Properties

Label 833.2.j.a.373.7
Level $833$
Weight $2$
Character 833.373
Analytic conductor $6.652$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [833,2,Mod(67,833)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("833.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(833, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-2,0,-10,0,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 15 x^{18} + 158 x^{16} - 789 x^{14} + 2811 x^{12} - 5497 x^{10} + 7763 x^{8} - 6130 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 119)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 373.7
Root \(1.69010 - 0.975779i\) of defining polynomial
Character \(\chi\) \(=\) 833.373
Dual form 833.2.j.a.67.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.558220 - 0.966865i) q^{2} +(-1.69010 + 0.975779i) q^{3} +(0.376781 + 0.652604i) q^{4} +(1.29801 + 0.749406i) q^{5} +2.17880i q^{6} +3.07419 q^{8} +(0.404290 - 0.700250i) q^{9} +(1.44915 - 0.836667i) q^{10} +(-0.854248 + 0.493200i) q^{11} +(-1.27360 - 0.735310i) q^{12} +5.99921 q^{13} -2.92502 q^{15} +(0.962509 - 1.66712i) q^{16} +(-4.12016 + 0.155952i) q^{17} +(-0.451365 - 0.781787i) q^{18} +(-2.38637 + 4.13331i) q^{19} +1.12945i q^{20} +1.10126i q^{22} +(0.807250 + 0.466066i) q^{23} +(-5.19568 + 2.99973i) q^{24} +(-1.37678 - 2.38465i) q^{25} +(3.34888 - 5.80042i) q^{26} -4.27669i q^{27} +4.13364i q^{29} +(-1.63280 + 2.82810i) q^{30} +(1.49480 - 0.863025i) q^{31} +(1.99960 + 3.46341i) q^{32} +(0.962509 - 1.66712i) q^{33} +(-2.14917 + 4.07069i) q^{34} +0.609315 q^{36} +(6.78631 + 3.91808i) q^{37} +(2.66423 + 4.61459i) q^{38} +(-10.1393 + 5.85390i) q^{39} +(3.99032 + 2.30381i) q^{40} +9.93404i q^{41} -5.60852 q^{43} +(-0.643729 - 0.371657i) q^{44} +(1.04954 - 0.605954i) q^{45} +(0.901246 - 0.520335i) q^{46} +(-1.68782 + 2.92339i) q^{47} +3.75679i q^{48} -3.07419 q^{50} +(6.81129 - 4.28394i) q^{51} +(2.26039 + 3.91511i) q^{52} +(3.06460 + 5.30805i) q^{53} +(-4.13498 - 2.38733i) q^{54} -1.47843 q^{55} -9.31426i q^{57} +(3.99667 + 2.30748i) q^{58} +(3.33497 + 5.77634i) q^{59} +(-1.10209 - 1.90888i) q^{60} +(0.508145 + 0.293377i) q^{61} -1.92703i q^{62} +8.31491 q^{64} +(7.78702 + 4.49584i) q^{65} +(-1.07458 - 1.86123i) q^{66} +(0.414272 + 0.717540i) q^{67} +(-1.65417 - 2.63007i) q^{68} -1.81911 q^{69} -15.0439i q^{71} +(1.24286 - 2.15270i) q^{72} +(6.04993 - 3.49293i) q^{73} +(7.57651 - 4.37430i) q^{74} +(4.65379 + 2.68687i) q^{75} -3.59655 q^{76} +13.0711i q^{78} +(-12.0106 - 6.93432i) q^{79} +(2.49869 - 1.44262i) q^{80} +(5.38597 + 9.32877i) q^{81} +(9.60488 + 5.54538i) q^{82} -0.776646 q^{83} +(-5.46487 - 2.88524i) q^{85} +(-3.13079 + 5.42268i) q^{86} +(-4.03352 - 6.98626i) q^{87} +(-2.62612 + 1.51619i) q^{88} +(2.05100 - 3.55243i) q^{89} -1.35302i q^{90} +0.702420i q^{92} +(-1.68424 + 2.91720i) q^{93} +(1.88435 + 3.26379i) q^{94} +(-6.19505 + 3.57671i) q^{95} +(-6.75905 - 3.90234i) q^{96} -11.1720i q^{97} +0.797583i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 10 q^{4} + 16 q^{13} - 16 q^{15} - 2 q^{16} + 2 q^{17} + 18 q^{18} + 10 q^{19} - 10 q^{25} - 12 q^{26} - 10 q^{30} - 12 q^{32} - 2 q^{33} - 24 q^{34} + 56 q^{36} + 2 q^{38} - 52 q^{43}+ \cdots - 50 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.558220 0.966865i 0.394721 0.683677i −0.598344 0.801239i \(-0.704175\pi\)
0.993066 + 0.117562i \(0.0375079\pi\)
\(3\) −1.69010 + 0.975779i −0.975779 + 0.563366i −0.900993 0.433833i \(-0.857161\pi\)
−0.0747859 + 0.997200i \(0.523827\pi\)
\(4\) 0.376781 + 0.652604i 0.188391 + 0.326302i
\(5\) 1.29801 + 0.749406i 0.580487 + 0.335145i 0.761327 0.648368i \(-0.224548\pi\)
−0.180840 + 0.983513i \(0.557882\pi\)
\(6\) 2.17880i 0.889490i
\(7\) 0 0
\(8\) 3.07419 1.08689
\(9\) 0.404290 0.700250i 0.134763 0.233417i
\(10\) 1.44915 0.836667i 0.458261 0.264577i
\(11\) −0.854248 + 0.493200i −0.257566 + 0.148706i −0.623224 0.782044i \(-0.714177\pi\)
0.365658 + 0.930749i \(0.380844\pi\)
\(12\) −1.27360 0.735310i −0.367655 0.212266i
\(13\) 5.99921 1.66388 0.831940 0.554865i \(-0.187230\pi\)
0.831940 + 0.554865i \(0.187230\pi\)
\(14\) 0 0
\(15\) −2.92502 −0.755237
\(16\) 0.962509 1.66712i 0.240627 0.416779i
\(17\) −4.12016 + 0.155952i −0.999284 + 0.0378240i
\(18\) −0.451365 0.781787i −0.106388 0.184269i
\(19\) −2.38637 + 4.13331i −0.547470 + 0.948246i 0.450977 + 0.892536i \(0.351076\pi\)
−0.998447 + 0.0557102i \(0.982258\pi\)
\(20\) 1.12945i 0.252552i
\(21\) 0 0
\(22\) 1.10126i 0.234789i
\(23\) 0.807250 + 0.466066i 0.168323 + 0.0971815i 0.581795 0.813335i \(-0.302351\pi\)
−0.413472 + 0.910517i \(0.635684\pi\)
\(24\) −5.19568 + 2.99973i −1.06056 + 0.612317i
\(25\) −1.37678 2.38465i −0.275356 0.476931i
\(26\) 3.34888 5.80042i 0.656769 1.13756i
\(27\) 4.27669i 0.823048i
\(28\) 0 0
\(29\) 4.13364i 0.767597i 0.923417 + 0.383799i \(0.125384\pi\)
−0.923417 + 0.383799i \(0.874616\pi\)
\(30\) −1.63280 + 2.82810i −0.298108 + 0.516338i
\(31\) 1.49480 0.863025i 0.268475 0.155004i −0.359720 0.933060i \(-0.617128\pi\)
0.628194 + 0.778057i \(0.283794\pi\)
\(32\) 1.99960 + 3.46341i 0.353483 + 0.612251i
\(33\) 0.962509 1.66712i 0.167551 0.290208i
\(34\) −2.14917 + 4.07069i −0.368579 + 0.698118i
\(35\) 0 0
\(36\) 0.609315 0.101552
\(37\) 6.78631 + 3.91808i 1.11566 + 0.644128i 0.940290 0.340374i \(-0.110554\pi\)
0.175372 + 0.984502i \(0.443887\pi\)
\(38\) 2.66423 + 4.61459i 0.432196 + 0.748585i
\(39\) −10.1393 + 5.85390i −1.62358 + 0.937374i
\(40\) 3.99032 + 2.30381i 0.630925 + 0.364265i
\(41\) 9.93404i 1.55144i 0.631079 + 0.775718i \(0.282612\pi\)
−0.631079 + 0.775718i \(0.717388\pi\)
\(42\) 0 0
\(43\) −5.60852 −0.855291 −0.427646 0.903946i \(-0.640657\pi\)
−0.427646 + 0.903946i \(0.640657\pi\)
\(44\) −0.643729 0.371657i −0.0970459 0.0560295i
\(45\) 1.04954 0.605954i 0.156457 0.0903303i
\(46\) 0.901246 0.520335i 0.132882 0.0767192i
\(47\) −1.68782 + 2.92339i −0.246194 + 0.426420i −0.962467 0.271400i \(-0.912513\pi\)
0.716273 + 0.697820i \(0.245847\pi\)
\(48\) 3.75679i 0.542245i
\(49\) 0 0
\(50\) −3.07419 −0.434756
\(51\) 6.81129 4.28394i 0.953772 0.599871i
\(52\) 2.26039 + 3.91511i 0.313459 + 0.542928i
\(53\) 3.06460 + 5.30805i 0.420955 + 0.729116i 0.996033 0.0889826i \(-0.0283616\pi\)
−0.575078 + 0.818099i \(0.695028\pi\)
\(54\) −4.13498 2.38733i −0.562699 0.324875i
\(55\) −1.47843 −0.199351
\(56\) 0 0
\(57\) 9.31426i 1.23370i
\(58\) 3.99667 + 2.30748i 0.524789 + 0.302987i
\(59\) 3.33497 + 5.77634i 0.434176 + 0.752015i 0.997228 0.0744062i \(-0.0237062\pi\)
−0.563052 + 0.826422i \(0.690373\pi\)
\(60\) −1.10209 1.90888i −0.142279 0.246435i
\(61\) 0.508145 + 0.293377i 0.0650612 + 0.0375631i 0.532178 0.846633i \(-0.321374\pi\)
−0.467117 + 0.884196i \(0.654707\pi\)
