Properties

Label 833.2.b.d.50.3
Level $833$
Weight $2$
Character 833.50
Analytic conductor $6.652$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [833,2,Mod(50,833)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("833.50"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(833, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,2,0,10,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 15x^{8} + 67x^{6} + 108x^{4} + 58x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 119)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 50.3
Root \(1.95156i\) of defining polynomial
Character \(\chi\) \(=\) 833.50
Dual form 833.2.b.d.50.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.11644 q^{2} -1.95156i q^{3} -0.753562 q^{4} -1.49881i q^{5} +2.17880i q^{6} +3.07419 q^{8} -0.808579 q^{9} +1.67333i q^{10} -0.986401i q^{11} +1.47062i q^{12} +5.99921 q^{13} -2.92502 q^{15} -1.92502 q^{16} +(1.92502 - 3.64614i) q^{17} +0.902730 q^{18} +4.77273 q^{19} +1.12945i q^{20} +1.10126i q^{22} -0.932132i q^{23} -5.99945i q^{24} +2.75356 q^{25} -6.69775 q^{26} -4.27669i q^{27} +4.13364i q^{29} +3.26561 q^{30} +1.72605i q^{31} -3.99921 q^{32} -1.92502 q^{33} +(-2.14917 + 4.07069i) q^{34} +0.609315 q^{36} -7.83616i q^{37} -5.32847 q^{38} -11.7078i q^{39} -4.60763i q^{40} +9.93404i q^{41} -5.60852 q^{43} +0.743315i q^{44} +1.21191i q^{45} +1.04067i q^{46} +3.37564 q^{47} +3.75679i q^{48} -3.07419 q^{50} +(-7.11564 - 3.75679i) q^{51} -4.52078 q^{52} -6.12920 q^{53} +4.77466i q^{54} -1.47843 q^{55} -9.31426i q^{57} -4.61496i q^{58} -6.66994 q^{59} +2.20418 q^{60} -0.586755i q^{61} -1.92703i q^{62} +8.31491 q^{64} -8.99168i q^{65} +2.14917 q^{66} -0.828544 q^{67} +(-1.45062 + 2.74759i) q^{68} -1.81911 q^{69} -15.0439i q^{71} -2.48572 q^{72} +6.98585i q^{73} +8.74859i q^{74} -5.37374i q^{75} -3.59655 q^{76} +13.0711i q^{78} +13.8686i q^{79} +2.88524i q^{80} -10.7719 q^{81} -11.0908i q^{82} -0.776646 q^{83} +(-5.46487 - 2.88524i) q^{85} +6.26157 q^{86} +8.06703 q^{87} -3.03238i q^{88} -4.10199 q^{89} -1.35302i q^{90} +0.702420i q^{92} +3.36849 q^{93} -3.76870 q^{94} -7.15343i q^{95} +7.80468i q^{96} -11.1720i q^{97} +0.797583i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} + 10 q^{4} + 8 q^{13} - 8 q^{15} + 2 q^{16} - 2 q^{17} - 18 q^{18} - 10 q^{19} + 10 q^{25} + 12 q^{26} + 10 q^{30} + 12 q^{32} + 2 q^{33} - 12 q^{34} + 28 q^{36} - 2 q^{38} - 26 q^{43} + 30 q^{47}+ \cdots + 50 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.11644 −0.789442 −0.394721 0.918801i \(-0.629159\pi\)
−0.394721 + 0.918801i \(0.629159\pi\)
\(3\) 1.95156i 1.12673i −0.826207 0.563366i \(-0.809506\pi\)
0.826207 0.563366i \(-0.190494\pi\)
\(4\) −0.753562 −0.376781
\(5\) 1.49881i 0.670289i −0.942167 0.335145i \(-0.891215\pi\)
0.942167 0.335145i \(-0.108785\pi\)
\(6\) 2.17880i 0.889490i
\(7\) 0 0
\(8\) 3.07419 1.08689
\(9\) −0.808579 −0.269526
\(10\) 1.67333i 0.529154i
\(11\) 0.986401i 0.297411i −0.988882 0.148706i \(-0.952489\pi\)
0.988882 0.148706i \(-0.0475107\pi\)
\(12\) 1.47062i 0.424532i
\(13\) 5.99921 1.66388 0.831940 0.554865i \(-0.187230\pi\)
0.831940 + 0.554865i \(0.187230\pi\)
\(14\) 0 0
\(15\) −2.92502 −0.755237
\(16\) −1.92502 −0.481255
\(17\) 1.92502 3.64614i 0.466886 0.884318i
\(18\) 0.902730 0.212775
\(19\) 4.77273 1.09494 0.547470 0.836825i \(-0.315591\pi\)
0.547470 + 0.836825i \(0.315591\pi\)
\(20\) 1.12945i 0.252552i
\(21\) 0 0
\(22\) 1.10126i 0.234789i
\(23\) 0.932132i 0.194363i −0.995267 0.0971815i \(-0.969017\pi\)
0.995267 0.0971815i \(-0.0309827\pi\)
\(24\) 5.99945i 1.22463i
\(25\) 2.75356 0.550712
\(26\) −6.69775 −1.31354
\(27\) 4.27669i 0.823048i
\(28\) 0 0
\(29\) 4.13364i 0.767597i 0.923417 + 0.383799i \(0.125384\pi\)
−0.923417 + 0.383799i \(0.874616\pi\)
\(30\) 3.26561 0.596216
\(31\) 1.72605i 0.310008i 0.987914 + 0.155004i \(0.0495390\pi\)
−0.987914 + 0.155004i \(0.950461\pi\)
\(32\) −3.99921 −0.706966
\(33\) −1.92502 −0.335103
\(34\) −2.14917 + 4.07069i −0.368579 + 0.698118i
\(35\) 0 0
\(36\) 0.609315 0.101552
\(37\) 7.83616i 1.28826i −0.764918 0.644128i \(-0.777220\pi\)
0.764918 0.644128i \(-0.222780\pi\)
\(38\) −5.32847 −0.864392
\(39\) 11.7078i 1.87475i
\(40\) 4.60763i 0.728530i
\(41\) 9.93404i 1.55144i 0.631079 + 0.775718i \(0.282612\pi\)
−0.631079 + 0.775718i \(0.717388\pi\)
\(42\) 0 0
\(43\) −5.60852 −0.855291 −0.427646 0.903946i \(-0.640657\pi\)
−0.427646 + 0.903946i \(0.640657\pi\)
\(44\) 0.743315i 0.112059i
\(45\) 1.21191i 0.180661i
\(46\) 1.04067i 0.153438i
\(47\) 3.37564 0.492388 0.246194 0.969221i \(-0.420820\pi\)
0.246194 + 0.969221i \(0.420820\pi\)
\(48\) 3.75679i 0.542245i
\(49\) 0 0
\(50\) −3.07419 −0.434756
\(51\) −7.11564 3.75679i −0.996390 0.526055i
\(52\) −4.52078 −0.626919
\(53\) −6.12920 −0.841911 −0.420955 0.907081i \(-0.638305\pi\)
−0.420955 + 0.907081i \(0.638305\pi\)
\(54\) 4.77466i 0.649749i
\(55\) −1.47843 −0.199351
\(56\) 0 0
\(57\) 9.31426i 1.23370i
\(58\) 4.61496i 0.605974i
\(59\) −6.66994 −0.868353 −0.434176 0.900828i \(-0.642961\pi\)
−0.434176 + 0.900828i \(0.642961\pi\)
\(60\) 2.20418 0.284559
\(61\) 0.586755i 0.0751262i −0.999294 0.0375631i \(-0.988040\pi\)
0.999294 0.0375631i \(-0.0119595\pi\)
