Properties

Label 833.4.a.f.1.7
Level $833$
Weight $4$
Character 833.1
Self dual yes
Analytic conductor $49.149$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [833,4,Mod(1,833)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(833, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("833.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 833.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,4,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.1485910348\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 49x^{5} + 69x^{4} + 753x^{3} - 122x^{2} - 3621x - 2536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-4.37776\) of defining polynomial
Character \(\chi\) \(=\) 833.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.37776 q^{2} +0.191325 q^{3} +20.9203 q^{4} -3.18044 q^{5} +1.02890 q^{6} +69.4820 q^{8} -26.9634 q^{9} -17.1036 q^{10} +32.2124 q^{11} +4.00256 q^{12} +11.1233 q^{13} -0.608497 q^{15} +206.295 q^{16} +17.0000 q^{17} -145.003 q^{18} +158.983 q^{19} -66.5357 q^{20} +173.230 q^{22} +98.9354 q^{23} +13.2936 q^{24} -114.885 q^{25} +59.8183 q^{26} -10.3245 q^{27} +172.364 q^{29} -3.27235 q^{30} -55.6997 q^{31} +553.549 q^{32} +6.16302 q^{33} +91.4219 q^{34} -564.081 q^{36} -71.5966 q^{37} +854.973 q^{38} +2.12816 q^{39} -220.983 q^{40} +431.097 q^{41} -205.915 q^{43} +673.891 q^{44} +85.7555 q^{45} +532.051 q^{46} -130.638 q^{47} +39.4694 q^{48} -617.822 q^{50} +3.25252 q^{51} +232.702 q^{52} +338.832 q^{53} -55.5228 q^{54} -102.450 q^{55} +30.4174 q^{57} +926.932 q^{58} +250.468 q^{59} -12.7299 q^{60} -749.213 q^{61} -299.539 q^{62} +1326.49 q^{64} -35.3770 q^{65} +33.1432 q^{66} +124.307 q^{67} +355.644 q^{68} +18.9288 q^{69} -48.4180 q^{71} -1873.47 q^{72} -827.649 q^{73} -385.029 q^{74} -21.9803 q^{75} +3325.97 q^{76} +11.4447 q^{78} -1061.79 q^{79} -656.110 q^{80} +726.036 q^{81} +2318.33 q^{82} -961.960 q^{83} -54.0675 q^{85} -1107.36 q^{86} +32.9775 q^{87} +2238.18 q^{88} -1230.92 q^{89} +461.172 q^{90} +2069.76 q^{92} -10.6567 q^{93} -702.540 q^{94} -505.637 q^{95} +105.908 q^{96} +1017.07 q^{97} -868.554 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 4 q^{2} - 5 q^{3} + 52 q^{4} - 35 q^{5} - 51 q^{6} - 6 q^{8} + 128 q^{9} - 18 q^{10} + 48 q^{11} + 16 q^{12} - 84 q^{13} - 54 q^{15} + 256 q^{16} + 119 q^{17} + 196 q^{18} - 156 q^{19} - 317 q^{20}+ \cdots + 7572 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.37776 1.90132 0.950662 0.310229i \(-0.100406\pi\)
0.950662 + 0.310229i \(0.100406\pi\)
\(3\) 0.191325 0.0368205 0.0184102 0.999831i \(-0.494140\pi\)
0.0184102 + 0.999831i \(0.494140\pi\)
\(4\) 20.9203 2.61503
\(5\) −3.18044 −0.284467 −0.142234 0.989833i \(-0.545428\pi\)
−0.142234 + 0.989833i \(0.545428\pi\)
\(6\) 1.02890 0.0700076
\(7\) 0 0
\(8\) 69.4820 3.07070
\(9\) −26.9634 −0.998644
\(10\) −17.1036 −0.540865
\(11\) 32.2124 0.882945 0.441472 0.897275i \(-0.354456\pi\)
0.441472 + 0.897275i \(0.354456\pi\)
\(12\) 4.00256 0.0962867
\(13\) 11.1233 0.237311 0.118656 0.992935i \(-0.462142\pi\)
0.118656 + 0.992935i \(0.462142\pi\)
\(14\) 0 0
\(15\) −0.608497 −0.0104742
\(16\) 206.295 3.22336
\(17\) 17.0000 0.242536
\(18\) −145.003 −1.89875
\(19\) 158.983 1.91964 0.959822 0.280610i \(-0.0905367\pi\)
0.959822 + 0.280610i \(0.0905367\pi\)
\(20\) −66.5357 −0.743891
\(21\) 0 0
\(22\) 173.230 1.67876
\(23\) 98.9354 0.896933 0.448467 0.893800i \(-0.351970\pi\)
0.448467 + 0.893800i \(0.351970\pi\)
\(24\) 13.2936 0.113065
\(25\) −114.885 −0.919078
\(26\) 59.8183 0.451205
\(27\) −10.3245 −0.0735910
\(28\) 0 0
\(29\) 172.364 1.10370 0.551848 0.833945i \(-0.313923\pi\)
0.551848 + 0.833945i \(0.313923\pi\)
\(30\) −3.27235 −0.0199149
\(31\) −55.6997 −0.322709 −0.161354 0.986897i \(-0.551586\pi\)
−0.161354 + 0.986897i \(0.551586\pi\)
\(32\) 553.549 3.05796
\(33\) 6.16302 0.0325104
\(34\) 91.4219 0.461139
\(35\) 0 0
\(36\) −564.081 −2.61149
\(37\) −71.5966 −0.318119 −0.159060 0.987269i \(-0.550846\pi\)
−0.159060 + 0.987269i \(0.550846\pi\)
\(38\) 854.973 3.64986
\(39\) 2.12816 0.00873791
\(40\) −220.983 −0.873514
\(41\) 431.097 1.64210 0.821049 0.570857i \(-0.193389\pi\)
0.821049 + 0.570857i \(0.193389\pi\)
\(42\) 0 0
\(43\) −205.915 −0.730275 −0.365137 0.930954i \(-0.618978\pi\)
−0.365137 + 0.930954i \(0.618978\pi\)
\(44\) 673.891 2.30893
\(45\) 85.7555 0.284082
\(46\) 532.051 1.70536
\(47\) −130.638 −0.405437 −0.202719 0.979237i \(-0.564978\pi\)
−0.202719 + 0.979237i \(0.564978\pi\)
\(48\) 39.4694 0.118686
\(49\) 0 0
\(50\) −617.822 −1.74747
\(51\) 3.25252 0.00893027
\(52\) 232.702 0.620576
\(53\) 338.832 0.878153 0.439076 0.898450i \(-0.355306\pi\)
0.439076 + 0.898450i \(0.355306\pi\)
\(54\) −55.5228 −0.139920
\(55\) −102.450 −0.251169
\(56\) 0 0
\(57\) 30.4174 0.0706822
\(58\) 926.932 2.09848
\(59\) 250.468 0.552680 0.276340 0.961060i \(-0.410878\pi\)
0.276340 + 0.961060i \(0.410878\pi\)
\(60\) −12.7299 −0.0273904
