Properties

Label 833.2.bc.f.656.7
Level $833$
Weight $2$
Character 833.656
Analytic conductor $6.652$
Analytic rank $0$
Dimension $160$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [833,2,Mod(31,833)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("833.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(833, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([8, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.bc (of order \(48\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [160,16,0,16,0,0,0,-32,16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(10\) over \(\Q(\zeta_{48})\)
Twist minimal: no (minimal twist has level 119)
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 656.7
Character \(\chi\) \(=\) 833.656
Dual form 833.2.bc.f.80.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.610037 + 0.795016i) q^{2} +(-0.718354 - 0.0470834i) q^{3} +(0.257733 - 0.961873i) q^{4} +(3.02536 + 1.02697i) q^{5} +(-0.400790 - 0.599825i) q^{6} +(2.77356 - 1.14885i) q^{8} +(-2.46052 - 0.323934i) q^{9} +(1.02912 + 3.03170i) q^{10} +(-1.77675 + 3.60290i) q^{11} +(-0.230432 + 0.678830i) q^{12} +(2.97778 + 2.97778i) q^{13} +(-2.12493 - 0.880173i) q^{15} +(0.880544 + 0.508383i) q^{16} +(3.86202 + 1.44388i) q^{17} +(-1.24348 - 2.15376i) q^{18} +(0.828402 - 0.635655i) q^{19} +(1.76755 - 2.64533i) q^{20} +(-3.94825 + 0.785356i) q^{22} +(-0.184074 - 2.80843i) q^{23} +(-2.04649 + 0.694690i) q^{24} +(4.13137 + 3.17011i) q^{25} +(-0.550825 + 4.18393i) q^{26} +(3.87046 + 0.769882i) q^{27} +(1.03153 + 5.18584i) q^{29} +(-0.596532 - 2.22629i) q^{30} +(0.283985 - 4.33277i) q^{31} +(-0.650708 - 4.94262i) q^{32} +(1.44598 - 2.50450i) q^{33} +(1.20807 + 3.95119i) q^{34} +(-0.945740 + 2.28322i) q^{36} +(4.32467 - 2.13269i) q^{37} +(1.01071 + 0.270820i) q^{38} +(-1.99889 - 2.27930i) q^{39} +(9.57086 - 0.627307i) q^{40} +(-0.667258 + 3.35453i) q^{41} +(-4.12022 - 9.94710i) q^{43} +(3.00761 + 2.63760i) q^{44} +(-7.11129 - 3.50690i) q^{45} +(2.12045 - 1.85959i) q^{46} +(12.6376 - 3.38625i) q^{47} +(-0.608606 - 0.406658i) q^{48} +5.21839i q^{50} +(-2.70632 - 1.21905i) q^{51} +(3.63171 - 2.09677i) q^{52} +(-2.75419 + 0.362596i) q^{53} +(1.74906 + 3.54673i) q^{54} +(-9.07540 + 9.07540i) q^{55} +(-0.625015 + 0.417621i) q^{57} +(-3.49356 + 3.98364i) q^{58} +(-4.19605 + 5.46840i) q^{59} +(-1.39428 + 1.81706i) q^{60} +(-5.26459 + 6.00311i) q^{61} +(3.61786 - 2.41738i) q^{62} +(4.97043 - 4.97043i) q^{64} +(5.95076 + 12.0669i) q^{65} +(2.87322 - 0.378266i) q^{66} +(-0.131030 + 0.0756499i) q^{67} +(2.38420 - 3.34264i) q^{68} +2.02611i q^{69} +(2.01514 + 1.34647i) q^{71} +(-7.19655 + 1.92831i) q^{72} +(-10.2545 + 8.99298i) q^{73} +(4.33374 + 2.13716i) q^{74} +(-2.81853 - 2.47178i) q^{75} +(-0.397913 - 0.960647i) q^{76} +(0.592681 - 2.97961i) q^{78} +(-7.04221 + 0.461571i) q^{79} +(2.14187 + 2.44233i) q^{80} +(4.44745 + 1.19169i) q^{81} +(-3.07396 + 1.51591i) q^{82} +(-0.613584 + 1.48132i) q^{83} +(10.2012 + 8.33444i) q^{85} +(5.39461 - 9.34375i) q^{86} +(-0.496835 - 3.77384i) q^{87} +(-0.788756 + 12.0341i) q^{88} +(-0.344834 - 1.28694i) q^{89} +(-1.55011 - 7.79293i) q^{90} +(-2.74879 - 0.546769i) q^{92} +(-0.408003 + 3.09909i) q^{93} +(10.4016 + 7.98139i) q^{94} +(3.15902 - 1.07234i) q^{95} +(0.234723 + 3.58119i) q^{96} +(-7.22183 + 1.43651i) q^{97} +(5.53884 - 8.28946i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q + 16 q^{2} + 16 q^{4} - 32 q^{8} + 16 q^{9} - 128 q^{15} - 32 q^{18} - 96 q^{22} + 16 q^{23} - 32 q^{29} - 112 q^{30} - 16 q^{32} - 96 q^{36} - 48 q^{37} - 32 q^{43} + 16 q^{44} - 16 q^{46} + 48 q^{51}+ \cdots + 256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.610037 + 0.795016i 0.431361 + 0.562161i 0.957572 0.288193i \(-0.0930544\pi\)
−0.526211 + 0.850354i \(0.676388\pi\)
\(3\) −0.718354 0.0470834i −0.414742 0.0271836i −0.143396 0.989665i \(-0.545802\pi\)
−0.271346 + 0.962482i \(0.587469\pi\)
\(4\) 0.257733 0.961873i 0.128867 0.480937i
\(5\) 3.02536 + 1.02697i 1.35298 + 0.459276i 0.901413 0.432960i \(-0.142531\pi\)
0.451570 + 0.892236i \(0.350864\pi\)
\(6\) −0.400790 0.599825i −0.163622 0.244878i
\(7\) 0 0
\(8\) 2.77356 1.14885i 0.980602 0.406179i
\(9\) −2.46052 0.323934i −0.820173 0.107978i
\(10\) 1.02912 + 3.03170i 0.325438 + 0.958708i
\(11\) −1.77675 + 3.60290i −0.535712 + 1.08632i 0.445839 + 0.895113i \(0.352905\pi\)
−0.981551 + 0.191203i \(0.938761\pi\)
\(12\) −0.230432 + 0.678830i −0.0665199 + 0.195961i
\(13\) 2.97778 + 2.97778i 0.825886 + 0.825886i 0.986945 0.161058i \(-0.0514908\pi\)
−0.161058 + 0.986945i \(0.551491\pi\)
\(14\) 0 0