\(62\) 1.92703i 0.244733i
\(63\) 0 0
\(64\) 8.31491 1.03936
\(65\) 7.78702 + 4.49584i 0.965861 + 0.557640i
\(66\) −1.07458 1.86123i −0.132272 0.229102i
\(67\) 0.414272 + 0.717540i 0.0506114 + 0.0876614i 0.890221 0.455528i \(-0.150550\pi\)
−0.839610 + 0.543190i \(0.817216\pi\)
\(68\) −1.65417 2.63007i −0.200598 0.318943i
\(69\) −1.81911 −0.218995
\(70\) 0 0
\(71\) 15.0439i 1.78538i −0.450674 0.892688i \(-0.648816\pi\)
0.450674 0.892688i \(-0.351184\pi\)
\(72\) 1.24286 2.15270i 0.146473 0.253698i
\(73\) 6.04993 3.49293i 0.708090 0.408816i −0.102263 0.994757i \(-0.532608\pi\)
0.810354 + 0.585941i \(0.199275\pi\)
\(74\) 7.57651 4.37430i 0.880751 0.508502i
\(75\) 4.65379 + 2.68687i 0.537374 + 0.310253i
\(76\) −3.59655 −0.412553
\(77\) 0 0
\(78\) 13.0711i 1.48001i
\(79\) −12.0106 6.93432i −1.35130 0.780172i −0.362866 0.931841i \(-0.618202\pi\)
−0.988431 + 0.151670i \(0.951535\pi\)
\(80\) 2.49869 1.44262i 0.279362 0.161290i
\(81\) 5.38597 + 9.32877i 0.598441 + 1.03653i
\(82\) 9.60488 + 5.54538i 1.06068 + 0.612385i
\(83\) −0.776646 −0.0852480 −0.0426240 0.999091i \(-0.513572\pi\)
−0.0426240 + 0.999091i \(0.513572\pi\)
\(84\) 0 0
\(85\) −5.46487 2.88524i −0.592749 0.312948i
\(86\) −3.13079 + 5.42268i −0.337601 + 0.584743i
\(87\) −4.03352 6.98626i −0.432438 0.749005i
\(88\) −2.62612 + 1.51619i −0.279945 + 0.161626i
\(89\) 2.05100 3.55243i 0.217405 0.376557i −0.736609 0.676319i \(-0.763574\pi\)
0.954014 + 0.299762i \(0.0969074\pi\)
\(90\) 1.35302i 0.142621i
\(91\) 0 0
\(92\) 0.702420i 0.0732323i
\(93\) −1.68424 + 2.91720i −0.174648 + 0.302499i
\(94\) 1.88435 + 3.26379i 0.194356 + 0.336634i
\(95\) −6.19505 + 3.57671i −0.635599 + 0.366963i
\(96\) −6.75905 3.90234i −0.689843 0.398281i
\(97\) 11.1720i 1.13435i −0.823598 0.567174i \(-0.808037\pi\)
0.823598 0.567174i \(-0.191963\pi\)
\(98\) 0 0
\(99\) 0.797583i 0.0801601i
\(100\) 1.03749 1.79699i 0.103749 0.179699i
\(101\) −5.25999 9.11057i −0.523389 0.906536i −0.999629 0.0272208i \(-0.991334\pi\)
0.476241 0.879315i \(-0.341999\pi\)
\(102\) −0.339789 8.97698i −0.0336441 0.888854i
\(103\) 0.560282 0.970438i 0.0552063 0.0956201i −0.837102 0.547048i \(-0.815752\pi\)
0.892308 + 0.451427i \(0.149085\pi\)
\(104\) 18.4427 1.80845
\(105\) 0 0
\(106\) 6.84289 0.664640
\(107\) 13.1108 + 7.56951i 1.26747 + 0.731772i 0.974508 0.224353i \(-0.0720270\pi\)
0.292958 + 0.956125i \(0.405360\pi\)
\(108\) 2.79098 1.61137i 0.268562 0.155055i
\(109\) 7.49409 4.32672i 0.717804 0.414424i −0.0961400 0.995368i \(-0.530650\pi\)
0.813944 + 0.580944i \(0.197316\pi\)
\(110\) −0.825289 + 1.42944i −0.0786882 + 0.136292i
\(111\) −15.2927 −1.45152
\(112\) 0 0
\(113\) 3.20782i 0.301767i 0.988552 + 0.150883i \(0.0482118\pi\)
−0.988552 + 0.150883i \(0.951788\pi\)
\(114\) −9.00564 5.19941i −0.843455 0.486969i
\(115\) 0.698546 + 1.20992i 0.0651397 + 0.112825i
\(116\) −2.69763 + 1.55748i −0.250469 + 0.144608i
\(117\) 2.42542 4.20094i 0.224230 0.388377i
\(118\) 7.44659 0.685514
\(119\) 0 0
\(120\) −8.99205 −0.820858
\(121\) −5.01351 + 8.68365i −0.455773 + 0.789423i
\(122\) 0.567313 0.327538i 0.0513621 0.0296539i
\(123\) −9.69343 16.7895i −0.874027 1.51386i
\(124\) 1.12643 + 0.650344i 0.101156 + 0.0584026i
\(125\) 11.6211i 1.03943i
\(126\) 0 0
\(127\) −13.5319 −1.20076 −0.600381 0.799714i \(-0.704984\pi\)
−0.600381 + 0.799714i \(0.704984\pi\)
\(128\) 0.642342 1.11257i 0.0567756 0.0983382i
\(129\) 9.47895 5.47268i 0.834575 0.481842i
\(130\) 8.69374 5.01933i 0.762492 0.440225i
\(131\) −1.87938 1.08506i −0.164202 0.0948020i 0.415647 0.909526i \(-0.363555\pi\)
−0.579849 + 0.814724i \(0.696888\pi\)
\(132\) 1.45062 0.126260
\(133\) 0 0
\(134\) 0.925019 0.0799095
\(135\) 3.20497 5.55118i 0.275840 0.477769i
\(136\) −12.6661 + 0.479427i −1.08611 + 0.0411105i
\(137\) 4.15713 + 7.20037i 0.355168 + 0.615169i 0.987147 0.159817i \(-0.0510904\pi\)
−0.631979 + 0.774986i \(0.717757\pi\)
\(138\) −1.01546 + 1.75883i −0.0864420 + 0.149722i
\(139\) 0.897376i 0.0761144i −0.999276 0.0380572i \(-0.987883\pi\)
0.999276 0.0380572i \(-0.0121169\pi\)
\(140\) 0 0
\(141\) 6.58776i 0.554789i
\(142\) −14.5454 8.39778i −1.22062 0.704726i
\(143\) −5.12481 + 2.95881i −0.428558 + 0.247428i
\(144\) −0.778265 1.34799i −0.0648554 0.112333i
\(145\) −3.09777 + 5.36550i −0.257256 + 0.445581i
\(146\) 7.79929i 0.645473i
\(147\) 0 0
\(148\) 5.90503i 0.485391i
\(149\) 3.29386 5.70513i 0.269843 0.467383i −0.698978 0.715143i \(-0.746361\pi\)
0.968821 + 0.247761i \(0.0796947\pi\)
\(150\) 5.19568 2.99973i 0.424225 0.244927i
\(151\) −5.80180 10.0490i −0.472144 0.817777i 0.527348 0.849649i \(-0.323186\pi\)
−0.999492 + 0.0318723i \(0.989853\pi\)
\(152\) −7.33613 + 12.7066i −0.595039 + 1.03064i
\(153\) −1.55653 + 2.94819i −0.125838 + 0.238347i
\(154\) 0 0
\(155\) 2.58703 0.207795
\(156\) −7.64056 4.41128i −0.611734 0.353185i
\(157\) −11.2046 19.4070i −0.894226 1.54885i −0.834759 0.550615i \(-0.814393\pi\)
−0.0594669 0.998230i \(-0.518940\pi\)
\(158\) −13.4091 + 7.74175i −1.06677 + 0.615900i
\(159\) −10.3590 5.98075i −0.821519 0.474304i
\(160\) 5.99406i 0.473872i
\(161\) 0 0
\(162\) 12.0262 0.944869
\(163\) −8.31491 4.80062i −0.651274 0.376013i 0.137670 0.990478i \(-0.456039\pi\)
−0.788944 + 0.614465i \(0.789372\pi\)
\(164\) −6.48300 + 3.74296i −0.506237 + 0.292276i
\(165\) 2.49869 1.44262i 0.194523 0.112308i
\(166\) −0.433539 + 0.750912i −0.0336492 + 0.0582821i
\(167\) 7.80778i 0.604184i 0.953279 + 0.302092i \(0.0976851\pi\)
−0.953279 + 0.302092i \(0.902315\pi\)
\(168\) 0 0
\(169\) 22.9905 1.76850
\(170\) −5.84024 + 3.67319i −0.447926 + 0.281721i
\(171\) 1.92957 + 3.34211i 0.147558 + 0.255577i
\(172\) −2.11318 3.66014i −0.161129 0.279083i
\(173\) 7.17055 + 4.13992i 0.545167 + 0.314752i 0.747170 0.664633i \(-0.231412\pi\)
−0.202003 + 0.979385i \(0.564745\pi\)
\(174\) −9.00636 −0.682770
\(175\) 0 0
\(176\) 1.89884i 0.143130i
\(177\) −11.2729 6.50839i −0.847320 0.489201i
\(178\) −2.28981 3.96608i −0.171629 0.297270i
\(179\) 7.28348 + 12.6154i 0.544393 + 0.942916i 0.998645 + 0.0520428i \(0.0165732\pi\)
−0.454252 + 0.890873i \(0.650093\pi\)
\(180\) 0.790896 + 0.456624i 0.0589499 + 0.0340348i
\(181\) 11.5908i 0.861539i −0.902462 0.430770i \(-0.858242\pi\)
0.902462 0.430770i \(-0.141758\pi\)
\(182\) 0 0
\(183\) −1.14509 −0.0846472
\(184\) 2.48164 + 1.43277i 0.182949 + 0.105626i
\(185\) 5.87246 + 10.1714i 0.431752 + 0.747816i
\(186\) 1.88036 + 3.25687i 0.137874 + 0.238806i
\(187\) 3.44272 2.16528i 0.251757 0.158341i
\(188\) −2.54376 −0.185522
\(189\) 0 0
\(190\) 7.98637i 0.579392i
\(191\) 11.3485 19.6562i 0.821150 1.42227i −0.0836758 0.996493i \(-0.526666\pi\)
0.904826 0.425781i \(-0.140001\pi\)
\(192\) −14.0530 + 8.11351i −1.01419 + 0.585542i