\(61\) −749.213 −1.57257 −0.786286 0.617863i \(-0.787999\pi\)
−0.786286 + 0.617863i \(0.787999\pi\)
\(62\) −299.539 −0.613573
\(63\) 0 0
\(64\) 1326.49 2.59080
\(65\) −35.3770 −0.0675073
\(66\) 33.1432 0.0618129
\(67\) 124.307 0.226665 0.113332 0.993557i \(-0.463848\pi\)
0.113332 + 0.993557i \(0.463848\pi\)
\(68\) 355.644 0.634239
\(69\) 18.9288 0.0330255
\(70\) 0 0
\(71\) −48.4180 −0.0809318 −0.0404659 0.999181i \(-0.512884\pi\)
−0.0404659 + 0.999181i \(0.512884\pi\)
\(72\) −1873.47 −3.06654
\(73\) −827.649 −1.32697 −0.663486 0.748189i \(-0.730924\pi\)
−0.663486 + 0.748189i \(0.730924\pi\)
\(74\) −385.029 −0.604847
\(75\) −21.9803 −0.0338409
\(76\) 3325.97 5.01993
\(77\) 0 0
\(78\) 11.4447 0.0166136
\(79\) −1061.79 −1.51217 −0.756083 0.654476i \(-0.772889\pi\)
−0.756083 + 0.654476i \(0.772889\pi\)
\(80\) −656.110 −0.916941
\(81\) 726.036 0.995935
\(82\) 2318.33 3.12216
\(83\) −961.960 −1.27215 −0.636077 0.771625i \(-0.719444\pi\)
−0.636077 + 0.771625i \(0.719444\pi\)
\(84\) 0 0
\(85\) −54.0675 −0.0689935
\(86\) −1107.36 −1.38849
\(87\) 32.9775 0.0406386
\(88\) 2238.18 2.71126
\(89\) −1230.92 −1.46604 −0.733020 0.680207i \(-0.761890\pi\)
−0.733020 + 0.680207i \(0.761890\pi\)
\(90\) 461.172 0.540131
\(91\) 0 0
\(92\) 2069.76 2.34551
\(93\) −10.6567 −0.0118823
\(94\) −702.540 −0.770867
\(95\) −505.637 −0.546076
\(96\) 105.908 0.112595
\(97\) 1017.07 1.06462 0.532310 0.846550i \(-0.321324\pi\)
0.532310 + 0.846550i \(0.321324\pi\)
\(98\) 0 0
\(99\) −868.554 −0.881748
\(100\) −2403.42 −2.40342
\(101\) −477.305 −0.470234 −0.235117 0.971967i \(-0.575547\pi\)
−0.235117 + 0.971967i \(0.575547\pi\)
\(102\) 17.4913 0.0169793
\(103\) −903.854 −0.864654 −0.432327 0.901717i \(-0.642307\pi\)
−0.432327 + 0.901717i \(0.642307\pi\)
\(104\) 772.868 0.728711
\(105\) 0 0
\(106\) 1822.15 1.66965
\(107\) 485.514 0.438658 0.219329 0.975651i \(-0.429613\pi\)
0.219329 + 0.975651i \(0.429613\pi\)
\(108\) −215.992 −0.192443
\(109\) 1692.84 1.48756 0.743782 0.668422i \(-0.233030\pi\)
0.743782 + 0.668422i \(0.233030\pi\)
\(110\) −550.948 −0.477553
\(111\) −13.6982 −0.0117133
\(112\) 0 0
\(113\) 1119.14 0.931676 0.465838 0.884870i \(-0.345753\pi\)
0.465838 + 0.884870i \(0.345753\pi\)
\(114\) 163.577 0.134390
\(115\) −314.658 −0.255148
\(116\) 3605.90 2.88620
\(117\) −299.922 −0.236989
\(118\) 1346.95 1.05082
\(119\) 0 0
\(120\) −42.2796 −0.0321632
\(121\) −293.364 −0.220409
\(122\) −4029.09 −2.98997
\(123\) 82.4795 0.0604628
\(124\) −1165.25 −0.843893
\(125\) 762.940 0.545915
\(126\) 0 0
\(127\) −1599.80 −1.11779 −0.558896 0.829238i \(-0.688775\pi\)
−0.558896 + 0.829238i \(0.688775\pi\)
\(128\) 2705.15 1.86800
\(129\) −39.3967 −0.0268891
\(130\) −190.249 −0.128353
\(131\) 8.82846 0.00588814 0.00294407 0.999996i \(-0.499063\pi\)
0.00294407 + 0.999996i \(0.499063\pi\)
\(132\) 128.932 0.0850158
\(133\) 0 0
\(134\) 668.494 0.430963
\(135\) 32.8366 0.0209342
\(136\) 1181.19 0.744754
\(137\) −2606.16 −1.62525 −0.812625 0.582787i \(-0.801962\pi\)
−0.812625 + 0.582787i \(0.801962\pi\)
\(138\) 101.794 0.0627922
\(139\) −1573.34 −0.960067 −0.480034 0.877250i \(-0.659376\pi\)
−0.480034 + 0.877250i \(0.659376\pi\)
\(140\) 0 0
\(141\) −24.9943 −0.0149284
\(142\) −260.380 −0.153878
\(143\) 358.307 0.209533
\(144\) −5562.42 −3.21899
\(145\) −548.194 −0.313966
\(146\) −4450.89 −2.52300
\(147\) 0 0
\(148\) −1497.82 −0.831892
\(149\) 1775.78 0.976360 0.488180 0.872743i \(-0.337661\pi\)
0.488180 + 0.872743i \(0.337661\pi\)
\(150\) −118.205 −0.0643425
\(151\) 423.752 0.228374 0.114187 0.993459i \(-0.463574\pi\)
0.114187 + 0.993459i \(0.463574\pi\)
\(152\) 11046.5 5.89465
\(153\) −458.378 −0.242207
\(154\) 0 0
\(155\) 177.150 0.0918000
\(156\) 44.5217 0.0228499
\(157\) 1923.47 0.977769 0.488884 0.872349i \(-0.337404\pi\)
0.488884 + 0.872349i \(0.337404\pi\)
\(158\) −5710.07 −2.87512
\(159\) 64.8269 0.0323340
\(160\) −1760.53 −0.869889
\(161\) 0 0
\(162\) 3904.45 1.89359
\(163\) −2264.08 −1.08795 −0.543977 0.839100i \(-0.683082\pi\)
−0.543977 + 0.839100i \(0.683082\pi\)
\(164\) 9018.66 4.29414
\(165\) −19.6011 −0.00924816
\(166\) −5173.19 −2.41878
\(167\) 306.177 0.141872 0.0709362 0.997481i \(-0.477401\pi\)
0.0709362 + 0.997481i \(0.477401\pi\)
\(168\) 0 0
\(169\) −2073.27 −0.943683
\(170\) −290.762 −0.131179
\(171\) −4286.73 −1.91704
\(172\) −4307.80 −1.90969
\(173\) 3128.37 1.37483 0.687416 0.726264i \(-0.258745\pi\)
0.687416 + 0.726264i \(0.258745\pi\)
\(174\) 177.345 0.0772672
\(175\) 0 0
\(176\) 6645.25 2.84605
\(177\) 47.9206 0.0203499
\(178\) −6619.60 −2.78742
\(179\) 326.634 0.136390 0.0681950 0.997672i \(-0.478276\pi\)
0.0681950 + 0.997672i \(0.478276\pi\)
\(180\) 1794.03 0.742883
\(181\) 60.6331 0.0248996 0.0124498 0.999922i \(-0.496037\pi\)
0.0124498 + 0.999922i \(0.496037\pi\)
\(182\) 0 0
\(183\) −143.343 −0.0579028
\(184\) 6874.23 2.75421
\(185\) 227.709 0.0904945
\(186\) −57.3093 −0.0225921
\(187\) 547.610 0.214146
\(188\) −2732.99 −1.06023