\(15\) −2.12493 0.880173i −0.548654 0.227260i
\(16\) 0.880544 + 0.508383i 0.220136 + 0.127096i
\(17\) 3.86202 + 1.44388i 0.936678 + 0.350192i
\(18\) −1.24348 2.15376i −0.293090 0.507647i
\(19\) 0.828402 0.635655i 0.190049 0.145829i −0.509355 0.860557i \(-0.670116\pi\)
0.699403 + 0.714727i \(0.253449\pi\)
\(20\) 1.76755 2.64533i 0.395237 0.591513i
\(21\) 0 0
\(22\) −3.94825 + 0.785356i −0.841770 + 0.167438i
\(23\) −0.184074 2.80843i −0.0383821 0.585597i −0.973126 0.230274i \(-0.926038\pi\)
0.934744 0.355323i \(-0.115629\pi\)
\(24\) −2.04649 + 0.694690i −0.417738 + 0.141803i
\(25\) 4.13137 + 3.17011i 0.826274 + 0.634023i
\(26\) −0.550825 + 4.18393i −0.108026 + 0.820537i
\(27\) 3.87046 + 0.769882i 0.744870 + 0.148164i
\(28\) 0 0
\(29\) 1.03153 + 5.18584i 0.191550 + 0.962986i 0.950236 + 0.311530i \(0.100842\pi\)
−0.758686 + 0.651456i \(0.774158\pi\)
\(30\) −0.596532 2.22629i −0.108911 0.406463i
\(31\) 0.283985 4.33277i 0.0510052 0.778189i −0.893371 0.449321i \(-0.851666\pi\)
0.944376 0.328868i \(-0.106667\pi\)
\(32\) −0.650708 4.94262i −0.115030 0.873740i
\(33\) 1.44598 2.50450i 0.251712 0.435978i
\(34\) 1.20807 + 3.95119i 0.207182 + 0.677623i
\(35\) 0 0
\(36\) −0.945740 + 2.28322i −0.157623 + 0.380536i
\(37\) 4.32467 2.13269i 0.710972 0.350613i −0.0505767 0.998720i \(-0.516106\pi\)
0.761549 + 0.648108i \(0.224439\pi\)
\(38\) 1.01071 + 0.270820i 0.163959 + 0.0439327i
\(39\) −1.99889 2.27930i −0.320079 0.364980i
\(40\) 9.57086 0.627307i 1.51329 0.0991860i
\(41\) −0.667258 + 3.35453i −0.104208 + 0.523890i 0.893054 + 0.449949i \(0.148558\pi\)
−0.997263 + 0.0739411i \(0.976442\pi\)
\(42\) 0 0
\(43\) −4.12022 9.94710i −0.628328 1.51692i −0.841699 0.539948i \(-0.818444\pi\)
0.213370 0.976971i \(-0.431556\pi\)
\(44\) 3.00761 + 2.63760i 0.453414 + 0.397633i
\(45\) −7.11129 3.50690i −1.06009 0.522778i
\(46\) 2.12045 1.85959i 0.312643 0.274181i
\(47\) 12.6376 3.38625i 1.84339 0.493935i 0.844272 0.535915i \(-0.180033\pi\)
0.999118 + 0.0419802i \(0.0133666\pi\)
\(48\) −0.608606 0.406658i −0.0878447 0.0586960i
\(49\) 0 0
\(50\) 5.21839i 0.737992i
\(51\) −2.70632 1.21905i −0.378960 0.170701i
\(52\) 3.63171 2.09677i 0.503628 0.290770i
\(53\) −2.75419 + 0.362596i −0.378317 + 0.0498064i −0.317287 0.948329i \(-0.602772\pi\)
−0.0610302 + 0.998136i \(0.519439\pi\)
\(54\) 1.74906 + 3.54673i 0.238016 + 0.482649i
\(55\) −9.07540 + 9.07540i −1.22373 + 1.22373i
\(56\) 0 0
\(57\) −0.625015 + 0.417621i −0.0827852 + 0.0553153i
\(58\) −3.49356 + 3.98364i −0.458726 + 0.523077i
\(59\) −4.19605 + 5.46840i −0.546279 + 0.711925i −0.982153 0.188083i \(-0.939773\pi\)
0.435874 + 0.900008i \(0.356439\pi\)
\(60\) −1.39428 + 1.81706i −0.180001 + 0.234581i
\(61\) −5.26459 + 6.00311i −0.674061 + 0.768619i −0.983226 0.182389i \(-0.941617\pi\)
0.309165 + 0.951008i \(0.399950\pi\)
\(62\) 3.61786 2.41738i 0.459469 0.307008i
\(63\) 0 0
\(64\) 4.97043 4.97043i 0.621303 0.621303i
\(65\) 5.95076 + 12.0669i 0.738100 + 1.49672i
\(66\) 2.87322 0.378266i 0.353669 0.0465614i
\(67\) −0.131030 + 0.0756499i −0.0160078 + 0.00924211i −0.507983 0.861367i \(-0.669609\pi\)
0.491975 + 0.870609i \(0.336275\pi\)
\(68\) 2.38420 3.34264i 0.289127 0.405355i
\(69\) 2.02611i 0.243915i
\(70\) 0 0
\(71\) 2.01514 + 1.34647i 0.239153 + 0.159797i 0.669371 0.742928i \(-0.266564\pi\)
−0.430219 + 0.902725i \(0.641564\pi\)
\(72\) −7.19655 + 1.92831i −0.848122 + 0.227254i
\(73\) −10.2545 + 8.99298i −1.20020 + 1.05255i −0.202895 + 0.979201i \(0.565035\pi\)
−0.997306 + 0.0733476i \(0.976632\pi\)
\(74\) 4.33374 + 2.13716i 0.503787 + 0.248440i
\(75\) −2.81853 2.47178i −0.325455 0.285417i
\(76\) −0.397913 0.960647i −0.0456438 0.110194i
\(77\) 0 0
\(78\) 0.592681 2.97961i 0.0671079 0.337374i
\(79\) −7.04221 + 0.461571i −0.792311 + 0.0519308i −0.456183 0.889886i \(-0.650784\pi\)
−0.336127 + 0.941817i \(0.609117\pi\)
\(80\) 2.14187 + 2.44233i 0.239468 + 0.273061i
\(81\) 4.44745 + 1.19169i 0.494161 + 0.132410i
\(82\) −3.07396 + 1.51591i −0.339462 + 0.167404i
\(83\) −0.613584 + 1.48132i −0.0673496 + 0.162596i −0.953970 0.299901i \(-0.903046\pi\)
0.886621 + 0.462497i \(0.153046\pi\)
\(84\) 0 0
\(85\) 10.2012 + 8.33444i 1.10647 + 0.903997i
\(86\) 5.39461 9.34375i 0.581716 1.00756i
\(87\) −0.496835 3.77384i −0.0532663 0.404598i
\(88\) −0.788756 + 12.0341i −0.0840817 + 1.28284i
\(89\) −0.344834 1.28694i −0.0365523 0.136415i 0.945238 0.326381i \(-0.105829\pi\)
−0.981791 + 0.189965i \(0.939162\pi\)
\(90\) −1.55011 7.79293i −0.163396 0.821447i
\(91\) 0 0
\(92\) −2.74879 0.546769i −0.286581 0.0570046i
\(93\) −0.408003 + 3.09909i −0.0423080 + 0.321361i
\(94\) 10.4016 + 7.98139i 1.07284 + 0.823218i