\(193\) 22.9877 13.2720i 1.65469 0.955337i 0.679586 0.733596i \(-0.262159\pi\)
0.975106 0.221741i \(-0.0711739\pi\)
\(194\) −10.8018 6.23645i −0.775527 0.447751i
\(195\) −17.5478 −1.25662
\(196\) 0 0
\(197\) 2.97811i 0.212182i −0.994356 0.106091i \(-0.966167\pi\)
0.994356 0.106091i \(-0.0338334\pi\)
\(198\) 0.771155 + 0.445227i 0.0548036 + 0.0316409i
\(199\) 15.2825 8.82333i 1.08334 0.625469i 0.151548 0.988450i \(-0.451574\pi\)
0.931797 + 0.362980i \(0.118241\pi\)
\(200\) −4.23248 7.33087i −0.299282 0.518371i
\(201\) −1.40032 0.808475i −0.0987710 0.0570255i
\(202\) −11.7449 −0.826370
\(203\) 0 0
\(204\) 5.36208 + 2.83097i 0.375421 + 0.198208i
\(205\) −7.44463 + 12.8945i −0.519956 + 0.900590i
\(206\) −0.625522 1.08344i −0.0435822 0.0754865i
\(207\) 0.652726 0.376851i 0.0453676 0.0261930i
\(208\) 5.77429 10.0014i 0.400375 0.693470i
\(209\) 4.70783i 0.325647i
\(210\) 0 0
\(211\) 8.38213i 0.577050i 0.957472 + 0.288525i \(0.0931648\pi\)
−0.957472 + 0.288525i \(0.906835\pi\)
\(212\) −2.30937 + 3.99994i −0.158608 + 0.274717i
\(213\) 14.6795 + 25.4256i 1.00582 + 1.74213i
\(214\) 14.6374 8.45090i 1.00059 0.577692i
\(215\) −7.27991 4.20306i −0.496486 0.286646i
\(216\) 13.1473i 0.894562i
\(217\) 0 0
\(218\) 9.66103i 0.654328i
\(219\) −6.81665 + 11.8068i −0.460627 + 0.797829i
\(220\) −0.557045 0.964829i −0.0375559 0.0650488i
\(221\) −24.7177 + 0.935590i −1.66269 + 0.0629346i
\(222\) −8.53670 + 14.7860i −0.572946 + 0.992371i
\(223\) 10.6244 0.711460 0.355730 0.934589i \(-0.384232\pi\)
0.355730 + 0.934589i \(0.384232\pi\)
\(224\) 0 0
\(225\) −2.22647 −0.148432
\(226\) 3.10153 + 1.79067i 0.206311 + 0.119114i
\(227\) 4.53776 2.61988i 0.301182 0.173887i −0.341792 0.939776i \(-0.611034\pi\)
0.642974 + 0.765888i \(0.277701\pi\)
\(228\) 6.07853 3.50944i 0.402560 0.232418i
\(229\) 9.72250 16.8399i 0.642481 1.11281i −0.342396 0.939556i \(-0.611239\pi\)
0.984877 0.173254i \(-0.0554281\pi\)
\(230\) 1.55977 0.102848
\(231\) 0 0
\(232\) 12.7076i 0.834293i
\(233\) −25.9286 14.9699i −1.69864 0.980710i −0.947054 0.321075i \(-0.895956\pi\)
−0.751586 0.659635i \(-0.770711\pi\)
\(234\) −2.70783 4.69010i −0.177016 0.306601i
\(235\) −4.38161 + 2.52973i −0.285825 + 0.165021i
\(236\) −2.51311 + 4.35283i −0.163589 + 0.283345i
\(237\) 27.0654 1.75809
\(238\) 0 0
\(239\) −1.00794 −0.0651980 −0.0325990 0.999469i \(-0.510378\pi\)
−0.0325990 + 0.999469i \(0.510378\pi\)
\(240\) −2.81536 + 4.87634i −0.181731 + 0.314767i
\(241\) 6.22988 3.59682i 0.401302 0.231692i −0.285744 0.958306i \(-0.592241\pi\)
0.687046 + 0.726614i \(0.258907\pi\)
\(242\) 5.59728 + 9.69477i 0.359807 + 0.623203i
\(243\) −7.09449 4.09600i −0.455111 0.262759i
\(244\) 0.442156i 0.0283062i
\(245\) 0 0
\(246\) −21.6443 −1.37999
\(247\) −14.3163 + 24.7966i −0.910924 + 1.57777i
\(248\) 4.59531 2.65310i 0.291802 0.168472i
\(249\) 1.31261 0.757835i 0.0831832 0.0480258i
\(250\) −11.2361 6.48715i −0.710631 0.410283i
\(251\) −14.1491 −0.893084 −0.446542 0.894763i \(-0.647345\pi\)
−0.446542 + 0.894763i \(0.647345\pi\)
\(252\) 0 0
\(253\) −0.919456 −0.0578057
\(254\) −7.55378 + 13.0835i −0.473966 + 0.820934i
\(255\) 12.0515 0.456164i 0.754696 0.0285661i
\(256\) 7.59777 + 13.1597i 0.474861 + 0.822483i
\(257\) −12.5825 + 21.7935i −0.784875 + 1.35944i 0.144199 + 0.989549i \(0.453939\pi\)
−0.929074 + 0.369894i \(0.879394\pi\)
\(258\) 12.2198i 0.760773i
\(259\) 0 0
\(260\) 6.77579i 0.420217i
\(261\) 2.89458 + 1.67119i 0.179170 + 0.103444i
\(262\) −2.09821 + 1.21140i −0.129628 + 0.0748407i
\(263\) −4.05023 7.01521i −0.249748 0.432576i 0.713708 0.700444i \(-0.247014\pi\)
−0.963456 + 0.267867i \(0.913681\pi\)
\(264\) 2.95893 5.12502i 0.182110 0.315423i
\(265\) 9.18652i 0.564324i
\(266\) 0 0
\(267\) 8.00528i 0.489915i
\(268\) −0.312180 + 0.540711i −0.0190694 + 0.0330292i
\(269\) −19.2625 + 11.1212i −1.17446 + 0.678074i −0.954726 0.297487i \(-0.903852\pi\)
−0.219732 + 0.975560i \(0.570518\pi\)
\(270\) −3.57816 6.19755i −0.217760 0.377171i
\(271\) 3.46171 5.99587i 0.210284 0.364223i −0.741519 0.670932i \(-0.765894\pi\)
0.951803 + 0.306709i \(0.0992277\pi\)
\(272\) −3.70570 + 7.01888i −0.224691 + 0.425582i
\(273\) 0 0
\(274\) 9.28238 0.560769
\(275\) 2.35223 + 1.35806i 0.141845 + 0.0818940i
\(276\) −0.685407 1.18716i −0.0412566 0.0714586i
\(277\) 21.2656 12.2777i 1.27773 0.737697i 0.301299 0.953530i \(-0.402580\pi\)
0.976430 + 0.215833i \(0.0692466\pi\)
\(278\) −0.867642 0.500933i −0.0520377 0.0300440i
\(279\) 1.39565i 0.0835553i
\(280\) 0 0
\(281\) −7.25294 −0.432674 −0.216337 0.976319i \(-0.569411\pi\)
−0.216337 + 0.976319i \(0.569411\pi\)
\(282\) −6.36947 3.67742i −0.379297 0.218987i
\(283\) 7.93032 4.57857i 0.471408 0.272168i −0.245421 0.969417i \(-0.578926\pi\)
0.716829 + 0.697249i \(0.245593\pi\)
\(284\) 9.81768 5.66824i 0.582572 0.336348i
\(285\) 6.98017 12.0900i 0.413469 0.716150i
\(286\) 6.60667i 0.390660i
\(287\) 0 0
\(288\) 3.23367 0.190546
\(289\) 16.9514 1.28510i 0.997139 0.0755939i
\(290\) 3.45848 + 5.99026i 0.203089 + 0.351760i
\(291\) 10.9014 + 18.8818i 0.639053 + 1.10687i
\(292\) 4.55900 + 2.63214i 0.266795 + 0.154034i
\(293\) 16.9412 0.989716 0.494858 0.868974i \(-0.335220\pi\)
0.494858 + 0.868974i \(0.335220\pi\)
\(294\) 0 0
\(295\) 9.99699i 0.582047i
\(296\) 20.8624 + 12.0449i 1.21260 + 0.700096i
\(297\) 2.10926 + 3.65335i 0.122392 + 0.211989i
\(298\) −3.67739 6.36943i −0.213026 0.368971i
\(299\) 4.84286 + 2.79603i 0.280070 + 0.161698i
\(300\) 4.04945i 0.233795i
\(301\) 0 0
\(302\) −12.9547 −0.745460
\(303\) 17.7798 + 10.2652i 1.02142 + 0.589719i
\(304\) 4.59380 + 7.95669i 0.263472 + 0.456348i
\(305\) 0.439718 + 0.761613i 0.0251782 + 0.0436098i
\(306\) 1.98162 + 3.15069i 0.113281 + 0.180113i
\(307\) 18.9097 1.07923 0.539616 0.841911i \(-0.318569\pi\)
0.539616 + 0.841911i \(0.318569\pi\)
\(308\) 0 0
\(309\) 2.18685i 0.124405i
\(310\) 1.44413 2.50131i 0.0820210 0.142065i
\(311\) −2.34802 + 1.35563i −0.133144 + 0.0768707i −0.565093 0.825028i \(-0.691160\pi\)
0.431949 + 0.901898i \(0.357826\pi\)
\(312\) −31.1699 + 17.9960i −1.76465 + 1.01882i
\(313\) 23.6809 + 13.6722i 1.33852 + 0.772797i 0.986588 0.163228i \(-0.0521905\pi\)
0.351935 + 0.936024i \(0.385524\pi\)
\(314\) −25.0186 −1.41188
\(315\) 0 0
\(316\) 10.4509i 0.587908i
\(317\) 4.85991 + 2.80587i 0.272960 + 0.157594i 0.630232 0.776407i \(-0.282960\pi\)
−0.357272 + 0.934000i \(0.616293\pi\)
\(318\) −11.5652 + 6.67714i −0.648542 + 0.374436i
\(319\) −2.03871 3.53115i −0.114146 0.197707i
\(320\) 10.7928 + 6.23124i 0.603338 + 0.348337i
\(321\) −29.5447 −1.64902
\(322\) 0 0
\(323\) 9.18760 17.4020i 0.511212 0.968275i
\(324\) −4.05866 + 7.02981i −0.225481 + 0.390545i
\(325\) −8.25959 14.3060i −0.458160 0.793556i
\(326\) −9.28310 + 5.35960i −0.514143 + 0.296841i