\(62\) 1.92703i 0.244733i
\(63\) 0 0
\(64\) 8.31491 1.03936
\(65\) 8.99168i 1.11528i
\(66\) 2.14917 0.264544
\(67\) −0.828544 −0.101223 −0.0506114 0.998718i \(-0.516117\pi\)
−0.0506114 + 0.998718i \(0.516117\pi\)
\(68\) −1.45062 + 2.74759i −0.175914 + 0.333194i
\(69\) −1.81911 −0.218995
\(70\) 0 0
\(71\) 15.0439i 1.78538i −0.450674 0.892688i \(-0.648816\pi\)
0.450674 0.892688i \(-0.351184\pi\)
\(72\) −2.48572 −0.292945
\(73\) 6.98585i 0.817632i 0.912617 + 0.408816i \(0.134058\pi\)
−0.912617 + 0.408816i \(0.865942\pi\)
\(74\) 8.74859i 1.01700i
\(75\) 5.37374i 0.620506i
\(76\) −3.59655 −0.412553
\(77\) 0 0
\(78\) 13.0711i 1.48001i
\(79\) 13.8686i 1.56034i 0.625566 + 0.780172i \(0.284868\pi\)
−0.625566 + 0.780172i \(0.715132\pi\)
\(80\) 2.88524i 0.322580i
\(81\) −10.7719 −1.19688
\(82\) 11.0908i 1.22477i
\(83\) −0.776646 −0.0852480 −0.0426240 0.999091i \(-0.513572\pi\)
−0.0426240 + 0.999091i \(0.513572\pi\)
\(84\) 0 0
\(85\) −5.46487 2.88524i −0.592749 0.312948i
\(86\) 6.26157 0.675203
\(87\) 8.06703 0.864877
\(88\) 3.03238i 0.323253i
\(89\) −4.10199 −0.434811 −0.217405 0.976081i \(-0.569759\pi\)
−0.217405 + 0.976081i \(0.569759\pi\)
\(90\) 1.35302i 0.142621i
\(91\) 0 0
\(92\) 0.702420i 0.0732323i
\(93\) 3.36849 0.349296
\(94\) −3.76870 −0.388712
\(95\) 7.15343i 0.733926i
\(96\) 7.80468i 0.796562i
\(97\) 11.1720i 1.13435i −0.823598 0.567174i \(-0.808037\pi\)
0.823598 0.567174i \(-0.191963\pi\)
\(98\) 0 0
\(99\) 0.797583i 0.0801601i
\(100\) −2.07498 −0.207498
\(101\) 10.5200 1.04678 0.523389 0.852094i \(-0.324668\pi\)
0.523389 + 0.852094i \(0.324668\pi\)
\(102\) 7.94419 + 4.19423i 0.786592 + 0.415290i
\(103\) −1.12056 −0.110413 −0.0552063 0.998475i \(-0.517582\pi\)
−0.0552063 + 0.998475i \(0.517582\pi\)
\(104\) 18.4427 1.80845
\(105\) 0 0
\(106\) 6.84289 0.664640
\(107\) 15.1390i 1.46354i −0.681550 0.731772i \(-0.738694\pi\)
0.681550 0.731772i \(-0.261306\pi\)
\(108\) 3.22275i 0.310109i
\(109\) 8.65343i 0.828848i 0.910084 + 0.414424i \(0.136017\pi\)
−0.910084 + 0.414424i \(0.863983\pi\)
\(110\) 1.65058 0.157376
\(111\) −15.2927 −1.45152
\(112\) 0 0
\(113\) 3.20782i 0.301767i 0.988552 + 0.150883i \(0.0482118\pi\)
−0.988552 + 0.150883i \(0.951788\pi\)
\(114\) 10.3988i 0.973938i
\(115\) −1.39709 −0.130279
\(116\) 3.11495i 0.289216i
\(117\) −4.85083 −0.448460
\(118\) 7.44659 0.685514
\(119\) 0 0
\(120\) −8.99205 −0.820858
\(121\) 10.0270 0.911547
\(122\) 0.655076i 0.0593078i
\(123\) 19.3869 1.74805
\(124\) 1.30069i 0.116805i
\(125\) 11.6211i 1.03943i
\(126\) 0 0
\(127\) −13.5319 −1.20076 −0.600381 0.799714i \(-0.704984\pi\)
−0.600381 + 0.799714i \(0.704984\pi\)
\(128\) −1.28468 −0.113551
\(129\) 10.9454i 0.963685i
\(130\) 10.0387i 0.880450i
\(131\) 2.17012i 0.189604i 0.995496 + 0.0948020i \(0.0302218\pi\)
−0.995496 + 0.0948020i \(0.969778\pi\)
\(132\) 1.45062 0.126260
\(133\) 0 0
\(134\) 0.925019 0.0799095
\(135\) −6.40995 −0.551680
\(136\) 5.91787 11.2089i 0.507453 0.961155i
\(137\) −8.31427 −0.710336 −0.355168 0.934803i \(-0.615576\pi\)
−0.355168 + 0.934803i \(0.615576\pi\)
\(138\) 2.03093 0.172884
\(139\) 0.897376i 0.0761144i −0.999276 0.0380572i \(-0.987883\pi\)
0.999276 0.0380572i \(-0.0121169\pi\)
\(140\) 0 0
\(141\) 6.58776i 0.554789i
\(142\) 16.7956i 1.40945i
\(143\) 5.91762i 0.494856i
\(144\) 1.55653 0.129711
\(145\) 6.19555 0.514512
\(146\) 7.79929i 0.645473i
\(147\) 0 0
\(148\) 5.90503i 0.485391i
\(149\) −6.58772 −0.539687 −0.269843 0.962904i \(-0.586972\pi\)
−0.269843 + 0.962904i \(0.586972\pi\)
\(150\) 5.99945i 0.489853i
\(151\) 11.6036 0.944288 0.472144 0.881522i \(-0.343480\pi\)
0.472144 + 0.881522i \(0.343480\pi\)
\(152\) 14.6723 1.19008
\(153\) −1.55653 + 2.94819i −0.125838 + 0.238347i
\(154\) 0 0
\(155\) 2.58703 0.207795
\(156\) 8.82256i 0.706370i
\(157\) 22.4092 1.78845 0.894226 0.447615i \(-0.147727\pi\)
0.894226 + 0.447615i \(0.147727\pi\)
\(158\) 15.4835i 1.23180i
\(159\) 11.9615i 0.948608i
\(160\) 5.99406i 0.473872i
\(161\) 0 0
\(162\) 12.0262 0.944869
\(163\) 9.60123i 0.752026i 0.926614 + 0.376013i \(0.122705\pi\)
−0.926614 + 0.376013i \(0.877295\pi\)
\(164\) 7.48592i 0.584552i
\(165\) 2.88524i 0.224616i
\(166\) 0.867079 0.0672983
\(167\) 7.80778i 0.604184i 0.953279 + 0.302092i \(0.0976851\pi\)
−0.953279 + 0.302092i \(0.902315\pi\)
\(168\) 0 0
\(169\) 22.9905 1.76850
\(170\) 6.10120 + 3.22120i 0.467941 + 0.247055i
\(171\) −3.85913 −0.295115
\(172\) 4.22637 0.322258
\(173\) 8.27984i 0.629505i −0.949174 0.314752i \(-0.898079\pi\)
0.949174 0.314752i \(-0.101921\pi\)
\(174\) −9.00636 −0.682770
\(175\) 0 0
\(176\) 1.89884i 0.143130i
\(177\) 13.0168i 0.978401i
\(178\) 4.57963 0.343258
\(179\) −14.5670 −1.08879 −0.544393 0.838830i \(-0.683240\pi\)
−0.544393 + 0.838830i \(0.683240\pi\)
\(180\) 0.913248i 0.0680695i
\(181\) 11.5908i 0.861539i −0.902462 0.430770i \(-0.858242\pi\)
0.902462 0.430770i \(-0.141758\pi\)
\(182\) 0 0
\(183\) −1.14509 −0.0846472
\(184\) 2.86555i 0.211251i
\(185\) −11.7449 −0.863504
\(186\) −3.76071 −0.275749
\(187\) −3.59655 1.89884i −0.263006 0.138857i
\(188\) −2.54376 −0.185522
\(189\) 0 0
\(190\) 7.98637i 0.579392i
\(191\) −22.6970 −1.64230 −0.821150 0.570712i \(-0.806667\pi\)