\(95\) 3.15902 1.07234i 0.324108 0.110020i
\(96\) 0.234723 + 3.58119i 0.0239564 + 0.365503i
\(97\) −7.22183 + 1.43651i −0.733266 + 0.145856i −0.547580 0.836753i \(-0.684451\pi\)
−0.185686 + 0.982609i \(0.559451\pi\)
\(98\) 0 0
\(99\) 5.53884 8.28946i 0.556674 0.833122i
\(100\) 4.11404 3.15681i 0.411404 0.315681i
\(101\) −8.65672 14.9939i −0.861375 1.49195i −0.870602 0.491989i \(-0.836270\pi\)
0.00922616 0.999957i \(-0.497063\pi\)
\(102\) −0.681787 2.89523i −0.0675070 0.286671i
\(103\) −5.21727 3.01219i −0.514073 0.296800i 0.220434 0.975402i \(-0.429253\pi\)
−0.734506 + 0.678602i \(0.762586\pi\)
\(104\) 11.6801 + 4.83804i 1.14532 + 0.474409i
\(105\) 0 0
\(106\) −1.96843 1.96843i −0.191191 0.191191i
\(107\) 2.92396 8.61371i 0.282670 0.832719i −0.709148 0.705060i \(-0.750920\pi\)
0.991818 0.127659i \(-0.0407464\pi\)
\(108\) 1.73807 3.52447i 0.167246 0.339142i
\(109\) −2.15010 6.33399i −0.205942 0.606687i 0.794057 0.607843i \(-0.207965\pi\)
−0.999999 + 0.00115670i \(0.999632\pi\)
\(110\) −12.7514 1.67876i −1.21580 0.160063i
\(111\) −3.20706 + 1.32841i −0.304401 + 0.126087i
\(112\) 0 0
\(113\) 5.25777 + 7.86881i 0.494610 + 0.740236i 0.991855 0.127374i \(-0.0406550\pi\)
−0.497245 + 0.867610i \(0.665655\pi\)
\(114\) −0.713298 0.242132i −0.0668065 0.0226777i
\(115\) 2.32728 8.68554i 0.217020 0.809931i
\(116\) 5.25398 + 0.344364i 0.487820 + 0.0319734i
\(117\) −6.36227 8.29148i −0.588192 0.766547i
\(118\) −6.90721 −0.635861
\(119\) 0 0
\(120\) −6.90480 −0.630319
\(121\) −3.12767 4.07606i −0.284333 0.370551i
\(122\) −7.98416 0.523310i −0.722852 0.0473782i
\(123\) 0.637270 2.37832i 0.0574607 0.214446i
\(124\) −4.09439 1.38986i −0.367687 0.124813i
\(125\) 0.368276 + 0.551164i 0.0329396 + 0.0492976i
\(126\) 0 0
\(127\) −14.6316 + 6.06062i −1.29835 + 0.537793i −0.921463 0.388467i \(-0.873005\pi\)
−0.376885 + 0.926260i \(0.623005\pi\)
\(128\) −2.90152 0.381993i −0.256461 0.0337637i
\(129\) 2.49144 + 7.33953i 0.219359 + 0.646210i
\(130\) −5.96323 + 12.0922i −0.523010 + 1.06056i
\(131\) 2.01281 5.92954i 0.175860 0.518066i −0.822882 0.568212i \(-0.807635\pi\)
0.998742 + 0.0501460i \(0.0159687\pi\)
\(132\) −2.03634 2.03634i −0.177240 0.177240i
\(133\) 0 0
\(134\) −0.140076 0.0580213i −0.0121007 0.00501228i
\(135\) 10.9189 + 6.30402i 0.939748 + 0.542564i
\(136\) 12.3704 0.432187i 1.06075 0.0370597i
\(137\) −2.35120 4.07240i −0.200876 0.347928i 0.747935 0.663772i \(-0.231046\pi\)
−0.948811 + 0.315844i \(0.897712\pi\)
\(138\) −1.61079 + 1.23600i −0.137120 + 0.105216i
\(139\) 2.92538 4.37814i 0.248127 0.371349i −0.686410 0.727215i \(-0.740814\pi\)
0.934537 + 0.355866i \(0.115814\pi\)
\(140\) 0 0
\(141\) −9.23774 + 1.83750i −0.777958 + 0.154745i
\(142\) 0.158842 + 2.42346i 0.0133297 + 0.203373i
\(143\) −16.0194 + 5.43786i −1.33961 + 0.454736i
\(144\) −2.00191 1.53612i −0.166826 0.128010i
\(145\) −2.20497 + 16.7484i −0.183113 + 1.39088i
\(146\) −13.4052 2.66646i −1.10942 0.220678i
\(147\) 0 0
\(148\) −0.936769 4.70945i −0.0770019 0.387115i
\(149\) −2.35169 8.77664i −0.192658 0.719011i −0.992861 0.119280i \(-0.961941\pi\)
0.800202 0.599730i \(-0.204725\pi\)
\(150\) 0.245700 3.74865i 0.0200613 0.306076i
\(151\) −1.83133 13.9104i −0.149032 1.13201i −0.888519 0.458839i \(-0.848265\pi\)
0.739488 0.673170i \(-0.235068\pi\)
\(152\) 1.56735 2.71474i 0.127129 0.220194i
\(153\) −9.03486 4.80373i −0.730425 0.388358i
\(154\) 0 0
\(155\) 5.30879 12.8166i 0.426412 1.02945i
\(156\) −2.70758 + 1.33523i −0.216780 + 0.106904i
\(157\) 10.1510 + 2.71996i 0.810139 + 0.217076i 0.640031 0.768349i \(-0.278922\pi\)
0.170108 + 0.985425i \(0.445588\pi\)
\(158\) −4.66297 5.31710i −0.370966 0.423005i
\(159\) 1.99556 0.130796i 0.158258 0.0103728i
\(160\) 3.10730 15.6215i 0.245654 1.23499i
\(161\) 0 0
\(162\) 1.76570 + 4.26277i 0.138726 + 0.334915i
\(163\) −4.18903 3.67368i −0.328110 0.287745i 0.479403 0.877595i \(-0.340853\pi\)
−0.807513 + 0.589850i \(0.799187\pi\)
\(164\) 3.05466 + 1.50639i 0.238529 + 0.117629i
\(165\) 6.94665 6.09205i 0.540796 0.474265i
\(166\) −1.55198 + 0.415853i −0.120457 + 0.0322764i
\(167\) 12.2208 + 8.16569i 0.945675 + 0.631880i 0.929828 0.367995i \(-0.119956\pi\)
0.0158470 + 0.999874i \(0.494956\pi\)
\(168\) 0 0
\(169\) 4.73430i 0.364177i
\(170\) −0.402908 + 13.1944i −0.0309016 + 1.01197i
\(171\) −2.24421 + 1.29570i −0.171619 + 0.0990843i
\(172\) −10.6298 + 1.39944i −0.810512 + 0.106706i
\(173\) −3.61581 7.33213i −0.274905 0.557451i 0.715010 0.699114i \(-0.246422\pi\)
−0.989915 + 0.141662i \(0.954755\pi\)
\(174\) 2.69717 2.69717i 0.204472 0.204472i
\(175\) 0 0
\(176\) −3.39616 + 2.26924i −0.255995 + 0.171051i