\(327\) −8.44384 + 14.6252i −0.466945 + 0.808773i
\(328\) 30.5391i 1.68624i
\(329\) 0 0
\(330\) 3.22120i 0.177321i
\(331\) 13.6766 23.6886i 0.751735 1.30204i −0.195246 0.980754i \(-0.562550\pi\)
0.946981 0.321289i \(-0.104116\pi\)
\(332\) −0.292626 0.506843i −0.0160599 0.0278166i
\(333\) 5.48727 3.16808i 0.300700 0.173609i
\(334\) 7.54907 + 4.35846i 0.413067 + 0.238484i
\(335\) 1.24183i 0.0678485i
\(336\) 0 0
\(337\) 21.0117i 1.14458i 0.820052 + 0.572289i \(0.193945\pi\)
−0.820052 + 0.572289i \(0.806055\pi\)
\(338\) 12.8337 22.2287i 0.698063 1.20908i
\(339\) −3.13013 5.42154i −0.170005 0.294458i
\(340\) −0.176140 4.65350i −0.00955254 0.252372i
\(341\) −0.851289 + 1.47448i −0.0460999 + 0.0798474i
\(342\) 4.30849 0.232976
\(343\) 0 0
\(344\) −17.2416 −0.929607
\(345\) −2.36122 1.36325i −0.127124 0.0733950i
\(346\) 8.00549 4.62197i 0.430378 0.248479i
\(347\) −19.3773 + 11.1875i −1.04023 + 0.600574i −0.919897 0.392160i \(-0.871728\pi\)
−0.120328 + 0.992734i \(0.538395\pi\)
\(348\) 3.03951 5.26458i 0.162935 0.282211i
\(349\) 7.84612 0.419993 0.209997 0.977702i \(-0.432655\pi\)
0.209997 + 0.977702i \(0.432655\pi\)
\(350\) 0 0
\(351\) 25.6567i 1.36945i
\(352\) −3.41631 1.97241i −0.182090 0.105130i
\(353\) −3.24994 5.62906i −0.172977 0.299605i 0.766482 0.642265i \(-0.222005\pi\)
−0.939459 + 0.342661i \(0.888672\pi\)
\(354\) −12.5855 + 7.26623i −0.668910 + 0.386196i
\(355\) 11.2740 19.5271i 0.598359 1.03639i
\(356\) 3.09111 0.163828
\(357\) 0 0
\(358\) 16.2631 0.859533
\(359\) 11.3648 19.6844i 0.599812 1.03890i −0.393037 0.919523i \(-0.628575\pi\)
0.992848 0.119382i \(-0.0380912\pi\)
\(360\) 3.22649 1.86282i 0.170051 0.0981790i
\(361\) −1.88949 3.27268i −0.0994466 0.172247i
\(362\) −11.2068 6.47023i −0.589015 0.340068i
\(363\) 19.5683i 1.02707i
\(364\) 0 0
\(365\) 10.4705 0.548050
\(366\) −0.639210 + 1.10714i −0.0334120 + 0.0578713i
\(367\) −24.4483 + 14.1152i −1.27619 + 0.736808i −0.976145 0.217118i \(-0.930334\pi\)
−0.300043 + 0.953926i \(0.597001\pi\)
\(368\) 1.55397 0.897186i 0.0810064 0.0467691i
\(369\) 6.95632 + 4.01623i 0.362131 + 0.209077i
\(370\) 13.1125 0.681686
\(371\) 0 0
\(372\) −2.53837 −0.131608
\(373\) 4.69067 8.12448i 0.242874 0.420670i −0.718658 0.695364i \(-0.755243\pi\)
0.961532 + 0.274694i \(0.0885766\pi\)
\(374\) −0.171744 4.53735i −0.00888065 0.234621i
\(375\) 11.3397 + 19.6409i 0.585577 + 1.01425i
\(376\) −5.18867 + 8.98705i −0.267585 + 0.463472i
\(377\) 24.7985i 1.27719i
\(378\) 0 0
\(379\) 21.1109i 1.08439i −0.840251 0.542197i \(-0.817593\pi\)
0.840251 0.542197i \(-0.182407\pi\)
\(380\) −4.66836 2.69528i −0.239482 0.138265i
\(381\) 22.8703 13.2042i 1.17168 0.676469i
\(382\) −12.6699 21.9450i −0.648251 1.12280i
\(383\) 8.72018 15.1038i 0.445580 0.771767i −0.552512 0.833505i \(-0.686331\pi\)
0.998092 + 0.0617373i \(0.0196641\pi\)
\(384\) 2.50714i 0.127942i
\(385\) 0 0
\(386\) 29.6347i 1.50837i
\(387\) −2.26747 + 3.92737i −0.115262 + 0.199639i
\(388\) 7.29091 4.20941i 0.370140 0.213700i
\(389\) −12.2819 21.2729i −0.622718 1.07858i −0.988977 0.148066i \(-0.952695\pi\)
0.366259 0.930513i \(-0.380638\pi\)
\(390\) −9.79552 + 16.9663i −0.496016 + 0.859124i
\(391\) −3.39868 1.79437i −0.171879 0.0907453i
\(392\) 0 0
\(393\) 4.23511 0.213633
\(394\) −2.87943 1.66244i −0.145064 0.0837526i
\(395\) −10.3932 18.0016i −0.522941 0.905760i
\(396\) −0.520506 + 0.300514i −0.0261564 + 0.0151014i
\(397\) −1.65447 0.955210i −0.0830356 0.0479406i 0.457907 0.889000i \(-0.348599\pi\)
−0.540943 + 0.841059i \(0.681932\pi\)
\(398\) 19.7014i 0.987544i
\(399\) 0 0
\(400\) −5.30066 −0.265033
\(401\) 12.1985 + 7.04283i 0.609166 + 0.351702i 0.772639 0.634846i \(-0.218936\pi\)
−0.163473 + 0.986548i \(0.552270\pi\)
\(402\) −1.56337 + 0.902614i −0.0779740 + 0.0450183i
\(403\) 8.96764 5.17747i 0.446710 0.257908i
\(404\) 3.96373 6.86538i 0.197203 0.341566i
\(405\) 16.1451i 0.802257i
\(406\) 0 0
\(407\) −7.72959 −0.383142
\(408\) 20.9392 13.1696i 1.03664 0.651993i
\(409\) 1.96938 + 3.41107i 0.0973796 + 0.168666i 0.910599 0.413290i \(-0.135621\pi\)
−0.813220 + 0.581957i \(0.802287\pi\)
\(410\) 8.31148 + 14.3959i 0.410475 + 0.710963i
\(411\) −14.0519 8.11289i −0.693131 0.400179i
\(412\) 0.844416 0.0416014
\(413\) 0 0
\(414\) 0.841464i 0.0413557i
\(415\) −1.00809 0.582023i −0.0494854 0.0285704i
\(416\) 11.9960 + 20.7777i 0.588154 + 1.01871i
\(417\) 0.875641 + 1.51665i 0.0428803 + 0.0742709i
\(418\) −4.55183 2.62800i −0.222637 0.128540i
\(419\) 10.3202i 0.504174i −0.967705 0.252087i \(-0.918883\pi\)
0.967705 0.252087i \(-0.0811169\pi\)
\(420\) 0 0
\(421\) 2.25685 0.109992 0.0549961 0.998487i \(-0.482485\pi\)
0.0549961 + 0.998487i \(0.482485\pi\)
\(422\) 8.10439 + 4.67907i 0.394516 + 0.227774i
\(423\) 1.36474 + 2.36379i 0.0663558 + 0.114932i
\(424\) 9.42116 + 16.3179i 0.457532 + 0.792468i
\(425\) 6.04444 + 9.61044i 0.293199 + 0.466175i
\(426\) 32.7775 1.58808
\(427\) 0 0
\(428\) 11.4082i 0.551436i
\(429\) 5.77429 10.0014i 0.278785 0.482871i
\(430\) −8.12758 + 4.69246i −0.391947 + 0.226291i
\(431\) −1.71655 + 0.991053i −0.0826835 + 0.0477374i −0.540772 0.841169i \(-0.681868\pi\)
0.458088 + 0.888907i \(0.348534\pi\)
\(432\) −7.12973 4.11635i −0.343029 0.198048i
\(433\) −33.9841 −1.63317 −0.816586 0.577224i \(-0.804136\pi\)
−0.816586 + 0.577224i \(0.804136\pi\)
\(434\) 0 0
\(435\) 12.0910i 0.579718i
\(436\) 5.64727 + 3.26045i 0.270455 + 0.156147i
\(437\) −3.85279 + 2.22441i −0.184304 + 0.106408i
\(438\) 7.61038 + 13.1816i 0.363638 + 0.629839i
\(439\) −13.2715 7.66229i −0.633413 0.365701i 0.148660 0.988888i \(-0.452504\pi\)
−0.782073 + 0.623187i \(0.785837\pi\)
\(440\) −4.54497 −0.216673
\(441\) 0 0
\(442\) −12.8933 + 24.4209i −0.613272 + 1.16158i
\(443\) −16.2680 + 28.1769i −0.772914 + 1.33873i 0.163045 + 0.986619i \(0.447868\pi\)
−0.935959 + 0.352108i \(0.885465\pi\)
\(444\) −5.76201 9.98009i −0.273453 0.473634i
\(445\) 5.32443 3.07406i 0.252402 0.145724i
\(446\) 5.93073 10.2723i 0.280828 0.486409i
\(447\) 12.8563i 0.608083i
\(448\) 0 0
\(449\) 2.31105i 0.109065i 0.998512 + 0.0545326i \(0.0173669\pi\)
−0.998512 + 0.0545326i \(0.982633\pi\)
\(450\) −1.24286 + 2.15270i −0.0585891 + 0.101479i
\(451\) −4.89948 8.48614i −0.230707 0.399597i
\(452\) −2.09344 + 1.20865i −0.0984671 + 0.0568500i
\(453\) 19.6112 + 11.3226i 0.921416 + 0.531980i
\(454\) 5.84987i 0.274548i
\(455\) 0 0
\(456\) 28.6338i 1.34090i
\(457\) 4.51441 7.81918i 0.211175 0.365766i −0.740908 0.671607i \(-0.765604\pi\)
0.952083 + 0.305841i \(0.0989377\pi\)
\(458\) −10.8546 18.8007i −0.507201 0.878499i
\(459\) 0.666959 + 17.6206i 0.0311310 + 0.822459i
\(460\) −0.526398 + 0.911748i −0.0245434 + 0.0425105i
\(461\) 38.6386 1.79958 0.899789 0.436324i \(-0.143720\pi\)