\(189\) 0 0
\(190\) −2719.19 −1.03827
\(191\) −4232.87 −1.60356 −0.801779 0.597621i \(-0.796113\pi\)
−0.801779 + 0.597621i \(0.796113\pi\)
\(192\) 253.791 0.0953946
\(193\) 5292.96 1.97407 0.987034 0.160508i \(-0.0513134\pi\)
0.987034 + 0.160508i \(0.0513134\pi\)
\(194\) 5469.57 2.02419
\(195\) −6.76849 −0.00248565
\(196\) 0 0
\(197\) 985.384 0.356374 0.178187 0.983997i \(-0.442977\pi\)
0.178187 + 0.983997i \(0.442977\pi\)
\(198\) −4670.87 −1.67649
\(199\) 4175.42 1.48737 0.743687 0.668528i \(-0.233075\pi\)
0.743687 + 0.668528i \(0.233075\pi\)
\(200\) −7982.43 −2.82221
\(201\) 23.7830 0.00834590
\(202\) −2566.83 −0.894067
\(203\) 0 0
\(204\) 68.0436 0.0233530
\(205\) −1371.08 −0.467123
\(206\) −4860.71 −1.64399
\(207\) −2667.64 −0.895717
\(208\) 2294.68 0.764940
\(209\) 5121.22 1.69494
\(210\) 0 0
\(211\) −2895.15 −0.944600 −0.472300 0.881438i \(-0.656576\pi\)
−0.472300 + 0.881438i \(0.656576\pi\)
\(212\) 7088.45 2.29640
\(213\) −9.26356 −0.00297995
\(214\) 2610.98 0.834032
\(215\) 654.902 0.207739
\(216\) −717.369 −0.225976
\(217\) 0 0
\(218\) 9103.68 2.82834
\(219\) −158.350 −0.0488597
\(220\) −2143.27 −0.656815
\(221\) 189.096 0.0575564
\(222\) −73.6656 −0.0222708
\(223\) 3695.53 1.10974 0.554868 0.831938i \(-0.312769\pi\)
0.554868 + 0.831938i \(0.312769\pi\)
\(224\) 0 0
\(225\) 3097.68 0.917832
\(226\) 6018.44 1.77142
\(227\) 1177.78 0.344371 0.172186 0.985065i \(-0.444917\pi\)
0.172186 + 0.985065i \(0.444917\pi\)
\(228\) 636.340 0.184836
\(229\) −5123.88 −1.47858 −0.739291 0.673386i \(-0.764839\pi\)
−0.739291 + 0.673386i \(0.764839\pi\)
\(230\) −1692.16 −0.485119
\(231\) 0 0
\(232\) 11976.2 3.38912
\(233\) −3222.82 −0.906154 −0.453077 0.891471i \(-0.649674\pi\)
−0.453077 + 0.891471i \(0.649674\pi\)
\(234\) −1612.91 −0.450594
\(235\) 415.487 0.115334
\(236\) 5239.85 1.44528
\(237\) −203.147 −0.0556786
\(238\) 0 0
\(239\) −4252.99 −1.15106 −0.575529 0.817781i \(-0.695204\pi\)
−0.575529 + 0.817781i \(0.695204\pi\)
\(240\) −125.530 −0.0337622
\(241\) −5026.77 −1.34358 −0.671790 0.740741i \(-0.734474\pi\)
−0.671790 + 0.740741i \(0.734474\pi\)
\(242\) −1577.64 −0.419069
\(243\) 417.671 0.110262
\(244\) −15673.7 −4.11233
\(245\) 0 0
\(246\) 443.555 0.114959
\(247\) 1768.42 0.455553
\(248\) −3870.13 −0.990941
\(249\) −184.047 −0.0468413
\(250\) 4102.90 1.03796
\(251\) 7086.11 1.78196 0.890978 0.454045i \(-0.150020\pi\)
0.890978 + 0.454045i \(0.150020\pi\)
\(252\) 0 0
\(253\) 3186.94 0.791942
\(254\) −8603.35 −2.12529
\(255\) −10.3445 −0.00254037
\(256\) 3935.72 0.960870
\(257\) −2156.17 −0.523339 −0.261670 0.965157i \(-0.584273\pi\)
−0.261670 + 0.965157i \(0.584273\pi\)
\(258\) −211.866 −0.0511248
\(259\) 0 0
\(260\) −740.095 −0.176534
\(261\) −4647.52 −1.10220
\(262\) 47.4773 0.0111953
\(263\) 1287.36 0.301833 0.150917 0.988546i \(-0.451777\pi\)
0.150917 + 0.988546i \(0.451777\pi\)
\(264\) 428.219 0.0998298
\(265\) −1077.63 −0.249806
\(266\) 0 0
\(267\) −235.506 −0.0539803
\(268\) 2600.54 0.592736
\(269\) −1904.20 −0.431603 −0.215802 0.976437i \(-0.569236\pi\)
−0.215802 + 0.976437i \(0.569236\pi\)
\(270\) 176.587 0.0398028
\(271\) −6568.08 −1.47226 −0.736130 0.676841i \(-0.763349\pi\)
−0.736130 + 0.676841i \(0.763349\pi\)
\(272\) 3507.02 0.781780
\(273\) 0 0
\(274\) −14015.3 −3.09013
\(275\) −3700.71 −0.811495
\(276\) 395.995 0.0863628
\(277\) 1228.75 0.266528 0.133264 0.991081i \(-0.457454\pi\)
0.133264 + 0.991081i \(0.457454\pi\)
\(278\) −8461.06 −1.82540
\(279\) 1501.85 0.322271
\(280\) 0 0
\(281\) −9140.17 −1.94042 −0.970208 0.242274i \(-0.922107\pi\)
−0.970208 + 0.242274i \(0.922107\pi\)
\(282\) −134.413 −0.0283837
\(283\) 6922.90 1.45415 0.727073 0.686560i \(-0.240880\pi\)
0.727073 + 0.686560i \(0.240880\pi\)
\(284\) −1012.92 −0.211639
\(285\) −96.7408 −0.0201068
\(286\) 1926.89 0.398389
\(287\) 0 0
\(288\) −14925.6 −3.05381
\(289\) 289.000 0.0588235
\(290\) −2948.05 −0.596950
\(291\) 194.591 0.0391998
\(292\) −17314.6 −3.47008
\(293\) −6116.25 −1.21951 −0.609753 0.792592i \(-0.708731\pi\)
−0.609753 + 0.792592i \(0.708731\pi\)
\(294\) 0 0
\(295\) −796.598 −0.157219
\(296\) −4974.67 −0.976848
\(297\) −332.578 −0.0649768
\(298\) 9549.71 1.85638
\(299\) 1100.49 0.212852
\(300\) −459.834 −0.0884950
\(301\) 0 0
\(302\) 2278.83 0.434212
\(303\) −91.3203 −0.0173142
\(304\) 32797.5 6.18771
\(305\) 2382.83 0.447345
\(306\) −2465.04 −0.460514
\(307\) 3185.90 0.592276 0.296138 0.955145i \(-0.404301\pi\)
0.296138 + 0.955145i \(0.404301\pi\)
\(308\) 0 0
\(309\) −172.930 −0.0318370
\(310\) 952.668 0.174542
\(311\) −4546.41 −0.828949 −0.414475 0.910061i \(-0.636035\pi\)
−0.414475 + 0.910061i \(0.636035\pi\)
\(312\) 147.869 0.0268315
\(313\) −4485.33 −0.809986 −0.404993 0.914320i \(-0.632726\pi\)
−0.404993 + 0.914320i \(0.632726\pi\)
\(314\) 10344.0 1.85905
\(315\) 0 0
\(316\) −22213.0 −3.95436
\(317\) −3874.33 −0.686448 −0.343224 0.939254i \(-0.611519\pi\)
−0.343224 + 0.939254i \(0.611519\pi\)
