Properties

Label 8330.2.a.cf.1.4
Level $8330$
Weight $2$
Character 8330.1
Self dual yes
Analytic conductor $66.515$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-2,4,4,-2,0,4,6,4,0,-2,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.16448.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1190)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.87996\) of defining polynomial
Character \(\chi\) \(=\) 8330.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.87996 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.87996 q^{6} +1.00000 q^{8} +0.534253 q^{9} +1.00000 q^{10} -2.10126 q^{11} +1.87996 q^{12} -7.07288 q^{13} +1.87996 q^{15} +1.00000 q^{16} -1.00000 q^{17} +0.534253 q^{18} -1.77871 q^{19} +1.00000 q^{20} -2.10126 q^{22} -7.53863 q^{23} +1.87996 q^{24} +1.00000 q^{25} -7.07288 q^{26} -4.63551 q^{27} +1.24445 q^{29} +1.87996 q^{30} +1.24445 q^{31} +1.00000 q^{32} -3.95028 q^{33} -1.00000 q^{34} +0.534253 q^{36} +1.85158 q^{37} -1.77871 q^{38} -13.2967 q^{39} +1.00000 q^{40} -4.60713 q^{41} -3.55741 q^{43} -2.10126 q^{44} +0.534253 q^{45} -7.53863 q^{46} +11.2684 q^{47} +1.87996 q^{48} +1.00000 q^{50} -1.87996 q^{51} -7.07288 q^{52} +11.5582 q^{53} -4.63551 q^{54} -2.10126 q^{55} -3.34390 q^{57} +1.24445 q^{58} +6.48891 q^{59} +1.87996 q^{60} -8.90131 q^{61} +1.24445 q^{62} +1.00000 q^{64} -7.07288 q^{65} -3.95028 q^{66} +1.27102 q^{67} -1.00000 q^{68} -14.1723 q^{69} -14.0986 q^{71} +0.534253 q^{72} -2.75555 q^{73} +1.85158 q^{74} +1.87996 q^{75} -1.77871 q^{76} -13.2967 q^{78} -1.98303 q^{79} +1.00000 q^{80} -10.3173 q^{81} -4.60713 q^{82} -17.4897 q^{83} -1.00000 q^{85} -3.55741 q^{86} +2.33952 q^{87} -2.10126 q^{88} +4.12260 q^{89} +0.534253 q^{90} -7.53863 q^{92} +2.33952 q^{93} +11.2684 q^{94} -1.77871 q^{95} +1.87996 q^{96} -6.93149 q^{97} -1.12260 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 2 q^{3} + 4 q^{4} + 4 q^{5} - 2 q^{6} + 4 q^{8} + 6 q^{9} + 4 q^{10} - 2 q^{12} - 12 q^{13} - 2 q^{15} + 4 q^{16} - 4 q^{17} + 6 q^{18} - 6 q^{19} + 4 q^{20} - 10 q^{23} - 2 q^{24} + 4 q^{25}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.87996 1.08540 0.542698 0.839928i \(-0.317403\pi\)
0.542698 + 0.839928i \(0.317403\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 1.87996 0.767491
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0.534253 0.178084
\(10\) 1.00000 0.316228
\(11\) −2.10126 −0.633552 −0.316776 0.948500i \(-0.602600\pi\)
−0.316776 + 0.948500i \(0.602600\pi\)
\(12\) 1.87996 0.542698
\(13\) −7.07288 −1.96166 −0.980832 0.194856i \(-0.937576\pi\)
−0.980832 + 0.194856i \(0.937576\pi\)
\(14\) 0 0
\(15\) 1.87996 0.485404
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 0.534253 0.125925
\(19\) −1.77871 −0.408063 −0.204031 0.978964i \(-0.565404\pi\)
−0.204031 + 0.978964i \(0.565404\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) −2.10126 −0.447989
\(23\) −7.53863 −1.57191 −0.785956 0.618282i \(-0.787829\pi\)
−0.785956 + 0.618282i \(0.787829\pi\)
\(24\) 1.87996 0.383745
\(25\) 1.00000 0.200000
\(26\) −7.07288 −1.38711
\(27\) −4.63551 −0.892104
\(28\) 0 0
\(29\) 1.24445 0.231089 0.115545 0.993302i \(-0.463139\pi\)
0.115545 + 0.993302i \(0.463139\pi\)
\(30\) 1.87996 0.343232
\(31\) 1.24445 0.223510 0.111755 0.993736i \(-0.464353\pi\)
0.111755 + 0.993736i \(0.464353\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.95028 −0.687655
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 0.534253 0.0890421
\(37\) 1.85158 0.304399 0.152199 0.988350i \(-0.451364\pi\)
0.152199 + 0.988350i \(0.451364\pi\)
\(38\) −1.77871 −0.288544
\(39\) −13.2967 −2.12918
\(40\) 1.00000 0.158114
\(41\) −4.60713 −0.719513 −0.359757 0.933046i \(-0.617140\pi\)
−0.359757 + 0.933046i \(0.617140\pi\)
\(42\) 0 0
\(43\) −3.55741 −0.542500 −0.271250 0.962509i \(-0.587437\pi\)
−0.271250 + 0.962509i \(0.587437\pi\)
\(44\) −2.10126 −0.316776
\(45\) 0.534253 0.0796417
\(46\) −7.53863 −1.11151
\(47\) 11.2684 1.64366 0.821830 0.569733i \(-0.192953\pi\)
0.821830 + 0.569733i \(0.192953\pi\)
\(48\) 1.87996 0.271349
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) −1.87996 −0.263247
\(52\) −7.07288 −0.980832
\(53\) 11.5582 1.58764 0.793818 0.608156i \(-0.208090\pi\)
0.793818 + 0.608156i \(0.208090\pi\)
\(54\) −4.63551 −0.630813
\(55\) −2.10126 −0.283333
\(56\) 0 0
\(57\) −3.34390 −0.442910
\(58\) 1.24445 0.163405
\(59\) 6.48891 0.844783 0.422392 0.906413i \(-0.361191\pi\)
0.422392 + 0.906413i \(0.361191\pi\)
\(60\) 1.87996 0.242702
\(61\) −8.90131 −1.13970 −0.569848 0.821750i \(-0.692998\pi\)
−0.569848 + 0.821750i \(0.692998\pi\)
\(62\) 1.24445 0.158046
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −7.07288 −0.877283
\(66\) −3.95028 −0.486246
\(67\) 1.27102 0.155279 0.0776397 0.996981i \(-0.475262\pi\)
0.0776397 + 0.996981i \(0.475262\pi\)
\(68\) −1.00000 −0.121268
\(69\) −14.1723 −1.70615
\(70\) 0 0