0.899789 + 0.436324i \(0.143720\pi\)
\(462\) 0 0
\(463\) 25.1396 1.16834 0.584168 0.811633i \(-0.301421\pi\)
0.584168 + 0.811633i \(0.301421\pi\)
\(464\) 6.89125 + 3.97867i 0.319918 + 0.184705i
\(465\) −4.37233 + 2.52437i −0.202762 + 0.117065i
\(466\) −28.9477 + 16.7130i −1.34098 + 0.774214i
\(467\) 8.67496 15.0255i 0.401429 0.695296i −0.592469 0.805593i \(-0.701847\pi\)
0.993899 + 0.110297i \(0.0351802\pi\)
\(468\) 3.65541 0.168971
\(469\) 0 0
\(470\) 5.64857i 0.260549i
\(471\) 37.8738 + 21.8665i 1.74513 + 1.00755i
\(472\) 10.2523 + 17.7575i 0.471901 + 0.817357i
\(473\) 4.79107 2.76612i 0.220294 0.127187i
\(474\) 15.1085 26.1686i 0.693955 1.20197i
\(475\) 13.1420 0.602997
\(476\) 0 0
\(477\) 4.95595 0.226917
\(478\) −0.562650 + 0.974538i −0.0257350 + 0.0445743i
\(479\) −22.2296 + 12.8343i −1.01570 + 0.586413i −0.912854 0.408285i \(-0.866127\pi\)
−0.102842 + 0.994698i \(0.532794\pi\)
\(480\) −5.84888 10.1305i −0.266963 0.462394i
\(481\) 40.7125 + 23.5054i 1.85633 + 1.07175i
\(482\) 8.03127i 0.365814i
\(483\) 0 0
\(484\) −7.55598 −0.343454
\(485\) 8.37239 14.5014i 0.380170 0.658475i
\(486\) −7.92057 + 4.57294i −0.359284 + 0.207433i
\(487\) −26.6590 + 15.3916i −1.20803 + 0.697458i −0.962329 0.271887i \(-0.912352\pi\)
−0.245704 + 0.969345i \(0.579019\pi\)
\(488\) 1.56213 + 0.901897i 0.0707143 + 0.0408269i
\(489\) 18.7374 0.847333
\(490\) 0 0
\(491\) −34.0328 −1.53588 −0.767938 0.640524i \(-0.778717\pi\)
−0.767938 + 0.640524i \(0.778717\pi\)
\(492\) 7.30461 12.6519i 0.329317 0.570394i
\(493\) −0.644651 17.0312i −0.0290336 0.767048i
\(494\) 15.9833 + 27.6839i 0.719122 + 1.24556i
\(495\) −0.597714 + 1.03527i −0.0268652 + 0.0465320i
\(496\) 3.32268i 0.149193i
\(497\) 0 0
\(498\) 1.69215i 0.0758272i
\(499\) −16.3514 9.44046i −0.731987 0.422613i 0.0871615 0.996194i \(-0.472220\pi\)
−0.819149 + 0.573581i \(0.805554\pi\)
\(500\) 7.58400 4.37862i 0.339167 0.195818i
\(501\) −7.61867 13.1959i −0.340377 0.589551i
\(502\) −7.89831 + 13.6803i −0.352519 + 0.610581i
\(503\) 29.9077i 1.33352i 0.745274 + 0.666759i \(0.232319\pi\)
−0.745274 + 0.666759i \(0.767681\pi\)
\(504\) 0 0
\(505\) 15.7675i 0.701643i
\(506\) −0.513259 + 0.888990i −0.0228171 + 0.0395204i
\(507\) −38.8562 + 22.4336i −1.72566 + 0.996312i
\(508\) −5.09857 8.83098i −0.226212 0.391811i
\(509\) −8.78865 + 15.2224i −0.389550 + 0.674721i −0.992389 0.123142i \(-0.960703\pi\)
0.602839 + 0.797863i \(0.294036\pi\)
\(510\) 6.28636 11.9068i 0.278365 0.527244i
\(511\) 0 0
\(512\) 19.5343 0.863301
\(513\) 17.6769 + 10.2057i 0.780452 + 0.450594i
\(514\) 14.0476 + 24.3312i 0.619613 + 1.07320i
\(515\) 1.45450 0.839758i 0.0640931 0.0370042i
\(516\) 7.14298 + 4.12400i 0.314452 + 0.181549i
\(517\) 3.32974i 0.146442i
\(518\) 0 0
\(519\) −16.1586 −0.709283
\(520\) 23.9388 + 13.8211i 1.04978 + 0.606093i
\(521\) 21.3384 12.3197i 0.934853 0.539738i 0.0465100 0.998918i \(-0.485190\pi\)
0.888343 + 0.459180i \(0.151857\pi\)
\(522\) 3.23162 1.86578i 0.141444 0.0816629i
\(523\) −14.1347 + 24.4820i −0.618068 + 1.07053i 0.371770 + 0.928325i \(0.378751\pi\)
−0.989838 + 0.142200i \(0.954582\pi\)
\(524\) 1.63532i 0.0714393i
\(525\) 0 0
\(526\) −9.04368 −0.394323
\(527\) −6.02423 + 3.78892i −0.262420 + 0.165048i
\(528\) −1.85285 3.20923i −0.0806349 0.139664i
\(529\) −11.0656 19.1661i −0.481112 0.833310i
\(530\) 8.88213 + 5.12810i 0.385815 + 0.222750i
\(531\) 5.39318 0.234044
\(532\) 0 0
\(533\) 59.5964i 2.58141i
\(534\) 7.74003 + 4.46871i 0.334944 + 0.193380i
\(535\) 11.3453 + 19.6506i 0.490499 + 0.849569i
\(536\) 1.27355 + 2.20585i 0.0550089 + 0.0952782i
\(537\) −24.6196 14.2141i −1.06241 0.613385i
\(538\) 24.8324i 1.07060i
\(539\) 0 0
\(540\) 4.83030 0.207863
\(541\) −27.4382 15.8414i −1.17966 0.681077i −0.223723 0.974653i \(-0.571821\pi\)
−0.955936 + 0.293576i \(0.905155\pi\)
\(542\) −3.86480 6.69402i −0.166007 0.287533i
\(543\) 11.3101 + 19.5896i 0.485362 + 0.840672i
\(544\) −8.77880 13.9580i −0.376388 0.598443i
\(545\) 12.9699 0.555568
\(546\) 0 0
\(547\) 35.5388i 1.51953i 0.650197 + 0.759766i \(0.274686\pi\)
−0.650197 + 0.759766i \(0.725314\pi\)
\(548\) −3.13266 + 5.42593i −0.133821 + 0.231784i
\(549\) 0.410875 0.237219i 0.0175357 0.0101243i
\(550\) 2.62612 1.51619i 0.111978 0.0646506i
\(551\) −17.0856 9.86437i −0.727871 0.420236i
\(552\) −5.59228 −0.238023
\(553\) 0 0
\(554\) 27.4147i 1.16474i
\(555\) −19.8501 11.4605i −0.842589 0.486469i
\(556\) 0.585631 0.338114i 0.0248363 0.0143392i
\(557\) −3.16066 5.47442i −0.133921 0.231959i 0.791264 0.611475i \(-0.209424\pi\)
−0.925185 + 0.379517i \(0.876090\pi\)
\(558\) −1.34940 0.779079i −0.0571248 0.0329810i
\(559\) −33.6467 −1.42310
\(560\) 0 0
\(561\) −3.70570 + 7.01888i −0.156455 + 0.296337i
\(562\) −4.04873 + 7.01261i −0.170785 + 0.295809i
\(563\) 4.70295 + 8.14574i 0.198206 + 0.343302i 0.947947 0.318429i \(-0.103155\pi\)
−0.749741 + 0.661731i \(0.769822\pi\)
\(564\) 4.29920 2.48214i 0.181029 0.104517i
\(565\) −2.40396 + 4.16379i −0.101135 + 0.175172i
\(566\) 10.2234i 0.429721i
\(567\) 0 0
\(568\) 46.2476i 1.94051i
\(569\) −8.44752 + 14.6315i −0.354138 + 0.613386i −0.986970 0.160904i \(-0.948559\pi\)
0.632832 + 0.774289i \(0.281892\pi\)
\(570\) −7.79293 13.4978i −0.326410 0.565359i
\(571\) −0.390415 + 0.225406i −0.0163384 + 0.00943297i −0.508147 0.861270i \(-0.669669\pi\)
0.491809 + 0.870703i \(0.336336\pi\)
\(572\) −3.86186 2.22965i −0.161473 0.0932263i
\(573\) 44.2946i 1.85043i
\(574\) 0 0
\(575\) 2.56668i 0.107038i
\(576\) 3.36163 5.82252i 0.140068 0.242605i
\(577\) 10.1309 + 17.5472i 0.421755 + 0.730500i 0.996111 0.0881048i \(-0.0280810\pi\)
−0.574357 + 0.818605i \(0.694748\pi\)
\(578\) 8.22007 17.1070i 0.341910 0.711559i
\(579\) −25.9010 + 44.8619i −1.07641 + 1.86440i
\(580\) −4.66873 −0.193858
\(581\) 0 0
\(582\) 24.3416 1.00899
\(583\) −5.23586 3.02293i −0.216847 0.125197i
\(584\) 18.5986 10.7379i 0.769616 0.444338i
\(585\) 6.29643 3.63524i 0.260325 0.150299i
\(586\) 9.45692 16.3799i 0.390662 0.676646i
\(587\) −36.5831 −1.50995 −0.754973 0.655756i \(-0.772350\pi\)
−0.754973 + 0.655756i \(0.772350\pi\)
\(588\) 0 0
\(589\) 8.23798i 0.339440i
\(590\) 9.66574 + 5.58052i 0.397932 + 0.229746i
\(591\) 2.90598 + 5.03330i 0.119536 + 0.207042i
\(592\) 13.0638 7.54237i 0.536918 0.309990i
\(593\) 2.14224 3.71046i 0.0879711 0.152370i −0.818682 0.574247i \(-0.805295\pi\)
0.906653 + 0.421876i \(0.138628\pi\)
\(594\) 4.70973 0.193243
\(595\) 0 0
\(596\) 4.96426 0.203344
\(597\) −17.2192 + 29.8246i −0.704737 + 1.22064i
\(598\) 5.40676 3.12160i 0.221099 0.127652i
\(599\) −7.50569 13.0002i −0.306674 0.531175i 0.670959 0.741495i \(-0.265883\pi\)
−0.977633 + 0.210320i \(0.932549\pi\)
\(600\) 14.3066 + 8.25993i 0.584066 + 0.337210i