\(318\) 348.623 0.0614774
\(319\) 5552.25 0.974503
\(320\) −4218.83 −0.736999
\(321\) 92.8909 0.0161516
\(322\) 0 0
\(323\) 2702.71 0.465582
\(324\) 15188.9 2.60440
\(325\) −1277.90 −0.218108
\(326\) −12175.7 −2.06855
\(327\) 323.882 0.0547728
\(328\) 29953.5 5.04239
\(329\) 0 0
\(330\) −105.410 −0.0175837
\(331\) 751.095 0.124725 0.0623624 0.998054i \(-0.480137\pi\)
0.0623624 + 0.998054i \(0.480137\pi\)
\(332\) −20124.5 −3.32673
\(333\) 1930.49 0.317688
\(334\) 1646.55 0.269745
\(335\) −395.352 −0.0644787
\(336\) 0 0
\(337\) 4660.66 0.753360 0.376680 0.926343i \(-0.377066\pi\)
0.376680 + 0.926343i \(0.377066\pi\)
\(338\) −11149.6 −1.79425
\(339\) 214.118 0.0343048
\(340\) −1131.11 −0.180420
\(341\) −1794.22 −0.284934
\(342\) −23053.0 −3.64492
\(343\) 0 0
\(344\) −14307.4 −2.24245
\(345\) −60.2019 −0.00939468
\(346\) 16823.6 2.61400
\(347\) 936.574 0.144893 0.0724465 0.997372i \(-0.476919\pi\)
0.0724465 + 0.997372i \(0.476919\pi\)
\(348\) 689.898 0.106271
\(349\) 6679.01 1.02441 0.512205 0.858863i \(-0.328829\pi\)
0.512205 + 0.858863i \(0.328829\pi\)
\(350\) 0 0
\(351\) −114.843 −0.0174640
\(352\) 17831.1 2.70001
\(353\) −8627.22 −1.30080 −0.650398 0.759594i \(-0.725398\pi\)
−0.650398 + 0.759594i \(0.725398\pi\)
\(354\) 257.706 0.0386918
\(355\) 153.991 0.0230225
\(356\) −25751.2 −3.83374
\(357\) 0 0
\(358\) 1756.56 0.259321
\(359\) −4559.03 −0.670241 −0.335121 0.942175i \(-0.608777\pi\)
−0.335121 + 0.942175i \(0.608777\pi\)
\(360\) 5958.46 0.872330
\(361\) 18416.6 2.68503
\(362\) 326.070 0.0473422
\(363\) −56.1278 −0.00811556
\(364\) 0 0
\(365\) 2632.29 0.377480
\(366\) −770.864 −0.110092
\(367\) −13758.6 −1.95693 −0.978463 0.206424i \(-0.933817\pi\)
−0.978463 + 0.206424i \(0.933817\pi\)
\(368\) 20409.9 2.89114
\(369\) −11623.8 −1.63987
\(370\) 1224.56 0.172059
\(371\) 0 0
\(372\) −222.942 −0.0310725
\(373\) −2760.03 −0.383134 −0.191567 0.981480i \(-0.561357\pi\)
−0.191567 + 0.981480i \(0.561357\pi\)
\(374\) 2944.91 0.407160
\(375\) 145.969 0.0201008
\(376\) −9077.01 −1.24498
\(377\) 1917.25 0.261919
\(378\) 0 0
\(379\) 2572.84 0.348701 0.174351 0.984684i \(-0.444217\pi\)
0.174351 + 0.984684i \(0.444217\pi\)
\(380\) −10578.0 −1.42801
\(381\) −306.082 −0.0411576
\(382\) −22763.3 −3.04888
\(383\) 8731.32 1.16488 0.582441 0.812873i \(-0.302098\pi\)
0.582441 + 0.812873i \(0.302098\pi\)
\(384\) 517.563 0.0687806
\(385\) 0 0
\(386\) 28464.2 3.75334
\(387\) 5552.18 0.729285
\(388\) 21277.4 2.78402
\(389\) 5858.41 0.763581 0.381791 0.924249i \(-0.375308\pi\)
0.381791 + 0.924249i \(0.375308\pi\)
\(390\) −36.3993 −0.00472602
\(391\) 1681.90 0.217538
\(392\) 0 0
\(393\) 1.68910 0.000216804 0
\(394\) 5299.15 0.677583
\(395\) 3376.97 0.430162
\(396\) −18170.4 −2.30580
\(397\) 14939.8 1.88868 0.944340 0.328972i \(-0.106702\pi\)
0.944340 + 0.328972i \(0.106702\pi\)
\(398\) 22454.4 2.82798
\(399\) 0 0
\(400\) −23700.2 −2.96252
\(401\) 7410.43 0.922841 0.461420 0.887182i \(-0.347340\pi\)
0.461420 + 0.887182i \(0.347340\pi\)
\(402\) 127.899 0.0158683
\(403\) −619.564 −0.0765823
\(404\) −9985.35 −1.22968
\(405\) −2309.12 −0.283311
\(406\) 0 0
\(407\) −2306.29 −0.280881
\(408\) 225.992 0.0274222
\(409\) −4623.40 −0.558955 −0.279477 0.960152i \(-0.590161\pi\)
−0.279477 + 0.960152i \(0.590161\pi\)
\(410\) −7373.33 −0.888153
\(411\) −498.623 −0.0598425
\(412\) −18908.9 −2.26110
\(413\) 0 0
\(414\) −14345.9 −1.70305
\(415\) 3059.46 0.361887
\(416\) 6157.29 0.725687
\(417\) −301.020 −0.0353501
\(418\) 27540.7 3.22263
\(419\) 12060.8 1.40622 0.703111 0.711080i \(-0.251794\pi\)
0.703111 + 0.711080i \(0.251794\pi\)
\(420\) 0 0
\(421\) 6681.87 0.773526 0.386763 0.922179i \(-0.373593\pi\)
0.386763 + 0.922179i \(0.373593\pi\)
\(422\) −15569.4 −1.79599
\(423\) 3522.45 0.404887
\(424\) 23542.7 2.69654
\(425\) −1953.04 −0.222909
\(426\) −49.8172 −0.00566585
\(427\) 0 0
\(428\) 10157.1 1.14711
\(429\) 68.5531 0.00771509
\(430\) 3521.90 0.394980
\(431\) 7648.86 0.854832 0.427416 0.904055i \(-0.359424\pi\)
0.427416 + 0.904055i \(0.359424\pi\)
\(432\) −2129.90 −0.237211
\(433\) 10356.1 1.14938 0.574691 0.818371i \(-0.305122\pi\)
0.574691 + 0.818371i \(0.305122\pi\)
\(434\) 0 0
\(435\) −104.883 −0.0115604
\(436\) 35414.6 3.89003
\(437\) 15729.1 1.72179
\(438\) −851.566 −0.0928982
\(439\) −15791.9 −1.71687 −0.858436 0.512921i \(-0.828563\pi\)
−0.858436 + 0.512921i \(0.828563\pi\)
\(440\) −7118.40 −0.771264
\(441\) 0 0
\(442\) 1016.91 0.109433
\(443\) 6901.36 0.740166 0.370083 0.928999i \(-0.379329\pi\)
0.370083 + 0.928999i \(0.379329\pi\)
\(444\) −286.570 −0.0306306
\(445\) 3914.88 0.417040
\(446\) 19873.7 2.10997
\(447\) 339.751 0.0359500
\(448\) 0 0
\(449\) −8151.58 −0.856786 −0.428393 0.903592i \(-0.640920\pi\)
−0.428393 + 0.903592i \(0.640920\pi\)
\(450\) 16658.6 1.74510
\(451\) 13886.7 1.44988
\(452\) 23412.6 2.43636
\(453\) 81.0742 0.00840882
\(454\) 6333.84 0.654761
\(455\) 0 0
\(456\) 2113.46 0.217044