\(71\) −14.0986 −1.67320 −0.836598 0.547817i \(-0.815459\pi\)
−0.836598 + 0.547817i \(0.815459\pi\)
\(72\) 0.534253 0.0629623
\(73\) −2.75555 −0.322512 −0.161256 0.986913i \(-0.551555\pi\)
−0.161256 + 0.986913i \(0.551555\pi\)
\(74\) 1.85158 0.215242
\(75\) 1.87996 0.217079
\(76\) −1.77871 −0.204031
\(77\) 0 0
\(78\) −13.2967 −1.50556
\(79\) −1.98303 −0.223108 −0.111554 0.993758i \(-0.535583\pi\)
−0.111554 + 0.993758i \(0.535583\pi\)
\(80\) 1.00000 0.111803
\(81\) −10.3173 −1.14637
\(82\) −4.60713 −0.508773
\(83\) −17.4897 −1.91974 −0.959870 0.280447i \(-0.909517\pi\)
−0.959870 + 0.280447i \(0.909517\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) −3.55741 −0.383605
\(87\) 2.33952 0.250823
\(88\) −2.10126 −0.223995
\(89\) 4.12260 0.436995 0.218497 0.975838i \(-0.429884\pi\)
0.218497 + 0.975838i \(0.429884\pi\)
\(90\) 0.534253 0.0563152
\(91\) 0 0
\(92\) −7.53863 −0.785956
\(93\) 2.33952 0.242597
\(94\) 11.2684 1.16224
\(95\) −1.77871 −0.182491
\(96\) 1.87996 0.191873
\(97\) −6.93149 −0.703787 −0.351893 0.936040i \(-0.614462\pi\)
−0.351893 + 0.936040i \(0.614462\pi\)
\(98\) 0 0
\(99\) −1.12260 −0.112826
\(100\) 1.00000 0.100000
\(101\) −7.73336 −0.769498 −0.384749 0.923021i \(-0.625712\pi\)
−0.384749 + 0.923021i \(0.625712\pi\)
\(102\) −1.87996 −0.186144
\(103\) 4.97419 0.490121 0.245061 0.969508i \(-0.421192\pi\)
0.245061 + 0.969508i \(0.421192\pi\)
\(104\) −7.07288 −0.693553
\(105\) 0 0
\(106\) 11.5582 1.12263
\(107\) −5.80708 −0.561392 −0.280696 0.959797i \(-0.590565\pi\)
−0.280696 + 0.959797i \(0.590565\pi\)
\(108\) −4.63551 −0.446052
\(109\) 2.48891 0.238394 0.119197 0.992871i \(-0.461968\pi\)
0.119197 + 0.992871i \(0.461968\pi\)
\(110\) −2.10126 −0.200347
\(111\) 3.48091 0.330393
\(112\) 0 0
\(113\) −15.3137 −1.44059 −0.720296 0.693667i \(-0.755994\pi\)
−0.720296 + 0.693667i \(0.755994\pi\)
\(114\) −3.34390 −0.313185
\(115\) −7.53863 −0.702981
\(116\) 1.24445 0.115545
\(117\) −3.77871 −0.349341
\(118\) 6.48891 0.597352
\(119\) 0 0
\(120\) 1.87996 0.171616
\(121\) −6.58473 −0.598611
\(122\) −8.90131 −0.805886
\(123\) −8.66123 −0.780957
\(124\) 1.24445 0.111755
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 2.97684 0.264152 0.132076 0.991240i \(-0.457836\pi\)
0.132076 + 0.991240i \(0.457836\pi\)
\(128\) 1.00000 0.0883883
\(129\) −6.68779 −0.588827
\(130\) −7.07288 −0.620333
\(131\) 7.22567 0.631310 0.315655 0.948874i \(-0.397776\pi\)
0.315655 + 0.948874i \(0.397776\pi\)
\(132\) −3.95028 −0.343828
\(133\) 0 0
\(134\) 1.27102 0.109799
\(135\) −4.63551 −0.398961
\(136\) −1.00000 −0.0857493
\(137\) −3.81702 −0.326110 −0.163055 0.986617i \(-0.552135\pi\)
−0.163055 + 0.986617i \(0.552135\pi\)
\(138\) −14.1723 −1.20643
\(139\) −2.05591 −0.174380 −0.0871899 0.996192i \(-0.527789\pi\)
−0.0871899 + 0.996192i \(0.527789\pi\)
\(140\) 0 0
\(141\) 21.1841 1.78402
\(142\) −14.0986 −1.18313
\(143\) 14.8619 1.24282
\(144\) 0.534253 0.0445211
\(145\) 1.24445 0.103346
\(146\) −2.75555 −0.228051
\(147\) 0 0
\(148\) 1.85158 0.152199
\(149\) −7.12698 −0.583865 −0.291932 0.956439i \(-0.594298\pi\)
−0.291932 + 0.956439i \(0.594298\pi\)
\(150\) 1.87996 0.153498
\(151\) 13.7297 1.11731 0.558655 0.829400i \(-0.311318\pi\)
0.558655 + 0.829400i \(0.311318\pi\)
\(152\) −1.77871 −0.144272
\(153\) −0.534253 −0.0431918
\(154\) 0 0
\(155\) 1.24445 0.0999568
\(156\) −13.2967 −1.06459
\(157\) −9.71798 −0.775579 −0.387790 0.921748i \(-0.626761\pi\)
−0.387790 + 0.921748i \(0.626761\pi\)
\(158\) −1.98303 −0.157761
\(159\) 21.7289 1.72321
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) −10.3173 −0.810606
\(163\) 10.4587 0.819190 0.409595 0.912267i \(-0.365670\pi\)
0.409595 + 0.912267i \(0.365670\pi\)
\(164\) −4.60713 −0.359757
\(165\) −3.95028 −0.307529
\(166\) −17.4897 −1.35746
\(167\) −21.9304 −1.69703 −0.848514 0.529173i \(-0.822502\pi\)
−0.848514 + 0.529173i \(0.822502\pi\)
\(168\) 0 0
\(169\) 37.0256 2.84813
\(170\) −1.00000 −0.0766965
\(171\) −0.950278 −0.0726696
\(172\) −3.55741 −0.271250
\(173\) −16.7831 −1.27599 −0.637997 0.770039i \(-0.720237\pi\)
−0.637997 + 0.770039i \(0.720237\pi\)
\(174\) 2.33952 0.177359
\(175\) 0 0
\(176\) −2.10126 −0.158388
\(177\) 12.1989 0.916925
\(178\) 4.12260 0.309002
\(179\) 18.7153 1.39885 0.699425 0.714706i \(-0.253440\pi\)
0.699425 + 0.714706i \(0.253440\pi\)
\(180\) 0.534253 0.0398208
\(181\) 19.7724 1.46967 0.734836 0.678244i \(-0.237259\pi\)
0.734836 + 0.678244i \(0.237259\pi\)
\(182\) 0 0
\(183\) −16.7341 −1.23702
\(184\) −7.53863 −0.555755
\(185\) 1.85158 0.136131
\(186\) 2.33952 0.171542
\(187\) 2.10126 0.153659
\(188\) 11.2684 0.821830
\(189\) 0 0
\(190\) −1.77871 −0.129041
\(191\) 14.4124 1.04284 0.521422 0.853299i \(-0.325402\pi\)
0.521422 + 0.853299i \(0.325402\pi\)
\(192\) 1.87996 0.135674
\(193\) 0.977810 0.0703843 0.0351922 0.999381i \(-0.488796\pi\)
0.0351922 + 0.999381i \(0.488796\pi\)
\(194\) −6.93149 −0.497652
