i \(0.372860\pi\)
\(140\) 0 0
\(141\) −7.24452 −0.610099
\(142\) 16.1938 1.35896
\(143\) −19.1994 −1.60553
\(144\) −1.58568 −0.132140
\(145\) −2.81843 −0.234058
\(146\) 11.5564 0.956416
\(147\) 0 0
\(148\) −8.25283 −0.678379
\(149\) −11.4109 −0.934814 −0.467407 0.884042i \(-0.654812\pi\)
−0.467407 + 0.884042i \(0.654812\pi\)
\(150\) −1.18925 −0.0971018
\(151\) 8.95637 0.728859 0.364429 0.931231i \(-0.381264\pi\)
0.364429 + 0.931231i \(0.381264\pi\)
\(152\) −0.599423 −0.0486196
\(153\) −1.58568 −0.128195
\(154\) 0 0
\(155\) 5.25434 0.422039
\(156\) 5.87412 0.470306
\(157\) −16.1983 −1.29277 −0.646383 0.763013i \(-0.723719\pi\)
−0.646383 + 0.763013i \(0.723719\pi\)
\(158\) 16.3602 1.30155
\(159\) 4.31107 0.341890
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) −1.72855 −0.135808
\(163\) 12.0413 0.943146 0.471573 0.881827i \(-0.343686\pi\)
0.471573 + 0.881827i \(0.343686\pi\)
\(164\) −11.2863 −0.881311
\(165\) −4.62265 −0.359873
\(166\) −6.37518 −0.494810
\(167\) 7.71706 0.597164 0.298582 0.954384i \(-0.403486\pi\)
0.298582 + 0.954384i \(0.403486\pi\)
\(168\) 0 0
\(169\) 11.3972 0.876708
\(170\) 1.00000 0.0766965
\(171\) 0.950495 0.0726862
\(172\) 10.7710 0.821279
\(173\) 5.78375 0.439731 0.219865 0.975530i \(-0.429438\pi\)
0.219865 + 0.975530i \(0.429438\pi\)
\(174\) 3.35181 0.254100
\(175\) 0 0
\(176\) 3.88703 0.292996
\(177\) 6.68055 0.502141
\(178\) 3.22268 0.241550
\(179\) −12.5743 −0.939851 −0.469925 0.882706i \(-0.655719\pi\)
−0.469925 + 0.882706i \(0.655719\pi\)
\(180\) −1.58568 −0.118190
\(181\) 22.5585 1.67676 0.838378 0.545089i \(-0.183504\pi\)
0.838378 + 0.545089i \(0.183504\pi\)
\(182\) 0 0
\(183\) 2.98219 0.220450
\(184\) 8.10107 0.597219
\(185\) −8.25283 −0.606760
\(186\) −6.24873 −0.458179
\(187\) 3.88703 0.284248
\(188\) 6.09168 0.444281
\(189\) 0 0
\(190\) −0.599423 −0.0434867
\(191\) 5.50253 0.398149 0.199074 0.979984i \(-0.436206\pi\)
0.199074 + 0.979984i \(0.436206\pi\)
\(192\) −1.18925 −0.0858267
\(193\) −16.4940 −1.18726 −0.593631 0.804737i \(-0.702306\pi\)
−0.593631 + 0.804737i \(0.702306\pi\)
\(194\) −0.283036 −0.0203208
\(195\) 5.87412 0.420655
\(196\) 0 0
\(197\) 21.2693 1.51537 0.757687 0.652618i \(-0.226329\pi\)
0.757687 + 0.652618i \(0.226329\pi\)
\(198\) −6.16360 −0.438028
\(199\) −16.9189 −1.19935 −0.599674 0.800245i \(-0.704703\pi\)
−0.599674 + 0.800245i \(0.704703\pi\)
\(200\) 1.00000 0.0707107
\(201\) 15.0440 1.06112
\(202\) 0.287157 0.0202043
\(203\) 0 0
\(204\) −1.18925 −0.0832641
\(205\) −11.2863 −0.788269
\(206\) −11.0654 −0.770960
\(207\) −12.8457 −0.892841
\(208\) −4.93935 −0.342482
\(209\) −2.32997 −0.161168
\(210\) 0 0
\(211\) −6.90593 −0.475424 −0.237712 0.971336i \(-0.576397\pi\)
−0.237712 + 0.971336i \(0.576397\pi\)
\(212\) −3.62503 −0.248968
\(213\) −19.2585 −1.31957
\(214\) −0.618021 −0.0422470
\(215\) 10.7710 0.734574
\(216\) 5.45353 0.371065
\(217\) 0 0
\(218\) −6.43243 −0.435659
\(219\) −13.7435 −0.928698
\(220\) 3.88703 0.262063
\(221\) −4.93935 −0.332257
\(222\) 9.81468 0.658718
\(223\) 18.1630 1.21629 0.608143 0.793828i \(-0.291915\pi\)
0.608143 + 0.793828i \(0.291915\pi\)
\(224\) 0 0
\(225\) −1.58568 −0.105712
\(226\) 20.1982 1.34356
\(227\) 8.19929 0.544206 0.272103 0.962268i \(-0.412281\pi\)
0.272103 + 0.962268i \(0.412281\pi\)
\(228\) 0.712863 0.0472105
\(229\) 4.07526 0.269301 0.134651 0.990893i \(-0.457009\pi\)
0.134651 + 0.990893i \(0.457009\pi\)
\(230\) 8.10107 0.534169
\(231\) 0 0
\(232\) −2.81843 −0.185039
\(233\) 24.3680 1.59640 0.798199 0.602394i \(-0.205786\pi\)
0.798199 + 0.602394i \(0.205786\pi\)
\(234\) 7.83226 0.512011
\(235\) 6.09168 0.397377
\(236\) −5.61745 −0.365665
\(237\) −19.4564 −1.26383
\(238\) 0 0
\(239\) 29.1110 1.88304 0.941518 0.336964i \(-0.109400\pi\)
0.941518 + 0.336964i \(0.109400\pi\)
\(240\) −1.18925 −0.0767657
\(241\) −12.2849 −0.791343 −0.395671 0.918392i \(-0.629488\pi\)
−0.395671 + 0.918392i \(0.629488\pi\)