\(177\) 3.27172 3.73068i 0.245918 0.280415i
\(178\) 0.812774 1.05923i 0.0609200 0.0793925i
\(179\) −9.31927 + 12.1451i −0.696555 + 0.907768i −0.998968 0.0454086i \(-0.985541\pi\)
0.302413 + 0.953177i \(0.402208\pi\)
\(180\) −5.20601 + 5.93631i −0.388033 + 0.442467i
\(181\) 1.75360 1.17172i 0.130344 0.0870931i −0.488689 0.872458i \(-0.662525\pi\)
0.619033 + 0.785365i \(0.287525\pi\)
\(182\) 0 0
\(183\) 4.06448 4.06448i 0.300455 0.300455i
\(184\) −3.73699 7.57787i −0.275495 0.558648i
\(185\) 15.2739 2.01085i 1.12296 0.147841i
\(186\) −2.71273 + 1.56619i −0.198907 + 0.114839i
\(187\) −12.0640 + 11.3491i −0.882208 + 0.829926i
\(188\) 13.0286i 0.950205i
\(189\) 0 0
\(190\) 2.77965 + 1.85730i 0.201657 + 0.134743i
\(191\) −11.8212 + 3.16747i −0.855350 + 0.229190i −0.659742 0.751492i \(-0.729335\pi\)
−0.195608 + 0.980682i \(0.562668\pi\)
\(192\) −3.80455 + 3.33650i −0.274570 + 0.240791i
\(193\) −24.5557 12.1095i −1.76756 0.871664i −0.959077 0.283145i \(-0.908622\pi\)
−0.808483 0.588519i \(-0.799711\pi\)
\(194\) −5.54764 4.86515i −0.398297 0.349297i
\(195\) −3.70660 8.94851i −0.265435 0.640816i
\(196\) 0 0
\(197\) 0.774375 3.89305i 0.0551720 0.277368i −0.943345 0.331814i \(-0.892339\pi\)
0.998517 + 0.0544461i \(0.0173393\pi\)
\(198\) 9.96915 0.653413i 0.708477 0.0464360i
\(199\) −5.32482 6.07179i −0.377466 0.430418i 0.531647 0.846966i \(-0.321573\pi\)
−0.909114 + 0.416548i \(0.863240\pi\)
\(200\) 15.1006 + 4.04619i 1.06777 + 0.286109i
\(201\) 0.0976874 0.0481741i 0.00689034 0.00339794i
\(202\) 6.63945 16.0290i 0.467150 1.12780i
\(203\) 0 0
\(204\) −1.87008 + 2.28894i −0.130932 + 0.160258i
\(205\) −5.46370 + 9.46341i −0.381602 + 0.660953i
\(206\) −0.787987 5.98536i −0.0549017 0.417020i
\(207\) −0.456826 + 6.96981i −0.0317516 + 0.484436i
\(208\) 1.10821 + 4.13591i 0.0768409 + 0.286774i
\(209\) 0.818336 + 4.11406i 0.0566055 + 0.284575i
\(210\) 0 0
\(211\) 10.7623 + 2.14076i 0.740911 + 0.147376i 0.551094 0.834443i \(-0.314211\pi\)
0.189817 + 0.981820i \(0.439211\pi\)
\(212\) −0.361075 + 2.74264i −0.0247987 + 0.188365i
\(213\) −1.38419 1.06212i −0.0948428 0.0727754i
\(214\) 8.63176 2.93009i 0.590055 0.200297i
\(215\) −2.24977 34.3249i −0.153433 2.34094i
\(216\) 11.6194 2.31125i 0.790603 0.157261i
\(217\) 0 0
\(218\) 3.72398 5.57334i 0.252220 0.377474i
\(219\) 7.78980 5.97732i 0.526386 0.403910i
\(220\) 6.39035 + 11.0684i 0.430838 + 0.746232i
\(221\) 7.20069 + 15.7998i 0.484371 + 1.06281i
\(222\) −3.01253 1.73929i −0.202188 0.116733i
\(223\) −3.08438 1.27759i −0.206545 0.0855538i 0.277013 0.960866i \(-0.410656\pi\)
−0.483558 + 0.875313i \(0.660656\pi\)
\(224\) 0 0
\(225\) −9.13841 9.13841i −0.609228 0.609228i
\(226\) −3.04840 + 8.98028i −0.202776 + 0.597360i
\(227\) 2.24461 4.55161i 0.148980 0.302101i −0.809571 0.587021i \(-0.800300\pi\)
0.958551 + 0.284920i \(0.0919671\pi\)
\(228\) 0.240612 + 0.708820i 0.0159349 + 0.0469427i
\(229\) 3.78656 + 0.498510i 0.250223 + 0.0329424i 0.254594 0.967048i \(-0.418058\pi\)
−0.00437142 + 0.999990i \(0.501391\pi\)
\(230\) 8.32487 3.44828i 0.548926 0.227373i
\(231\) 0 0
\(232\) 8.81874 + 13.1982i 0.578979 + 0.866503i
\(233\) 20.0838 + 6.81754i 1.31574 + 0.446632i 0.889067 0.457776i \(-0.151354\pi\)
0.426668 + 0.904408i \(0.359687\pi\)
\(234\) 2.71063 10.1162i 0.177200 0.661318i
\(235\) 41.7110 + 2.73388i 2.72093 + 0.178339i
\(236\) 4.17845 + 5.44546i 0.271994 + 0.354469i
\(237\) 5.08053 0.330016
\(238\) 0 0
\(239\) −20.7489 −1.34214 −0.671068 0.741395i \(-0.734164\pi\)
−0.671068 + 0.741395i \(0.734164\pi\)
\(240\) −1.42363 1.85531i −0.0918947 0.119760i
\(241\) 25.0886 + 1.64440i 1.61610 + 0.105925i 0.846425 0.532508i \(-0.178751\pi\)
0.769677 + 0.638433i \(0.220417\pi\)
\(242\) 1.33254 4.97309i 0.0856586 0.319682i
\(243\) −14.3493 4.87093i −0.920508 0.312470i
\(244\) 4.41737 + 6.61106i 0.282793 + 0.423230i
\(245\) 0 0
\(246\) 2.27956 0.944226i 0.145340 0.0602016i
\(247\) 4.35964 + 0.573957i 0.277397 + 0.0365200i
\(248\) −4.19004 12.3435i −0.266068 0.783811i
\(249\) 0.510516 1.03522i 0.0323526 0.0656047i
\(250\) −0.213522 + 0.629016i −0.0135043 + 0.0397825i
\(251\) −9.91577 9.91577i −0.625878 0.625878i 0.321150 0.947028i \(-0.395931\pi\)
−0.947028 + 0.321150i \(0.895931\pi\)
\(252\) 0 0
\(253\) 10.4455 + 4.32668i 0.656705 + 0.272016i
\(254\) −13.7441 7.93518i −0.862383 0.497897i
\(255\) −6.93565 6.46738i −0.434327 0.405003i
\(256\) −8.49559 14.7148i −0.530975 0.919675i
\(257\) −15.4082 + 11.8231i −0.961134 + 0.737504i −0.964935 0.262489i \(-0.915457\pi\)
0.00380084 + 0.999993i \(0.498790\pi\)
\(258\) −4.31518 + 6.45812i −0.268651 + 0.402065i