\(195\) −13.2967 −0.952199
\(196\) 0 0
\(197\) −0.294174 −0.0209591 −0.0104795 0.999945i \(-0.503336\pi\)
−0.0104795 + 0.999945i \(0.503336\pi\)
\(198\) −1.12260 −0.0797798
\(199\) −14.9572 −1.06029 −0.530144 0.847907i \(-0.677862\pi\)
−0.530144 + 0.847907i \(0.677862\pi\)
\(200\) 1.00000 0.0707107
\(201\) 2.38946 0.168540
\(202\) −7.73336 −0.544117
\(203\) 0 0
\(204\) −1.87996 −0.131624
\(205\) −4.60713 −0.321776
\(206\) 4.97419 0.346568
\(207\) −4.02753 −0.279933
\(208\) −7.07288 −0.490416
\(209\) 3.73751 0.258529
\(210\) 0 0
\(211\) −8.47750 −0.583615 −0.291808 0.956477i \(-0.594257\pi\)
−0.291808 + 0.956477i \(0.594257\pi\)
\(212\) 11.5582 0.793818
\(213\) −26.5048 −1.81608
\(214\) −5.80708 −0.396964
\(215\) −3.55741 −0.242613
\(216\) −4.63551 −0.315406
\(217\) 0 0
\(218\) 2.48891 0.168570
\(219\) −5.18032 −0.350054
\(220\) −2.10126 −0.141667
\(221\) 7.07288 0.475773
\(222\) 3.48091 0.233623
\(223\) 17.2143 1.15275 0.576376 0.817184i \(-0.304466\pi\)
0.576376 + 0.817184i \(0.304466\pi\)
\(224\) 0 0
\(225\) 0.534253 0.0356168
\(226\) −15.3137 −1.01865
\(227\) −2.05228 −0.136215 −0.0681074 0.997678i \(-0.521696\pi\)
−0.0681074 + 0.997678i \(0.521696\pi\)
\(228\) −3.34390 −0.221455
\(229\) −12.1921 −0.805675 −0.402837 0.915272i \(-0.631976\pi\)
−0.402837 + 0.915272i \(0.631976\pi\)
\(230\) −7.53863 −0.497082
\(231\) 0 0
\(232\) 1.24445 0.0817023
\(233\) 3.64947 0.239085 0.119543 0.992829i \(-0.461857\pi\)
0.119543 + 0.992829i \(0.461857\pi\)
\(234\) −3.77871 −0.247022
\(235\) 11.2684 0.735067
\(236\) 6.48891 0.422392
\(237\) −3.72802 −0.242161
\(238\) 0 0
\(239\) 25.0860 1.62268 0.811339 0.584576i \(-0.198739\pi\)
0.811339 + 0.584576i \(0.198739\pi\)
\(240\) 1.87996 0.121351
\(241\) −12.9040 −0.831217 −0.415609 0.909544i \(-0.636431\pi\)
−0.415609 + 0.909544i \(0.636431\pi\)
\(242\) −6.58473 −0.423282
\(243\) −5.48966 −0.352162
\(244\) −8.90131 −0.569848
\(245\) 0 0
\(246\) −8.66123 −0.552220
\(247\) 12.5806 0.800482
\(248\) 1.24445 0.0790228
\(249\) −32.8799 −2.08368
\(250\) 1.00000 0.0632456
\(251\) −17.4443 −1.10107 −0.550537 0.834810i \(-0.685577\pi\)
−0.550537 + 0.834810i \(0.685577\pi\)
\(252\) 0 0
\(253\) 15.8406 0.995889
\(254\) 2.97684 0.186784
\(255\) −1.87996 −0.117728
\(256\) 1.00000 0.0625000
\(257\) −11.5128 −0.718150 −0.359075 0.933309i \(-0.616908\pi\)
−0.359075 + 0.933309i \(0.616908\pi\)
\(258\) −6.68779 −0.416364
\(259\) 0 0
\(260\) −7.07288 −0.438641
\(261\) 0.664852 0.0411533
\(262\) 7.22567 0.446403
\(263\) −27.6620 −1.70571 −0.852855 0.522147i \(-0.825131\pi\)
−0.852855 + 0.522147i \(0.825131\pi\)
\(264\) −3.95028 −0.243123
\(265\) 11.5582 0.710012
\(266\) 0 0
\(267\) 7.75033 0.474312
\(268\) 1.27102 0.0776397
\(269\) 26.8034 1.63423 0.817115 0.576475i \(-0.195572\pi\)
0.817115 + 0.576475i \(0.195572\pi\)
\(270\) −4.63551 −0.282108
\(271\) −23.1841 −1.40833 −0.704166 0.710035i \(-0.748679\pi\)
−0.704166 + 0.710035i \(0.748679\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) −3.81702 −0.230595
\(275\) −2.10126 −0.126710
\(276\) −14.1723 −0.853074
\(277\) 4.10819 0.246837 0.123419 0.992355i \(-0.460614\pi\)
0.123419 + 0.992355i \(0.460614\pi\)
\(278\) −2.05591 −0.123305
\(279\) 0.664852 0.0398037
\(280\) 0 0
\(281\) 30.7047 1.83169 0.915844 0.401535i \(-0.131523\pi\)
0.915844 + 0.401535i \(0.131523\pi\)
\(282\) 21.1841 1.26149
\(283\) −1.26880 −0.0754226 −0.0377113 0.999289i \(-0.512007\pi\)
−0.0377113 + 0.999289i \(0.512007\pi\)
\(284\) −14.0986 −0.836598
\(285\) −3.34390 −0.198075
\(286\) 14.8619 0.878804
\(287\) 0 0
\(288\) 0.534253 0.0314811
\(289\) 1.00000 0.0588235
\(290\) 1.24445 0.0730768
\(291\) −13.0309 −0.763887
\(292\) −2.75555 −0.161256
\(293\) 3.86374 0.225722 0.112861 0.993611i \(-0.463999\pi\)
0.112861 + 0.993611i \(0.463999\pi\)
\(294\) 0 0
\(295\) 6.48891 0.377799
\(296\) 1.85158 0.107621
\(297\) 9.74039 0.565195
\(298\) −7.12698 −0.412855
\(299\) 53.3198 3.08356
\(300\) 1.87996 0.108540
\(301\) 0 0
\(302\) 13.7297 0.790057
\(303\) −14.5384 −0.835210
\(304\) −1.77871 −0.102016
\(305\) −8.90131 −0.509687
\(306\) −0.534253 −0.0305412
\(307\) −22.6914 −1.29507 −0.647534 0.762037i \(-0.724200\pi\)
−0.647534 + 0.762037i \(0.724200\pi\)
\(308\) 0 0
\(309\) 9.35128 0.531975
\(310\) 1.24445 0.0706802
\(311\) 9.71276 0.550760 0.275380 0.961335i \(-0.411196\pi\)
0.275380 + 0.961335i \(0.411196\pi\)
\(312\) −13.2967 −0.752779
\(313\) 23.3386 1.31917 0.659587 0.751628i \(-0.270731\pi\)
0.659587 + 0.751628i \(0.270731\pi\)
\(314\) −9.71798 −0.548417
\(315\) 0 0
\(316\) −1.98303 −0.111554
\(317\) 2.89393 0.162539 0.0812696 0.996692i \(-0.474103\pi\)
0.0812696 + 0.996692i \(0.474103\pi\)
\(318\) 21.7289 1.21850
\(319\) −2.61491 −0.146407
\(320\) 1.00000 0.0559017
\(321\) −10.9171 −0.609332
\(322\) 0 0
\(323\) 1.77871 0.0989698
\(324\) −10.3173 −0.573185
\(325\) −7.07288 −0.392333
\(326\) 10.4587 0.579255