−0.821150 + 0.570712i \(0.806667\pi\)
\(192\) 16.2270i 1.17108i
\(193\) 26.5439i 1.91067i 0.295519 + 0.955337i \(0.404507\pi\)
−0.295519 + 0.955337i \(0.595493\pi\)
\(194\) 12.4729i 0.895502i
\(195\) −17.5478 −1.25662
\(196\) 0 0
\(197\) 2.97811i 0.212182i −0.994356 0.106091i \(-0.966167\pi\)
0.994356 0.106091i \(-0.0338334\pi\)
\(198\) 0.890454i 0.0632818i
\(199\) 17.6467i 1.25094i 0.780249 + 0.625469i \(0.215092\pi\)
−0.780249 + 0.625469i \(0.784908\pi\)
\(200\) 8.46496 0.598563
\(201\) 1.61695i 0.114051i
\(202\) −11.7449 −0.826370
\(203\) 0 0
\(204\) 5.36208 + 2.83097i 0.375421 + 0.198208i
\(205\) 14.8893 1.03991
\(206\) 1.25104 0.0871643
\(207\) 0.753703i 0.0523860i
\(208\) −11.5486 −0.800750
\(209\) 4.70783i 0.325647i
\(210\) 0 0
\(211\) 8.38213i 0.577050i 0.957472 + 0.288525i \(0.0931648\pi\)
−0.957472 + 0.288525i \(0.906835\pi\)
\(212\) 4.61874 0.317216
\(213\) −29.3590 −2.01164
\(214\) 16.9018i 1.15538i
\(215\) 8.40612i 0.573292i
\(216\) 13.1473i 0.894562i
\(217\) 0 0
\(218\) 9.66103i 0.654328i
\(219\) 13.6333 0.921253
\(220\) 1.11409 0.0751119
\(221\) 11.5486 21.8739i 0.776842 1.47140i
\(222\) 17.0734 1.14589
\(223\) 10.6244 0.711460 0.355730 0.934589i \(-0.384232\pi\)
0.355730 + 0.934589i \(0.384232\pi\)
\(224\) 0 0
\(225\) −2.22647 −0.148432
\(226\) 3.58134i 0.238227i
\(227\) 5.23975i 0.347774i 0.984766 + 0.173887i \(0.0556328\pi\)
−0.984766 + 0.173887i \(0.944367\pi\)
\(228\) 7.01888i 0.464837i
\(229\) −19.4450 −1.28496 −0.642481 0.766302i \(-0.722095\pi\)
−0.642481 + 0.766302i \(0.722095\pi\)
\(230\) 1.55977 0.102848
\(231\) 0 0
\(232\) 12.7076i 0.834293i
\(233\) 29.9398i 1.96142i 0.195468 + 0.980710i \(0.437378\pi\)
−0.195468 + 0.980710i \(0.562622\pi\)
\(234\) 5.41566 0.354033
\(235\) 5.05945i 0.330042i
\(236\) 5.02622 0.327179
\(237\) 27.0654 1.75809
\(238\) 0 0
\(239\) −1.00794 −0.0651980 −0.0325990 0.999469i \(-0.510378\pi\)
−0.0325990 + 0.999469i \(0.510378\pi\)
\(240\) 5.63072 0.363461
\(241\) 7.19364i 0.463383i 0.972789 + 0.231692i \(0.0744260\pi\)
−0.972789 + 0.231692i \(0.925574\pi\)
\(242\) −11.1946 −0.719613
\(243\) 8.19201i 0.525517i
\(244\) 0.442156i 0.0283062i
\(245\) 0 0
\(246\) −21.6443 −1.37999
\(247\) 28.6326 1.82185
\(248\) 5.30620i 0.336944i
\(249\) 1.51567i 0.0960517i
\(250\) 12.9743i 0.820566i
\(251\) −14.1491 −0.893084 −0.446542 0.894763i \(-0.647345\pi\)
−0.446542 + 0.894763i \(0.647345\pi\)
\(252\) 0 0
\(253\) −0.919456 −0.0578057
\(254\) 15.1076 0.947932
\(255\) −5.63072 + 10.6650i −0.352609 + 0.667869i
\(256\) −15.1955 −0.949722
\(257\) 25.1650 1.56975 0.784875 0.619655i \(-0.212727\pi\)
0.784875 + 0.619655i \(0.212727\pi\)
\(258\) 12.2198i 0.760773i
\(259\) 0 0
\(260\) 6.77579i 0.420217i
\(261\) 3.34237i 0.206888i
\(262\) 2.42281i 0.149681i
\(263\) 8.10046 0.499496 0.249748 0.968311i \(-0.419652\pi\)
0.249748 + 0.968311i \(0.419652\pi\)
\(264\) −5.91787 −0.364220
\(265\) 9.18652i 0.564324i
\(266\) 0 0
\(267\) 8.00528i 0.489915i
\(268\) 0.624359 0.0381388
\(269\) 22.2425i 1.35615i −0.734994 0.678074i \(-0.762815\pi\)
0.734994 0.678074i \(-0.237185\pi\)
\(270\) 7.15632 0.435520
\(271\) −6.92343 −0.420568 −0.210284 0.977640i \(-0.567439\pi\)
−0.210284 + 0.977640i \(0.567439\pi\)
\(272\) −3.70570 + 7.01888i −0.224691 + 0.425582i
\(273\) 0 0
\(274\) 9.28238 0.560769
\(275\) 2.71612i 0.163788i
\(276\) 1.37081 0.0825133
\(277\) 24.5555i 1.47539i 0.675132 + 0.737697i \(0.264087\pi\)
−0.675132 + 0.737697i \(0.735913\pi\)
\(278\) 1.00187i 0.0600879i
\(279\) 1.39565i 0.0835553i
\(280\) 0 0
\(281\) −7.25294 −0.432674 −0.216337 0.976319i \(-0.569411\pi\)
−0.216337 + 0.976319i \(0.569411\pi\)
\(282\) 7.35484i 0.437974i
\(283\) 9.15714i 0.544336i 0.962250 + 0.272168i \(0.0877406\pi\)
−0.962250 + 0.272168i \(0.912259\pi\)
\(284\) 11.3365i 0.672696i
\(285\) −13.9603 −0.826939
\(286\) 6.60667i 0.390660i
\(287\) 0 0
\(288\) 3.23367 0.190546
\(289\) −9.58860 14.0378i −0.564036 0.825750i
\(290\) −6.91695 −0.406177
\(291\) −21.8029 −1.27811
\(292\) 5.26428i 0.308069i
\(293\) 16.9412 0.989716 0.494858 0.868974i \(-0.335220\pi\)
0.494858 + 0.868974i \(0.335220\pi\)
\(294\) 0 0
\(295\) 9.99699i 0.582047i
\(296\) 24.0898i 1.40019i
\(297\) −4.21853 −0.244784
\(298\) 7.35479 0.426051
\(299\) 5.59205i 0.323397i
\(300\) 4.04945i 0.233795i
\(301\) 0 0
\(302\) −12.9547 −0.745460
\(303\) 20.5304i 1.17944i
\(304\) −9.18760 −0.526945
\(305\) −0.879435 −0.0503563
\(306\) 1.73777 3.29148i 0.0993418 0.188161i
\(307\) 18.9097 1.07923 0.539616 0.841911i \(-0.318569\pi\)
0.539616 + 0.841911i \(0.318569\pi\)
\(308\) 0 0
\(309\) 2.18685i 0.124405i
\(310\) −2.88826 −0.164042
\(311\) 2.71126i 0.153741i −0.997041 0.0768707i \(-0.975507\pi\)
0.997041 0.0768707i \(-0.0244929\pi\)
\(312\) 35.9920i 2.03764i
\(313\) 27.3443i 1.54559i −0.634654 0.772797i \(-0.718857\pi\)
0.634654 0.772797i \(-0.281143\pi\)
\(314\) −25.0186 −1.41188
\(315\) 0 0
\(316\) 10.4509i 0.587908i
\(317\) 5.61175i 0.315187i −0.987504 0.157594i \(-0.949626\pi\)
0.987504 0.157594i \(-0.0503736\pi\)
\(318\) 13.3543i 0.748871i
\(319\) 4.07742 0.228292
\(320\) 12.4625i 0.696674i
\(321\) −29.5447 −1.64902
\(322\) 0 0
\(323\) 9.18760 17.4020i 0.511212 0.968275i
\(324\) 8.11733 0.450963