\(601\) 23.4374i 0.956033i 0.878351 + 0.478017i \(0.158644\pi\)
−0.878351 + 0.478017i \(0.841356\pi\)
\(602\) 0 0
\(603\) 0.669943 0.0272822
\(604\) 4.37202 7.57256i 0.177895 0.308123i
\(605\) −13.0152 + 7.51430i −0.529141 + 0.305500i
\(606\) 19.8501 11.4605i 0.806355 0.465549i
\(607\) 9.52983 + 5.50205i 0.386804 + 0.223321i 0.680774 0.732493i \(-0.261643\pi\)
−0.293971 + 0.955814i \(0.594977\pi\)
\(608\) −19.0871 −0.774086
\(609\) 0 0
\(610\) 0.981836 0.0397534
\(611\) −10.1256 + 17.5380i −0.409637 + 0.709512i
\(612\) −2.51047 + 0.0950241i −0.101480 + 0.00384112i
\(613\) 3.14915 + 5.45448i 0.127193 + 0.220304i 0.922588 0.385787i \(-0.126070\pi\)
−0.795395 + 0.606091i \(0.792737\pi\)
\(614\) 10.5558 18.2831i 0.425996 0.737847i
\(615\) 29.0573i 1.17170i
\(616\) 0 0
\(617\) 24.1377i 0.971748i 0.874029 + 0.485874i \(0.161499\pi\)
−0.874029 + 0.485874i \(0.838501\pi\)
\(618\) 2.11439 + 1.22074i 0.0850531 + 0.0491054i
\(619\) 3.11966 1.80114i 0.125390 0.0723939i −0.435993 0.899950i \(-0.643603\pi\)
0.561383 + 0.827556i \(0.310269\pi\)
\(620\) 0.974743 + 1.68830i 0.0391466 + 0.0678039i
\(621\) 1.99322 3.45236i 0.0799851 0.138538i
\(622\) 3.02696i 0.121370i
\(623\) 0 0
\(624\) 22.5377i 0.902231i
\(625\) 1.82504 3.16106i 0.0730016 0.126443i
\(626\) 26.4383 15.2642i 1.05669 0.610078i
\(627\) 4.59380 + 7.95669i 0.183459 + 0.317760i
\(628\) 8.44338 14.6244i 0.336928 0.583576i
\(629\) −28.5717 15.0847i −1.13923 0.601468i
\(630\) 0 0
\(631\) −11.4191 −0.454587 −0.227293 0.973826i \(-0.572988\pi\)
−0.227293 + 0.973826i \(0.572988\pi\)
\(632\) −36.9228 21.3174i −1.46871 0.847960i
\(633\) −8.17911 14.1666i −0.325090 0.563073i
\(634\) 5.42580 3.13259i 0.215486 0.124411i
\(635\) −17.5645 10.1409i −0.697028 0.402429i
\(636\) 9.01373i 0.357418i
\(637\) 0 0
\(638\) −4.55220 −0.180223
\(639\) −10.5345 6.08207i −0.416737 0.240603i
\(640\) 1.66753 0.962750i 0.0659150 0.0380560i
\(641\) 4.90140 2.82983i 0.193594 0.111771i −0.400070 0.916485i \(-0.631014\pi\)
0.593664 + 0.804713i \(0.297681\pi\)
\(642\) −16.4924 + 28.5657i −0.650904 + 1.12740i
\(643\) 15.2852i 0.602791i −0.953499 0.301395i \(-0.902548\pi\)
0.953499 0.301395i \(-0.0974524\pi\)
\(644\) 0 0
\(645\) 16.4050 0.645947
\(646\) −11.6967 18.5973i −0.460201 0.731702i
\(647\) 14.3719 + 24.8929i 0.565018 + 0.978640i 0.997048 + 0.0767810i \(0.0244642\pi\)
−0.432030 + 0.901859i \(0.642202\pi\)
\(648\) 16.5575 + 28.6784i 0.650439 + 1.12659i
\(649\) −5.69779 3.28962i −0.223658 0.129129i
\(650\) −18.4427 −0.723381
\(651\) 0 0
\(652\) 7.23513i 0.283349i
\(653\) −18.0039 10.3946i −0.704547 0.406770i 0.104492 0.994526i \(-0.466678\pi\)
−0.809039 + 0.587755i \(0.800012\pi\)
\(654\) 9.42704 + 16.3281i 0.368626 + 0.638479i
\(655\) −1.62630 2.81683i −0.0635448 0.110063i
\(656\) 16.5612 + 9.56161i 0.646606 + 0.373318i
\(657\) 5.64862i 0.220374i
\(658\) 0 0
\(659\) 47.0480 1.83273 0.916365 0.400343i \(-0.131109\pi\)
0.916365 + 0.400343i \(0.131109\pi\)
\(660\) 1.88292 + 1.08710i 0.0732926 + 0.0423155i
\(661\) 2.94057 + 5.09322i 0.114375 + 0.198103i 0.917530 0.397667i \(-0.130180\pi\)
−0.803155 + 0.595770i \(0.796847\pi\)
\(662\) −15.2691 26.4469i −0.593451 1.02789i
\(663\) 40.8624 25.7002i 1.58696 0.998114i
\(664\) −2.38755 −0.0926551
\(665\) 0 0
\(666\) 7.07393i 0.274109i
\(667\) −1.92655 + 3.33688i −0.0745963 + 0.129205i
\(668\) −5.09539 + 2.94183i −0.197147 + 0.113823i
\(669\) −17.9562 + 10.3670i −0.694228 + 0.400812i
\(670\) 1.20068 + 0.693215i 0.0463864 + 0.0267812i
\(671\) −0.578775 −0.0223434
\(672\) 0 0
\(673\) 25.3750i 0.978135i 0.872246 + 0.489068i \(0.162663\pi\)
−0.872246 + 0.489068i \(0.837337\pi\)
\(674\) 20.3155 + 11.7291i 0.782522 + 0.451789i
\(675\) −10.1984 + 5.88806i −0.392537 + 0.226632i
\(676\) 8.66237 + 15.0037i 0.333168 + 0.577064i
\(677\) −36.9800 21.3504i −1.42126 0.820562i −0.424849 0.905264i \(-0.639673\pi\)
−0.996406 + 0.0847023i \(0.973006\pi\)
\(678\) −6.98920 −0.268419
\(679\) 0 0
\(680\) −16.8000 8.86977i −0.644252 0.340140i
\(681\) −5.11284 + 8.85570i −0.195924 + 0.339351i
\(682\) 0.950413 + 1.64616i 0.0363932 + 0.0630349i
\(683\) 17.2620 9.96620i 0.660511 0.381346i −0.131961 0.991255i \(-0.542127\pi\)
0.792472 + 0.609909i \(0.208794\pi\)
\(684\) −1.45405 + 2.51849i −0.0555969 + 0.0962967i
\(685\) 12.4615i 0.476130i
\(686\) 0 0
\(687\) 37.9480i 1.44781i
\(688\) −5.39825 + 9.35005i −0.205806 + 0.356467i
\(689\) 18.3852 + 31.8441i 0.700419 + 1.21316i
\(690\) −2.63616 + 1.52199i −0.100357 + 0.0579411i
\(691\) −6.86111 3.96126i −0.261009 0.150693i 0.363786 0.931483i \(-0.381484\pi\)
−0.624795 + 0.780789i \(0.714817\pi\)
\(692\) 6.23938i 0.237186i
\(693\) 0 0
\(694\) 24.9803i 0.948238i
\(695\) 0.672499 1.16480i 0.0255093 0.0441835i
\(696\) −12.3998 21.4771i −0.470013 0.814086i
\(697\) −1.54924 40.9298i −0.0586816 1.55033i
\(698\) 4.37986 7.58614i 0.165780 0.287140i
\(699\) 58.4292 2.21000
\(700\) 0 0
\(701\) −18.6458 −0.704240 −0.352120 0.935955i \(-0.614539\pi\)
−0.352120 + 0.935955i \(0.614539\pi\)
\(702\) −24.8066 14.3221i −0.936264 0.540552i
\(703\) −32.3892 + 18.6999i −1.22158 + 0.705281i
\(704\) −7.10300 + 4.10092i −0.267704 + 0.154559i
\(705\) 4.93691 8.55097i 0.185935 0.322048i
\(706\) −7.25672 −0.273110
\(707\) 0 0
\(708\) 9.80896i 0.368643i
\(709\) −4.73118 2.73155i −0.177683 0.102585i 0.408520 0.912749i \(-0.366045\pi\)
−0.586204 + 0.810164i \(0.699378\pi\)
\(710\) −12.5867 21.8008i −0.472370 0.818169i
\(711\) −9.71151 + 5.60694i −0.364210 + 0.210277i
\(712\) 6.30515 10.9208i 0.236295 0.409276i
\(713\) 1.60891 0.0602541
\(714\) 0 0
\(715\) −8.86940 −0.331697
\(716\) −5.48856 + 9.50646i −0.205117 + 0.355273i
\(717\) 1.70351 0.983523i 0.0636188 0.0367303i
\(718\) −12.6881 21.9765i −0.473517 0.820155i
\(719\) −36.0496 20.8132i −1.34442 0.776203i −0.356970 0.934116i \(-0.616190\pi\)
−0.987453 + 0.157913i \(0.949524\pi\)
\(720\) 2.33295i 0.0869438i
\(721\) 0 0
\(722\) −4.21899 −0.157015
\(723\) −7.01941 + 12.1580i −0.261055 + 0.452160i
\(724\) 7.56422 4.36721i 0.281122 0.162306i
\(725\) 9.85730 5.69111i 0.366091 0.211363i
\(726\) −18.9199 10.9234i −0.702184 0.405406i
\(727\) 21.8552 0.810565 0.405283 0.914191i \(-0.367173\pi\)
0.405283 + 0.914191i \(0.367173\pi\)
\(728\) 0 0
\(729\) −16.3286 −0.604764
\(730\) 5.84483 10.1235i 0.216327 0.374689i
\(731\) 23.1080 0.874662i 0.854679 0.0323505i
\(732\) −0.431447 0.747288i −0.0159467 0.0276206i
\(733\) −13.5132 + 23.4056i −0.499123 + 0.864506i −0.999999 0.00101295i \(-0.999678\pi\)
0.500877 + 0.865518i \(0.333011\pi\)
\(734\) 31.5175i 1.16333i
\(735\) 0 0
\(736\) 3.72779i 0.137408i
\(737\) −0.707782 0.408638i −0.0260715 0.0150524i
\(738\) 7.76631 4.48388i 0.285882 0.165054i
\(739\) −7.24918 12.5560i −0.266666 0.461878i 0.701333 0.712834i \(-0.252589\pi\)