\(327\) 4.67904 0.258752
\(328\) −4.60713 −0.254386
\(329\) 0 0
\(330\) −3.95028 −0.217456
\(331\) 19.6381 1.07941 0.539703 0.841855i \(-0.318537\pi\)
0.539703 + 0.841855i \(0.318537\pi\)
\(332\) −17.4897 −0.959870
\(333\) 0.989214 0.0542086
\(334\) −21.9304 −1.19998
\(335\) 1.27102 0.0694431
\(336\) 0 0
\(337\) 22.9846 1.25205 0.626026 0.779802i \(-0.284680\pi\)
0.626026 + 0.779802i \(0.284680\pi\)
\(338\) 37.0256 2.01393
\(339\) −28.7892 −1.56361
\(340\) −1.00000 −0.0542326
\(341\) −2.61491 −0.141605
\(342\) −0.950278 −0.0513852
\(343\) 0 0
\(344\) −3.55741 −0.191803
\(345\) −14.1723 −0.763012
\(346\) −16.7831 −0.902264
\(347\) 27.3010 1.46560 0.732798 0.680447i \(-0.238214\pi\)
0.732798 + 0.680447i \(0.238214\pi\)
\(348\) 2.33952 0.125412
\(349\) −9.37408 −0.501783 −0.250892 0.968015i \(-0.580724\pi\)
−0.250892 + 0.968015i \(0.580724\pi\)
\(350\) 0 0
\(351\) 32.7864 1.75001
\(352\) −2.10126 −0.111997
\(353\) 34.1203 1.81604 0.908021 0.418924i \(-0.137593\pi\)
0.908021 + 0.418924i \(0.137593\pi\)
\(354\) 12.1989 0.648364
\(355\) −14.0986 −0.748276
\(356\) 4.12260 0.218497
\(357\) 0 0
\(358\) 18.7153 0.989136
\(359\) 1.95368 0.103112 0.0515558 0.998670i \(-0.483582\pi\)
0.0515558 + 0.998670i \(0.483582\pi\)
\(360\) 0.534253 0.0281576
\(361\) −15.8362 −0.833485
\(362\) 19.7724 1.03922
\(363\) −12.3790 −0.649730
\(364\) 0 0
\(365\) −2.75555 −0.144232
\(366\) −16.7341 −0.874706
\(367\) 8.31115 0.433838 0.216919 0.976190i \(-0.430399\pi\)
0.216919 + 0.976190i \(0.430399\pi\)
\(368\) −7.53863 −0.392978
\(369\) −2.46137 −0.128134
\(370\) 1.85158 0.0962593
\(371\) 0 0
\(372\) 2.33952 0.121299
\(373\) 32.0850 1.66130 0.830650 0.556795i \(-0.187969\pi\)
0.830650 + 0.556795i \(0.187969\pi\)
\(374\) 2.10126 0.108653
\(375\) 1.87996 0.0970808
\(376\) 11.2684 0.581121
\(377\) −8.80186 −0.453319
\(378\) 0 0
\(379\) 0.195575 0.0100460 0.00502300 0.999987i \(-0.498401\pi\)
0.00502300 + 0.999987i \(0.498401\pi\)
\(380\) −1.77871 −0.0912457
\(381\) 5.59635 0.286710
\(382\) 14.4124 0.737403
\(383\) −16.7603 −0.856410 −0.428205 0.903682i \(-0.640854\pi\)
−0.428205 + 0.903682i \(0.640854\pi\)
\(384\) 1.87996 0.0959363
\(385\) 0 0
\(386\) 0.977810 0.0497692
\(387\) −1.90056 −0.0966107
\(388\) −6.93149 −0.351893
\(389\) −8.58132 −0.435090 −0.217545 0.976050i \(-0.569805\pi\)
−0.217545 + 0.976050i \(0.569805\pi\)
\(390\) −13.2967 −0.673306
\(391\) 7.53863 0.381245
\(392\) 0 0
\(393\) 13.5840 0.685221
\(394\) −0.294174 −0.0148203
\(395\) −1.98303 −0.0997770
\(396\) −1.12260 −0.0564128
\(397\) −26.9793 −1.35405 −0.677026 0.735959i \(-0.736732\pi\)
−0.677026 + 0.735959i \(0.736732\pi\)
\(398\) −14.9572 −0.749737
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 27.9296 1.39474 0.697369 0.716713i \(-0.254354\pi\)
0.697369 + 0.716713i \(0.254354\pi\)
\(402\) 2.38946 0.119176
\(403\) −8.80186 −0.438452
\(404\) −7.73336 −0.384749
\(405\) −10.3173 −0.512672
\(406\) 0 0
\(407\) −3.89065 −0.192853
\(408\) −1.87996 −0.0930719
\(409\) −34.8618 −1.72381 −0.861903 0.507073i \(-0.830728\pi\)
−0.861903 + 0.507073i \(0.830728\pi\)
\(410\) −4.60713 −0.227530
\(411\) −7.17585 −0.353959
\(412\) 4.97419 0.245061
\(413\) 0 0
\(414\) −4.02753 −0.197942
\(415\) −17.4897 −0.858533
\(416\) −7.07288 −0.346776
\(417\) −3.86503 −0.189271
\(418\) 3.73751 0.182808
\(419\) −28.4922 −1.39194 −0.695968 0.718073i \(-0.745024\pi\)
−0.695968 + 0.718073i \(0.745024\pi\)
\(420\) 0 0
\(421\) 2.79311 0.136128 0.0680640 0.997681i \(-0.478318\pi\)
0.0680640 + 0.997681i \(0.478318\pi\)
\(422\) −8.47750 −0.412678
\(423\) 6.02015 0.292710
\(424\) 11.5582 0.561314
\(425\) −1.00000 −0.0485071
\(426\) −26.5048 −1.28416
\(427\) 0 0
\(428\) −5.80708 −0.280696
\(429\) 27.9398 1.34895
\(430\) −3.55741 −0.171554
\(431\) −1.05516 −0.0508251 −0.0254126 0.999677i \(-0.508090\pi\)
−0.0254126 + 0.999677i \(0.508090\pi\)
\(432\) −4.63551 −0.223026
\(433\) 10.1243 0.486544 0.243272 0.969958i \(-0.421779\pi\)
0.243272 + 0.969958i \(0.421779\pi\)
\(434\) 0 0
\(435\) 2.33952 0.112171
\(436\) 2.48891 0.119197
\(437\) 13.4090 0.641439
\(438\) −5.18032 −0.247525
\(439\) 4.49850 0.214702 0.107351 0.994221i \(-0.465763\pi\)
0.107351 + 0.994221i \(0.465763\pi\)
\(440\) −2.10126 −0.100173
\(441\) 0 0
\(442\) 7.07288 0.336423
\(443\) 6.41377 0.304727 0.152364 0.988324i \(-0.451311\pi\)
0.152364 + 0.988324i \(0.451311\pi\)
\(444\) 3.48091 0.165197
\(445\) 4.12260 0.195430
\(446\) 17.2143 0.815119
\(447\) −13.3984 −0.633724
\(448\) 0 0
\(449\) −10.0047 −0.472152 −0.236076 0.971735i \(-0.575861\pi\)
−0.236076 + 0.971735i \(0.575861\pi\)
\(450\) 0.534253 0.0251849
\(451\) 9.68076 0.455849
\(452\) −15.3137 −0.720296
\(453\) 25.8114 1.21272
\(454\) −2.05228 −0.0963185
\(455\) 0 0
\(456\) −3.34390 −0.156592
\(457\) −15.3211 −0.716690 −0.358345 0.933589i \(-0.616659\pi\)
−0.358345 + 0.933589i \(0.616659\pi\)
\(458\) −12.1921 −0.569698