\(259\) 0 0
\(260\) 13.1406 2.61382i 0.814944 0.162102i
\(261\) −0.858226 13.0940i −0.0531229 0.810499i
\(262\) 5.94196 2.01702i 0.367096 0.124612i
\(263\) −3.68902 2.83068i −0.227475 0.174548i 0.488736 0.872432i \(-0.337458\pi\)
−0.716210 + 0.697884i \(0.754125\pi\)
\(264\) 1.13321 8.60760i 0.0697444 0.529761i
\(265\) −8.70480 1.73149i −0.534732 0.106365i
\(266\) 0 0
\(267\) 0.187119 + 0.940712i 0.0114515 + 0.0575707i
\(268\) 0.0389950 + 0.145531i 0.00238200 + 0.00888974i
\(269\) −0.901311 + 13.7513i −0.0549539 + 0.838435i 0.878050 + 0.478569i \(0.158844\pi\)
−0.933004 + 0.359866i \(0.882822\pi\)
\(270\) 1.64913 + 12.5264i 0.100363 + 0.762331i
\(271\) −11.6173 + 20.1218i −0.705703 + 1.22231i 0.260734 + 0.965411i \(0.416035\pi\)
−0.966437 + 0.256903i \(0.917298\pi\)
\(272\) 2.66664 + 3.23478i 0.161689 + 0.196138i
\(273\) 0 0
\(274\) 1.80330 4.35355i 0.108941 0.263008i
\(275\) −18.7620 + 9.25241i −1.13139 + 0.557941i
\(276\) 1.94886 + 0.522196i 0.117308 + 0.0314325i
\(277\) 18.3125 + 20.8814i 1.10029 + 1.25464i 0.964552 + 0.263894i \(0.0850070\pi\)
0.135737 + 0.990745i \(0.456660\pi\)
\(278\) 5.26528 0.345105i 0.315790 0.0206980i
\(279\) −2.10228 + 10.5689i −0.125860 + 0.632742i
\(280\) 0 0
\(281\) −1.24986 3.01742i −0.0745603 0.180004i 0.882205 0.470865i \(-0.156058\pi\)
−0.956765 + 0.290861i \(0.906058\pi\)
\(282\) −7.09621 6.22321i −0.422573 0.370586i
\(283\) −4.03898 1.99180i −0.240092 0.118400i 0.318263 0.948003i \(-0.396901\pi\)
−0.558355 + 0.829602i \(0.688567\pi\)
\(284\) 1.81450 1.59128i 0.107671 0.0944249i
\(285\) −2.31978 + 0.621583i −0.137412 + 0.0368194i
\(286\) −14.0956 9.41839i −0.833491 0.556921i
\(287\) 0 0
\(288\) 12.3722i 0.729039i
\(289\) 12.8304 + 11.1526i 0.754731 + 0.656034i
\(290\) −14.6603 + 8.46416i −0.860885 + 0.497032i
\(291\) 5.25547 0.691895i 0.308081 0.0405596i
\(292\) 6.00717 + 12.1813i 0.351543 + 0.712859i
\(293\) 13.6324 13.6324i 0.796413 0.796413i −0.186115 0.982528i \(-0.559590\pi\)
0.982528 + 0.186115i \(0.0595896\pi\)
\(294\) 0 0
\(295\) −18.3105 + 12.2347i −1.06608 + 0.712329i
\(296\) 9.54462 10.8835i 0.554770 0.632593i
\(297\) −9.65066 + 12.5770i −0.559988 + 0.729791i
\(298\) 5.54295 7.22371i 0.321094 0.418458i
\(299\) 7.81473 8.91099i 0.451938 0.515336i
\(300\) −3.10397 + 2.07400i −0.179208 + 0.119743i
\(301\) 0 0
\(302\) 9.94178 9.94178i 0.572085 0.572085i
\(303\) 5.51262 + 11.1785i 0.316692 + 0.642188i
\(304\) 1.05260 0.138578i 0.0603708 0.00794797i
\(305\) −22.0923 + 12.7550i −1.26500 + 0.730349i
\(306\) −1.69256 10.1133i −0.0967572 0.578139i
\(307\) 18.7741i 1.07149i 0.844379 + 0.535747i \(0.179970\pi\)
−0.844379 + 0.535747i \(0.820030\pi\)
\(308\) 0 0
\(309\) 3.60602 + 2.40946i 0.205139 + 0.137070i
\(310\) 13.4279 3.59800i 0.762655 0.204353i
\(311\) 1.79127 1.57090i 0.101574 0.0890777i −0.607053 0.794661i \(-0.707648\pi\)
0.708627 + 0.705584i \(0.249315\pi\)
\(312\) −8.16262 4.02536i −0.462117 0.227891i
\(313\) 13.6862 + 12.0024i 0.773588 + 0.678418i 0.952191 0.305503i \(-0.0988246\pi\)
−0.178603 + 0.983921i \(0.557158\pi\)
\(314\) 4.03009 + 9.72949i 0.227431 + 0.549067i
\(315\) 0 0
\(316\) −1.37104 + 6.89268i −0.0771270 + 0.387743i
\(317\) −15.4507 + 1.01269i −0.867798 + 0.0568785i −0.492795 0.870145i \(-0.664025\pi\)
−0.375002 + 0.927024i \(0.622358\pi\)
\(318\) 1.32135 + 1.50671i 0.0740976 + 0.0844921i
\(319\) −20.5168 5.49747i −1.14872 0.307799i
\(320\) 20.1418 9.93285i 1.12596 0.555263i
\(321\) −2.50600 + 6.05002i −0.139871 + 0.337679i
\(322\) 0 0
\(323\) 4.11712 1.25880i 0.229083 0.0700417i
\(324\) 2.29251 3.97075i 0.127362 0.220597i
\(325\) 2.86241 + 21.7422i 0.158778 + 1.20604i
\(326\) 0.365170 5.57142i 0.0202249 0.308573i
\(327\) 1.24631 + 4.65128i 0.0689210 + 0.257217i
\(328\) 2.00316 + 10.0706i 0.110606 + 0.556055i
\(329\) 0 0
\(330\) 9.08099 + 1.80632i 0.499892 + 0.0994347i
\(331\) 0.522428 3.96824i 0.0287152 0.218114i −0.971071 0.238791i \(-0.923249\pi\)
0.999786 + 0.0206772i \(0.00658222\pi\)
\(332\) 1.26670 + 0.971976i 0.0695194 + 0.0533441i
\(333\) −11.3318 + 3.84663i −0.620979 + 0.210794i
\(334\) 0.963300 + 14.6971i 0.0527094 + 0.804190i
\(335\) −0.474102 + 0.0943048i −0.0259030 + 0.00515242i
\(336\) 0 0
\(337\) 13.6256 20.3921i 0.742232 1.11083i −0.247638 0.968853i \(-0.579654\pi\)
0.989870 0.141976i \(-0.0453456\pi\)
\(338\) −3.76384 + 2.88810i −0.204726 + 0.157092i
\(339\) −3.40645 5.90015i −0.185013 0.320452i
\(340\) 10.6459 7.66419i 0.577353 0.415649i
\(341\) 15.1060 + 8.72144i 0.818035 + 0.472293i
\(342\) −2.39915 0.993760i −0.129731 0.0537364i
\(343\) 0 0
\(344\) −22.8554 22.8554i −1.23228 1.23228i