−0.967999 + 0.250955i \(0.919255\pi\)
\(740\) −4.42527 + 7.66479i −0.162676 + 0.281763i
\(741\) 55.8782i 2.05274i
\(742\) 0 0
\(743\) 2.58568i 0.0948596i 0.998875 + 0.0474298i \(0.0151030\pi\)
−0.998875 + 0.0474298i \(0.984897\pi\)
\(744\) −5.17768 + 8.96801i −0.189823 + 0.328783i
\(745\) 8.55092 4.93688i 0.313281 0.180873i
\(746\) −5.23685 9.07050i −0.191735 0.332094i
\(747\) −0.313990 + 0.543847i −0.0114883 + 0.0198983i
\(748\) 2.71023 + 1.43089i 0.0990957 + 0.0523187i
\(749\) 0 0
\(750\) 25.3201 0.924559
\(751\) 16.5966 + 9.58206i 0.605619 + 0.349654i 0.771249 0.636534i \(-0.219632\pi\)
−0.165630 + 0.986188i \(0.552966\pi\)
\(752\) 3.24909 + 5.62758i 0.118482 + 0.205217i
\(753\) 23.9134 13.8064i 0.871452 0.503133i
\(754\) 23.9768 + 13.8430i 0.873185 + 0.504134i
\(755\) 17.3916i 0.632946i
\(756\) 0 0
\(757\) −2.81660 −0.102371 −0.0511855 0.998689i \(-0.516300\pi\)
−0.0511855 + 0.998689i \(0.516300\pi\)
\(758\) −20.4114 11.7845i −0.741375 0.428033i
\(759\) 1.55397 0.897186i 0.0564056 0.0325658i
\(760\) −19.0447 + 10.9955i −0.690825 + 0.398848i
\(761\) 2.52804 4.37870i 0.0916415 0.158728i −0.816560 0.577260i \(-0.804122\pi\)
0.908202 + 0.418532i \(0.137455\pi\)
\(762\) 29.4833i 1.06807i
\(763\) 0 0
\(764\) 17.1036 0.618788
\(765\) −4.22978 + 2.66030i −0.152928 + 0.0961835i
\(766\) −9.73555 16.8625i −0.351760 0.609266i
\(767\) 20.0072 + 34.6535i 0.722417 + 1.25126i
\(768\) −25.6820 14.8275i −0.926718 0.535041i
\(769\) −11.9647 −0.431460 −0.215730 0.976453i \(-0.569213\pi\)
−0.215730 + 0.976453i \(0.569213\pi\)
\(770\) 0 0
\(771\) 49.1110i 1.76869i
\(772\) 17.3227 + 10.0013i 0.623457 + 0.359953i
\(773\) −17.1472 29.6998i −0.616741 1.06823i −0.990076 0.140531i \(-0.955119\pi\)
0.373335 0.927697i \(-0.378214\pi\)
\(774\) 2.53149 + 4.38467i 0.0909925 + 0.157604i
\(775\) −4.11604 2.37639i −0.147852 0.0853626i
\(776\) 34.3449i 1.23291i
\(777\) 0 0
\(778\) −27.4240 −0.983200
\(779\) −41.0605 23.7063i −1.47114 0.849365i
\(780\) −6.61168 11.4518i −0.236736 0.410039i
\(781\) 7.41964 + 12.8512i 0.265495 + 0.459852i
\(782\) −3.63213 + 2.28441i −0.129885 + 0.0816904i
\(783\) 17.6783 0.631770
\(784\) 0 0
\(785\) 33.5872i 1.19878i
\(786\) 2.36412 4.09478i 0.0843255 0.146056i
\(787\) 23.1487 13.3649i 0.825164 0.476408i −0.0270303 0.999635i \(-0.508605\pi\)
0.852194 + 0.523226i \(0.175272\pi\)
\(788\) 1.94353 1.12210i 0.0692353 0.0399730i
\(789\) 13.6906 + 7.90426i 0.487398 + 0.281399i
\(790\) −23.2068 −0.825663
\(791\) 0 0
\(792\) 2.45192i 0.0871252i
\(793\) 3.04846 + 1.76003i 0.108254 + 0.0625005i
\(794\) −1.84712 + 1.06643i −0.0655518 + 0.0378463i
\(795\) −8.96402 15.5261i −0.317921 0.550655i
\(796\) 11.5163 + 6.64893i 0.408184 + 0.235665i
\(797\) −8.74810 −0.309874 −0.154937 0.987924i \(-0.549517\pi\)
−0.154937 + 0.987924i \(0.549517\pi\)
\(798\) 0 0
\(799\) 6.49817 12.3080i 0.229889 0.435427i
\(800\) 5.50603 9.53672i 0.194668 0.337174i
\(801\) −1.65839 2.87242i −0.0585965 0.101492i
\(802\) 13.6189 7.86290i 0.480901 0.277649i
\(803\) −3.44543 + 5.96765i −0.121586 + 0.210594i
\(804\) 1.21847i 0.0429722i
\(805\) 0 0
\(806\) 11.5607i 0.407207i
\(807\) 21.7037 37.5920i 0.764008 1.32330i
\(808\) −16.1702 28.0076i −0.568865 0.985304i
\(809\) −11.8416 + 6.83675i −0.416328 + 0.240367i −0.693505 0.720452i \(-0.743935\pi\)
0.277177 + 0.960819i \(0.410601\pi\)
\(810\) 15.6101 + 9.01252i 0.548485 + 0.316668i
\(811\) 22.3364i 0.784338i −0.919893 0.392169i \(-0.871725\pi\)
0.919893 0.392169i \(-0.128275\pi\)
\(812\) 0 0
\(813\) 13.5115i 0.473868i
\(814\) −4.31481 + 7.47347i −0.151234 + 0.261945i
\(815\) −7.19522 12.4625i −0.252038 0.436542i
\(816\) −0.585880 15.4785i −0.0205099 0.541857i
\(817\) 13.3840 23.1817i 0.468246 0.811026i
\(818\) 4.39739 0.153751
\(819\) 0 0
\(820\) −11.2200 −0.391819
\(821\) −17.8233 10.2903i −0.622037 0.359133i 0.155625 0.987816i \(-0.450261\pi\)
−0.777662 + 0.628683i \(0.783594\pi\)
\(822\) −15.6881 + 9.05755i −0.547187 + 0.315918i
\(823\) 6.61541 3.81941i 0.230599 0.133136i −0.380250 0.924884i \(-0.624162\pi\)
0.610848 + 0.791748i \(0.290829\pi\)
\(824\) 1.72241 2.98331i 0.0600031 0.103928i
\(825\) −5.30066 −0.184545
\(826\) 0 0
\(827\) 15.4126i 0.535949i −0.963426 0.267974i \(-0.913646\pi\)
0.963426 0.267974i \(-0.0863543\pi\)
\(828\) 0.491870 + 0.283981i 0.0170937 + 0.00986902i
\(829\) −19.2365 33.3185i −0.668110 1.15720i −0.978432 0.206569i \(-0.933770\pi\)
0.310322 0.950631i \(-0.399563\pi\)
\(830\) −1.12548 + 0.649794i −0.0390658 + 0.0225547i
\(831\) −23.9607 + 41.5011i −0.831187 + 1.43966i
\(832\) 49.8828 1.72938
\(833\) 0 0
\(834\) 1.95520 0.0677030
\(835\) −5.85120 + 10.1346i −0.202489 + 0.350721i
\(836\) 3.07235 1.77382i 0.106259 0.0613489i
\(837\) −3.69089 6.39281i −0.127576 0.220968i
\(838\) −9.97822 5.76093i −0.344692 0.199008i
\(839\) 16.1818i 0.558658i 0.960195 + 0.279329i \(0.0901120\pi\)
−0.960195 + 0.279329i \(0.909888\pi\)
\(840\) 0 0
\(841\) 11.9130 0.410794
\(842\) 1.25982 2.18207i 0.0434162 0.0751991i
\(843\) 12.2582 7.07726i 0.422194 0.243754i
\(844\) −5.47021 + 3.15823i −0.188293 + 0.108711i
\(845\) 29.8418 + 17.2292i 1.02659 + 0.592702i
\(846\) 3.04729 0.104768
\(847\) 0 0
\(848\) 11.7988 0.405174
\(849\) −8.93535 + 15.4765i −0.306660 + 0.531151i
\(850\) 12.6661 0.479427i 0.434445 0.0164442i
\(851\) 3.65217 + 6.32574i 0.125195 + 0.216844i
\(852\) −11.0619 + 19.1598i −0.378974 + 0.656403i
\(853\) 12.8634i 0.440435i −0.975451 0.220217i \(-0.929323\pi\)
0.975451 0.220217i \(-0.0706767\pi\)
\(854\) 0 0
\(855\) 5.78411i 0.197812i
\(856\) 40.3050 + 23.2701i 1.37760 + 0.795355i
\(857\) −41.9623 + 24.2269i −1.43340 + 0.827576i −0.997379 0.0723591i \(-0.976947\pi\)
−0.436025 + 0.899935i \(0.643614\pi\)
\(858\) −6.44665 11.1659i −0.220085 0.381198i
\(859\) −17.5817 + 30.4524i −0.599879 + 1.03902i 0.392959 + 0.919556i \(0.371451\pi\)
−0.992838 + 0.119465i \(0.961882\pi\)
\(860\) 6.33453i 0.216006i
\(861\) 0 0
\(862\) 2.21290i 0.0753718i
\(863\) −7.85420 + 13.6039i −0.267360 + 0.463081i −0.968179 0.250258i \(-0.919485\pi\)
0.700819 + 0.713339i \(0.252818\pi\)
\(864\) 14.8119 8.55167i 0.503912 0.290934i
\(865\) 6.20496 + 10.7473i 0.210975 + 0.365419i
\(866\) −18.9706 + 32.8580i −0.644647 + 1.11656i
\(867\) −27.3955 + 18.7127i −0.930400 + 0.635517i
\(868\) 0 0
\(869\) 13.6800 0.464063
\(870\) −11.6903 6.74942i −0.396340 0.228827i
\(871\) 2.48530 + 4.30467i 0.0842112 + 0.145858i
\(872\) 23.0382 13.3011i 0.780173 0.450433i
\(873\) −7.82321 4.51674i −0.264776 0.152868i
\(874\) 4.96684i 0.168006i
\(875\) 0 0
\(876\) −10.2735 −0.347111
\(877\) −3.54827 2.04860i −0.119817 0.0691762i 0.438894 0.898539i \(-0.355370\pi\)
−0.558711 + 0.829363i \(0.688704\pi\)