\(242\) 4.10898 0.264135
\(243\) −14.3049 −0.917660
\(244\) −2.50763 −0.160534
\(245\) 0 0
\(246\) 13.4222 0.855770
\(247\) 2.96076 0.188389
\(248\) 5.25434 0.333651
\(249\) 7.58168 0.480469
\(250\) 1.00000 0.0632456
\(251\) 4.47707 0.282590 0.141295 0.989968i \(-0.454873\pi\)
0.141295 + 0.989968i \(0.454873\pi\)
\(252\) 0 0
\(253\) 31.4891 1.97970
\(254\) 4.98276 0.312646
\(255\) −1.18925 −0.0744737
\(256\) 1.00000 0.0625000
\(257\) 12.2337 0.763115 0.381557 0.924345i \(-0.375388\pi\)
0.381557 + 0.924345i \(0.375388\pi\)
\(258\) −12.8094 −0.797477
\(259\) 0 0
\(260\) −4.93935 −0.306326
\(261\) 4.46914 0.276633
\(262\) 18.7897 1.16083
\(263\) 15.4713 0.954004 0.477002 0.878902i \(-0.341724\pi\)
0.477002 + 0.878902i \(0.341724\pi\)
\(264\) −4.62265 −0.284504
\(265\) −3.62503 −0.222684
\(266\) 0 0
\(267\) −3.83257 −0.234549
\(268\) −12.6500 −0.772722
\(269\) −14.7861 −0.901527 −0.450763 0.892643i \(-0.648848\pi\)
−0.450763 + 0.892643i \(0.648848\pi\)
\(270\) 5.45353 0.331891
\(271\) −27.6385 −1.67892 −0.839460 0.543421i \(-0.817129\pi\)
−0.839460 + 0.543421i \(0.817129\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) 12.4359 0.751279
\(275\) 3.88703 0.234397
\(276\) −9.63420 −0.579910
\(277\) 8.27894 0.497433 0.248717 0.968576i \(-0.419991\pi\)
0.248717 + 0.968576i \(0.419991\pi\)
\(278\) 9.16981 0.549968
\(279\) −8.33173 −0.498808
\(280\) 0 0
\(281\) −18.8906 −1.12692 −0.563458 0.826145i \(-0.690529\pi\)
−0.563458 + 0.826145i \(0.690529\pi\)
\(282\) −7.24452 −0.431405
\(283\) −11.4025 −0.677809 −0.338904 0.940821i \(-0.610056\pi\)
−0.338904 + 0.940821i \(0.610056\pi\)
\(284\) 16.1938 0.960927
\(285\) 0.712863 0.0422264
\(286\) −19.1994 −1.13528
\(287\) 0 0
\(288\) −1.58568 −0.0934374
\(289\) 1.00000 0.0588235
\(290\) −2.81843 −0.165504
\(291\) 0.336601 0.0197319
\(292\) 11.5564 0.676289
\(293\) 26.0316 1.52078 0.760390 0.649467i \(-0.225008\pi\)
0.760390 + 0.649467i \(0.225008\pi\)
\(294\) 0 0
\(295\) −5.61745 −0.327061
\(296\) −8.25283 −0.479686
\(297\) 21.1980 1.23003
\(298\) −11.4109 −0.661013
\(299\) −40.0140 −2.31407
\(300\) −1.18925 −0.0686614
\(301\) 0 0
\(302\) 8.95637 0.515381
\(303\) −0.341501 −0.0196187
\(304\) −0.599423 −0.0343792
\(305\) −2.50763 −0.143586
\(306\) −1.58568 −0.0906476
\(307\) −21.2275 −1.21152 −0.605759 0.795648i \(-0.707130\pi\)
−0.605759 + 0.795648i \(0.707130\pi\)
\(308\) 0 0
\(309\) 13.1595 0.748616
\(310\) 5.25434 0.298427
\(311\) 14.8608 0.842680 0.421340 0.906903i \(-0.361560\pi\)
0.421340 + 0.906903i \(0.361560\pi\)
\(312\) 5.87412 0.332557
\(313\) 18.1281 1.02466 0.512331 0.858788i \(-0.328782\pi\)
0.512331 + 0.858788i \(0.328782\pi\)
\(314\) −16.1983 −0.914123
\(315\) 0 0
\(316\) 16.3602 0.920335
\(317\) −26.0553 −1.46341 −0.731707 0.681619i \(-0.761276\pi\)
−0.731707 + 0.681619i \(0.761276\pi\)
\(318\) 4.31107 0.241753
\(319\) −10.9553 −0.613379
\(320\) 1.00000 0.0559017
\(321\) 0.734981 0.0410226
\(322\) 0 0
\(323\) −0.599423 −0.0333528
\(324\) −1.72855 −0.0960305
\(325\) −4.93935 −0.273986
\(326\) 12.0413 0.666905
\(327\) 7.64977 0.423033
\(328\) −11.2863 −0.623181
\(329\) 0 0
\(330\) −4.62265 −0.254468
\(331\) 10.2749 0.564760 0.282380 0.959303i \(-0.408876\pi\)
0.282380 + 0.959303i \(0.408876\pi\)
\(332\) −6.37518 −0.349883
\(333\) 13.0864 0.717130
\(334\) 7.71706 0.422259
\(335\) −12.6500 −0.691143
\(336\) 0 0
\(337\) 27.7967 1.51418 0.757092 0.653309i \(-0.226620\pi\)
0.757092 + 0.653309i \(0.226620\pi\)
\(338\) 11.3972 0.619926
\(339\) −24.0207 −1.30462
\(340\) 1.00000 0.0542326
\(341\) 20.4238 1.10601
\(342\) 0.950495 0.0513969
\(343\) 0 0
\(344\) 10.7710 0.580732
\(345\) −9.63420 −0.518688
\(346\) 5.78375 0.310937
\(347\) 31.7556 1.70473 0.852366 0.522946i \(-0.175167\pi\)
0.852366 + 0.522946i \(0.175167\pi\)
\(348\) 3.35181 0.179676
\(349\) −31.6502 −1.69419 −0.847097 0.531438i \(-0.821652\pi\)
−0.847097 + 0.531438i \(0.821652\pi\)