\(457\) 2257.61 0.231087 0.115543 0.993302i \(-0.463139\pi\)
0.115543 + 0.993302i \(0.463139\pi\)
\(458\) −27555.0 −2.81126
\(459\) −175.517 −0.0178484
\(460\) −6582.74 −0.667221
\(461\) 5234.07 0.528796 0.264398 0.964414i \(-0.414827\pi\)
0.264398 + 0.964414i \(0.414827\pi\)
\(462\) 0 0
\(463\) −2206.42 −0.221471 −0.110736 0.993850i \(-0.535321\pi\)
−0.110736 + 0.993850i \(0.535321\pi\)
\(464\) 35557.9 3.55761
\(465\) 33.8931 0.00338012
\(466\) −17331.5 −1.72289
\(467\) −6744.18 −0.668272 −0.334136 0.942525i \(-0.608445\pi\)
−0.334136 + 0.942525i \(0.608445\pi\)
\(468\) −6274.44 −0.619735
\(469\) 0 0
\(470\) 2234.39 0.219287
\(471\) 368.008 0.0360019
\(472\) 17403.0 1.69711
\(473\) −6633.02 −0.644792
\(474\) −1092.48 −0.105863
\(475\) −18264.7 −1.76430
\(476\) 0 0
\(477\) −9136.05 −0.876962
\(478\) −22871.5 −2.18853
\(479\) 13168.8 1.25615 0.628076 0.778152i \(-0.283843\pi\)
0.628076 + 0.778152i \(0.283843\pi\)
\(480\) −336.833 −0.0320297
\(481\) −796.389 −0.0754932
\(482\) −27032.8 −2.55458
\(483\) 0 0
\(484\) −6137.26 −0.576377
\(485\) −3234.74 −0.302850
\(486\) 2246.13 0.209643
\(487\) −10213.2 −0.950312 −0.475156 0.879901i \(-0.657608\pi\)
−0.475156 + 0.879901i \(0.657608\pi\)
\(488\) −52056.8 −4.82890
\(489\) −433.175 −0.0400590
\(490\) 0 0
\(491\) −3027.94 −0.278308 −0.139154 0.990271i \(-0.544438\pi\)
−0.139154 + 0.990271i \(0.544438\pi\)
\(492\) 1725.49 0.158112
\(493\) 2930.19 0.267686
\(494\) 9510.11 0.866154
\(495\) 2762.39 0.250828
\(496\) −11490.6 −1.04021
\(497\) 0 0
\(498\) −989.759 −0.0890606
\(499\) −7982.48 −0.716122 −0.358061 0.933698i \(-0.616562\pi\)
−0.358061 + 0.933698i \(0.616562\pi\)
\(500\) 15960.9 1.42759
\(501\) 58.5792 0.00522381
\(502\) 38107.4 3.38808
\(503\) −11111.2 −0.984942 −0.492471 0.870329i \(-0.663906\pi\)
−0.492471 + 0.870329i \(0.663906\pi\)
\(504\) 0 0
\(505\) 1518.04 0.133766
\(506\) 17138.6 1.50574
\(507\) −396.668 −0.0347469
\(508\) −33468.3 −2.92306
\(509\) 705.986 0.0614780 0.0307390 0.999527i \(-0.490214\pi\)
0.0307390 + 0.999527i \(0.490214\pi\)
\(510\) −55.6299 −0.00483007
\(511\) 0 0
\(512\) −475.873 −0.0410758
\(513\) −1641.43 −0.141269
\(514\) −11595.4 −0.995038
\(515\) 2874.66 0.245966
\(516\) −824.190 −0.0703158
\(517\) −4208.16 −0.357978
\(518\) 0 0
\(519\) 598.535 0.0506219
\(520\) −2458.06 −0.207295
\(521\) −13299.6 −1.11836 −0.559179 0.829047i \(-0.688884\pi\)
−0.559179 + 0.829047i \(0.688884\pi\)
\(522\) −24993.2 −2.09564
\(523\) −12355.4 −1.03301 −0.516503 0.856286i \(-0.672766\pi\)
−0.516503 + 0.856286i \(0.672766\pi\)
\(524\) 184.694 0.0153977
\(525\) 0 0
\(526\) 6923.12 0.573883
\(527\) −946.895 −0.0782683
\(528\) 1271.40 0.104793
\(529\) −2378.78 −0.195511
\(530\) −5795.25 −0.474962
\(531\) −6753.46 −0.551930
\(532\) 0 0
\(533\) 4795.22 0.389688
\(534\) −1266.49 −0.102634
\(535\) −1544.15 −0.124784
\(536\) 8637.11 0.696019
\(537\) 62.4932 0.00502194
\(538\) −10240.3 −0.820618
\(539\) 0 0
\(540\) 686.950 0.0547437
\(541\) 15821.5 1.25733 0.628667 0.777675i \(-0.283601\pi\)
0.628667 + 0.777675i \(0.283601\pi\)
\(542\) −35321.5 −2.79924
\(543\) 11.6006 0.000916814 0
\(544\) 9410.34 0.741664
\(545\) −5383.98 −0.423164
\(546\) 0 0
\(547\) −7269.65 −0.568241 −0.284120 0.958789i \(-0.591702\pi\)
−0.284120 + 0.958789i \(0.591702\pi\)
\(548\) −54521.6 −4.25008
\(549\) 20201.3 1.57044
\(550\) −19901.5 −1.54292
\(551\) 27403.0 2.11870
\(552\) 1315.21 0.101411
\(553\) 0 0
\(554\) 6607.91 0.506756
\(555\) 43.5663 0.00333205
\(556\) −32914.8 −2.51061
\(557\) −19405.6 −1.47620 −0.738098 0.674693i \(-0.764276\pi\)
−0.738098 + 0.674693i \(0.764276\pi\)
\(558\) 8076.60 0.612742
\(559\) −2290.46 −0.173302
\(560\) 0 0
\(561\) 104.771 0.00788494
\(562\) −49153.6 −3.68936
\(563\) 568.452 0.0425531 0.0212766 0.999774i \(-0.493227\pi\)
0.0212766 + 0.999774i \(0.493227\pi\)
\(564\) −522.888 −0.0390382
\(565\) −3559.35 −0.265031
\(566\) 37229.7 2.76480
\(567\) 0 0
\(568\) −3364.18 −0.248517
\(569\) −2503.91 −0.184480 −0.0922401 0.995737i \(-0.529403\pi\)
−0.0922401 + 0.995737i \(0.529403\pi\)
\(570\) −520.248 −0.0382295
\(571\) 23822.0 1.74592 0.872961 0.487790i \(-0.162197\pi\)
0.872961 + 0.487790i \(0.162197\pi\)
\(572\) 7495.88 0.547935
\(573\) −809.852 −0.0590437
\(574\) 0 0
\(575\) −11366.2 −0.824352
\(576\) −35766.7 −2.58729
\(577\) 293.252 0.0211581 0.0105791 0.999944i \(-0.496633\pi\)
0.0105791 + 0.999944i \(0.496633\pi\)
\(578\) 1554.17 0.111843
\(579\) 1012.67 0.0726861
\(580\) −11468.4 −0.821030
\(581\) 0 0
\(582\) 1046.46 0.0745315
\(583\) 10914.6 0.775360
\(584\) −57506.7 −4.07473
\(585\) 953.883 0.0674158
\(586\) −32891.7 −2.31868
\(587\) 15857.6 1.11502 0.557508 0.830172i \(-0.311758\pi\)
0.557508 + 0.830172i \(0.311758\pi\)
\(588\) 0 0
\(589\) −8855.32 −0.619485
\(590\) −4283.91 −0.298925
\(591\) 188.528 0.0131219
\(592\) −14770.0 −1.02541
\(593\) −13364.7 −0.925500 −0.462750 0.886489i \(-0.653137\pi\)