\(459\) 4.63551 0.216367
\(460\) −7.53863 −0.351490
\(461\) 21.3029 0.992176 0.496088 0.868272i \(-0.334769\pi\)
0.496088 + 0.868272i \(0.334769\pi\)
\(462\) 0 0
\(463\) 39.9493 1.85660 0.928302 0.371828i \(-0.121269\pi\)
0.928302 + 0.371828i \(0.121269\pi\)
\(464\) 1.24445 0.0577723
\(465\) 2.33952 0.108493
\(466\) 3.64947 0.169059
\(467\) −3.26364 −0.151023 −0.0755116 0.997145i \(-0.524059\pi\)
−0.0755116 + 0.997145i \(0.524059\pi\)
\(468\) −3.77871 −0.174671
\(469\) 0 0
\(470\) 11.2684 0.519771
\(471\) −18.2694 −0.841811
\(472\) 6.48891 0.298676
\(473\) 7.47503 0.343702
\(474\) −3.72802 −0.171233
\(475\) −1.77871 −0.0816126
\(476\) 0 0
\(477\) 6.17498 0.282733
\(478\) 25.0860 1.14741
\(479\) −32.3373 −1.47753 −0.738764 0.673965i \(-0.764590\pi\)
−0.738764 + 0.673965i \(0.764590\pi\)
\(480\) 1.87996 0.0858081
\(481\) −13.0960 −0.597128
\(482\) −12.9040 −0.587759
\(483\) 0 0
\(484\) −6.58473 −0.299306
\(485\) −6.93149 −0.314743
\(486\) −5.48966 −0.249016
\(487\) −2.50212 −0.113382 −0.0566910 0.998392i \(-0.518055\pi\)
−0.0566910 + 0.998392i \(0.518055\pi\)
\(488\) −8.90131 −0.402943
\(489\) 19.6620 0.889145
\(490\) 0 0
\(491\) −24.4712 −1.10437 −0.552185 0.833721i \(-0.686206\pi\)
−0.552185 + 0.833721i \(0.686206\pi\)
\(492\) −8.66123 −0.390478
\(493\) −1.24445 −0.0560473
\(494\) 12.5806 0.566027
\(495\) −1.12260 −0.0504572
\(496\) 1.24445 0.0558776
\(497\) 0 0
\(498\) −32.8799 −1.47338
\(499\) −8.40587 −0.376298 −0.188149 0.982140i \(-0.560249\pi\)
−0.188149 + 0.982140i \(0.560249\pi\)
\(500\) 1.00000 0.0447214
\(501\) −41.2284 −1.84195
\(502\) −17.4443 −0.778578
\(503\) 24.1677 1.07759 0.538793 0.842438i \(-0.318881\pi\)
0.538793 + 0.842438i \(0.318881\pi\)
\(504\) 0 0
\(505\) −7.73336 −0.344130
\(506\) 15.8406 0.704200
\(507\) 69.6067 3.09134
\(508\) 2.97684 0.132076
\(509\) −15.0846 −0.668615 −0.334307 0.942464i \(-0.608502\pi\)
−0.334307 + 0.942464i \(0.608502\pi\)
\(510\) −1.87996 −0.0832461
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 8.24520 0.364035
\(514\) −11.5128 −0.507808
\(515\) 4.97419 0.219189
\(516\) −6.68779 −0.294414
\(517\) −23.6777 −1.04134
\(518\) 0 0
\(519\) −31.5515 −1.38496
\(520\) −7.07288 −0.310166
\(521\) 38.6314 1.69247 0.846237 0.532807i \(-0.178863\pi\)
0.846237 + 0.532807i \(0.178863\pi\)
\(522\) 0.664852 0.0290998
\(523\) 26.5278 1.15998 0.579991 0.814623i \(-0.303056\pi\)
0.579991 + 0.814623i \(0.303056\pi\)
\(524\) 7.22567 0.315655
\(525\) 0 0
\(526\) −27.6620 −1.20612
\(527\) −1.24445 −0.0542092
\(528\) −3.95028 −0.171914
\(529\) 33.8309 1.47091
\(530\) 11.5582 0.502054
\(531\) 3.46672 0.150443
\(532\) 0 0
\(533\) 32.5857 1.41144
\(534\) 7.75033 0.335390
\(535\) −5.80708 −0.251062
\(536\) 1.27102 0.0548996
\(537\) 35.1841 1.51830
\(538\) 26.8034 1.15558
\(539\) 0 0
\(540\) −4.63551 −0.199481
\(541\) 8.62728 0.370916 0.185458 0.982652i \(-0.440623\pi\)
0.185458 + 0.982652i \(0.440623\pi\)
\(542\) −23.1841 −0.995841
\(543\) 37.1714 1.59518
\(544\) −1.00000 −0.0428746
\(545\) 2.48891 0.106613
\(546\) 0 0
\(547\) −23.4691 −1.00346 −0.501732 0.865023i \(-0.667304\pi\)
−0.501732 + 0.865023i \(0.667304\pi\)
\(548\) −3.81702 −0.163055
\(549\) −4.75555 −0.202962
\(550\) −2.10126 −0.0895978
\(551\) −2.21351 −0.0942989
\(552\) −14.1723 −0.603214
\(553\) 0 0
\(554\) 4.10819 0.174540
\(555\) 3.48091 0.147756
\(556\) −2.05591 −0.0871899
\(557\) −24.3475 −1.03164 −0.515819 0.856698i \(-0.672512\pi\)
−0.515819 + 0.856698i \(0.672512\pi\)
\(558\) 0.664852 0.0281454
\(559\) 25.1611 1.06420
\(560\) 0 0
\(561\) 3.95028 0.166781
\(562\) 30.7047 1.29520
\(563\) 25.8402 1.08903 0.544517 0.838750i \(-0.316713\pi\)
0.544517 + 0.838750i \(0.316713\pi\)
\(564\) 21.1841 0.892011
\(565\) −15.3137 −0.644253
\(566\) −1.26880 −0.0533318
\(567\) 0 0
\(568\) −14.0986 −0.591564
\(569\) 33.4050 1.40041 0.700206 0.713941i \(-0.253092\pi\)
0.700206 + 0.713941i \(0.253092\pi\)
\(570\) −3.34390 −0.140060
\(571\) 35.7347 1.49545 0.747726 0.664008i \(-0.231146\pi\)
0.747726 + 0.664008i \(0.231146\pi\)
\(572\) 14.8619 0.621408
\(573\) 27.0948 1.13190
\(574\) 0 0
\(575\) −7.53863 −0.314382
\(576\) 0.534253 0.0222605
\(577\) 28.3537 1.18038 0.590191 0.807264i \(-0.299052\pi\)
0.590191 + 0.807264i \(0.299052\pi\)
\(578\) 1.00000 0.0415945
\(579\) 1.83824 0.0763948
\(580\) 1.24445 0.0516731
\(581\) 0 0
\(582\) −13.0309 −0.540150
\(583\) −24.2867 −1.00585
\(584\) −2.75555 −0.114025
\(585\) −3.77871 −0.156230
\(586\) 3.86374 0.159610
\(587\) −0.0197516 −0.000815236 0 −0.000407618 1.00000i \(-0.500130\pi\)
−0.000407618 1.00000i \(0.500130\pi\)
\(588\) 0 0
\(589\) −2.21351 −0.0912063
\(590\) 6.48891 0.267144
\(591\) −0.553036 −0.0227489
\(592\) 1.85158 0.0760997
\(593\) −14.6064 −0.599812 −0.299906 0.953969i \(-0.596955\pi\)
−0.299906 + 0.953969i \(0.596955\pi\)
\(594\) 9.74039 0.399653
\(595\) 0 0
\(596\) −7.12698 −0.291932
\(597\) −28.1190 −1.15083