\(345\) −2.08076 + 6.12971i −0.112024 + 0.330013i
\(346\) 3.62338 7.34749i 0.194794 0.395004i
\(347\) −6.13173 18.0635i −0.329168 0.969699i −0.977971 0.208742i \(-0.933063\pi\)
0.648802 0.760957i \(-0.275270\pi\)
\(348\) −3.75800 0.494750i −0.201450 0.0265214i
\(349\) −10.8607 + 4.49864i −0.581359 + 0.240807i −0.653928 0.756557i \(-0.726880\pi\)
0.0725692 + 0.997363i \(0.476880\pi\)
\(350\) 0 0
\(351\) 9.23282 + 13.8179i 0.492812 + 0.737545i
\(352\) 18.9639 + 6.43738i 1.01078 + 0.343114i
\(353\) −1.52477 + 5.69053i −0.0811554 + 0.302876i −0.994558 0.104180i \(-0.966778\pi\)
0.913403 + 0.407056i \(0.133445\pi\)
\(354\) 4.96182 + 0.325215i 0.263718 + 0.0172850i
\(355\) 4.71373 + 6.14305i 0.250179 + 0.326039i
\(356\) −1.32675 −0.0703174
\(357\) 0 0
\(358\) −15.3407 −0.810779
\(359\) −7.67761 10.0057i −0.405209 0.528079i 0.545522 0.838097i \(-0.316332\pi\)
−0.950731 + 0.310018i \(0.899665\pi\)
\(360\) −23.7525 1.55682i −1.25187 0.0820517i
\(361\) −4.63537 + 17.2994i −0.243967 + 0.910497i
\(362\) 2.00129 + 0.679348i 0.105186 + 0.0357057i
\(363\) 2.05486 + 3.07531i 0.107852 + 0.161412i
\(364\) 0 0
\(365\) −40.2592 + 16.6759i −2.10726 + 0.872856i
\(366\) 5.71081 + 0.751843i 0.298509 + 0.0392995i
\(367\) 3.74544 + 11.0337i 0.195510 + 0.575955i 0.999834 0.0182369i \(-0.00580530\pi\)
−0.804323 + 0.594192i \(0.797472\pi\)
\(368\) 1.26567 2.56652i 0.0659776 0.133789i
\(369\) 2.72844 8.03774i 0.142037 0.418428i
\(370\) 10.9163 + 10.9163i 0.567512 + 0.567512i
\(371\) 0 0
\(372\) 2.87578 + 1.19119i 0.149102 + 0.0617601i
\(373\) −23.1381 13.3588i −1.19805 0.691692i −0.237926 0.971283i \(-0.576468\pi\)
−0.960119 + 0.279591i \(0.909801\pi\)
\(374\) −16.3822 2.66773i −0.847103 0.137945i
\(375\) −0.238602 0.413271i −0.0123213 0.0213412i
\(376\) 31.1610 23.9107i 1.60701 1.23310i
\(377\) −12.3706 + 18.5139i −0.637119 + 0.953516i
\(378\) 0 0
\(379\) 8.26871 1.64475i 0.424735 0.0844851i 0.0219055 0.999760i \(-0.493027\pi\)
0.402830 + 0.915275i \(0.368027\pi\)
\(380\) −0.217273 3.31495i −0.0111459 0.170053i
\(381\) 10.7960 3.66476i 0.553098 0.187751i
\(382\) −9.72955 7.46574i −0.497807 0.381981i
\(383\) 2.43186 18.4718i 0.124262 0.943867i −0.809787 0.586724i \(-0.800417\pi\)
0.934050 0.357143i \(-0.116249\pi\)
\(384\) 2.06633 + 0.411020i 0.105447 + 0.0209748i
\(385\) 0 0
\(386\) −5.35263 26.9095i −0.272442 1.36966i
\(387\) 6.91569 + 25.8097i 0.351544 + 1.31198i
\(388\) −0.479563 + 7.31672i −0.0243461 + 0.371450i
\(389\) −1.35731 10.3098i −0.0688183 0.522727i −0.990784 0.135454i \(-0.956751\pi\)
0.921965 0.387272i \(-0.126583\pi\)
\(390\) 4.85305 8.40573i 0.245744 0.425641i
\(391\) 3.34413 11.1120i 0.169120 0.561957i
\(392\) 0 0
\(393\) −1.72509 + 4.16474i −0.0870193 + 0.210083i
\(394\) 3.56743 1.75926i 0.179725 0.0886304i
\(395\) −21.7793 5.83573i −1.09583 0.293628i
\(396\) −6.54586 7.46413i −0.328942 0.375087i
\(397\) −6.78502 + 0.444713i −0.340530 + 0.0223195i −0.234709 0.972066i \(-0.575414\pi\)
−0.105821 + 0.994385i \(0.533747\pi\)
\(398\) 1.57883 7.93734i 0.0791398 0.397863i
\(399\) 0 0
\(400\) 2.02623 + 4.89174i 0.101311 + 0.244587i
\(401\) −6.23664 5.46939i −0.311443 0.273128i 0.489327 0.872101i \(-0.337243\pi\)
−0.800770 + 0.598972i \(0.795576\pi\)
\(402\) 0.0978921 + 0.0482751i 0.00488242 + 0.00240774i
\(403\) 13.7477 12.0564i 0.684820 0.600571i
\(404\) −16.6533 + 4.46225i −0.828534 + 0.222005i
\(405\) 12.2313 + 8.17270i 0.607779 + 0.406105i
\(406\) 0 0
\(407\) 19.3707i 0.960167i
\(408\) −8.90664 0.271975i −0.440944 0.0134648i
\(409\) 14.1840 8.18912i 0.701352 0.404926i −0.106499 0.994313i \(-0.533964\pi\)
0.807851 + 0.589387i \(0.200631\pi\)
\(410\) −10.8566 + 1.42930i −0.536170 + 0.0705882i
\(411\) 1.49725 + 3.03612i 0.0738539 + 0.149761i
\(412\) −4.24201 + 4.24201i −0.208989 + 0.208989i
\(413\) 0 0
\(414\) −5.81979 + 3.88866i −0.286027 + 0.191117i
\(415\) −3.37759 + 3.85140i −0.165799 + 0.189058i
\(416\) 12.7803 16.6557i 0.626608 0.816612i
\(417\) −2.30759 + 3.00731i −0.113003 + 0.147269i
\(418\) −2.77152 + 3.16032i −0.135560 + 0.154576i
\(419\) 2.02600 1.35373i 0.0989764 0.0661339i −0.505097 0.863063i \(-0.668543\pi\)
0.604074 + 0.796929i \(0.293543\pi\)
\(420\) 0 0
\(421\) 15.3534 15.3534i 0.748278 0.748278i −0.225878 0.974156i \(-0.572525\pi\)
0.974156 + 0.225878i \(0.0725249\pi\)
\(422\) 4.86349 + 9.86218i 0.236751 + 0.480084i
\(423\) −32.1921 + 4.23817i −1.56523 + 0.206067i
\(424\) −7.22236 + 4.16983i −0.350749 + 0.202505i
\(425\) 11.3782 + 18.2082i 0.551923 + 0.883230i
\(426\) 1.74838i 0.0847095i
\(427\) 0 0
\(428\) −7.53170 5.03252i −0.364058 0.243256i
\(429\) 11.7636 3.15206i 0.567954 0.152183i