−0.462750 + 0.886489i \(0.653137\pi\)
\(594\) −1788.52 −0.123542
\(595\) 0 0
\(596\) 37149.8 2.55321
\(597\) 798.860 0.0547658
\(598\) 5918.15 0.404701
\(599\) −11624.8 −0.792946 −0.396473 0.918046i \(-0.629766\pi\)
−0.396473 + 0.918046i \(0.629766\pi\)
\(600\) −1527.24 −0.103915
\(601\) −157.842 −0.0107130 −0.00535649 0.999986i \(-0.501705\pi\)
−0.00535649 + 0.999986i \(0.501705\pi\)
\(602\) 0 0
\(603\) −3351.74 −0.226357
\(604\) 8864.99 0.597204
\(605\) 933.028 0.0626991
\(606\) −491.098 −0.0329200
\(607\) 14178.9 0.948112 0.474056 0.880495i \(-0.342789\pi\)
0.474056 + 0.880495i \(0.342789\pi\)
\(608\) 88005.0 5.87019
\(609\) 0 0
\(610\) 12814.3 0.850549
\(611\) −1453.13 −0.0962147
\(612\) −9589.38 −0.633379
\(613\) 8990.35 0.592360 0.296180 0.955132i \(-0.404287\pi\)
0.296180 + 0.955132i \(0.404287\pi\)
\(614\) 17133.0 1.12611
\(615\) −262.321 −0.0171997
\(616\) 0 0
\(617\) 23661.8 1.54390 0.771950 0.635683i \(-0.219281\pi\)
0.771950 + 0.635683i \(0.219281\pi\)
\(618\) −929.974 −0.0605324
\(619\) −5408.05 −0.351160 −0.175580 0.984465i \(-0.556180\pi\)
−0.175580 + 0.984465i \(0.556180\pi\)
\(620\) 3706.02 0.240060
\(621\) −1021.46 −0.0660062
\(622\) −24449.5 −1.57610
\(623\) 0 0
\(624\) 439.029 0.0281654
\(625\) 11934.1 0.763783
\(626\) −24121.0 −1.54005
\(627\) 979.816 0.0624084
\(628\) 40239.5 2.55690
\(629\) −1217.14 −0.0771552
\(630\) 0 0
\(631\) 21430.9 1.35206 0.676032 0.736873i \(-0.263698\pi\)
0.676032 + 0.736873i \(0.263698\pi\)
\(632\) −73775.5 −4.64341
\(633\) −553.914 −0.0347806
\(634\) −20835.2 −1.30516
\(635\) 5088.08 0.317975
\(636\) 1356.20 0.0845545
\(637\) 0 0
\(638\) 29858.7 1.85285
\(639\) 1305.51 0.0808221
\(640\) −8603.58 −0.531385
\(641\) −15855.4 −0.976991 −0.488495 0.872566i \(-0.662454\pi\)
−0.488495 + 0.872566i \(0.662454\pi\)
\(642\) 499.545 0.0307094
\(643\) 22952.7 1.40773 0.703863 0.710336i \(-0.251457\pi\)
0.703863 + 0.710336i \(0.251457\pi\)
\(644\) 0 0
\(645\) 125.299 0.00764906
\(646\) 14534.5 0.885222
\(647\) 13160.3 0.799668 0.399834 0.916588i \(-0.369068\pi\)
0.399834 + 0.916588i \(0.369068\pi\)
\(648\) 50446.5 3.05822
\(649\) 8068.15 0.487986
\(650\) −6872.22 −0.414693
\(651\) 0 0
\(652\) −47365.2 −2.84503
\(653\) −6948.05 −0.416383 −0.208192 0.978088i \(-0.566758\pi\)
−0.208192 + 0.978088i \(0.566758\pi\)
\(654\) 1741.76 0.104141
\(655\) −28.0784 −0.00167498
\(656\) 88933.3 5.29308
\(657\) 22316.2 1.32517
\(658\) 0 0
\(659\) 20975.7 1.23990 0.619952 0.784640i \(-0.287152\pi\)
0.619952 + 0.784640i \(0.287152\pi\)
\(660\) −410.061 −0.0241842
\(661\) 3682.21 0.216674 0.108337 0.994114i \(-0.465447\pi\)
0.108337 + 0.994114i \(0.465447\pi\)
\(662\) 4039.21 0.237142
\(663\) 36.1787 0.00211925
\(664\) −66838.9 −3.90641
\(665\) 0 0
\(666\) 10381.7 0.604027
\(667\) 17052.9 0.989942
\(668\) 6405.30 0.371001
\(669\) 707.047 0.0408610
\(670\) −2126.10 −0.122595
\(671\) −24133.9 −1.38849
\(672\) 0 0
\(673\) −24089.9 −1.37979 −0.689893 0.723911i \(-0.742342\pi\)
−0.689893 + 0.723911i \(0.742342\pi\)
\(674\) 25063.9 1.43238
\(675\) 1186.13 0.0676359
\(676\) −43373.4 −2.46776
\(677\) −2699.33 −0.153240 −0.0766200 0.997060i \(-0.524413\pi\)
−0.0766200 + 0.997060i \(0.524413\pi\)
\(678\) 1151.48 0.0652244
\(679\) 0 0
\(680\) −3756.72 −0.211858
\(681\) 225.339 0.0126799
\(682\) −9648.87 −0.541751
\(683\) 16698.5 0.935504 0.467752 0.883860i \(-0.345064\pi\)
0.467752 + 0.883860i \(0.345064\pi\)
\(684\) −89679.4 −5.01313
\(685\) 8288.74 0.462331
\(686\) 0 0
\(687\) −980.324 −0.0544421
\(688\) −42479.4 −2.35394
\(689\) 3768.92 0.208395
\(690\) −323.751 −0.0178623
\(691\) −9234.63 −0.508396 −0.254198 0.967152i \(-0.581812\pi\)
−0.254198 + 0.967152i \(0.581812\pi\)
\(692\) 65446.4 3.59523
\(693\) 0 0
\(694\) 5036.66 0.275489
\(695\) 5003.93 0.273108
\(696\) 2291.34 0.124789
\(697\) 7328.65 0.398267
\(698\) 35918.1 1.94774
\(699\) −616.605 −0.0333650
\(700\) 0 0
\(701\) 14091.1 0.759222 0.379611 0.925146i \(-0.376058\pi\)
0.379611 + 0.925146i \(0.376058\pi\)
\(702\) −617.596 −0.0332047
\(703\) −11382.6 −0.610675
\(704\) 42729.4 2.28754
\(705\) 79.4930 0.00424664
\(706\) −46395.1 −2.47323
\(707\) 0 0
\(708\) 1002.51 0.0532157
\(709\) 507.249 0.0268690 0.0134345 0.999910i \(-0.495724\pi\)
0.0134345 + 0.999910i \(0.495724\pi\)
\(710\) 828.124 0.0437732
\(711\) 28629.6 1.51012
\(712\) −85527.0 −4.50177
\(713\) −5510.68 −0.289448
\(714\) 0 0
\(715\) −1139.58 −0.0596052
\(716\) 6833.27 0.356664
\(717\) −813.702 −0.0423825
\(718\) −24517.4 −1.27435
\(719\) −8366.20 −0.433945 −0.216973 0.976178i \(-0.569618\pi\)
−0.216973 + 0.976178i \(0.569618\pi\)
\(720\) 17691.0 0.915698
\(721\) 0 0
\(722\) 99040.2 5.10512
\(723\) −961.746 −0.0494713
\(724\) 1268.46 0.0651132
\(725\) −19802.0 −1.01438
\(726\) −301.842 −0.0154303
\(727\) −3236.14 −0.165092 −0.0825459 0.996587i \(-0.526305\pi\)
−0.0825459 + 0.996587i \(0.526305\pi\)
\(728\) 0 0
\(729\) −19523.1 −0.991875
\(730\) 14155.8 0.717712