\(598\) 53.3198 2.18041
\(599\) −30.4071 −1.24240 −0.621200 0.783652i \(-0.713355\pi\)
−0.621200 + 0.783652i \(0.713355\pi\)
\(600\) 1.87996 0.0767491
\(601\) −22.9330 −0.935456 −0.467728 0.883872i \(-0.654927\pi\)
−0.467728 + 0.883872i \(0.654927\pi\)
\(602\) 0 0
\(603\) 0.679044 0.0276528
\(604\) 13.7297 0.558655
\(605\) −6.58473 −0.267707
\(606\) −14.5384 −0.590583
\(607\) −34.1741 −1.38709 −0.693543 0.720416i \(-0.743951\pi\)
−0.693543 + 0.720416i \(0.743951\pi\)
\(608\) −1.77871 −0.0721360
\(609\) 0 0
\(610\) −8.90131 −0.360403
\(611\) −79.6998 −3.22431
\(612\) −0.534253 −0.0215959
\(613\) −14.5648 −0.588266 −0.294133 0.955764i \(-0.595031\pi\)
−0.294133 + 0.955764i \(0.595031\pi\)
\(614\) −22.6914 −0.915751
\(615\) −8.66123 −0.349254
\(616\) 0 0
\(617\) −6.57222 −0.264588 −0.132294 0.991211i \(-0.542234\pi\)
−0.132294 + 0.991211i \(0.542234\pi\)
\(618\) 9.35128 0.376163
\(619\) 12.0409 0.483964 0.241982 0.970281i \(-0.422203\pi\)
0.241982 + 0.970281i \(0.422203\pi\)
\(620\) 1.24445 0.0499784
\(621\) 34.9454 1.40231
\(622\) 9.71276 0.389446
\(623\) 0 0
\(624\) −13.2967 −0.532295
\(625\) 1.00000 0.0400000
\(626\) 23.3386 0.932797
\(627\) 7.02638 0.280607
\(628\) −9.71798 −0.387790
\(629\) −1.85158 −0.0738275
\(630\) 0 0
\(631\) 16.5669 0.659518 0.329759 0.944065i \(-0.393032\pi\)
0.329759 + 0.944065i \(0.393032\pi\)
\(632\) −1.98303 −0.0788806
\(633\) −15.9374 −0.633454
\(634\) 2.89393 0.114933
\(635\) 2.97684 0.118132
\(636\) 21.7289 0.861607
\(637\) 0 0
\(638\) −2.61491 −0.103525
\(639\) −7.53222 −0.297970
\(640\) 1.00000 0.0395285
\(641\) −20.2780 −0.800935 −0.400467 0.916311i \(-0.631152\pi\)
−0.400467 + 0.916311i \(0.631152\pi\)
\(642\) −10.9171 −0.430863
\(643\) 18.7171 0.738132 0.369066 0.929403i \(-0.379678\pi\)
0.369066 + 0.929403i \(0.379678\pi\)
\(644\) 0 0
\(645\) −6.68779 −0.263332
\(646\) 1.77871 0.0699822
\(647\) −35.2219 −1.38471 −0.692357 0.721555i \(-0.743428\pi\)
−0.692357 + 0.721555i \(0.743428\pi\)
\(648\) −10.3173 −0.405303
\(649\) −13.6348 −0.535215
\(650\) −7.07288 −0.277421
\(651\) 0 0
\(652\) 10.4587 0.409595
\(653\) 20.1040 0.786732 0.393366 0.919382i \(-0.371311\pi\)
0.393366 + 0.919382i \(0.371311\pi\)
\(654\) 4.67904 0.182965
\(655\) 7.22567 0.282330
\(656\) −4.60713 −0.179878
\(657\) −1.47216 −0.0574344
\(658\) 0 0
\(659\) 15.3668 0.598607 0.299303 0.954158i \(-0.403246\pi\)
0.299303 + 0.954158i \(0.403246\pi\)
\(660\) −3.95028 −0.153764
\(661\) −40.6360 −1.58056 −0.790279 0.612747i \(-0.790065\pi\)
−0.790279 + 0.612747i \(0.790065\pi\)
\(662\) 19.6381 0.763255
\(663\) 13.2967 0.516402
\(664\) −17.4897 −0.678730
\(665\) 0 0
\(666\) 0.989214 0.0383313
\(667\) −9.38146 −0.363252
\(668\) −21.9304 −0.848514
\(669\) 32.3621 1.25119
\(670\) 1.27102 0.0491037
\(671\) 18.7039 0.722057
\(672\) 0 0
\(673\) 9.77243 0.376699 0.188350 0.982102i \(-0.439686\pi\)
0.188350 + 0.982102i \(0.439686\pi\)
\(674\) 22.9846 0.885335
\(675\) −4.63551 −0.178421
\(676\) 37.0256 1.42406
\(677\) 12.3868 0.476064 0.238032 0.971257i \(-0.423498\pi\)
0.238032 + 0.971257i \(0.423498\pi\)
\(678\) −28.7892 −1.10564
\(679\) 0 0
\(680\) −1.00000 −0.0383482
\(681\) −3.85821 −0.147847
\(682\) −2.61491 −0.100130
\(683\) −41.1332 −1.57392 −0.786958 0.617006i \(-0.788345\pi\)
−0.786958 + 0.617006i \(0.788345\pi\)
\(684\) −0.950278 −0.0363348
\(685\) −3.81702 −0.145841
\(686\) 0 0
\(687\) −22.9206 −0.874476
\(688\) −3.55741 −0.135625
\(689\) −81.7495 −3.11441
\(690\) −14.1723 −0.539531
\(691\) 41.3084 1.57145 0.785723 0.618579i \(-0.212291\pi\)
0.785723 + 0.618579i \(0.212291\pi\)
\(692\) −16.7831 −0.637997
\(693\) 0 0
\(694\) 27.3010 1.03633
\(695\) −2.05591 −0.0779850
\(696\) 2.33952 0.0886794
\(697\) 4.60713 0.174508
\(698\) −9.37408 −0.354814
\(699\) 6.86087 0.259502
\(700\) 0 0
\(701\) −45.1019 −1.70348 −0.851738 0.523968i \(-0.824451\pi\)
−0.851738 + 0.523968i \(0.824451\pi\)
\(702\) 32.7864 1.23744
\(703\) −3.29342 −0.124214
\(704\) −2.10126 −0.0791940
\(705\) 21.1841 0.797838
\(706\) 34.1203 1.28414
\(707\) 0 0
\(708\) 12.1989 0.458462
\(709\) 19.4151 0.729149 0.364574 0.931174i \(-0.381214\pi\)
0.364574 + 0.931174i \(0.381214\pi\)
\(710\) −14.0986 −0.529111
\(711\) −1.05944 −0.0397320
\(712\) 4.12260 0.154501
\(713\) −9.38146 −0.351339
\(714\) 0 0
\(715\) 14.8619 0.555805
\(716\) 18.7153 0.699425
\(717\) 47.1607 1.76125
\(718\) 1.95368 0.0729109
\(719\) −6.65902 −0.248339 −0.124170 0.992261i \(-0.539627\pi\)
−0.124170 + 0.992261i \(0.539627\pi\)
\(720\) 0.534253 0.0199104
\(721\) 0 0
\(722\) −15.8362 −0.589363
\(723\) −24.2589 −0.902200
\(724\) 19.7724 0.734836
\(725\) 1.24445 0.0462178
\(726\) −12.3790 −0.459429
\(727\) −28.5622 −1.05931 −0.529656 0.848212i \(-0.677679\pi\)
−0.529656 + 0.848212i \(0.677679\pi\)
\(728\) 0 0
\(729\) 20.6317 0.764136
\(730\) −2.75555 −0.101987
\(731\) 3.55741 0.131576
\(732\) −16.7341 −0.618510