\(350\) 0 0
\(351\) −26.9369 −1.43778
\(352\) 3.88703 0.207179
\(353\) 14.1446 0.752840 0.376420 0.926449i \(-0.377155\pi\)
0.376420 + 0.926449i \(0.377155\pi\)
\(354\) 6.68055 0.355067
\(355\) 16.1938 0.859479
\(356\) 3.22268 0.170801
\(357\) 0 0
\(358\) −12.5743 −0.664575
\(359\) −12.7131 −0.670970 −0.335485 0.942046i \(-0.608900\pi\)
−0.335485 + 0.942046i \(0.608900\pi\)
\(360\) −1.58568 −0.0835729
\(361\) −18.6407 −0.981089
\(362\) 22.5585 1.18565
\(363\) −4.88660 −0.256480
\(364\) 0 0
\(365\) 11.5564 0.604891
\(366\) 2.98219 0.155882
\(367\) −23.3607 −1.21942 −0.609709 0.792626i \(-0.708714\pi\)
−0.609709 + 0.792626i \(0.708714\pi\)
\(368\) 8.10107 0.422297
\(369\) 17.8965 0.931655
\(370\) −8.25283 −0.429044
\(371\) 0 0
\(372\) −6.24873 −0.323981
\(373\) −18.0183 −0.932953 −0.466477 0.884534i \(-0.654477\pi\)
−0.466477 + 0.884534i \(0.654477\pi\)
\(374\) 3.88703 0.200993
\(375\) −1.18925 −0.0614126
\(376\) 6.09168 0.314154
\(377\) 13.9212 0.716978
\(378\) 0 0
\(379\) −22.4975 −1.15562 −0.577810 0.816171i \(-0.696093\pi\)
−0.577810 + 0.816171i \(0.696093\pi\)
\(380\) −0.599423 −0.0307497
\(381\) −5.92574 −0.303585
\(382\) 5.50253 0.281534
\(383\) 1.50666 0.0769867 0.0384934 0.999259i \(-0.487744\pi\)
0.0384934 + 0.999259i \(0.487744\pi\)
\(384\) −1.18925 −0.0606887
\(385\) 0 0
\(386\) −16.4940 −0.839521
\(387\) −17.0794 −0.868193
\(388\) −0.283036 −0.0143690
\(389\) 0.804996 0.0408149 0.0204074 0.999792i \(-0.493504\pi\)
0.0204074 + 0.999792i \(0.493504\pi\)
\(390\) 5.87412 0.297448
\(391\) 8.10107 0.409689
\(392\) 0 0
\(393\) −22.3456 −1.12719
\(394\) 21.2693 1.07153
\(395\) 16.3602 0.823172
\(396\) −6.16360 −0.309733
\(397\) −21.6483 −1.08650 −0.543249 0.839571i \(-0.682806\pi\)
−0.543249 + 0.839571i \(0.682806\pi\)
\(398\) −16.9189 −0.848067
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 36.3123 1.81335 0.906675 0.421829i \(-0.138612\pi\)
0.906675 + 0.421829i \(0.138612\pi\)
\(402\) 15.0440 0.750327
\(403\) −25.9531 −1.29281
\(404\) 0.287157 0.0142866
\(405\) −1.72855 −0.0858923
\(406\) 0 0
\(407\) −32.0790 −1.59010
\(408\) −1.18925 −0.0588766
\(409\) 21.0159 1.03917 0.519584 0.854419i \(-0.326087\pi\)
0.519584 + 0.854419i \(0.326087\pi\)
\(410\) −11.2863 −0.557390
\(411\) −14.7894 −0.729506
\(412\) −11.0654 −0.545151
\(413\) 0 0
\(414\) −12.8457 −0.631334
\(415\) −6.37518 −0.312945
\(416\) −4.93935 −0.242172
\(417\) −10.9052 −0.534029
\(418\) −2.32997 −0.113963
\(419\) −16.5926 −0.810603 −0.405302 0.914183i \(-0.632834\pi\)
−0.405302 + 0.914183i \(0.632834\pi\)
\(420\) 0 0
\(421\) −0.242990 −0.0118426 −0.00592130 0.999982i \(-0.501885\pi\)
−0.00592130 + 0.999982i \(0.501885\pi\)
\(422\) −6.90593 −0.336175
\(423\) −9.65948 −0.469660
\(424\) −3.62503 −0.176047
\(425\) 1.00000 0.0485071
\(426\) −19.2585 −0.933078
\(427\) 0 0
\(428\) −0.618021 −0.0298732
\(429\) 22.8329 1.10238
\(430\) 10.7710 0.519422
\(431\) −24.8767 −1.19827 −0.599135 0.800648i \(-0.704489\pi\)
−0.599135 + 0.800648i \(0.704489\pi\)
\(432\) 5.45353 0.262383
\(433\) 30.8365 1.48191 0.740953 0.671557i \(-0.234374\pi\)
0.740953 + 0.671557i \(0.234374\pi\)
\(434\) 0 0
\(435\) 3.35181 0.160707
\(436\) −6.43243 −0.308058
\(437\) −4.85596 −0.232292
\(438\) −13.7435 −0.656689
\(439\) −8.50071 −0.405717 −0.202858 0.979208i \(-0.565023\pi\)
−0.202858 + 0.979208i \(0.565023\pi\)
\(440\) 3.88703 0.185307
\(441\) 0 0
\(442\) −4.93935 −0.234941
\(443\) 24.2993 1.15450 0.577248 0.816569i \(-0.304127\pi\)
0.577248 + 0.816569i \(0.304127\pi\)
\(444\) 9.81468 0.465784
\(445\) 3.22268 0.152770
\(446\) 18.1630 0.860044
\(447\) 13.5704 0.641856
\(448\) 0 0
\(449\) −17.7605 −0.838170 −0.419085 0.907947i \(-0.637649\pi\)
−0.419085 + 0.907947i \(0.637649\pi\)
\(450\) −1.58568 −0.0747499
\(451\) −43.8701 −2.06576
\(452\) 20.1982 0.950042
\(453\) −10.6514 −0.500444
\(454\) 8.19929 0.384812
\(455\) 0 0
\(456\) 0.712863 0.0333829