\(430\) 25.9164 22.7281i 1.24980 1.09605i
\(431\) −15.6040 7.69504i −0.751618 0.370657i 0.0257788 0.999668i \(-0.491793\pi\)
−0.777397 + 0.629011i \(0.783460\pi\)
\(432\) 3.01672 + 2.64559i 0.145142 + 0.127286i
\(433\) 3.86837 + 9.33908i 0.185902 + 0.448808i 0.989163 0.146819i \(-0.0469036\pi\)
−0.803261 + 0.595627i \(0.796904\pi\)
\(434\) 0 0
\(435\) 2.37252 11.9274i 0.113753 0.571877i
\(436\) −6.64665 + 0.435645i −0.318317 + 0.0208636i
\(437\) −1.93768 2.20950i −0.0926917 0.105695i
\(438\) 9.50413 + 2.54662i 0.454125 + 0.121682i
\(439\) 13.1476 6.48366i 0.627499 0.309448i −0.100593 0.994928i \(-0.532074\pi\)
0.728092 + 0.685480i \(0.240407\pi\)
\(440\) −14.7449 + 35.5974i −0.702938 + 1.69704i
\(441\) 0 0
\(442\) −8.16839 + 15.3631i −0.388531 + 0.730749i
\(443\) 7.74365 13.4124i 0.367912 0.637242i −0.621327 0.783551i \(-0.713406\pi\)
0.989239 + 0.146309i \(0.0467395\pi\)
\(444\) 0.451194 + 3.42716i 0.0214127 + 0.162646i
\(445\) 0.278401 4.24758i 0.0131975 0.201355i
\(446\) −0.865879 3.23151i −0.0410006 0.153016i
\(447\) 1.27611 + 6.41546i 0.0603581 + 0.303441i
\(448\) 0 0
\(449\) 20.9845 + 4.17408i 0.990321 + 0.196987i 0.663562 0.748121i \(-0.269044\pi\)
0.326758 + 0.945108i \(0.394044\pi\)
\(450\) 1.69041 12.8400i 0.0796868 0.605281i
\(451\) −10.9005 8.36424i −0.513284 0.393857i
\(452\) 8.92390 3.02926i 0.419745 0.142484i
\(453\) 0.660599 + 10.0788i 0.0310376 + 0.473543i
\(454\) 4.98790 0.992155i 0.234094 0.0465641i
\(455\) 0 0
\(456\) −1.25373 + 1.87635i −0.0587115 + 0.0878679i
\(457\) 11.2040 8.59710i 0.524099 0.402156i −0.312544 0.949903i \(-0.601181\pi\)
0.836644 + 0.547748i \(0.184515\pi\)
\(458\) 1.91362 + 3.31448i 0.0894175 + 0.154876i
\(459\) 13.8362 + 8.56177i 0.645818 + 0.399629i
\(460\) −7.75457 4.47710i −0.361559 0.208746i
\(461\) −31.2776 12.9556i −1.45674 0.603402i −0.492950 0.870057i \(-0.664082\pi\)
−0.963792 + 0.266655i \(0.914082\pi\)
\(462\) 0 0
\(463\) −1.64663 1.64663i −0.0765253 0.0765253i 0.667808 0.744333i \(-0.267233\pi\)
−0.744333 + 0.667808i \(0.767233\pi\)
\(464\) −1.72808 + 5.09077i −0.0802243 + 0.236333i
\(465\) −4.41704 + 8.95687i −0.204835 + 0.415365i
\(466\) 6.83183 + 20.1259i 0.316478 + 0.932315i
\(467\) 25.9052 + 3.41048i 1.19875 + 0.157818i 0.703347 0.710846i \(-0.251688\pi\)
0.495401 + 0.868665i \(0.335021\pi\)
\(468\) −9.61512 + 3.98271i −0.444459 + 0.184101i
\(469\) 0 0
\(470\) 23.2718 + 34.8287i 1.07345 + 1.60653i
\(471\) −7.16395 2.43183i −0.330097 0.112053i
\(472\) −5.35565 + 19.9876i −0.246514 + 0.920003i
\(473\) 43.1591 + 2.82879i 1.98446 + 0.130068i
\(474\) 3.09931 + 4.03910i 0.142356 + 0.185522i
\(475\) 5.43754 0.249491
\(476\) 0 0
\(477\) 6.89420 0.315664
\(478\) −12.6576 16.4957i −0.578946 0.754497i
\(479\) −2.11560 0.138664i −0.0966644 0.00633572i 0.0169942 0.999856i \(-0.494590\pi\)
−0.113659 + 0.993520i \(0.536257\pi\)
\(480\) −2.96765 + 11.0754i −0.135454 + 0.505522i
\(481\) 19.2286 + 6.52723i 0.876748 + 0.297616i
\(482\) 13.9977 + 20.9490i 0.637577 + 0.954202i
\(483\) 0 0
\(484\) −4.72675 + 1.95788i −0.214852 + 0.0889948i
\(485\) −23.3239 3.07065i −1.05908 0.139431i
\(486\) −4.88114 14.3794i −0.221413 0.652262i
\(487\) −17.9885 + 36.4771i −0.815138 + 1.65294i −0.0592441 + 0.998244i \(0.518869\pi\)
−0.755894 + 0.654694i \(0.772798\pi\)
\(488\) −7.70500 + 22.6982i −0.348789 + 1.02750i
\(489\) 2.83623 + 2.83623i 0.128259 + 0.128259i
\(490\) 0 0
\(491\) 13.1870 + 5.46223i 0.595121 + 0.246507i 0.659852 0.751396i \(-0.270619\pi\)
−0.0647312 + 0.997903i \(0.520619\pi\)
\(492\) −2.12340 1.22595i −0.0957302 0.0552699i
\(493\) −3.50394 + 21.5172i −0.157809 + 0.969087i
\(494\) 2.20323 + 3.81611i 0.0991282 + 0.171695i
\(495\) 25.2700 19.3904i 1.13580 0.871532i
\(496\) 2.45277 3.67083i 0.110133 0.164825i
\(497\) 0 0
\(498\) 1.13445 0.225657i 0.0508361 0.0101119i
\(499\) −0.236321 3.60556i −0.0105792 0.161407i −0.999880 0.0155147i \(-0.995061\pi\)
0.989300 0.145892i \(-0.0466054\pi\)
\(500\) 0.625067 0.212182i 0.0279539 0.00948905i
\(501\) −8.39440 6.44125i −0.375034 0.287774i
\(502\) 1.83421 13.9322i 0.0818647 0.621824i
\(503\) 34.8179 + 6.92572i 1.55245 + 0.308802i 0.895477 0.445108i \(-0.146835\pi\)
0.656978 + 0.753910i \(0.271835\pi\)
\(504\) 0 0
\(505\) −10.7914 54.2521i −0.480211 2.41419i
\(506\) 2.93238 + 10.9438i 0.130360 + 0.486511i
\(507\) 0.222907 3.40090i 0.00989964 0.151039i
\(508\) 2.05849 + 15.6358i 0.0913308 + 0.693726i
\(509\) −5.88751 + 10.1975i −0.260959 + 0.451994i −0.966497 0.256678i \(-0.917372\pi\)
0.705538 + 0.708672i \(0.250705\pi\)
\(510\) 0.910669 9.45930i 0.0403251 0.418865i
\(511\) 0 0