\(325\) 16.5192 0.916320
\(326\) 10.7192i 0.593681i
\(327\) 16.8877 0.933891
\(328\) 30.5391i 1.68624i
\(329\) 0 0
\(330\) 3.22120i 0.177321i
\(331\) −27.3532 −1.50347 −0.751735 0.659465i \(-0.770783\pi\)
−0.751735 + 0.659465i \(0.770783\pi\)
\(332\) 0.585251 0.0321198
\(333\) 6.33615i 0.347219i
\(334\) 8.71692i 0.476969i
\(335\) 1.24183i 0.0678485i
\(336\) 0 0
\(337\) 21.0117i 1.14458i 0.820052 + 0.572289i \(0.193945\pi\)
−0.820052 + 0.572289i \(0.806055\pi\)
\(338\) −25.6675 −1.39613
\(339\) 6.26026 0.340010
\(340\) 4.11812 + 2.17421i 0.223337 + 0.117913i
\(341\) 1.70258 0.0921998
\(342\) 4.30849 0.232976
\(343\) 0 0
\(344\) −17.2416 −0.929607
\(345\) 2.72650i 0.146790i
\(346\) 9.24394i 0.496957i
\(347\) 22.3749i 1.20115i −0.799569 0.600574i \(-0.794939\pi\)
0.799569 0.600574i \(-0.205061\pi\)
\(348\) −6.07901 −0.325869
\(349\) 7.84612 0.419993 0.209997 0.977702i \(-0.432655\pi\)
0.209997 + 0.977702i \(0.432655\pi\)
\(350\) 0 0
\(351\) 25.6567i 1.36945i
\(352\) 3.94482i 0.210260i
\(353\) 6.49988 0.345954 0.172977 0.984926i \(-0.444661\pi\)
0.172977 + 0.984926i \(0.444661\pi\)
\(354\) 14.5325i 0.772391i
\(355\) −22.5479 −1.19672
\(356\) 3.09111 0.163828
\(357\) 0 0
\(358\) 16.2631 0.859533
\(359\) −22.7296 −1.19962 −0.599812 0.800141i \(-0.704758\pi\)
−0.599812 + 0.800141i \(0.704758\pi\)
\(360\) 3.72563i 0.196358i
\(361\) 3.77897 0.198893
\(362\) 12.9405i 0.680135i
\(363\) 19.5683i 1.02707i
\(364\) 0 0
\(365\) 10.4705 0.548050
\(366\) 1.27842 0.0668241
\(367\) 28.2304i 1.47362i −0.676102 0.736808i \(-0.736332\pi\)
0.676102 0.736808i \(-0.263668\pi\)
\(368\) 1.79437i 0.0935381i
\(369\) 8.03246i 0.418153i
\(370\) 13.1125 0.681686
\(371\) 0 0
\(372\) −2.53837 −0.131608
\(373\) −9.38134 −0.485748 −0.242874 0.970058i \(-0.578090\pi\)
−0.242874 + 0.970058i \(0.578090\pi\)
\(374\) 4.01533 + 2.11994i 0.207628 + 0.109620i
\(375\) −22.6793 −1.17115
\(376\) 10.3773 0.535171
\(377\) 24.7985i 1.27719i
\(378\) 0 0
\(379\) 21.1109i 1.08439i −0.840251 0.542197i \(-0.817593\pi\)
0.840251 0.542197i \(-0.182407\pi\)
\(380\) 5.39055i 0.276530i
\(381\) 26.4083i 1.35294i
\(382\) 25.3399 1.29650
\(383\) −17.4404 −0.891160 −0.445580 0.895242i \(-0.647003\pi\)
−0.445580 + 0.895242i \(0.647003\pi\)
\(384\) 2.50714i 0.127942i
\(385\) 0 0
\(386\) 29.6347i 1.50837i
\(387\) 4.53493 0.230524
\(388\) 8.41882i 0.427401i
\(389\) 24.5638 1.24544 0.622718 0.782446i \(-0.286028\pi\)
0.622718 + 0.782446i \(0.286028\pi\)
\(390\) 19.5910 0.992031
\(391\) −3.39868 1.79437i −0.171879 0.0907453i
\(392\) 0 0
\(393\) 4.23511 0.213633
\(394\) 3.32488i 0.167505i
\(395\) 20.7865 1.04588
\(396\) 0.601029i 0.0302028i
\(397\) 1.91042i 0.0958812i 0.998850 + 0.0479406i \(0.0152658\pi\)
−0.998850 + 0.0479406i \(0.984734\pi\)
\(398\) 19.7014i 0.987544i
\(399\) 0 0
\(400\) −5.30066 −0.265033
\(401\) 14.0857i 0.703405i −0.936112 0.351702i \(-0.885603\pi\)
0.936112 0.351702i \(-0.114397\pi\)
\(402\) 1.80523i 0.0900366i
\(403\) 10.3549i 0.515816i
\(404\) −7.92746 −0.394406
\(405\) 16.1451i 0.802257i
\(406\) 0 0
\(407\) −7.72959 −0.383142
\(408\) −21.8748 11.5491i −1.08296 0.571764i
\(409\) −3.93876 −0.194759 −0.0973796 0.995247i \(-0.531046\pi\)
−0.0973796 + 0.995247i \(0.531046\pi\)
\(410\) −16.6230 −0.820950
\(411\) 16.2258i 0.800358i
\(412\) 0.844416 0.0416014
\(413\) 0 0
\(414\) 0.841464i 0.0413557i
\(415\) 1.16405i 0.0571408i
\(416\) −23.9921 −1.17631
\(417\) −1.75128 −0.0857606
\(418\) 5.25601i 0.257080i
\(419\) 10.3202i 0.504174i −0.967705 0.252087i \(-0.918883\pi\)
0.967705 0.252087i \(-0.0811169\pi\)
\(420\) 0 0
\(421\) 2.25685 0.109992 0.0549961 0.998487i \(-0.482485\pi\)
0.0549961 + 0.998487i \(0.482485\pi\)
\(422\) 9.35814i 0.455547i
\(423\) −2.72947 −0.132712
\(424\) −18.8423 −0.915064
\(425\) 5.30066 10.0399i 0.257120 0.487005i
\(426\) 32.7775 1.58808
\(427\) 0 0
\(428\) 11.4082i 0.551436i
\(429\) −11.5486 −0.557571
\(430\) 9.38492i 0.452581i
\(431\) 1.98211i 0.0954747i −0.998860 0.0477374i \(-0.984799\pi\)
0.998860 0.0477374i \(-0.0152011\pi\)
\(432\) 8.23270i 0.396096i
\(433\) −33.9841 −1.63317 −0.816586 0.577224i \(-0.804136\pi\)
−0.816586 + 0.577224i \(0.804136\pi\)
\(434\) 0 0
\(435\) 12.0910i 0.579718i
\(436\) 6.52090i 0.312295i
\(437\) 4.44882i 0.212816i
\(438\) −15.2208 −0.727276
\(439\) 15.3246i 0.731402i 0.930732 + 0.365701i \(0.119171\pi\)
−0.930732 + 0.365701i \(0.880829\pi\)
\(440\) −4.54497 −0.216673
\(441\) 0 0
\(442\) −12.8933 + 24.4209i −0.613272 + 1.16158i
\(443\) 32.5359 1.54583 0.772914 0.634510i \(-0.218798\pi\)
0.772914 + 0.634510i \(0.218798\pi\)
\(444\) 11.5240 0.546905
\(445\) 6.14812i 0.291449i
\(446\) −11.8615 −0.561656
\(447\) 12.8563i 0.608083i
\(448\) 0 0
\(449\) 2.31105i 0.109065i 0.998512 + 0.0545326i \(0.0173669\pi\)
−0.998512 + 0.0545326i \(0.982633\pi\)
\(450\) 2.48572 0.117178
\(451\) 9.79895 0.461415
\(452\) 2.41730i 0.113700i
\(453\) 22.6451i 1.06396i
\(454\) 5.84987i 0.274548i
\(455\) 0 0
\(456\) 28.6338i 1.34090i
\(457\) −9.02881 −0.422350 −0.211175 0.977448i \(-0.567729\pi\)
−0.211175 + 0.977448i \(0.567729\pi\)
\(458\) 21.7092 1.01440
\(459\) −15.5934 8.23270i −0.727836 0.384270i
\(460\) 1.05280 0.0490868