\(457\) −20.2826 −0.948782 −0.474391 0.880314i \(-0.657332\pi\)
−0.474391 + 0.880314i \(0.657332\pi\)
\(458\) 4.07526 0.190425
\(459\) 5.45353 0.254549
\(460\) 8.10107 0.377714
\(461\) 18.0461 0.840491 0.420246 0.907410i \(-0.361944\pi\)
0.420246 + 0.907410i \(0.361944\pi\)
\(462\) 0 0
\(463\) 32.8829 1.52820 0.764099 0.645099i \(-0.223184\pi\)
0.764099 + 0.645099i \(0.223184\pi\)
\(464\) −2.81843 −0.130842
\(465\) −6.24873 −0.289778
\(466\) 24.3680 1.12882
\(467\) 22.4945 1.04092 0.520461 0.853885i \(-0.325760\pi\)
0.520461 + 0.853885i \(0.325760\pi\)
\(468\) 7.83226 0.362046
\(469\) 0 0
\(470\) 6.09168 0.280988
\(471\) 19.2638 0.887630
\(472\) −5.61745 −0.258564
\(473\) 41.8671 1.92505
\(474\) −19.4564 −0.893662
\(475\) −0.599423 −0.0275034
\(476\) 0 0
\(477\) 5.74816 0.263190
\(478\) 29.1110 1.33151
\(479\) 42.0656 1.92203 0.961014 0.276499i \(-0.0891742\pi\)
0.961014 + 0.276499i \(0.0891742\pi\)
\(480\) −1.18925 −0.0542816
\(481\) 40.7637 1.85866
\(482\) −12.2849 −0.559564
\(483\) 0 0
\(484\) 4.10898 0.186772
\(485\) −0.283036 −0.0128520
\(486\) −14.3049 −0.648883
\(487\) 9.82480 0.445204 0.222602 0.974909i \(-0.428545\pi\)
0.222602 + 0.974909i \(0.428545\pi\)
\(488\) −2.50763 −0.113515
\(489\) −14.3201 −0.647577
\(490\) 0 0
\(491\) 21.3078 0.961609 0.480804 0.876828i \(-0.340345\pi\)
0.480804 + 0.876828i \(0.340345\pi\)
\(492\) 13.4222 0.605120
\(493\) −2.81843 −0.126936
\(494\) 2.96076 0.133211
\(495\) −6.16360 −0.277033
\(496\) 5.25434 0.235927
\(497\) 0 0
\(498\) 7.58168 0.339743
\(499\) −15.1163 −0.676699 −0.338350 0.941020i \(-0.609869\pi\)
−0.338350 + 0.941020i \(0.609869\pi\)
\(500\) 1.00000 0.0447214
\(501\) −9.17752 −0.410021
\(502\) 4.47707 0.199822
\(503\) 18.3323 0.817398 0.408699 0.912669i \(-0.365983\pi\)
0.408699 + 0.912669i \(0.365983\pi\)
\(504\) 0 0
\(505\) 0.287157 0.0127783
\(506\) 31.4891 1.39986
\(507\) −13.5541 −0.601960
\(508\) 4.98276 0.221074
\(509\) 33.6416 1.49114 0.745569 0.666428i \(-0.232178\pi\)
0.745569 + 0.666428i \(0.232178\pi\)
\(510\) −1.18925 −0.0526609
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −3.26897 −0.144328
\(514\) 12.2337 0.539604
\(515\) −11.0654 −0.487598
\(516\) −12.8094 −0.563901
\(517\) 23.6785 1.04138
\(518\) 0 0
\(519\) −6.87833 −0.301925
\(520\) −4.93935 −0.216605
\(521\) −4.62222 −0.202503 −0.101252 0.994861i \(-0.532285\pi\)
−0.101252 + 0.994861i \(0.532285\pi\)
\(522\) 4.46914 0.195609
\(523\) 22.5126 0.984406 0.492203 0.870480i \(-0.336192\pi\)
0.492203 + 0.870480i \(0.336192\pi\)
\(524\) 18.7897 0.820830
\(525\) 0 0
\(526\) 15.4713 0.674582
\(527\) 5.25434 0.228883
\(528\) −4.62265 −0.201175
\(529\) 42.6273 1.85336
\(530\) −3.62503 −0.157461
\(531\) 8.90751 0.386553
\(532\) 0 0
\(533\) 55.7470 2.41467
\(534\) −3.83257 −0.165851
\(535\) −0.618021 −0.0267194
\(536\) −12.6500 −0.546397
\(537\) 14.9540 0.645314
\(538\) −14.7861 −0.637476
\(539\) 0 0
\(540\) 5.45353 0.234682
\(541\) −13.8007 −0.593336 −0.296668 0.954981i \(-0.595876\pi\)
−0.296668 + 0.954981i \(0.595876\pi\)
\(542\) −27.6385 −1.18718
\(543\) −26.8276 −1.15128
\(544\) 1.00000 0.0428746
\(545\) −6.43243 −0.275535
\(546\) 0 0
\(547\) 5.73930 0.245395 0.122697 0.992444i \(-0.460846\pi\)
0.122697 + 0.992444i \(0.460846\pi\)
\(548\) 12.4359 0.531234
\(549\) 3.97630 0.169705
\(550\) 3.88703 0.165743
\(551\) 1.68943 0.0719721
\(552\) −9.63420 −0.410059
\(553\) 0 0
\(554\) 8.27894 0.351738
\(555\) 9.81468 0.416610
\(556\) 9.16981 0.388886
\(557\) 15.7899 0.669041 0.334520 0.942389i \(-0.391426\pi\)
0.334520 + 0.942389i \(0.391426\pi\)
\(558\) −8.33173 −0.352710
\(559\) −53.2016 −2.25019
\(560\) 0 0
\(561\) −4.62265 −0.195168
\(562\) −18.8906 −0.796850
\(563\) 0.731332 0.0308220 0.0154110 0.999881i \(-0.495094\pi\)
0.0154110 + 0.999881i \(0.495094\pi\)
\(564\) −7.24452 −0.305049
\(565\) 20.1982 0.849743
\(566\) −11.4025 −0.479283
\(567\) 0 0
\(568\) 16.1938 0.679478