\(731\) −3500.56 −0.177118
\(732\) −2998.77 −0.151418
\(733\) 22562.5 1.13692 0.568461 0.822710i \(-0.307539\pi\)
0.568461 + 0.822710i \(0.307539\pi\)
\(734\) −73990.2 −3.72075
\(735\) 0 0
\(736\) 54765.6 2.74278
\(737\) 4004.23 0.200132
\(738\) −62510.2 −3.11793
\(739\) −4400.04 −0.219023 −0.109512 0.993986i \(-0.534929\pi\)
−0.109512 + 0.993986i \(0.534929\pi\)
\(740\) 4763.73 0.236646
\(741\) 338.342 0.0167737
\(742\) 0 0
\(743\) 13767.1 0.679765 0.339882 0.940468i \(-0.389613\pi\)
0.339882 + 0.940468i \(0.389613\pi\)
\(744\) −740.451 −0.0364869
\(745\) −5647.77 −0.277742
\(746\) −14842.8 −0.728462
\(747\) 25937.7 1.27043
\(748\) 11456.1 0.559997
\(749\) 0 0
\(750\) 784.987 0.0382182
\(751\) −3708.46 −0.180191 −0.0900955 0.995933i \(-0.528717\pi\)
−0.0900955 + 0.995933i \(0.528717\pi\)
\(752\) −26950.0 −1.30687
\(753\) 1355.75 0.0656125
\(754\) 10310.5 0.497994
\(755\) −1347.72 −0.0649648
\(756\) 0 0
\(757\) −13872.0 −0.666030 −0.333015 0.942921i \(-0.608066\pi\)
−0.333015 + 0.942921i \(0.608066\pi\)
\(758\) 13836.1 0.662994
\(759\) 609.741 0.0291597
\(760\) −35132.6 −1.67684
\(761\) −4245.12 −0.202215 −0.101107 0.994876i \(-0.532239\pi\)
−0.101107 + 0.994876i \(0.532239\pi\)
\(762\) −1646.03 −0.0782540
\(763\) 0 0
\(764\) −88552.7 −4.19335
\(765\) 1457.84 0.0688999
\(766\) 46954.9 2.21482
\(767\) 2786.02 0.131157
\(768\) 753.001 0.0353797
\(769\) −24697.4 −1.15814 −0.579070 0.815278i \(-0.696584\pi\)
−0.579070 + 0.815278i \(0.696584\pi\)
\(770\) 0 0
\(771\) −412.529 −0.0192696
\(772\) 110730. 5.16225
\(773\) 40131.9 1.86733 0.933665 0.358148i \(-0.116592\pi\)
0.933665 + 0.358148i \(0.116592\pi\)
\(774\) 29858.3 1.38661
\(775\) 6399.05 0.296594
\(776\) 70668.3 3.26913
\(777\) 0 0
\(778\) 31505.1 1.45181
\(779\) 68537.2 3.15224
\(780\) −141.599 −0.00650005
\(781\) −1559.66 −0.0714583
\(782\) 9044.86 0.413611
\(783\) −1779.58 −0.0812221
\(784\) 0 0
\(785\) −6117.49 −0.278143
\(786\) 9.08358 0.000412214 0
\(787\) 32376.1 1.46643 0.733217 0.679995i \(-0.238018\pi\)
0.733217 + 0.679995i \(0.238018\pi\)
\(788\) 20614.5 0.931930
\(789\) 246.304 0.0111136
\(790\) 18160.5 0.817877
\(791\) 0 0
\(792\) −60348.9 −2.70758
\(793\) −8333.71 −0.373189
\(794\) 80342.5 3.59099
\(795\) −206.178 −0.00919797
\(796\) 87350.8 3.88953
\(797\) 6662.08 0.296089 0.148045 0.988981i \(-0.452702\pi\)
0.148045 + 0.988981i \(0.452702\pi\)
\(798\) 0 0
\(799\) −2220.85 −0.0983329
\(800\) −63594.4 −2.81050
\(801\) 33189.9 1.46405
\(802\) 39851.5 1.75462
\(803\) −26660.5 −1.17164
\(804\) 497.547 0.0218248
\(805\) 0 0
\(806\) −3331.86 −0.145608
\(807\) −364.321 −0.0158918
\(808\) −33164.1 −1.44395
\(809\) 13697.4 0.595271 0.297636 0.954680i \(-0.403802\pi\)
0.297636 + 0.954680i \(0.403802\pi\)
\(810\) −12417.9 −0.538666
\(811\) 8326.87 0.360538 0.180269 0.983617i \(-0.442303\pi\)
0.180269 + 0.983617i \(0.442303\pi\)
\(812\) 0 0
\(813\) −1256.64 −0.0542093
\(814\) −12402.7 −0.534047
\(815\) 7200.78 0.309487
\(816\) 670.980 0.0287855
\(817\) −32737.1 −1.40187
\(818\) −24863.5 −1.06275
\(819\) 0 0
\(820\) −28683.3 −1.22154
\(821\) 13762.0 0.585013 0.292507 0.956264i \(-0.405511\pi\)
0.292507 + 0.956264i \(0.405511\pi\)
\(822\) −2681.47 −0.113780
\(823\) −26685.8 −1.13027 −0.565133 0.825000i \(-0.691175\pi\)
−0.565133 + 0.825000i \(0.691175\pi\)
\(824\) −62801.6 −2.65509
\(825\) −708.037 −0.0298796
\(826\) 0 0
\(827\) −36547.6 −1.53674 −0.768370 0.640006i \(-0.778932\pi\)
−0.768370 + 0.640006i \(0.778932\pi\)
\(828\) −55807.6 −2.34233
\(829\) −20113.2 −0.842655 −0.421327 0.906909i \(-0.638436\pi\)
−0.421327 + 0.906909i \(0.638436\pi\)
\(830\) 16453.0 0.688063
\(831\) 235.090 0.00981369
\(832\) 14754.9 0.614827
\(833\) 0 0
\(834\) −1618.81 −0.0672120
\(835\) −973.778 −0.0403581
\(836\) 107137. 4.43232
\(837\) 575.074 0.0237484
\(838\) 64859.9 2.67368
\(839\) −42286.8 −1.74005 −0.870026 0.493006i \(-0.835898\pi\)
−0.870026 + 0.493006i \(0.835898\pi\)
\(840\) 0 0
\(841\) 5320.36 0.218146
\(842\) 35933.5 1.47072
\(843\) −1748.74 −0.0714470
\(844\) −60567.3 −2.47016
\(845\) 6593.92 0.268447
\(846\) 18942.9 0.769822
\(847\) 0 0
\(848\) 69899.3 2.83061
\(849\) 1324.52 0.0535424
\(850\) −10503.0 −0.423823
\(851\) −7083.44 −0.285332
\(852\) −193.796 −0.00779266
\(853\) 18072.6 0.725434 0.362717 0.931899i \(-0.381849\pi\)
0.362717 + 0.931899i \(0.381849\pi\)
\(854\) 0 0
\(855\) 13633.7 0.545336
\(856\) 33734.5 1.34699
\(857\) 13258.2 0.528460 0.264230 0.964460i \(-0.414882\pi\)
0.264230 + 0.964460i \(0.414882\pi\)
\(858\) 368.662 0.0146689
\(859\) −215.302 −0.00855182 −0.00427591 0.999991i \(-0.501361\pi\)
−0.00427591 + 0.999991i \(0.501361\pi\)
\(860\) 13700.7 0.543245
\(861\) 0 0
\(862\) 41133.7 1.62531
\(863\) −8386.55 −0.330801 −0.165401 0.986226i \(-0.552892\pi\)
−0.165401 + 0.986226i \(0.552892\pi\)
\(864\) −5715.14 −0.225038
\(865\) −9949.61 −0.391095
\(866\) 55692.6 2.18535
\(867\) 55.2929 0.00216591
\(868\) 0 0