\(461\) 38.6386 1.79958 0.899789 0.436324i \(-0.143720\pi\)
0.899789 + 0.436324i \(0.143720\pi\)
\(462\) 0 0
\(463\) 25.1396 1.16834 0.584168 0.811633i \(-0.301421\pi\)
0.584168 + 0.811633i \(0.301421\pi\)
\(464\) 7.95733i 0.369410i
\(465\) 5.04873i 0.234129i
\(466\) 33.4260i 1.54843i
\(467\) −17.3499 −0.802858 −0.401429 0.915890i \(-0.631486\pi\)
−0.401429 + 0.915890i \(0.631486\pi\)
\(468\) 3.65541 0.168971
\(469\) 0 0
\(470\) 5.64857i 0.260549i
\(471\) 43.7329i 2.01511i
\(472\) −20.5046 −0.943803
\(473\) 5.53225i 0.254373i
\(474\) −30.2169 −1.38791
\(475\) 13.1420 0.602997
\(476\) 0 0
\(477\) 4.95595 0.226917
\(478\) 1.12530 0.0514700
\(479\) 25.6685i 1.17283i −0.810012 0.586413i \(-0.800540\pi\)
0.810012 0.586413i \(-0.199460\pi\)
\(480\) 11.6978 0.533927
\(481\) 47.0107i 2.14350i
\(482\) 8.03127i 0.365814i
\(483\) 0 0
\(484\) −7.55598 −0.343454
\(485\) −16.7448 −0.760341
\(486\) 9.14588i 0.414866i
\(487\) 30.7831i 1.39492i −0.716626 0.697458i \(-0.754314\pi\)
0.716626 0.697458i \(-0.245686\pi\)
\(488\) 1.80379i 0.0816539i
\(489\) 18.7374 0.847333
\(490\) 0 0
\(491\) −34.0328 −1.53588 −0.767938 0.640524i \(-0.778717\pi\)
−0.767938 + 0.640524i \(0.778717\pi\)
\(492\) −14.6092 −0.658634
\(493\) 15.0718 + 7.95733i 0.678800 + 0.358380i
\(494\) −31.9666 −1.43824
\(495\) 1.19543 0.0537305
\(496\) 3.32268i 0.149193i
\(497\) 0 0
\(498\) 1.69215i 0.0758272i
\(499\) 18.8809i 0.845226i 0.906310 + 0.422613i \(0.138887\pi\)
−0.906310 + 0.422613i \(0.861113\pi\)
\(500\) 8.75725i 0.391636i
\(501\) 15.2373 0.680754
\(502\) 15.7966 0.705038
\(503\) 29.9077i 1.33352i 0.745274 + 0.666759i \(0.232319\pi\)
−0.745274 + 0.666759i \(0.767681\pi\)
\(504\) 0 0
\(505\) 15.7675i 0.701643i
\(506\) 1.02652 0.0456343
\(507\) 44.8672i 1.99262i
\(508\) 10.1971 0.452425
\(509\) 17.5773 0.779100 0.389550 0.921005i \(-0.372630\pi\)
0.389550 + 0.921005i \(0.372630\pi\)
\(510\) 6.28636 11.9068i 0.278365 0.527244i
\(511\) 0 0
\(512\) 19.5343 0.863301
\(513\) 20.4115i 0.901189i
\(514\) −28.0952 −1.23923
\(515\) 1.67952i 0.0740083i
\(516\) 8.24801i 0.363098i
\(517\) 3.32974i 0.146442i
\(518\) 0 0
\(519\) −16.1586 −0.709283
\(520\) 27.6421i 1.21219i
\(521\) 24.6395i 1.07948i 0.841833 + 0.539738i \(0.181477\pi\)
−0.841833 + 0.539738i \(0.818523\pi\)
\(522\) 3.73156i 0.163326i
\(523\) 28.2694 1.23614 0.618068 0.786125i \(-0.287916\pi\)
0.618068 + 0.786125i \(0.287916\pi\)
\(524\) 1.63532i 0.0714393i
\(525\) 0 0
\(526\) −9.04368 −0.394323
\(527\) 6.29342 + 3.32268i 0.274145 + 0.144738i
\(528\) 3.70570 0.161270
\(529\) 22.1311 0.962223
\(530\) 10.2562i 0.445501i
\(531\) 5.39318 0.234044
\(532\) 0 0
\(533\) 59.5964i 2.58141i
\(534\) 8.93741i 0.386760i
\(535\) −22.6905 −0.980998
\(536\) −2.54710 −0.110018
\(537\) 28.4283i 1.22677i
\(538\) 24.8324i 1.07060i
\(539\) 0 0
\(540\) 4.83030 0.207863
\(541\) 31.6829i 1.36215i 0.732212 + 0.681077i \(0.238488\pi\)
−0.732212 + 0.681077i \(0.761512\pi\)
\(542\) 7.72959 0.332014
\(543\) −22.6202 −0.970725
\(544\) −7.69855 + 14.5816i −0.330072 + 0.625183i
\(545\) 12.9699 0.555568
\(546\) 0 0
\(547\) 35.5388i 1.51953i 0.650197 + 0.759766i \(0.274686\pi\)
−0.650197 + 0.759766i \(0.725314\pi\)
\(548\) 6.26532 0.267641
\(549\) 0.474438i 0.0202485i
\(550\) 3.03238i 0.129301i
\(551\) 19.7287i 0.840473i
\(552\) −5.59228 −0.238023
\(553\) 0 0
\(554\) 27.4147i 1.16474i
\(555\) 22.9209i 0.972938i
\(556\) 0.676229i 0.0286785i
\(557\) 6.32132 0.267843 0.133921 0.990992i \(-0.457243\pi\)
0.133921 + 0.990992i \(0.457243\pi\)
\(558\) 1.55816i 0.0659621i
\(559\) −33.6467 −1.42310
\(560\) 0 0
\(561\) −3.70570 + 7.01888i −0.156455 + 0.296337i
\(562\) 8.09747 0.341571
\(563\) −9.40589 −0.396411 −0.198206 0.980160i \(-0.563511\pi\)
−0.198206 + 0.980160i \(0.563511\pi\)
\(564\) 4.96429i 0.209034i
\(565\) 4.80793 0.202271
\(566\) 10.2234i 0.429721i
\(567\) 0 0
\(568\) 46.2476i 1.94051i
\(569\) 16.8950 0.708277 0.354138 0.935193i \(-0.384774\pi\)
0.354138 + 0.935193i \(0.384774\pi\)
\(570\) 15.5859 0.652820
\(571\) 0.450813i 0.0188659i −0.999956 0.00943297i \(-0.996997\pi\)
0.999956 0.00943297i \(-0.00300265\pi\)
\(572\) 4.45930i 0.186453i
\(573\) 44.2946i 1.85043i
\(574\) 0 0
\(575\) 2.56668i 0.107038i
\(576\) −6.72326 −0.280136
\(577\) −20.2618 −0.843509 −0.421755 0.906710i \(-0.638586\pi\)
−0.421755 + 0.906710i \(0.638586\pi\)
\(578\) 10.7051 + 15.6723i 0.445273 + 0.651882i
\(579\) 51.8020 2.15282
\(580\) −4.66873 −0.193858
\(581\) 0 0
\(582\) 24.3416 1.00899
\(583\) 6.04585i 0.250394i
\(584\) 21.4758i 0.888676i
\(585\) 7.27049i 0.300598i
\(586\) −18.9138 −0.781323
\(587\) −36.5831 −1.50995 −0.754973 0.655756i \(-0.772350\pi\)
−0.754973 + 0.655756i \(0.772350\pi\)
\(588\) 0 0
\(589\) 8.23798i 0.339440i
\(590\) 11.1610i 0.459493i
\(591\) −5.81196 −0.239072
\(592\) 15.0847i 0.619979i
\(593\) −4.28447 −0.175942 −0.0879711 0.996123i \(-0.528038\pi\)
−0.0879711 + 0.996123i \(0.528038\pi\)
\(594\) 4.70973 0.193243
\(595\) 0 0
\(596\) 4.96426 0.203344
\(597\) 34.4385 1.40947
\(598\) 6.24319i 0.255303i
\(599\) 15.0114 0.613348 0.306674 0.951815i \(-0.400784\pi\)
0.306674 + 0.951815i \(0.400784\pi\)
\(600\) 16.5199i 0.674421i
\(601\) 23.4374i 0.956033i 0.878351 + 0.478017i \(0.158644\pi\)