\(569\) −3.58359 −0.150232 −0.0751160 0.997175i \(-0.523933\pi\)
−0.0751160 + 0.997175i \(0.523933\pi\)
\(570\) 0.712863 0.0298586
\(571\) 29.6676 1.24155 0.620776 0.783988i \(-0.286818\pi\)
0.620776 + 0.783988i \(0.286818\pi\)
\(572\) −19.1994 −0.802767
\(573\) −6.54388 −0.273374
\(574\) 0 0
\(575\) 8.10107 0.337838
\(576\) −1.58568 −0.0660702
\(577\) −12.4198 −0.517042 −0.258521 0.966006i \(-0.583235\pi\)
−0.258521 + 0.966006i \(0.583235\pi\)
\(578\) 1.00000 0.0415945
\(579\) 19.6155 0.815191
\(580\) −2.81843 −0.117029
\(581\) 0 0
\(582\) 0.336601 0.0139526
\(583\) −14.0906 −0.583573
\(584\) 11.5564 0.478208
\(585\) 7.83226 0.323824
\(586\) 26.0316 1.07535
\(587\) −14.4642 −0.597000 −0.298500 0.954410i \(-0.596486\pi\)
−0.298500 + 0.954410i \(0.596486\pi\)
\(588\) 0 0
\(589\) −3.14957 −0.129776
\(590\) −5.61745 −0.231267
\(591\) −25.2945 −1.04048
\(592\) −8.25283 −0.339189
\(593\) 47.4570 1.94882 0.974412 0.224767i \(-0.0721622\pi\)
0.974412 + 0.224767i \(0.0721622\pi\)
\(594\) 21.1980 0.869764
\(595\) 0 0
\(596\) −11.4109 −0.467407
\(597\) 20.1208 0.823488
\(598\) −40.0140 −1.63630
\(599\) −30.1094 −1.23023 −0.615117 0.788435i \(-0.710891\pi\)
−0.615117 + 0.788435i \(0.710891\pi\)
\(600\) −1.18925 −0.0485509
\(601\) −34.1137 −1.39153 −0.695764 0.718270i \(-0.744934\pi\)
−0.695764 + 0.718270i \(0.744934\pi\)
\(602\) 0 0
\(603\) 20.0589 0.816862
\(604\) 8.95637 0.364429
\(605\) 4.10898 0.167054
\(606\) −0.341501 −0.0138725
\(607\) 22.1081 0.897339 0.448670 0.893698i \(-0.351898\pi\)
0.448670 + 0.893698i \(0.351898\pi\)
\(608\) −0.599423 −0.0243098
\(609\) 0 0
\(610\) −2.50763 −0.101531
\(611\) −30.0889 −1.21727
\(612\) −1.58568 −0.0640975
\(613\) −23.4663 −0.947795 −0.473897 0.880580i \(-0.657153\pi\)
−0.473897 + 0.880580i \(0.657153\pi\)
\(614\) −21.2275 −0.856672
\(615\) 13.4222 0.541236
\(616\) 0 0
\(617\) −29.7155 −1.19630 −0.598151 0.801383i \(-0.704098\pi\)
−0.598151 + 0.801383i \(0.704098\pi\)
\(618\) 13.1595 0.529352
\(619\) 4.18746 0.168308 0.0841541 0.996453i \(-0.473181\pi\)
0.0841541 + 0.996453i \(0.473181\pi\)
\(620\) 5.25434 0.211020
\(621\) 44.1794 1.77286
\(622\) 14.8608 0.595865
\(623\) 0 0
\(624\) 5.87412 0.235153
\(625\) 1.00000 0.0400000
\(626\) 18.1281 0.724546
\(627\) 2.77092 0.110660
\(628\) −16.1983 −0.646383
\(629\) −8.25283 −0.329062
\(630\) 0 0
\(631\) 11.7004 0.465787 0.232894 0.972502i \(-0.425181\pi\)
0.232894 + 0.972502i \(0.425181\pi\)
\(632\) 16.3602 0.650775
\(633\) 8.21288 0.326432
\(634\) −26.0553 −1.03479
\(635\) 4.98276 0.197735
\(636\) 4.31107 0.170945
\(637\) 0 0
\(638\) −10.9553 −0.433724
\(639\) −25.6783 −1.01582
\(640\) 1.00000 0.0395285
\(641\) −5.26640 −0.208010 −0.104005 0.994577i \(-0.533166\pi\)
−0.104005 + 0.994577i \(0.533166\pi\)
\(642\) 0.734981 0.0290074
\(643\) 30.5288 1.20394 0.601968 0.798520i \(-0.294383\pi\)
0.601968 + 0.798520i \(0.294383\pi\)
\(644\) 0 0
\(645\) −12.8094 −0.504369
\(646\) −0.599423 −0.0235840
\(647\) −18.7768 −0.738193 −0.369097 0.929391i \(-0.620333\pi\)
−0.369097 + 0.929391i \(0.620333\pi\)
\(648\) −1.72855 −0.0679039
\(649\) −21.8352 −0.857106
\(650\) −4.93935 −0.193737
\(651\) 0 0
\(652\) 12.0413 0.471573
\(653\) −50.9459 −1.99367 −0.996833 0.0795252i \(-0.974660\pi\)
−0.996833 + 0.0795252i \(0.974660\pi\)
\(654\) 7.64977 0.299130
\(655\) 18.7897 0.734172
\(656\) −11.2863 −0.440656
\(657\) −18.3248 −0.714920
\(658\) 0 0
\(659\) −12.4244 −0.483987 −0.241994 0.970278i \(-0.577801\pi\)
−0.241994 + 0.970278i \(0.577801\pi\)
\(660\) −4.62265 −0.179936
\(661\) 8.30350 0.322969 0.161484 0.986875i \(-0.448372\pi\)
0.161484 + 0.986875i \(0.448372\pi\)
\(662\) 10.2749 0.399345
\(663\) 5.87412 0.228132
\(664\) −6.37518 −0.247405
\(665\) 0 0
\(666\) 13.0864 0.507087
\(667\) −22.8323 −0.884069
\(668\) 7.71706 0.298582
\(669\) −21.6004 −0.835119
\(670\) −12.6500 −0.488712
\(671\) −9.74721 −0.376287
\(672\) 0 0
