gp: [N,k,chi] = [833,2,Mod(48,833)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("833.48");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(833, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([8, 9]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [72,0,-8,0,-8,-8,0,0,24,0,8,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(833, [\chi])\):
\( T_{2}^{72} + 8 T_{2}^{67} - 72 T_{2}^{65} + 5079 T_{2}^{64} - 576 T_{2}^{63} - 432 T_{2}^{62} + \cdots + 16129 \)
T2^72 + 8*T2^67 - 72*T2^65 + 5079*T2^64 - 576*T2^63 - 432*T2^62 + 880*T2^61 - 576*T2^60 + 41560*T2^59 + 36448*T2^58 - 110448*T2^57 + 7139489*T2^56 - 958024*T2^55 + 100176*T2^54 + 11785664*T2^53 - 1335296*T2^52 - 1943896*T2^51 + 74068960*T2^50 - 2267328*T2^49 + 3056615759*T2^48 - 86840064*T2^47 + 1717958944*T2^46 + 6605056040*T2^45 - 187261440*T2^44 - 9984087640*T2^43 - 2097704768*T2^42 - 17790288160*T2^41 + 295538498625*T2^40 - 84905329648*T2^39 + 109572709760*T2^38 + 617807636800*T2^37 - 72404575616*T2^36 - 1112652689056*T2^35 - 368070788896*T2^34 - 138798432176*T2^33 + 9671933560449*T2^32 - 3367348219248*T2^31 + 2095830784320*T2^30 + 15252046040896*T2^29 - 3056291096704*T2^28 - 29179189832568*T2^27 - 14229751738240*T2^26 + 31519655573224*T2^25 + 88123715151095*T2^24 + 10732192502384*T2^23 - 23542595834704*T2^22 + 19763825693136*T2^21 - 6328412682304*T2^20 - 64890093886568*T2^19 - 16257237265568*T2^18 + 75288274325696*T2^17 + 124121776469233*T2^16 + 33884420889992*T2^15 - 49114089608912*T2^14 - 49550513499616*T2^13 - 4799155370496*T2^12 + 23803967447752*T2^11 + 21362605960672*T2^10 + 9420561365648*T2^9 + 2541196927647*T2^8 + 464782997968*T2^7 + 64870091168*T2^6 + 7600578696*T2^5 + 777839488*T2^4 + 68749512*T2^3 + 4199520*T2^2 + 75184*T2 + 16129
\( T_{3}^{72} + 8 T_{3}^{71} + 20 T_{3}^{70} - 8 T_{3}^{69} - 160 T_{3}^{68} - 624 T_{3}^{67} + \cdots + 358982369792 \)
T3^72 + 8*T3^71 + 20*T3^70 - 8*T3^69 - 160*T3^68 - 624*T3^67 - 1288*T3^66 + 1728*T3^65 + 12832*T3^64 + 25176*T3^63 + 33236*T3^62 - 97792*T3^61 - 209976*T3^60 + 2607376*T3^59 + 12768836*T3^58 + 33215808*T3^57 + 93766014*T3^56 + 236030800*T3^55 + 432100576*T3^54 + 626361376*T3^53 + 1321652456*T3^52 + 3255988840*T3^51 + 641719228*T3^50 + 5341053408*T3^49 + 42400320288*T3^48 + 15666088624*T3^47 - 98355605884*T3^46 - 715366980632*T3^45 - 1372102204504*T3^44 - 845185265080*T3^43 + 4788395644440*T3^42 + 26502282583544*T3^41 + 62969434831283*T3^40 + 117181900224144*T3^39 + 145169275892432*T3^38 + 104134909332608*T3^37 + 230458382552184*T3^36 + 241045120451288*T3^35 - 810504252746428*T3^34 - 2059945907007072*T3^33 - 425401234323776*T3^32 + 2629486362172016*T3^31 + 585279741415372*T3^30 - 3391652085559272*T3^29 + 2694772635932280*T3^28 + 12600936135649464*T3^27 + 8875736705544088*T3^26 + 1005231617374408*T3^25 + 5533497723656302*T3^24 + 17964530101753016*T3^23 + 31589284956911044*T3^22 + 21305680911591160*T3^21 + 2726760603425096*T3^20 + 1821716591591512*T3^19 + 14751639389214244*T3^18 - 13994961040544736*T3^17 - 25309831407069344*T3^16 - 33615078345586072*T3^15 - 12278329083801256*T3^14 + 2740564783836872*T3^13 + 26140250702405104*T3^12 + 22621562981995320*T3^11 + 18337268841856972*T3^10 + 3162696662723800*T3^9 - 1443782815927775*T3^8 - 3604286583079296*T3^7 - 1200120853410176*T3^6 - 177483840113408*T3^5 + 238013833803808*T3^4 + 99487872153088*T3^3 + 26598059179264*T3^2 + 4110259334144*T3 + 358982369792