−0.878351 + 0.478017i \(0.841356\pi\)
\(602\) 0 0
\(603\) 0.669943 0.0272822
\(604\) −8.74404 −0.355790
\(605\) 15.0286i 0.611000i
\(606\) 22.9209i 0.931098i
\(607\) 11.0041i 0.446642i −0.974745 0.223321i \(-0.928310\pi\)
0.974745 0.223321i \(-0.0716899\pi\)
\(608\) −19.0871 −0.774086
\(609\) 0 0
\(610\) 0.981836 0.0397534
\(611\) 20.2512 0.819274
\(612\) 1.17294 2.22164i 0.0474134 0.0898047i
\(613\) −6.29829 −0.254386 −0.127193 0.991878i \(-0.540597\pi\)
−0.127193 + 0.991878i \(0.540597\pi\)
\(614\) −21.1115 −0.851992
\(615\) 29.0573i 1.17170i
\(616\) 0 0
\(617\) 24.1377i 0.971748i 0.874029 + 0.485874i \(0.161499\pi\)
−0.874029 + 0.485874i \(0.838501\pi\)
\(618\) 2.44148i 0.0982109i
\(619\) 3.60228i 0.144788i 0.997376 + 0.0723939i \(0.0230639\pi\)
−0.997376 + 0.0723939i \(0.976936\pi\)
\(620\) −1.94949 −0.0782932
\(621\) −3.98644 −0.159970
\(622\) 3.02696i 0.121370i
\(623\) 0 0
\(624\) 22.5377i 0.902231i
\(625\) −3.65008 −0.146003
\(626\) 30.5283i 1.22016i
\(627\) −9.18760 −0.366917
\(628\) −16.8868 −0.673855
\(629\) −28.5717 15.0847i −1.13923 0.601468i
\(630\) 0 0
\(631\) −11.4191 −0.454587 −0.227293 0.973826i \(-0.572988\pi\)
−0.227293 + 0.973826i \(0.572988\pi\)
\(632\) 42.6348i 1.69592i
\(633\) 16.3582 0.650181
\(634\) 6.26518i 0.248822i
\(635\) 20.2818i 0.804858i
\(636\) 9.01373i 0.357418i
\(637\) 0 0
\(638\) −4.55220 −0.180223
\(639\) 12.1641i 0.481206i
\(640\) 1.92550i 0.0761121i
\(641\) 5.65965i 0.223543i 0.993734 + 0.111771i \(0.0356524\pi\)
−0.993734 + 0.111771i \(0.964348\pi\)
\(642\) 32.9848 1.30181
\(643\) 15.2852i 0.602791i −0.953499 0.301395i \(-0.902548\pi\)
0.953499 0.301395i \(-0.0974524\pi\)
\(644\) 0 0
\(645\) 16.4050 0.645947
\(646\) −10.2574 + 19.4283i −0.403572 + 0.764397i
\(647\) −28.7438 −1.13004 −0.565018 0.825078i \(-0.691131\pi\)
−0.565018 + 0.825078i \(0.691131\pi\)
\(648\) −33.1149 −1.30088
\(649\) 6.57924i 0.258258i
\(650\) −18.4427 −0.723381
\(651\) 0 0
\(652\) 7.23513i 0.283349i
\(653\) 20.7891i 0.813541i 0.913530 + 0.406770i \(0.133345\pi\)
−0.913530 + 0.406770i \(0.866655\pi\)
\(654\) −18.8541 −0.737252
\(655\) 3.25260 0.127090
\(656\) 19.1232i 0.746636i
\(657\) 5.64862i 0.220374i
\(658\) 0 0
\(659\) 47.0480 1.83273 0.916365 0.400343i \(-0.131109\pi\)
0.916365 + 0.400343i \(0.131109\pi\)
\(660\) 2.17421i 0.0846310i
\(661\) −5.88114 −0.228750 −0.114375 0.993438i \(-0.536487\pi\)
−0.114375 + 0.993438i \(0.536487\pi\)
\(662\) 30.5383 1.18690
\(663\) −42.6882 22.5377i −1.65787 0.875293i
\(664\) −2.38755 −0.0926551
\(665\) 0 0
\(666\) 7.07393i 0.274109i
\(667\) 3.85310 0.149193
\(668\) 5.88365i 0.227645i
\(669\) 20.7341i 0.801625i
\(670\) 1.38643i 0.0535624i
\(671\) −0.578775 −0.0223434
\(672\) 0 0
\(673\) 25.3750i 0.978135i 0.872246 + 0.489068i \(0.162663\pi\)
−0.872246 + 0.489068i \(0.837337\pi\)
\(674\) 23.4583i 0.903579i
\(675\) 11.7761i 0.453263i
\(676\) −17.3247 −0.666337
\(677\) 42.7008i 1.64112i 0.571557 + 0.820562i \(0.306339\pi\)
−0.571557 + 0.820562i \(0.693661\pi\)
\(678\) −6.98920 −0.268419
\(679\) 0 0
\(680\) −16.8000 8.86977i −0.644252 0.340140i
\(681\) 10.2257 0.391849
\(682\) −1.90083 −0.0727864
\(683\) 19.9324i 0.762692i 0.924432 + 0.381346i \(0.124539\pi\)
−0.924432 + 0.381346i \(0.875461\pi\)
\(684\) 2.90810 0.111194
\(685\) 12.4615i 0.476130i
\(686\) 0 0
\(687\) 37.9480i 1.44781i
\(688\) 10.7965 0.411613
\(689\) −36.7703 −1.40084
\(690\) 3.04398i 0.115882i
\(691\) 7.92252i 0.301387i 0.988581 + 0.150693i \(0.0481507\pi\)
−0.988581 + 0.150693i \(0.951849\pi\)
\(692\) 6.23938i 0.237186i
\(693\) 0 0
\(694\) 24.9803i 0.948238i
\(695\) −1.34500 −0.0510187
\(696\) 24.7996 0.940025
\(697\) 36.2209 + 19.1232i 1.37196 + 0.724344i
\(698\) −8.75972 −0.331560
\(699\) 58.4292 2.21000
\(700\) 0 0
\(701\) −18.6458 −0.704240 −0.352120 0.935955i \(-0.614539\pi\)
−0.352120 + 0.935955i \(0.614539\pi\)
\(702\) 28.6442i 1.08110i
\(703\) 37.3999i 1.41056i
\(704\) 8.20183i 0.309118i
\(705\) −9.87381 −0.371869
\(706\) −7.25672 −0.273110
\(707\) 0 0
\(708\) 9.80896i 0.368643i
\(709\) 5.46310i 0.205171i 0.994724 + 0.102585i \(0.0327115\pi\)
−0.994724 + 0.102585i \(0.967288\pi\)
\(710\) 25.1734 0.944740
\(711\) 11.2139i 0.420554i
\(712\) −12.6103 −0.472591
\(713\) 1.60891 0.0602541
\(714\) 0 0
\(715\) −8.86940 −0.331697
\(716\) 10.9771 0.410234
\(717\) 1.96705i 0.0734607i
\(718\) 25.3763 0.947033
\(719\) 41.6265i 1.55241i 0.630483 + 0.776203i \(0.282857\pi\)
−0.630483 + 0.776203i \(0.717143\pi\)
\(720\) 2.33295i 0.0869438i
\(721\) 0 0
\(722\) −4.21899 −0.157015
\(723\) 14.0388 0.522109
\(724\) 8.73441i 0.324612i
\(725\) 11.3822i 0.422725i
\(726\) 21.8468i 0.810812i
\(727\) 21.8552 0.810565 0.405283 0.914191i \(-0.367173\pi\)
0.405283 + 0.914191i \(0.367173\pi\)
\(728\) 0 0
\(729\) −16.3286 −0.604764
\(730\) −11.6897 −0.432654
\(731\) −10.7965 + 20.4494i −0.399323 + 0.756349i
\(732\) 0.862894 0.0318935
\(733\) 27.0265 0.998245 0.499123 0.866531i \(-0.333656\pi\)
0.499123 + 0.866531i \(0.333656\pi\)
\(734\) 31.5175i 1.16333i
\(735\) 0 0
\(736\) 3.72779i 0.137408i
\(737\) 0.817276i 0.0301048i
\(738\) 8.96776i 0.330108i
\(739\) 14.4984 0.533331 0.266666 0.963789i \(-0.414078\pi\)