\(673\) −37.8645 −1.45957 −0.729785 0.683677i \(-0.760380\pi\)
−0.729785 + 0.683677i \(0.760380\pi\)
\(674\) 27.7967 1.07069
\(675\) 5.45353 0.209906
\(676\) 11.3972 0.438354
\(677\) 16.0861 0.618239 0.309119 0.951023i \(-0.399966\pi\)
0.309119 + 0.951023i \(0.399966\pi\)
\(678\) −24.0207 −0.922508
\(679\) 0 0
\(680\) 1.00000 0.0383482
\(681\) −9.75100 −0.373659
\(682\) 20.4238 0.782067
\(683\) −22.8684 −0.875035 −0.437517 0.899210i \(-0.644142\pi\)
−0.437517 + 0.899210i \(0.644142\pi\)
\(684\) 0.950495 0.0363431
\(685\) 12.4359 0.475150
\(686\) 0 0
\(687\) −4.84651 −0.184906
\(688\) 10.7710 0.410640
\(689\) 17.9053 0.682138
\(690\) −9.63420 −0.366768
\(691\) −0.474226 −0.0180404 −0.00902021 0.999959i \(-0.502871\pi\)
−0.00902021 + 0.999959i \(0.502871\pi\)
\(692\) 5.78375 0.219865
\(693\) 0 0
\(694\) 31.7556 1.20543
\(695\) 9.16981 0.347831
\(696\) 3.35181 0.127050
\(697\) −11.2863 −0.427499
\(698\) −31.6502 −1.19798
\(699\) −28.9796 −1.09611
\(700\) 0 0
\(701\) −5.08326 −0.191992 −0.0959961 0.995382i \(-0.530604\pi\)
−0.0959961 + 0.995382i \(0.530604\pi\)
\(702\) −26.9369 −1.01667
\(703\) 4.94694 0.186577
\(704\) 3.88703 0.146498
\(705\) −7.24452 −0.272845
\(706\) 14.1446 0.532338
\(707\) 0 0
\(708\) 6.68055 0.251071
\(709\) 30.0471 1.12844 0.564222 0.825623i \(-0.309176\pi\)
0.564222 + 0.825623i \(0.309176\pi\)
\(710\) 16.1938 0.607744
\(711\) −25.9422 −0.972907
\(712\) 3.22268 0.120775
\(713\) 42.5658 1.59410
\(714\) 0 0
\(715\) −19.1994 −0.718017
\(716\) −12.5743 −0.469925
\(717\) −34.6203 −1.29292
\(718\) −12.7131 −0.474448
\(719\) 46.9309 1.75023 0.875113 0.483918i \(-0.160787\pi\)
0.875113 + 0.483918i \(0.160787\pi\)
\(720\) −1.58568 −0.0590950
\(721\) 0 0
\(722\) −18.6407 −0.693735
\(723\) 14.6099 0.543347
\(724\) 22.5585 0.838378
\(725\) −2.81843 −0.104674
\(726\) −4.88660 −0.181359
\(727\) −27.1740 −1.00783 −0.503914 0.863754i \(-0.668107\pi\)
−0.503914 + 0.863754i \(0.668107\pi\)
\(728\) 0 0
\(729\) 22.1977 0.822139
\(730\) 11.5564 0.427722
\(731\) 10.7710 0.398379
\(732\) 2.98219 0.110225
\(733\) 28.1822 1.04093 0.520467 0.853882i \(-0.325758\pi\)
0.520467 + 0.853882i \(0.325758\pi\)
\(734\) −23.3607 −0.862258
\(735\) 0 0
\(736\) 8.10107 0.298609
\(737\) −49.1709 −1.81123
\(738\) 17.8965 0.658779
\(739\) −25.2536 −0.928967 −0.464484 0.885582i \(-0.653760\pi\)
−0.464484 + 0.885582i \(0.653760\pi\)
\(740\) −8.25283 −0.303380
\(741\) −3.52108 −0.129350
\(742\) 0 0
\(743\) −7.42054 −0.272233 −0.136117 0.990693i \(-0.543462\pi\)
−0.136117 + 0.990693i \(0.543462\pi\)
\(744\) −6.24873 −0.229089
\(745\) −11.4109 −0.418061
\(746\) −18.0183 −0.659698
\(747\) 10.1090 0.369870
\(748\) 3.88703 0.142124
\(749\) 0 0
\(750\) −1.18925 −0.0434253
\(751\) 8.68030 0.316749 0.158374 0.987379i \(-0.449375\pi\)
0.158374 + 0.987379i \(0.449375\pi\)
\(752\) 6.09168 0.222141
\(753\) −5.32436 −0.194030
\(754\) 13.9212 0.506980
\(755\) 8.95637 0.325956
\(756\) 0 0
\(757\) −31.7815 −1.15512 −0.577559 0.816349i \(-0.695995\pi\)
−0.577559 + 0.816349i \(0.695995\pi\)
\(758\) −22.4975 −0.817147
\(759\) −37.4484 −1.35929
\(760\) −0.599423 −0.0217433
\(761\) −16.8455 −0.610650 −0.305325 0.952248i \(-0.598765\pi\)
−0.305325 + 0.952248i \(0.598765\pi\)
\(762\) −5.92574 −0.214667
\(763\) 0 0
\(764\) 5.50253 0.199074
\(765\) −1.58568 −0.0573306
\(766\) 1.50666 0.0544378
\(767\) 27.7466 1.00187
\(768\) −1.18925 −0.0429134
\(769\) 7.79513 0.281100 0.140550 0.990074i \(-0.455113\pi\)
0.140550 + 0.990074i \(0.455113\pi\)
\(770\) 0 0
\(771\) −14.5489 −0.523965
\(772\) −16.4940 −0.593631
\(773\) −35.3846 −1.27269 −0.636347 0.771403i \(-0.719556\pi\)
−0.636347 + 0.771403i \(0.719556\pi\)
\(774\) −17.0794 −0.613905
\(775\) 5.25434 0.188742
\(776\) −0.283036 −0.0101604
\(777\) 0 0
\(778\) 0.804996 0.0288605
\(779\) 6.76526 0.242391
\(780\) 5.87412 0.210327
\(781\) 62.9459 2.25238
\(782\) 8.10107 0.289694
\(783\) −15.3704 −0.549292