\(733\) −22.5891 −0.834347 −0.417174 0.908827i \(-0.636979\pi\)
−0.417174 + 0.908827i \(0.636979\pi\)
\(734\) 8.31115 0.306770
\(735\) 0 0
\(736\) −7.53863 −0.277877
\(737\) −2.67073 −0.0983776
\(738\) −2.46137 −0.0906044
\(739\) 32.9503 1.21210 0.606048 0.795428i \(-0.292754\pi\)
0.606048 + 0.795428i \(0.292754\pi\)
\(740\) 1.85158 0.0680656
\(741\) 23.6510 0.868840
\(742\) 0 0
\(743\) −25.3045 −0.928333 −0.464166 0.885748i \(-0.653646\pi\)
−0.464166 + 0.885748i \(0.653646\pi\)
\(744\) 2.33952 0.0857710
\(745\) −7.12698 −0.261112
\(746\) 32.0850 1.17472
\(747\) −9.34390 −0.341875
\(748\) 2.10126 0.0768295
\(749\) 0 0
\(750\) 1.87996 0.0686465
\(751\) −2.70839 −0.0988305 −0.0494152 0.998778i \(-0.515736\pi\)
−0.0494152 + 0.998778i \(0.515736\pi\)
\(752\) 11.2684 0.410915
\(753\) −32.7946 −1.19510
\(754\) −8.80186 −0.320545
\(755\) 13.7297 0.499676
\(756\) 0 0
\(757\) −30.5364 −1.10986 −0.554932 0.831896i \(-0.687256\pi\)
−0.554932 + 0.831896i \(0.687256\pi\)
\(758\) 0.195575 0.00710359
\(759\) 29.7797 1.08093
\(760\) −1.77871 −0.0645204
\(761\) 6.84380 0.248088 0.124044 0.992277i \(-0.460414\pi\)
0.124044 + 0.992277i \(0.460414\pi\)
\(762\) 5.59635 0.202734
\(763\) 0 0
\(764\) 14.4124 0.521422
\(765\) −0.534253 −0.0193159
\(766\) −16.7603 −0.605573
\(767\) −45.8952 −1.65718
\(768\) 1.87996 0.0678372
\(769\) −34.3724 −1.23950 −0.619750 0.784799i \(-0.712766\pi\)
−0.619750 + 0.784799i \(0.712766\pi\)
\(770\) 0 0
\(771\) −21.6436 −0.779477
\(772\) 0.977810 0.0351922
\(773\) −51.5189 −1.85301 −0.926503 0.376287i \(-0.877201\pi\)
−0.926503 + 0.376287i \(0.877201\pi\)
\(774\) −1.90056 −0.0683141
\(775\) 1.24445 0.0447021
\(776\) −6.93149 −0.248826
\(777\) 0 0
\(778\) −8.58132 −0.307655
\(779\) 8.19473 0.293607
\(780\) −13.2967 −0.476100
\(781\) 29.6248 1.06006
\(782\) 7.53863 0.269581
\(783\) −5.76867 −0.206155
\(784\) 0 0
\(785\) −9.71798 −0.346850
\(786\) 13.5840 0.484524
\(787\) −32.4460 −1.15658 −0.578288 0.815833i \(-0.696279\pi\)
−0.578288 + 0.815833i \(0.696279\pi\)
\(788\) −0.294174 −0.0104795
\(789\) −52.0034 −1.85137
\(790\) −1.98303 −0.0705530
\(791\) 0 0
\(792\) −1.12260 −0.0398899
\(793\) 62.9579 2.23570
\(794\) −26.9793 −0.957460
\(795\) 21.7289 0.770644
\(796\) −14.9572 −0.530144
\(797\) 32.4481 1.14937 0.574685 0.818375i \(-0.305125\pi\)
0.574685 + 0.818375i \(0.305125\pi\)
\(798\) 0 0
\(799\) −11.2684 −0.398646
\(800\) 1.00000 0.0353553
\(801\) 2.20251 0.0778219
\(802\) 27.9296 0.986228
\(803\) 5.79011 0.204329
\(804\) 2.38946 0.0842698
\(805\) 0 0
\(806\) −8.80186 −0.310032
\(807\) 50.3893 1.77379
\(808\) −7.73336 −0.272059
\(809\) 34.3574 1.20794 0.603971 0.797006i \(-0.293584\pi\)
0.603971 + 0.797006i \(0.293584\pi\)
\(810\) −10.3173 −0.362514
\(811\) −11.5607 −0.405952 −0.202976 0.979184i \(-0.565061\pi\)
−0.202976 + 0.979184i \(0.565061\pi\)
\(812\) 0 0
\(813\) −43.5852 −1.52860
\(814\) −3.89065 −0.136367
\(815\) 10.4587 0.366353
\(816\) −1.87996 −0.0658118
\(817\) 6.32758 0.221374
\(818\) −34.8618 −1.21892
\(819\) 0 0
\(820\) −4.60713 −0.160888
\(821\) 28.4762 0.993827 0.496913 0.867800i \(-0.334467\pi\)
0.496913 + 0.867800i \(0.334467\pi\)
\(822\) −7.17585 −0.250287
\(823\) −28.2339 −0.984173 −0.492086 0.870546i \(-0.663766\pi\)
−0.492086 + 0.870546i \(0.663766\pi\)
\(824\) 4.97419 0.173284
\(825\) −3.95028 −0.137531
\(826\) 0 0
\(827\) 8.74958 0.304253 0.152126 0.988361i \(-0.451388\pi\)
0.152126 + 0.988361i \(0.451388\pi\)
\(828\) −4.02753 −0.139966
\(829\) −18.7214 −0.650221 −0.325110 0.945676i \(-0.605401\pi\)
−0.325110 + 0.945676i \(0.605401\pi\)
\(830\) −17.4897 −0.607075
\(831\) 7.72324 0.267916
\(832\) −7.07288 −0.245208
\(833\) 0 0
\(834\) −3.86503 −0.133835
\(835\) −21.9304 −0.758934
\(836\) 3.73751 0.129265
\(837\) −5.76867 −0.199394
\(838\) −28.4922 −0.984247
\(839\) −46.0492 −1.58979 −0.794897 0.606744i \(-0.792475\pi\)
−0.794897 + 0.606744i \(0.792475\pi\)
\(840\) 0 0
\(841\) −27.4513 −0.946598
\(842\) 2.79311 0.0962571
\(843\) 57.7236 1.98811
\(844\) −8.47750 −0.291808
\(845\) 37.0256 1.27372
\(846\) 6.02015 0.206977
\(847\) 0 0
\(848\) 11.5582 0.396909
\(849\) −2.38530 −0.0818633
\(850\) −1.00000 −0.0342997
\(851\) −13.9584 −0.478488
\(852\) −26.5048 −0.908040
\(853\) 31.6455 1.08352 0.541760 0.840533i \(-0.317758\pi\)
0.541760 + 0.840533i \(0.317758\pi\)
\(854\) 0 0
\(855\) −0.950278 −0.0324988
\(856\) −5.80708 −0.198482
\(857\) 16.7555 0.572359 0.286179 0.958176i \(-0.407615\pi\)
0.286179 + 0.958176i \(0.407615\pi\)
\(858\) 27.9398 0.953850
\(859\) 34.5726 1.17960 0.589801 0.807549i \(-0.299206\pi\)
0.589801 + 0.807549i \(0.299206\pi\)
\(860\) −3.55741 −0.121307
\(861\) 0 0
\(862\) −1.05516 −0.0359388
\(863\) 14.6783 0.499656 0.249828 0.968290i \(-0.419626\pi\)
0.249828 + 0.968290i \(0.419626\pi\)
\(864\) −4.63551 −0.157703
\(865\) −16.7831 −0.570642
\(866\) 10.1243 0.344038
\(867\) 1.87996 0.0638468
\(868\) 0 0