0.266666 + 0.963789i \(0.414078\pi\)
\(740\) 8.85053 0.325352
\(741\) 55.8782i 2.05274i
\(742\) 0 0
\(743\) 2.58568i 0.0948596i 0.998875 + 0.0474298i \(0.0151030\pi\)
−0.998875 + 0.0474298i \(0.984897\pi\)
\(744\) 10.3554 0.379646
\(745\) 9.87375i 0.361746i
\(746\) 10.4737 0.383470
\(747\) 0.627980 0.0229766
\(748\) 2.71023 + 1.43089i 0.0990957 + 0.0523187i
\(749\) 0 0
\(750\) 25.3201 0.924559
\(751\) 19.1641i 0.699309i −0.936879 0.349654i \(-0.886299\pi\)
0.936879 0.349654i \(-0.113701\pi\)
\(752\) −6.49817 −0.236964
\(753\) 27.6128i 1.00627i
\(754\) 27.6861i 1.00827i
\(755\) 17.3916i 0.632946i
\(756\) 0 0
\(757\) −2.81660 −0.102371 −0.0511855 0.998689i \(-0.516300\pi\)
−0.0511855 + 0.998689i \(0.516300\pi\)
\(758\) 23.5691i 0.856067i
\(759\) 1.79437i 0.0651316i
\(760\) 21.9910i 0.797696i
\(761\) −5.05609 −0.183283 −0.0916415 0.995792i \(-0.529211\pi\)
−0.0916415 + 0.995792i \(0.529211\pi\)
\(762\) 29.4833i 1.06807i
\(763\) 0 0
\(764\) 17.1036 0.618788
\(765\) 4.41878 + 2.33295i 0.159761 + 0.0843478i
\(766\) 19.4711 0.703519
\(767\) −40.0144 −1.44483
\(768\) 29.6550i 1.07008i
\(769\) −11.9647 −0.431460 −0.215730 0.976453i \(-0.569213\pi\)
−0.215730 + 0.976453i \(0.569213\pi\)
\(770\) 0 0
\(771\) 49.1110i 1.76869i
\(772\) 20.0025i 0.719906i
\(773\) 34.2944 1.23348 0.616741 0.787166i \(-0.288453\pi\)
0.616741 + 0.787166i \(0.288453\pi\)
\(774\) −5.06298 −0.181985
\(775\) 4.75279i 0.170725i
\(776\) 34.3449i 1.23291i
\(777\) 0 0
\(778\) −27.4240 −0.983200
\(779\) 47.4125i 1.69873i
\(780\) 13.2234 0.473472
\(781\) −14.8393 −0.530991
\(782\) 3.79442 + 2.00331i 0.135688 + 0.0716382i
\(783\) 17.6783 0.631770
\(784\) 0 0
\(785\) 33.5872i 1.19878i
\(786\) −4.72825 −0.168651
\(787\) 26.7299i 0.952817i 0.879224 + 0.476408i \(0.158062\pi\)
−0.879224 + 0.476408i \(0.841938\pi\)
\(788\) 2.24419i 0.0799461i
\(789\) 15.8085i 0.562798i
\(790\) −23.2068 −0.825663
\(791\) 0 0
\(792\) 2.45192i 0.0871252i
\(793\) 3.52006i 0.125001i
\(794\) 2.13287i 0.0756927i
\(795\) 17.9280 0.635842
\(796\) 13.2979i 0.471330i
\(797\) −8.74810 −0.309874 −0.154937 0.987924i \(-0.549517\pi\)
−0.154937 + 0.987924i \(0.549517\pi\)
\(798\) 0 0
\(799\) 6.49817 12.3080i 0.229889 0.435427i
\(800\) −11.0121 −0.389335
\(801\) 3.31679 0.117193
\(802\) 15.7258i 0.555297i
\(803\) 6.89085 0.243173
\(804\) 1.21847i 0.0429722i
\(805\) 0 0
\(806\) 11.5607i 0.407207i
\(807\) −43.4075 −1.52802
\(808\) 32.3404 1.13773
\(809\) 13.6735i 0.480735i −0.970682 0.240367i \(-0.922732\pi\)
0.970682 0.240367i \(-0.0772679\pi\)
\(810\) 18.0250i 0.633335i
\(811\) 22.3364i 0.784338i −0.919893 0.392169i \(-0.871725\pi\)
0.919893 0.392169i \(-0.128275\pi\)
\(812\) 0 0
\(813\) 13.5115i 0.473868i
\(814\) 8.62962 0.302468
\(815\) 14.3904 0.504075
\(816\) 13.6978 + 7.23188i 0.479517 + 0.253167i
\(817\) −26.7680 −0.936493
\(818\) 4.39739 0.153751
\(819\) 0 0
\(820\) −11.2200 −0.391819
\(821\) 20.5806i 0.718266i 0.933286 + 0.359133i \(0.116928\pi\)
−0.933286 + 0.359133i \(0.883072\pi\)
\(822\) 18.1151i 0.631837i
\(823\) 7.63882i 0.266272i 0.991098 + 0.133136i \(0.0425048\pi\)
−0.991098 + 0.133136i \(0.957495\pi\)
\(824\) −3.44483 −0.120006
\(825\) −5.30066 −0.184545
\(826\) 0 0
\(827\) 15.4126i 0.535949i −0.963426 0.267974i \(-0.913646\pi\)
0.963426 0.267974i \(-0.0863543\pi\)
\(828\) 0.567962i 0.0197380i
\(829\) 38.4729 1.33622 0.668110 0.744063i \(-0.267104\pi\)
0.668110 + 0.744063i \(0.267104\pi\)
\(830\) 1.29959i 0.0451094i
\(831\) 47.9214 1.66237
\(832\) 49.8828 1.72938
\(833\) 0 0
\(834\) 1.95520 0.0677030
\(835\) 11.7024 0.404978
\(836\) 3.54764i 0.122698i
\(837\) 7.38178 0.255152
\(838\) 11.5219i 0.398016i
\(839\) 16.1818i 0.558658i 0.960195 + 0.279329i \(0.0901120\pi\)
−0.960195 + 0.279329i \(0.909888\pi\)
\(840\) 0 0
\(841\) 11.9130 0.410794
\(842\) −2.51964 −0.0868324
\(843\) 14.1545i 0.487508i
\(844\) 6.31646i 0.217421i
\(845\) 34.4584i 1.18540i
\(846\) 3.04729 0.104768
\(847\) 0 0
\(848\) 11.7988 0.405174
\(849\) 17.8707 0.613321
\(850\) −5.91787 + 11.2089i −0.202981 + 0.384462i
\(851\) −7.30433 −0.250389
\(852\) 22.1238 0.757949
\(853\) 12.8634i 0.440435i −0.975451 0.220217i \(-0.929323\pi\)
0.975451 0.220217i \(-0.0706767\pi\)
\(854\) 0 0
\(855\) 5.78411i 0.197812i
\(856\) 46.5402i 1.59071i
\(857\) 48.4538i 1.65515i −0.561354 0.827576i \(-0.689719\pi\)
0.561354 0.827576i \(-0.310281\pi\)
\(858\) 12.8933 0.440170
\(859\) 35.1633 1.19976 0.599879 0.800091i \(-0.295215\pi\)
0.599879 + 0.800091i \(0.295215\pi\)
\(860\) 6.33453i 0.216006i
\(861\) 0 0
\(862\) 2.21290i 0.0753718i
\(863\) 15.7084 0.534720 0.267360 0.963597i \(-0.413849\pi\)
0.267360 + 0.963597i \(0.413849\pi\)
\(864\) 17.1033i 0.581867i
\(865\) −12.4099 −0.421950
\(866\) 37.9412 1.28929
\(867\) −27.3955 + 18.7127i −0.930400 + 0.635517i
\(868\) 0 0
\(869\) 13.6800 0.464063
\(870\) 13.4988i 0.457653i
\(871\) −4.97060 −0.168422
\(872\) 26.6023i 0.900866i
\(873\) 9.03347i 0.305737i
\(874\) 4.96684i 0.168006i
\(875\) 0 0
\(876\) −10.2735 −0.347111
\(877\) 4.09719i 0.138352i 0.997604 + 0.0691762i \(0.0220371\pi\)
−0.997604 + 0.0691762i \(0.977963\pi\)
\(878\) 17.1090i 0.577399i
\(879\) 33.0617i 1.11515i
\(880\) 2.84601 0.0959388