\(784\) 0 0
\(785\) −16.1983 −0.578142
\(786\) −22.3456 −0.797041
\(787\) 52.7134 1.87903 0.939514 0.342510i \(-0.111277\pi\)
0.939514 + 0.342510i \(0.111277\pi\)
\(788\) 21.2693 0.757687
\(789\) −18.3993 −0.655032
\(790\) 16.3602 0.582071
\(791\) 0 0
\(792\) −6.16360 −0.219014
\(793\) 12.3861 0.439842
\(794\) −21.6483 −0.768270
\(795\) 4.31107 0.152898
\(796\) −16.9189 −0.599674
\(797\) 30.5020 1.08044 0.540219 0.841525i \(-0.318341\pi\)
0.540219 + 0.841525i \(0.318341\pi\)
\(798\) 0 0
\(799\) 6.09168 0.215508
\(800\) 1.00000 0.0353553
\(801\) −5.11015 −0.180558
\(802\) 36.3123 1.28223
\(803\) 44.9201 1.58520
\(804\) 15.0440 0.530561
\(805\) 0 0
\(806\) −25.9531 −0.914157
\(807\) 17.5844 0.619001
\(808\) 0.287157 0.0101021
\(809\) −53.5184 −1.88161 −0.940803 0.338954i \(-0.889927\pi\)
−0.940803 + 0.338954i \(0.889927\pi\)
\(810\) −1.72855 −0.0607351
\(811\) 32.3827 1.13711 0.568555 0.822645i \(-0.307503\pi\)
0.568555 + 0.822645i \(0.307503\pi\)
\(812\) 0 0
\(813\) 32.8691 1.15277
\(814\) −32.0790 −1.12437
\(815\) 12.0413 0.421788
\(816\) −1.18925 −0.0416321
\(817\) −6.45637 −0.225880
\(818\) 21.0159 0.734803
\(819\) 0 0
\(820\) −11.2863 −0.394134
\(821\) 16.6610 0.581472 0.290736 0.956803i \(-0.406100\pi\)
0.290736 + 0.956803i \(0.406100\pi\)
\(822\) −14.7894 −0.515838
\(823\) −4.62168 −0.161102 −0.0805508 0.996751i \(-0.525668\pi\)
−0.0805508 + 0.996751i \(0.525668\pi\)
\(824\) −11.0654 −0.385480
\(825\) −4.62265 −0.160940
\(826\) 0 0
\(827\) −39.6791 −1.37978 −0.689889 0.723915i \(-0.742341\pi\)
−0.689889 + 0.723915i \(0.742341\pi\)
\(828\) −12.8457 −0.446420
\(829\) 17.8306 0.619282 0.309641 0.950854i \(-0.399791\pi\)
0.309641 + 0.950854i \(0.399791\pi\)
\(830\) −6.37518 −0.221286
\(831\) −9.84573 −0.341544
\(832\) −4.93935 −0.171241
\(833\) 0 0
\(834\) −10.9052 −0.377616
\(835\) 7.71706 0.267060
\(836\) −2.32997 −0.0805838
\(837\) 28.6547 0.990451
\(838\) −16.5926 −0.573183
\(839\) 20.5528 0.709560 0.354780 0.934950i \(-0.384556\pi\)
0.354780 + 0.934950i \(0.384556\pi\)
\(840\) 0 0
\(841\) −21.0565 −0.726085
\(842\) −0.242990 −0.00837399
\(843\) 22.4656 0.773756
\(844\) −6.90593 −0.237712
\(845\) 11.3972 0.392076
\(846\) −9.65948 −0.332100
\(847\) 0 0
\(848\) −3.62503 −0.124484
\(849\) 13.5604 0.465393
\(850\) 1.00000 0.0342997
\(851\) −66.8568 −2.29182
\(852\) −19.2585 −0.659786
\(853\) −43.0042 −1.47243 −0.736217 0.676745i \(-0.763390\pi\)
−0.736217 + 0.676745i \(0.763390\pi\)
\(854\) 0 0
\(855\) 0.950495 0.0325063
\(856\) −0.618021 −0.0211235
\(857\) −28.3183 −0.967334 −0.483667 0.875252i \(-0.660695\pi\)
−0.483667 + 0.875252i \(0.660695\pi\)
\(858\) 22.8329 0.779502
\(859\) −37.3408 −1.27405 −0.637026 0.770842i \(-0.719836\pi\)
−0.637026 + 0.770842i \(0.719836\pi\)
\(860\) 10.7710 0.367287
\(861\) 0 0
\(862\) −24.8767 −0.847305
\(863\) −52.9397 −1.80209 −0.901045 0.433727i \(-0.857198\pi\)
−0.901045 + 0.433727i \(0.857198\pi\)
\(864\) 5.45353 0.185533
\(865\) 5.78375 0.196654
\(866\) 30.8365 1.04787
\(867\) −1.18925 −0.0403890
\(868\) 0 0
\(869\) 63.5926 2.15723
\(870\) 3.35181 0.113637
\(871\) 62.4828 2.11715
\(872\) −6.43243 −0.217830
\(873\) 0.448807 0.0151898
\(874\) −4.85596 −0.164255
\(875\) 0 0
\(876\) −13.7435 −0.464349
\(877\) −43.0042 −1.45215 −0.726074 0.687617i \(-0.758657\pi\)
−0.726074 + 0.687617i \(0.758657\pi\)
\(878\) −8.50071 −0.286885
\(879\) −30.9580 −1.04419
\(880\) 3.88703 0.131032
\(881\) −6.02631 −0.203032 −0.101516 0.994834i \(-0.532369\pi\)
−0.101516 + 0.994834i \(0.532369\pi\)
\(882\) 0 0
\(883\) −13.6728 −0.460125 −0.230062 0.973176i \(-0.573893\pi\)
−0.230062 + 0.973176i \(0.573893\pi\)
\(884\) −4.93935 −0.166128
\(885\) 6.68055 0.224564
\(886\) 24.2993 0.816352
\(887\) 0.521217 0.0175008 0.00875038 0.999962i \(-0.497215\pi\)
0.00875038 + 0.999962i \(0.497215\pi\)
\(888\) 9.81468 0.329359
\(889\) 0 0
\(890\) 3.22268 0.108024
\(891\) −6.71892 −0.225092