\(869\) −34202.9 −1.33516
\(870\) −564.035 −0.0219800
\(871\) 1382.70 0.0537901
\(872\) 117622. 4.56787
\(873\) −27423.7 −1.06318
\(874\) 84587.1 3.27369
\(875\) 0 0
\(876\) −3312.72 −0.127770
\(877\) 1040.20 0.0400512 0.0200256 0.999799i \(-0.493625\pi\)
0.0200256 + 0.999799i \(0.493625\pi\)
\(878\) −84925.0 −3.26433
\(879\) −1170.19 −0.0449028
\(880\) −21134.8 −0.809608
\(881\) 1555.88 0.0594993 0.0297497 0.999557i \(-0.490529\pi\)
0.0297497 + 0.999557i \(0.490529\pi\)
\(882\) 0 0
\(883\) −6509.84 −0.248101 −0.124051 0.992276i \(-0.539589\pi\)
−0.124051 + 0.992276i \(0.539589\pi\)
\(884\) 3955.94 0.150512
\(885\) −152.409 −0.00578889
\(886\) 37113.8 1.40730
\(887\) 9387.24 0.355347 0.177673 0.984090i \(-0.443143\pi\)
0.177673 + 0.984090i \(0.443143\pi\)
\(888\) −951.778 −0.0359680
\(889\) 0 0
\(890\) 21053.3 0.792929
\(891\) 23387.3 0.879355
\(892\) 77311.5 2.90200
\(893\) −20769.3 −0.778295
\(894\) 1827.10 0.0683526
\(895\) −1038.84 −0.0387985
\(896\) 0 0
\(897\) 210.550 0.00783732
\(898\) −43837.2 −1.62903
\(899\) −9600.63 −0.356172
\(900\) 64804.4 2.40016
\(901\) 5760.14 0.212983
\(902\) 74679.0 2.75670
\(903\) 0 0
\(904\) 77759.8 2.86090
\(905\) −192.840 −0.00708312
\(906\) 435.997 0.0159879
\(907\) −20839.3 −0.762906 −0.381453 0.924388i \(-0.624576\pi\)
−0.381453 + 0.924388i \(0.624576\pi\)
\(908\) 24639.6 0.900542
\(909\) 12869.8 0.469596
\(910\) 0 0
\(911\) 52129.2 1.89585 0.947923 0.318498i \(-0.103179\pi\)
0.947923 + 0.318498i \(0.103179\pi\)
\(912\) 6274.97 0.227834
\(913\) −30987.0 −1.12324
\(914\) 12140.9 0.439370
\(915\) 455.894 0.0164715
\(916\) −107193. −3.86654
\(917\) 0 0
\(918\) −943.888 −0.0339357
\(919\) 5187.05 0.186186 0.0930931 0.995657i \(-0.470325\pi\)
0.0930931 + 0.995657i \(0.470325\pi\)
\(920\) −21863.1 −0.783484
\(921\) 609.541 0.0218079
\(922\) 28147.5 1.00541
\(923\) −538.568 −0.0192060
\(924\) 0 0
\(925\) 8225.36 0.292376
\(926\) −11865.6 −0.421088
\(927\) 24371.0 0.863482
\(928\) 95412.0 3.37506
\(929\) 45790.1 1.61714 0.808571 0.588399i \(-0.200241\pi\)
0.808571 + 0.588399i \(0.200241\pi\)
\(930\) 182.269 0.00642670
\(931\) 0 0
\(932\) −67422.2 −2.36962
\(933\) −869.840 −0.0305223
\(934\) −36268.5 −1.27060
\(935\) −1741.64 −0.0609174
\(936\) −20839.2 −0.727723
\(937\) −22497.8 −0.784387 −0.392194 0.919883i \(-0.628284\pi\)
−0.392194 + 0.919883i \(0.628284\pi\)
\(938\) 0 0
\(939\) −858.154 −0.0298241
\(940\) 8692.10 0.301601
\(941\) 177.231 0.00613981 0.00306990 0.999995i \(-0.499023\pi\)
0.00306990 + 0.999995i \(0.499023\pi\)
\(942\) 1979.05 0.0684513
\(943\) 42650.8 1.47285
\(944\) 51670.3 1.78149
\(945\) 0 0
\(946\) −35670.8 −1.22596
\(947\) 18745.0 0.643221 0.321610 0.946872i \(-0.395776\pi\)
0.321610 + 0.946872i \(0.395776\pi\)
\(948\) −4249.90 −0.145601
\(949\) −9206.18 −0.314905
\(950\) −98223.3 −3.35451
\(951\) −741.255 −0.0252753
\(952\) 0 0
\(953\) 12771.6 0.434117 0.217059 0.976159i \(-0.430354\pi\)
0.217059 + 0.976159i \(0.430354\pi\)
\(954\) −49131.5 −1.66739
\(955\) 13462.4 0.456160
\(956\) −88973.6 −3.01005
\(957\) 1062.28 0.0358816
\(958\) 70818.4 2.38835
\(959\) 0 0
\(960\) −807.166 −0.0271366
\(961\) −26688.5 −0.895859
\(962\) −4282.79 −0.143537
\(963\) −13091.1 −0.438064
\(964\) −105161. −3.51351
\(965\) −16833.9 −0.561558
\(966\) 0 0
\(967\) 50377.0 1.67530 0.837650 0.546207i \(-0.183929\pi\)
0.837650 + 0.546207i \(0.183929\pi\)
\(968\) −20383.5 −0.676810
\(969\) 517.096 0.0171429
\(970\) −17395.7 −0.575815
\(971\) −18650.8 −0.616407 −0.308204 0.951320i \(-0.599728\pi\)
−0.308204 + 0.951320i \(0.599728\pi\)
\(972\) 8737.79 0.288338
\(973\) 0 0
\(974\) −54923.9 −1.80685
\(975\) −244.493 −0.00803082
\(976\) −154559. −5.06897
\(977\) 29031.8 0.950675 0.475337 0.879804i \(-0.342326\pi\)
0.475337 + 0.879804i \(0.342326\pi\)
\(978\) −2329.51 −0.0761651
\(979\) −39650.9 −1.29443
\(980\) 0 0
\(981\) −45644.7 −1.48555
\(982\) −16283.5 −0.529153
\(983\) −36526.4 −1.18516 −0.592580 0.805511i \(-0.701891\pi\)
−0.592580 + 0.805511i \(0.701891\pi\)
\(984\) 5730.84 0.185663
\(985\) −3133.96 −0.101377
\(986\) 15757.8 0.508957
\(987\) 0 0
\(988\) 36995.7 1.19129
\(989\) −20372.3 −0.655008
\(990\) 14855.4 0.476906
\(991\) 29262.0 0.937979 0.468990 0.883204i \(-0.344618\pi\)
0.468990 + 0.883204i \(0.344618\pi\)
\(992\) −30832.5 −0.986829
\(993\) 143.703 0.00459243
\(994\) 0 0
\(995\) −13279.7 −0.423109
\(996\) −3850.31 −0.122492
\(997\) 24224.3 0.769499 0.384749 0.923021i \(-0.374288\pi\)
0.384749 + 0.923021i \(0.374288\pi\)
\(998\) −42927.8 −1.36158
\(999\) 739.201 0.0234107
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.4.a.f.1.7 7
7.6 odd 2 119.4.a.d.1.7 7
21.20 even 2 1071.4.a.o.1.1 7
28.27 even 2 1904.4.a.p.1.4 7
119.118 odd 2 2023.4.a.g.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.4.a.d.1.7 7 7.6 odd 2
833.4.a.f.1.7 7 1.1 even 1 trivial
1071.4.a.o.1.1 7 21.20 even 2
1904.4.a.p.1.4 7 28.27 even 2
2023.4.a.g.1.7 7 119.118 odd 2