\(881\) 23.1066i 0.778480i −0.921136 0.389240i \(-0.872738\pi\)
0.921136 0.389240i \(-0.127262\pi\)
\(882\) 0 0
\(883\) 21.3780 0.719425 0.359713 0.933063i \(-0.382875\pi\)
0.359713 + 0.933063i \(0.382875\pi\)
\(884\) −8.70258 + 16.4834i −0.292699 + 0.554395i
\(885\) 19.5097 0.655812
\(886\) −36.3244 −1.22034
\(887\) 40.3061i 1.35335i −0.736283 0.676673i \(-0.763421\pi\)
0.736283 0.676673i \(-0.236579\pi\)
\(888\) −47.0126 −1.57764
\(889\) 0 0
\(890\) 6.86400i 0.230082i
\(891\) 10.6254i 0.355966i
\(892\) −8.00612 −0.268065
\(893\) 16.1110 0.539135
\(894\) 14.3533i 0.480046i
\(895\) 21.8331i 0.729801i
\(896\) 0 0
\(897\) −10.9132 −0.364382
\(898\) 2.58015i 0.0861007i
\(899\) −7.13487 −0.237961
\(900\) 1.67779 0.0559262
\(901\) −11.7988 + 22.3479i −0.393076 + 0.744517i
\(902\) −10.9399 −0.364260
\(903\) 0 0
\(904\) 9.86145i 0.327987i
\(905\) −17.3725 −0.577481
\(906\) 25.2819i 0.839935i
\(907\) 0.954027i 0.0316779i 0.999875 + 0.0158390i \(0.00504191\pi\)
−0.999875 + 0.0158390i \(0.994958\pi\)
\(908\) 3.94848i 0.131035i
\(909\) −8.50624 −0.282134
\(910\) 0 0
\(911\) 13.7884i 0.456829i 0.973564 + 0.228414i \(0.0733541\pi\)
−0.973564 + 0.228414i \(0.926646\pi\)
\(912\) 17.9301i 0.593726i
\(913\) 0.766085i 0.0253537i
\(914\) 10.0801 0.333421
\(915\) 1.71627i 0.0567381i
\(916\) 14.6530 0.484149
\(917\) 0 0
\(918\) 17.4091 + 9.19131i 0.574585 + 0.303359i
\(919\) −40.4461 −1.33419 −0.667097 0.744971i \(-0.732463\pi\)
−0.667097 + 0.744971i \(0.732463\pi\)
\(920\) −4.29492 −0.141599
\(921\) 36.9034i 1.21601i
\(922\) −43.1377 −1.42066
\(923\) 90.2512i 2.97065i
\(924\) 0 0
\(925\) 21.5773i 0.709459i
\(926\) −28.0668 −0.922333
\(927\) 0.906065 0.0297591
\(928\) 16.5313i 0.542665i
\(929\) 32.4709i 1.06534i 0.846324 + 0.532668i \(0.178811\pi\)
−0.846324 + 0.532668i \(0.821189\pi\)
\(930\) 5.63660i 0.184832i
\(931\) 0 0
\(932\) 22.5615i 0.739026i
\(933\) −5.29118 −0.173226
\(934\) 19.3701 0.633810
\(935\) −2.84601 + 5.39055i −0.0930743 + 0.176290i
\(936\) −14.9124 −0.487426
\(937\) −16.4485 −0.537348 −0.268674 0.963231i \(-0.586585\pi\)
−0.268674 + 0.963231i \(0.586585\pi\)
\(938\) 0 0
\(939\) −53.3641 −1.74147
\(940\) 3.81261i 0.124354i
\(941\) 17.3455i 0.565446i −0.959202 0.282723i \(-0.908762\pi\)
0.959202 0.282723i \(-0.0912377\pi\)
\(942\) 48.8252i 1.59081i
\(943\) 9.25984 0.301542
\(944\) 12.8398 0.417899
\(945\) 0 0
\(946\) 6.17642i 0.200813i
\(947\) 17.5752i 0.571117i 0.958361 + 0.285558i \(0.0921790\pi\)
−0.958361 + 0.285558i \(0.907821\pi\)
\(948\) −20.3955 −0.662415
\(949\) 41.9096i 1.36044i
\(950\) −14.6723 −0.476031
\(951\) −10.9516 −0.355132
\(952\) 0 0
\(953\) 31.3803 1.01651 0.508254 0.861207i \(-0.330291\pi\)
0.508254 + 0.861207i \(0.330291\pi\)
\(954\) −5.53301 −0.179138
\(955\) 34.0186i 1.10082i
\(956\) 0.759543 0.0245654
\(957\) 7.95733i 0.257224i
\(958\) 28.6574i 0.925878i
\(959\) 0 0
\(960\) −24.3213 −0.784966
\(961\) 28.0207 0.903895
\(962\) 52.4846i 1.69217i
\(963\) 12.2411i 0.394464i
\(964\) 5.42086i 0.174594i
\(965\) 39.7844 1.28070
\(966\) 0 0
\(967\) 20.9476 0.673630 0.336815 0.941571i \(-0.390650\pi\)
0.336815 + 0.941571i \(0.390650\pi\)
\(968\) 30.8249 0.990750
\(969\) −33.9611 17.9301i −1.09099 0.575999i
\(970\) 18.6945 0.600245
\(971\) 26.3192 0.844624 0.422312 0.906451i \(-0.361219\pi\)
0.422312 + 0.906451i \(0.361219\pi\)
\(972\) 6.17319i 0.198005i
\(973\) 0 0
\(974\) 34.3675i 1.10121i
\(975\) 32.2382i 1.03245i
\(976\) 1.12951i 0.0361549i
\(977\) 16.5214 0.528566 0.264283 0.964445i \(-0.414865\pi\)
0.264283 + 0.964445i \(0.414865\pi\)
\(978\) −20.9191 −0.668920
\(979\) 4.04621i 0.129317i
\(980\) 0 0
\(981\) 6.99698i 0.223397i
\(982\) 37.9955 1.21249
\(983\) 36.7442i 1.17196i 0.810326 + 0.585979i \(0.199290\pi\)
−0.810326 + 0.585979i \(0.800710\pi\)
\(984\) 59.5988 1.89994
\(985\) −4.46363 −0.142223
\(986\) −16.8268 8.88388i −0.535873 0.282920i
\(987\) 0 0
\(988\) −21.5765 −0.686438
\(989\) 5.22788i 0.166237i
\(990\) −1.33462 −0.0424171
\(991\) 29.0879i 0.924009i −0.886878 0.462004i \(-0.847130\pi\)
0.886878 0.462004i \(-0.152870\pi\)
\(992\) 6.90283i 0.219165i
\(993\) 53.3815i 1.69401i
\(994\) 0 0
\(995\) 26.4490 0.838491
\(996\) 1.14215i 0.0361905i
\(997\) 31.8103i 1.00744i −0.863866 0.503722i \(-0.831964\pi\)
0.863866 0.503722i \(-0.168036\pi\)
\(998\) 21.0794i 0.667257i
\(999\) −33.5128 −1.06030
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.2.b.d.50.3 10
7.2 even 3 833.2.j.a.67.8 20
7.3 odd 6 119.2.j.a.16.8 yes 20
7.4 even 3 833.2.j.a.373.7 20
7.5 odd 6 119.2.j.a.67.7 yes 20
7.6 odd 2 833.2.b.c.50.4 10
17.16 even 2 inner 833.2.b.d.50.4 10
119.16 even 6 833.2.j.a.67.7 20
119.33 odd 6 119.2.j.a.67.8 yes 20
119.67 even 6 833.2.j.a.373.8 20
119.101 odd 6 119.2.j.a.16.7 20
119.118 odd 2 833.2.b.c.50.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.j.a.16.7 20 119.101 odd 6
119.2.j.a.16.8 yes 20 7.3 odd 6
119.2.j.a.67.7 yes 20 7.5 odd 6
119.2.j.a.67.8 yes 20 119.33 odd 6
833.2.b.c.50.3 10 119.118 odd 2
833.2.b.c.50.4 10 7.6 odd 2
833.2.b.d.50.3 10 1.1 even 1 trivial
833.2.b.d.50.4 10 17.16 even 2 inner
833.2.j.a.67.7 20 119.16 even 6
833.2.j.a.67.8 20 7.2 even 3
833.2.j.a.373.7 20 7.4 even 3
833.2.j.a.373.8 20 119.67 even 6