\(892\) 18.1630 0.608143
\(893\) −3.65149 −0.122192
\(894\) 13.5704 0.453861
\(895\) −12.5743 −0.420314
\(896\) 0 0
\(897\) 47.5867 1.58887
\(898\) −17.7605 −0.592675
\(899\) −14.8090 −0.493907
\(900\) −1.58568 −0.0528562
\(901\) −3.62503 −0.120767
\(902\) −43.8701 −1.46072
\(903\) 0 0
\(904\) 20.1982 0.671781
\(905\) 22.5585 0.749868
\(906\) −10.6514 −0.353868
\(907\) 53.2011 1.76651 0.883257 0.468889i \(-0.155346\pi\)
0.883257 + 0.468889i \(0.155346\pi\)
\(908\) 8.19929 0.272103
\(909\) −0.455340 −0.0151027
\(910\) 0 0
\(911\) 8.68545 0.287762 0.143881 0.989595i \(-0.454042\pi\)
0.143881 + 0.989595i \(0.454042\pi\)
\(912\) 0.712863 0.0236053
\(913\) −24.7805 −0.820114
\(914\) −20.2826 −0.670890
\(915\) 2.98219 0.0985883
\(916\) 4.07526 0.134651
\(917\) 0 0
\(918\) 5.45353 0.179993
\(919\) 1.15896 0.0382307 0.0191154 0.999817i \(-0.493915\pi\)
0.0191154 + 0.999817i \(0.493915\pi\)
\(920\) 8.10107 0.267084
\(921\) 25.2448 0.831844
\(922\) 18.0461 0.594317
\(923\) −79.9871 −2.63281
\(924\) 0 0
\(925\) −8.25283 −0.271352
\(926\) 32.8829 1.08060
\(927\) 17.5462 0.576292
\(928\) −2.81843 −0.0925194
\(929\) −53.4986 −1.75523 −0.877615 0.479365i \(-0.840867\pi\)
−0.877615 + 0.479365i \(0.840867\pi\)
\(930\) −6.24873 −0.204904
\(931\) 0 0
\(932\) 24.3680 0.798199
\(933\) −17.6732 −0.578596
\(934\) 22.4945 0.736044
\(935\) 3.88703 0.127119
\(936\) 7.83226 0.256005
\(937\) −34.8486 −1.13845 −0.569227 0.822180i \(-0.692758\pi\)
−0.569227 + 0.822180i \(0.692758\pi\)
\(938\) 0 0
\(939\) −21.5589 −0.703547
\(940\) 6.09168 0.198689
\(941\) −3.88775 −0.126737 −0.0633685 0.997990i \(-0.520184\pi\)
−0.0633685 + 0.997990i \(0.520184\pi\)
\(942\) 19.2638 0.627649
\(943\) −91.4310 −2.97740
\(944\) −5.61745 −0.182832
\(945\) 0 0
\(946\) 41.8671 1.36122
\(947\) 1.40947 0.0458017 0.0229008 0.999738i \(-0.492710\pi\)
0.0229008 + 0.999738i \(0.492710\pi\)
\(948\) −19.4564 −0.631914
\(949\) −57.0813 −1.85294
\(950\) −0.599423 −0.0194478
\(951\) 30.9863 1.00480
\(952\) 0 0
\(953\) 11.5558 0.374330 0.187165 0.982329i \(-0.440070\pi\)
0.187165 + 0.982329i \(0.440070\pi\)
\(954\) 5.74816 0.186104
\(955\) 5.50253 0.178058
\(956\) 29.1110 0.941518
\(957\) 13.0286 0.421154
\(958\) 42.0656 1.35908
\(959\) 0 0
\(960\) −1.18925 −0.0383829
\(961\) −3.39187 −0.109415
\(962\) 40.7637 1.31427
\(963\) 0.979986 0.0315796
\(964\) −12.2849 −0.395671
\(965\) −16.4940 −0.530960
\(966\) 0 0
\(967\) 26.7891 0.861481 0.430740 0.902476i \(-0.358252\pi\)
0.430740 + 0.902476i \(0.358252\pi\)
\(968\) 4.10898 0.132068
\(969\) 0.712863 0.0229005
\(970\) −0.283036 −0.00908775
\(971\) −1.27869 −0.0410352 −0.0205176 0.999789i \(-0.506531\pi\)
−0.0205176 + 0.999789i \(0.506531\pi\)
\(972\) −14.3049 −0.458830
\(973\) 0 0
\(974\) 9.82480 0.314807
\(975\) 5.87412 0.188123
\(976\) −2.50763 −0.0802672
\(977\) −43.0651 −1.37777 −0.688887 0.724869i \(-0.741900\pi\)
−0.688887 + 0.724869i \(0.741900\pi\)
\(978\) −14.3201 −0.457906
\(979\) 12.5266 0.400353
\(980\) 0 0
\(981\) 10.1998 0.325655
\(982\) 21.3078 0.679960
\(983\) −1.40219 −0.0447229 −0.0223614 0.999750i \(-0.507118\pi\)
−0.0223614 + 0.999750i \(0.507118\pi\)
\(984\) 13.4222 0.427885
\(985\) 21.2693 0.677696
\(986\) −2.81843 −0.0897570
\(987\) 0 0
\(988\) 2.96076 0.0941943
\(989\) 87.2564 2.77459
\(990\) −6.16360 −0.195892
\(991\) 21.2478 0.674960 0.337480 0.941333i \(-0.390426\pi\)
0.337480 + 0.941333i \(0.390426\pi\)
\(992\) 5.25434 0.166826
\(993\) −12.2194 −0.387772
\(994\) 0 0
\(995\) −16.9189 −0.536364
\(996\) 7.58168 0.240235
\(997\) 26.5267 0.840109 0.420054 0.907499i \(-0.362011\pi\)
0.420054 + 0.907499i \(0.362011\pi\)
\(998\) −15.1163 −0.478499
\(999\) −45.0070 −1.42396
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8330.2.a.cw.1.3 yes 10
7.6 odd 2 8330.2.a.cv.1.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8330.2.a.cv.1.8 10 7.6 odd 2
8330.2.a.cw.1.3 yes 10 1.1 even 1 trivial