\(869\) 4.16685 0.141351
\(870\) 2.33952 0.0793172
\(871\) −8.98975 −0.304606
\(872\) 2.48891 0.0842850
\(873\) −3.70317 −0.125333
\(874\) 13.4090 0.453566
\(875\) 0 0
\(876\) −5.18032 −0.175027
\(877\) −40.6335 −1.37210 −0.686048 0.727556i \(-0.740656\pi\)
−0.686048 + 0.727556i \(0.740656\pi\)
\(878\) 4.49850 0.151817
\(879\) 7.26368 0.244998
\(880\) −2.10126 −0.0708333
\(881\) −20.4629 −0.689412 −0.344706 0.938711i \(-0.612021\pi\)
−0.344706 + 0.938711i \(0.612021\pi\)
\(882\) 0 0
\(883\) 47.3526 1.59354 0.796772 0.604280i \(-0.206539\pi\)
0.796772 + 0.604280i \(0.206539\pi\)
\(884\) 7.07288 0.237887
\(885\) 12.1989 0.410061
\(886\) 6.41377 0.215475
\(887\) −46.2119 −1.55164 −0.775822 0.630952i \(-0.782665\pi\)
−0.775822 + 0.630952i \(0.782665\pi\)
\(888\) 3.48091 0.116812
\(889\) 0 0
\(890\) 4.12260 0.138190
\(891\) 21.6794 0.726286
\(892\) 17.2143 0.576376
\(893\) −20.0431 −0.670717
\(894\) −13.3984 −0.448111
\(895\) 18.7153 0.625584
\(896\) 0 0
\(897\) 100.239 3.34689
\(898\) −10.0047 −0.333862
\(899\) 1.54866 0.0516508
\(900\) 0.534253 0.0178084
\(901\) −11.5582 −0.385058
\(902\) 9.68076 0.322334
\(903\) 0 0
\(904\) −15.3137 −0.509326
\(905\) 19.7724 0.657258
\(906\) 25.8114 0.857525
\(907\) −52.8510 −1.75489 −0.877445 0.479677i \(-0.840754\pi\)
−0.877445 + 0.479677i \(0.840754\pi\)
\(908\) −2.05228 −0.0681074
\(909\) −4.13157 −0.137035
\(910\) 0 0
\(911\) −10.3519 −0.342974 −0.171487 0.985186i \(-0.554857\pi\)
−0.171487 + 0.985186i \(0.554857\pi\)
\(912\) −3.34390 −0.110727
\(913\) 36.7502 1.21626
\(914\) −15.3211 −0.506777
\(915\) −16.7341 −0.553213
\(916\) −12.1921 −0.402837
\(917\) 0 0
\(918\) 4.63551 0.152995
\(919\) 12.1099 0.399468 0.199734 0.979850i \(-0.435992\pi\)
0.199734 + 0.979850i \(0.435992\pi\)
\(920\) −7.53863 −0.248541
\(921\) −42.6590 −1.40566
\(922\) 21.3029 0.701574
\(923\) 99.7177 3.28225
\(924\) 0 0
\(925\) 1.85158 0.0608797
\(926\) 39.9493 1.31282
\(927\) 2.65747 0.0872829
\(928\) 1.24445 0.0408512
\(929\) −38.0450 −1.24822 −0.624108 0.781338i \(-0.714538\pi\)
−0.624108 + 0.781338i \(0.714538\pi\)
\(930\) 2.33952 0.0767159
\(931\) 0 0
\(932\) 3.64947 0.119543
\(933\) 18.2596 0.597793
\(934\) −3.26364 −0.106789
\(935\) 2.10126 0.0687184
\(936\) −3.77871 −0.123511
\(937\) 29.7496 0.971878 0.485939 0.873993i \(-0.338478\pi\)
0.485939 + 0.873993i \(0.338478\pi\)
\(938\) 0 0
\(939\) 43.8756 1.43183
\(940\) 11.2684 0.367533
\(941\) 7.34253 0.239360 0.119680 0.992813i \(-0.461813\pi\)
0.119680 + 0.992813i \(0.461813\pi\)
\(942\) −18.2694 −0.595250
\(943\) 34.7315 1.13101
\(944\) 6.48891 0.211196
\(945\) 0 0
\(946\) 7.47503 0.243034
\(947\) −7.28061 −0.236588 −0.118294 0.992979i \(-0.537743\pi\)
−0.118294 + 0.992979i \(0.537743\pi\)
\(948\) −3.72802 −0.121080
\(949\) 19.4897 0.632661
\(950\) −1.77871 −0.0577088
\(951\) 5.44047 0.176419
\(952\) 0 0
\(953\) −40.4457 −1.31016 −0.655082 0.755558i \(-0.727366\pi\)
−0.655082 + 0.755558i \(0.727366\pi\)
\(954\) 6.17498 0.199922
\(955\) 14.4124 0.466374
\(956\) 25.0860 0.811339
\(957\) −4.91593 −0.158910
\(958\) −32.3373 −1.04477
\(959\) 0 0
\(960\) 1.87996 0.0606755
\(961\) −29.4513 −0.950043
\(962\) −13.0960 −0.422233
\(963\) −3.10245 −0.0999750
\(964\) −12.9040 −0.415609
\(965\) 0.977810 0.0314768
\(966\) 0 0
\(967\) 4.43365 0.142577 0.0712884 0.997456i \(-0.477289\pi\)
0.0712884 + 0.997456i \(0.477289\pi\)
\(968\) −6.58473 −0.211641
\(969\) 3.34390 0.107421
\(970\) −6.93149 −0.222557
\(971\) 41.9723 1.34695 0.673477 0.739208i \(-0.264800\pi\)
0.673477 + 0.739208i \(0.264800\pi\)
\(972\) −5.48966 −0.176081
\(973\) 0 0
\(974\) −2.50212 −0.0801731
\(975\) −13.2967 −0.425836
\(976\) −8.90131 −0.284924
\(977\) −27.5656 −0.881901 −0.440951 0.897531i \(-0.645359\pi\)
−0.440951 + 0.897531i \(0.645359\pi\)
\(978\) 19.6620 0.628721
\(979\) −8.66264 −0.276859
\(980\) 0 0
\(981\) 1.32970 0.0424542
\(982\) −24.4712 −0.780908
\(983\) −5.21594 −0.166363 −0.0831814 0.996534i \(-0.526508\pi\)
−0.0831814 + 0.996534i \(0.526508\pi\)
\(984\) −8.66123 −0.276110
\(985\) −0.294174 −0.00937318
\(986\) −1.24445 −0.0396314
\(987\) 0 0
\(988\) 12.5806 0.400241
\(989\) 26.8180 0.852763
\(990\) −1.12260 −0.0356786
\(991\) 11.2187 0.356375 0.178187 0.983997i \(-0.442977\pi\)
0.178187 + 0.983997i \(0.442977\pi\)
\(992\) 1.24445 0.0395114
\(993\) 36.9188 1.17158
\(994\) 0 0
\(995\) −14.9572 −0.474176
\(996\) −32.8799 −1.04184
\(997\) 44.5220 1.41002 0.705012 0.709195i \(-0.250941\pi\)
0.705012 + 0.709195i \(0.250941\pi\)
\(998\) −8.40587 −0.266083
\(999\) −8.58304 −0.271555
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8330.2.a.cf.1.4 4
7.2 even 3 1190.2.i.j.851.1 yes 8
7.4 even 3 1190.2.i.j.681.1 8
7.6 odd 2 8330.2.a.ck.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.i.j.681.1 8 7.4 even 3
1190.2.i.j.851.1 yes 8 7.2 even 3
8330.2.a.cf.1.4 4 1.1 even 1 trivial
8330.2.a.ck.1.1 4 7.6 odd 2