gp: [N,k,chi] = [833,2,Mod(31,833)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("833.31");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(833, base_ring=CyclotomicField(48))
chi = DirichletCharacter(H, H._module([8, 27]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [144,0,8,0,8,-16,0,0,-24,0,-8,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(833, [\chi])\):
\( T_{2}^{144} - 8 T_{2}^{139} + 72 T_{2}^{137} - 5079 T_{2}^{136} - 1152 T_{2}^{135} + 496 T_{2}^{134} + \cdots + 260144641 \)
T2^144 - 8*T2^139 + 72*T2^137 - 5079*T2^136 - 1152*T2^135 + 496*T2^134 - 880*T2^133 - 576*T2^132 + 39704*T2^131 - 26656*T2^130 + 148248*T2^129 + 18629360*T2^128 + 3950344*T2^127 + 2457136*T2^126 - 2553760*T2^125 - 146752*T2^124 - 268418976*T2^123 + 297353312*T2^122 - 480062016*T2^121 - 30204755545*T2^120 - 5506200624*T2^119 - 8783255728*T2^118 - 55537530592*T2^117 + 1623804416*T2^116 + 570606292600*T2^115 - 596890308160*T2^114 + 1003127676488*T2^113 + 35917679041127*T2^112 + 3254903356904*T2^111 + 20454142363264*T2^110 + 138715496627352*T2^109 + 8576370156480*T2^108 - 193770205768304*T2^107 + 1079777704565568*T2^106 - 539791468099864*T2^105 - 18992575593528386*T2^104 + 3966396388403576*T2^103 - 12899395735443856*T2^102 - 80189557397490248*T2^101 + 9531427148635264*T2^100 + 35016260377466392*T2^99 - 255074543528693472*T2^98 - 207948579088993720*T2^97 + 7120574798636500503*T2^96 - 108609096856390640*T2^95 - 4288853698965515008*T2^94 + 33427017574809232416*T2^93 + 3629774724947171648*T2^92 + 4486979529208637800*T2^91 + 2978615638190432032*T2^90 + 28345386185280941416*T2^89 - 701322951446092190703*T2^88 - 502487537298742376680*T2^87 + 886010715100093810160*T2^86 - 3446316681912158230472*T2^85 - 1696432163352599674176*T2^84 - 936845761013557669584*T2^83 - 1031697554720989737664*T2^82 + 6953944050774014862432*T2^81 + 49774793033445701844938*T2^80 + 35580700787833983374736*T2^79 - 30807979990640009209168*T2^78 + 257208166820166380738848*T2^77 + 143190644889924419384192*T2^76 + 184279258971081807091016*T2^75 + 86200309302050181404768*T2^74 - 546176530105953768802824*T2^73 - 1836804293762870695173671*T2^72 - 1388830593181943147093624*T2^71 + 1386830393095452661954912*T2^70 - 9659175377146892135606296*T2^69 - 5512091546868427645204672*T2^68 - 9626415931747666928303760*T2^67 + 53406330384429386929184*T2^66 + 25749025314514183480349448*T2^65 + 51055375331380639952301266*T2^64 + 24927157688704336769410360*T2^63 - 20061802575073253014787472*T2^62 + 264127092567775618364444808*T2^61 + 105132387707378709205582080*T2^60 + 271816051333474637955136296*T2^59 - 139358089826568606905865408*T2^58 - 484985032390886850603944216*T2^57 - 537285653649753290834179143*T2^56 - 43074192194903039107978896*T2^55 + 830908173188364425427734048*T2^54 - 1857068346339099327765783392*T2^53 + 1503647317193329076964479936*T2^52 - 3417879660296476218147596520*T2^51 + 2917944840389846650104188384*T2^50 - 2222504838753903129443577096*T2^49 + 5793057763467482831619973343*T2^48 - 2958234672363715328444055240*T2^47 + 939063196610439951228435216*T2^46 + 2784586144841278208914532104*T2^45 - 2018924106161042657570136384*T2^44 + 7193643582513950727394003120*T2^43 - 4053655037138137268061576096*T2^42 + 3685126329778170464301341008*T2^41 - 8750745565875892488200130122*T2^40 + 6272665234013872276325065568*T2^39 - 2040665287139077801281098960*T2^38 - 148003982978299758361680096*T2^37 + 4809190779823635102202706816*T2^36 - 11861510352237194972341561448*T2^35 + 9646038316892723500866211360*T2^34 - 12222710454048758986647205896*T2^33 + 16686036120708320385533787959*T2^32 - 13208552858959873773946381864*T2^31 + 13249141352906529109208175488*T2^30 - 12674336001911165829760630760*T2^29 + 9190051416532092296496632384*T2^28 - 7457524045967975276118875440*T2^27 + 5988050781787161118886863808*T2^26 - 4074877031388836399078558024*T2^25 + 2538137318100823597924071295*T2^24 - 1515723552887039446143285320*T2^23 + 863688664914641464332291920*T2^22 - 446798996061359404212873544*T2^21 + 201365794282186809225926016*T2^20 - 75602536685983393604647024*T2^19 + 23193012257035643232311360*T2^18 - 5663071664995245308691536*T2^17 + 1061941215936673659462608*T2^16 - 140210615949502481912096*T2^15 + 11184182126106422352048*T2^14 - 116643859782370194480*T2^13 - 97473527899863406464*T2^12 + 18563339006222651904*T2^11 - 4352544596808672224*T2^10 + 1168509604088958160*T2^9 - 161023527844899807*T2^8 - 2012198632078800*T2^7 + 2981080405809664*T2^6 - 294342516290440*T2^5 - 78668181760*T2^4 + 1901985046416*T2^3 - 62081424224*T2^2 - 1212642736*T2 + 260144641
\( T_{3}^{144} - 8 T_{3}^{143} + 44 T_{3}^{142} - 176 T_{3}^{141} + 624 T_{3}^{140} - 1776 T_{3}^{139} + \cdots + 12\!\cdots\!64 \)
T3^144 - 8*T3^143 + 44*T3^142 - 176*T3^141 + 624*T3^140 - 1776*T3^139 + 5680*T3^138 - 17664*T3^137 + 61184*T3^136 - 166096*T3^135 + 475756*T3^134 - 1127968*T3^133 + 4085184*T3^132 - 14333872*T3^131 + 56954268*T3^130 - 166441504*T3^129 + 424532290*T3^128 - 597476304*T3^127 + 1156427304*T3^126 - 4138128528*T3^125 + 24386311496*T3^124 - 75635973456*T3^123 + 147728869396*T3^122 + 52728092064*T3^121 - 597534133440*T3^120 - 561486103712*T3^119 + 12710702687180*T3^118 - 43249553500880*T3^117 + 52354901414456*T3^116 + 146190563926456*T3^115 - 787025432529096*T3^114 + 1517847743478792*T3^113 - 1160275076009615*T3^112 - 4273413180886968*T3^111 + 17351718926289480*T3^110 - 59634373822409960*T3^109 + 88293878150601632*T3^108 + 80899749335842168*T3^107 - 1485771505221636892*T3^106 + 3992645710876069344*T3^105 - 2646565778296605152*T3^104 - 7939715300617953016*T3^103 + 22570143572185940644*T3^102 - 78423769385879944*T3^101 + 33121806848143230320*T3^100 - 109056962071308435952*T3^99 + 280962954949934789648*T3^98 + 825221082001152671096*T3^97 - 3053226773765220529758*T3^96 + 2850166099530765720248*T3^95 + 2833778492438876164100*T3^94 - 22176246521954280384208*T3^93 + 14724660694940270171992*T3^92 - 250119002400536529862832*T3^91 + 1199983253964325707052444*T3^90 - 1974064918683987246345184*T3^89 - 225222148823045819922944*T3^88 + 2538600518240585534803232*T3^87 + 6713718833448655610557344*T3^86 - 10182250624442993859169504*T3^85 - 17229954952209675833534600*T3^84 - 1123095259830877799808216*T3^83 + 234990773549062093074966068*T3^82 - 733092877858977519390249864*T3^81 + 721060085223510867054024356*T3^80 - 1578279932638233102006701152*T3^79 + 6128104740098448797600252516*T3^78 - 13305740319797636293590628424*T3^77 + 12099011667655890142997938856*T3^76 + 28535033642846709762690962744*T3^75 - 103456055549298314205275630976*T3^74 + 248601633422829768799470206976*T3^73 - 390238670229347666458869986624*T3^72 + 474765615226698321444516188888*T3^71 - 215124341262536311239224585396*T3^70 - 687386916839945764551744418584*T3^69 + 2086629846814790483774455960792*T3^68 - 4189859489581783942547513002296*T3^67 + 5946611880984588600662527890284*T3^66 - 6934774834977477024746802252144*T3^65 + 5429350476205097184547231917874*T3^64 - 440881649552123619254498515352*T3^63 - 8559853225371153389482160082248*T3^62 + 20918940423415119597863941510232*T3^61 - 33544842028780197240832349283680*T3^60 + 35755686103783544850554012315256*T3^59 - 26003444096078831991811672866796*T3^58 - 955374825693688218601602461088*T3^57 + 30164713136481474923977756434304*T3^56 - 42558300834532665607438014774840*T3^55 + 29989783313075039859882171120004*T3^54 + 79917125571498589175495471394616*T3^53 - 133611503406214616149760941278000*T3^52 + 131417809432691586301445779505776*T3^51 + 1792770202193577750281289287488*T3^50 - 273073705474675640581329875588008*T3^49 + 447082209333111877895908478802449*T3^48 - 376864764215821175272441248864448*T3^47 + 354037282059935298886830758213352*T3^46 - 124788110228185048224547024460352*T3^45 + 447344332362339691536941646503304*T3^44 - 404675001092038490946042228741408*T3^43 - 102706052173024205786358731289460*T3^42 + 462826186202769060130960787073440*T3^41 - 1329098703550604424184861700183776*T3^40 + 1807158121335620495083312971416016*T3^39 - 1087352962042947579190156271988220*T3^38 + 1193102797024238860151350356424928*T3^37 - 607690624054350127237403022497832*T3^36 + 50801896160061126308706691692920*T3^35 + 411290365452266364881992005641352*T3^34 - 1221687479363108694092735920256232*T3^33 + 924974173648593424066910168541010*T3^32 - 999723309523549327382136476912048*T3^31 + 1769935126801476814047290011561564*T3^30 - 636277594460719958300672856009240*T3^29 + 94499452264713252108365333665504*T3^28 - 837579317938033344342425381877208*T3^27 + 233258418804856792762772617588060*T3^26 + 156824621600033974718021414892128*T3^25 + 514451579519523154717309813352000*T3^24 - 331971869218827912593603914640744*T3^23 - 91030452218329823390849654796176*T3^22 - 207354076524390269426962194205544*T3^21 + 250959738369426904474887152373600*T3^20 - 11738982640802536944387013507248*T3^19 + 52730899182856126402445037020660*T3^18 - 92614026130820989647021810589144*T3^17 + 20460487744745801923532327432257*T3^16 - 9770004697644520493780253811072*T3^15 + 17629628240311928637138701888640*T3^14 - 5295232351169597216291741014272*T3^13 + 1211579170881730619356285708256*T3^12 - 1726603787437194658791136091648*T3^11 + 579342780366446859267129258496*T3^10 - 92479276523788714406110522368*T3^9 + 77118147592364658979787702784*T3^8 - 26894257954705141780052426752*T3^7 + 3434990823049882882581094400*T3^6 - 625873577528188838346555392*T3^5 + 213093026850104813340377088*T3^4 - 37896136789526244470554624*T3^3 + 7345997477877828977819648*T3^2 - 1475510636230701099778048*T3 + 128868341821480234123264