\(878\) −14.8168 + 8.55448i −0.500043 + 0.288700i
\(879\) −28.6323 + 16.5309i −0.965744 + 0.557573i
\(880\) −1.42300 + 2.46471i −0.0479694 + 0.0830854i
\(881\) 23.1066i 0.778480i −0.921136 0.389240i \(-0.872738\pi\)
0.921136 0.389240i \(-0.127262\pi\)
\(882\) 0 0
\(883\) 21.3780 0.719425 0.359713 0.933063i \(-0.382875\pi\)
0.359713 + 0.933063i \(0.382875\pi\)
\(884\) −9.92372 15.7783i −0.333771 0.530683i
\(885\) −9.75485 16.8959i −0.327906 0.567950i
\(886\) 18.1622 + 31.4579i 0.610171 + 1.05685i
\(887\) 34.9061 + 20.1531i 1.17203 + 0.676673i 0.954158 0.299303i \(-0.0967542\pi\)
0.217875 + 0.975977i \(0.430088\pi\)
\(888\) −47.0126 −1.57764
\(889\) 0 0
\(890\) 6.86400i 0.230082i
\(891\) −9.20191 5.31272i −0.308276 0.177983i
\(892\) 4.00306 + 6.93350i 0.134032 + 0.232151i
\(893\) −8.05551 13.9526i −0.269568 0.466905i
\(894\) 12.4303 + 7.17665i 0.415732 + 0.240023i
\(895\) 21.8331i 0.729801i
\(896\) 0 0
\(897\) −10.9132 −0.364382
\(898\) 2.23448 + 1.29007i 0.0745654 + 0.0430504i
\(899\) 3.56743 + 6.17898i 0.118981 + 0.206080i
\(900\) −0.838893 1.45301i −0.0279631 0.0484335i
\(901\) −13.4544 21.3920i −0.448232 0.712672i
\(902\) −10.9399 −0.364260
\(903\) 0 0
\(904\) 9.86145i 0.327987i
\(905\) 8.68624 15.0450i 0.288740 0.500113i
\(906\) 21.8948 12.6409i 0.727405 0.419967i
\(907\) 0.826212 0.477013i 0.0274339 0.0158390i −0.486220 0.873836i \(-0.661625\pi\)
0.513654 + 0.857997i \(0.328291\pi\)
\(908\) 3.41948 + 1.97424i 0.113480 + 0.0655174i
\(909\) −8.50624 −0.282134
\(910\) 0 0
\(911\) 13.7884i 0.456829i 0.973564 + 0.228414i \(0.0733541\pi\)
−0.973564 + 0.228414i \(0.926646\pi\)
\(912\) −15.5280 8.96507i −0.514182 0.296863i
\(913\) 0.663449 0.383042i 0.0219569 0.0126768i
\(914\) −5.04006 8.72965i −0.166710 0.288751i
\(915\) −1.48633 0.858134i −0.0491366 0.0283690i
\(916\) 14.6530 0.484149
\(917\) 0 0
\(918\) 17.4091 + 9.19131i 0.574585 + 0.303359i
\(919\) 20.2231 35.0274i 0.667097 1.15545i −0.311615 0.950208i \(-0.600870\pi\)
0.978712 0.205238i \(-0.0657967\pi\)
\(920\) 2.14746 + 3.71951i 0.0707996 + 0.122629i
\(921\) −31.9592 + 18.4517i −1.05309 + 0.608003i
\(922\) 21.5688 37.3583i 0.710332 1.23033i
\(923\) 90.2512i 2.97065i
\(924\) 0 0
\(925\) 21.5773i 0.709459i
\(926\) 14.0334 24.3066i 0.461167 0.798764i
\(927\) −0.453033 0.784676i −0.0148795 0.0257721i
\(928\) −14.3165 + 8.26563i −0.469962 + 0.271333i
\(929\) −28.1206 16.2355i −0.922608 0.532668i −0.0381421 0.999272i \(-0.512144\pi\)
−0.884466 + 0.466604i \(0.845477\pi\)
\(930\) 5.63660i 0.184832i
\(931\) 0 0
\(932\) 22.5615i 0.739026i
\(933\) 2.64559 4.58230i 0.0866128 0.150018i
\(934\) −9.68507 16.7750i −0.316905 0.548896i
\(935\) 6.09136 0.230565i 0.199209 0.00754027i
\(936\) 7.45618 12.9145i 0.243713 0.422123i
\(937\) −16.4485 −0.537348 −0.268674 0.963231i \(-0.586585\pi\)
−0.268674 + 0.963231i \(0.586585\pi\)
\(938\) 0 0
\(939\) −53.3641 −1.74147
\(940\) −3.30182 1.90631i −0.107693 0.0621768i
\(941\) −15.0216 + 8.67273i −0.489691 + 0.282723i −0.724446 0.689331i \(-0.757904\pi\)
0.234755 + 0.972054i \(0.424571\pi\)
\(942\) 42.2839 24.4126i 1.37768 0.795405i
\(943\) −4.62992 + 8.01926i −0.150771 + 0.261143i
\(944\) 12.8398 0.417899
\(945\) 0 0
\(946\) 6.17642i 0.200813i
\(947\) −15.2205 8.78759i −0.494601 0.285558i 0.231880 0.972744i \(-0.425512\pi\)
−0.726481 + 0.687186i \(0.758846\pi\)
\(948\) 10.1978 + 17.6630i 0.331208 + 0.573668i
\(949\) 36.2948 20.9548i 1.17818 0.680221i
\(950\) 7.33613 12.7066i 0.238016 0.412255i
\(951\) −10.9516 −0.355132
\(952\) 0 0
\(953\) 31.3803 1.01651 0.508254 0.861207i \(-0.330291\pi\)
0.508254 + 0.861207i \(0.330291\pi\)
\(954\) 2.76651 4.79173i 0.0895690 0.155138i
\(955\) 29.4610 17.0093i 0.953335 0.550408i
\(956\) −0.379771 0.657783i −0.0122827 0.0212742i
\(957\) 6.89125 + 3.97867i 0.222762 + 0.128612i
\(958\) 28.6574i 0.925878i
\(959\) 0 0
\(960\) −24.3213 −0.784966
\(961\) −14.0104 + 24.2667i −0.451948 + 0.782796i
\(962\) 45.4530 26.2423i 1.46546 0.846086i
\(963\) 10.6011 6.12055i 0.341616 0.197232i
\(964\) 4.69460 + 2.71043i 0.151203 + 0.0872971i
\(965\) 39.7844 1.28070
\(966\) 0 0
\(967\) 20.9476 0.673630 0.336815 0.941571i \(-0.390650\pi\)
0.336815 + 0.941571i \(0.390650\pi\)
\(968\) −15.4125 + 26.6952i −0.495375 + 0.858015i
\(969\) 1.45258 + 38.3762i 0.0466636 + 1.23282i
\(970\) −9.34726 16.1899i −0.300123 0.519828i
\(971\) −13.1596 + 22.7931i −0.422312 + 0.731466i −0.996165 0.0874923i \(-0.972115\pi\)
0.573853 + 0.818958i \(0.305448\pi\)
\(972\) 6.17319i 0.198005i
\(973\) 0 0
\(974\) 34.3675i 1.10121i
\(975\) 27.9191 + 16.1191i 0.894125 + 0.516224i
\(976\) 0.978188 0.564757i 0.0313110 0.0180774i
\(977\) −8.26069 14.3079i −0.264283 0.457751i 0.703093 0.711098i \(-0.251802\pi\)
−0.967375 + 0.253347i \(0.918469\pi\)
\(978\) 10.4596 18.1165i 0.334460 0.579302i
\(979\) 4.04621i 0.129317i
\(980\) 0 0
\(981\) 6.99698i 0.223397i
\(982\) −18.9978 + 32.9051i −0.606243 + 1.05004i
\(983\) 31.8214 18.3721i 1.01495 0.585979i 0.102309 0.994753i \(-0.467377\pi\)
0.912636 + 0.408774i \(0.134043\pi\)
\(984\) −29.7994 51.6141i −0.949971 1.64540i
\(985\) 2.23181 3.86562i 0.0711115 0.123169i
\(986\) −16.8268 8.88388i −0.535873 0.282920i
\(987\) 0 0
\(988\) −21.5765 −0.686438
\(989\) −4.52748 2.61394i −0.143965 0.0831185i
\(990\) 0.667311 + 1.15582i 0.0212085 + 0.0367343i
\(991\) −25.1909 + 14.5440i −0.800215 + 0.462004i −0.843546 0.537056i \(-0.819536\pi\)
0.0433314 + 0.999061i \(0.486203\pi\)
\(992\) 5.97803 + 3.45142i 0.189803 + 0.109583i
\(993\) 53.3815i 1.69401i
\(994\) 0 0
\(995\) 26.4490 0.838491
\(996\) 0.989133 + 0.571076i 0.0313419 + 0.0180952i
\(997\) −27.5486 + 15.9052i −0.872472 + 0.503722i −0.868169 0.496269i \(-0.834703\pi\)
−0.00430279 + 0.999991i \(0.501370\pi\)
\(998\) −18.2553 + 10.5397i −0.577861 + 0.333628i
\(999\) 16.7564 29.0229i 0.530149 0.918244i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.2.j.a.373.7 20
7.2 even 3 833.2.b.d.50.3 10
7.3 odd 6 119.2.j.a.67.7 yes 20
7.4 even 3 inner 833.2.j.a.67.8 20
7.5 odd 6 833.2.b.c.50.4 10
7.6 odd 2 119.2.j.a.16.8 yes 20
17.16 even 2 inner 833.2.j.a.373.8 20
119.16 even 6 833.2.b.d.50.4 10
119.33 odd 6 833.2.b.c.50.3 10
119.67 even 6 inner 833.2.j.a.67.7 20
119.101 odd 6 119.2.j.a.67.8 yes 20
119.118 odd 2 119.2.j.a.16.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.j.a.16.7 20 119.118 odd 2
119.2.j.a.16.8 yes 20 7.6 odd 2
119.2.j.a.67.7 yes 20 7.3 odd 6
119.2.j.a.67.8 yes 20 119.101 odd 6
833.2.b.c.50.3 10 119.33 odd 6
833.2.b.c.50.4 10 7.5 odd 6
833.2.b.d.50.3 10 7.2 even 3
833.2.b.d.50.4 10 119.16 even 6
833.2.j.a.67.7 20 119.67 even 6 inner
833.2.j.a.67.8 20 7.4 even 3 inner
833.2.j.a.373.7 20 1.1 even 1 trivial
833.2.j.a.373.8 20 17.16 even 2 inner