\(512\) 4.27598 10.3231i 0.188973 0.456222i
\(513\) 3.69568 1.82251i 0.163168 0.0804656i
\(514\) −18.7991 5.03720i −0.829193 0.222181i
\(515\) −12.6907 14.4709i −0.559218 0.637666i
\(516\) 7.70182 0.504804i 0.339054 0.0222228i
\(517\) −10.2537 + 51.5487i −0.450956 + 2.26711i
\(518\) 0 0
\(519\) 2.25221 + 5.43731i 0.0988609 + 0.238671i
\(520\) 30.3679 + 26.6319i 1.33172 + 1.16789i
\(521\) 38.3681 + 18.9210i 1.68094 + 0.828946i 0.994842 + 0.101434i \(0.0323430\pi\)
0.686094 + 0.727513i \(0.259324\pi\)
\(522\) 9.88639 8.67013i 0.432716 0.379481i
\(523\) −17.4115 + 4.66539i −0.761350 + 0.204003i −0.618547 0.785748i \(-0.712278\pi\)
−0.142803 + 0.989751i \(0.545612\pi\)
\(524\) −5.18470 3.46430i −0.226494 0.151339i
\(525\) 0 0
\(526\) 4.65965i 0.203171i
\(527\) 7.35275 16.3232i 0.320291 0.711051i
\(528\) 2.54649 1.47022i 0.110822 0.0639830i
\(529\) 14.9499 1.96819i 0.649994 0.0855733i
\(530\) −3.93369 7.97673i −0.170869 0.346487i
\(531\) 12.0959 12.0959i 0.524916 0.524916i
\(532\) 0 0
\(533\) −11.9760 + 8.00210i −0.518737 + 0.346609i
\(534\) −0.633731 + 0.722632i −0.0274242 + 0.0312714i
\(535\) 17.6921 23.0568i 0.764895 0.996831i
\(536\) −0.276508 + 0.360353i −0.0119433 + 0.0155649i
\(537\) 7.26637 8.28570i 0.313567 0.357555i
\(538\) −11.4824 + 7.67228i −0.495040 + 0.330775i
\(539\) 0 0
\(540\) 8.87783 8.87783i 0.382041 0.382041i
\(541\) 10.6507 + 21.5975i 0.457909 + 0.928548i 0.996307 + 0.0858573i \(0.0273629\pi\)
−0.538398 + 0.842690i \(0.680970\pi\)
\(542\) −23.0842 + 3.03909i −0.991550 + 0.130540i
\(543\) −1.31487 + 0.759142i −0.0564266 + 0.0325779i
\(544\) 4.62349 20.0280i 0.198231 0.858696i
\(545\) 21.3707i 0.915421i
\(546\) 0 0
\(547\) 5.98174 + 3.99687i 0.255761 + 0.170894i 0.676840 0.736130i \(-0.263349\pi\)
−0.421080 + 0.907024i \(0.638349\pi\)
\(548\) −4.52311 + 1.21196i −0.193218 + 0.0517725i
\(549\) 14.8982 13.0654i 0.635841 0.557617i
\(550\) −18.8014 9.27180i −0.801692 0.395351i
\(551\) 4.15093 + 3.64027i 0.176835 + 0.155081i
\(552\) 2.32769 + 5.61954i 0.0990731 + 0.239184i
\(553\) 0 0
\(554\) −5.42973 + 27.2971i −0.230687 + 1.15974i
\(555\) −11.0668 + 0.725353i −0.469758 + 0.0307895i
\(556\) −3.45725 3.94223i −0.146620 0.167188i
\(557\) 24.2512 + 6.49809i 1.02756 + 0.275333i 0.732948 0.680285i \(-0.238144\pi\)
0.294609 + 0.955618i \(0.404811\pi\)
\(558\) −9.68490 + 4.77606i −0.409994 + 0.202187i
\(559\) 17.3511 41.8893i 0.733875 1.77173i
\(560\) 0 0
\(561\) 9.20058 7.58463i 0.388449 0.320223i
\(562\) 1.63644 2.83440i 0.0690291 0.119562i
\(563\) −1.72571 13.1080i −0.0727299 0.552438i −0.988555 0.150861i \(-0.951795\pi\)
0.915825 0.401577i \(-0.131538\pi\)
\(564\) −0.613429 + 9.35912i −0.0258300 + 0.394090i
\(565\) 7.82561 + 29.2056i 0.329226 + 1.22869i
\(566\) −0.880411 4.42612i −0.0370064 0.186044i
\(567\) 0 0
\(568\) 7.13600 + 1.41944i 0.299420 + 0.0595583i
\(569\) −2.84720 + 21.6266i −0.119361 + 0.906634i 0.822060 + 0.569400i \(0.192825\pi\)
−0.941421 + 0.337234i \(0.890509\pi\)
\(570\) −1.90932 1.46507i −0.0799727 0.0613652i
\(571\) −14.0053 + 4.75417i −0.586105 + 0.198956i −0.598712 0.800965i \(-0.704320\pi\)
0.0126066 + 0.999921i \(0.495987\pi\)
\(572\) 1.10180 + 16.8102i 0.0460684 + 0.702868i
\(573\) 8.64092 1.71879i 0.360980 0.0718033i
\(574\) 0 0
\(575\) 8.14255 12.1862i 0.339568 0.508199i
\(576\) −13.8399 + 10.6197i −0.576663 + 0.442489i
\(577\) 21.6933 + 37.5740i 0.903105 + 1.56422i 0.823440 + 0.567403i \(0.192052\pi\)
0.0796650 + 0.996822i \(0.474615\pi\)
\(578\) −1.03944 + 17.0039i −0.0432349 + 0.707268i
\(579\) 17.0695 + 9.85511i 0.709386 + 0.409564i
\(580\) 15.5415 + 6.43751i 0.645327 + 0.267303i
\(581\) 0 0
\(582\) 3.75610 + 3.75610i 0.155695 + 0.155695i
\(583\) 3.58713 10.5673i 0.148564 0.437654i
\(584\) −18.1100 + 36.7235i −0.749397 + 1.51963i
\(585\) −10.7331 31.6186i −0.443758 1.30727i
\(586\) 19.1542 + 2.52170i 0.791255 + 0.104171i
\(587\) 20.3730 8.43878i 0.840884 0.348306i 0.0796822 0.996820i \(-0.474609\pi\)
0.761202 + 0.648515i \(0.224609\pi\)
\(588\) 0 0
\(589\) −2.51890 3.76980i −0.103789 0.155332i
\(590\) −20.8968 7.09351i −0.860308 0.292035i
\(591\) −0.739573 + 2.76013i −0.0304220 + 0.113536i
\(592\) 4.89229 + 0.320658i 0.201072 + 0.0131790i
\(593\) −14.7428 19.2132i −0.605414 0.788991i 0.385612 0.922661i \(-0.373990\pi\)
−0.991026 + 0.133670i \(0.957324\pi\)
\(594\) −15.8862 −0.651818
\(595\) 0 0
\(596\) −9.04813 −0.370626
\(597\) 3.53922 + 4.61241i 0.144851 + 0.188773i
\(598\) 11.8517 + 0.776799i 0.484650 + 0.0317657i
\(599\) 6.97227 26.0209i 0.284879 1.06318i −0.664048 0.747690i \(-0.731163\pi\)
0.948928 0.315494i \(-0.102170\pi\)
\(600\) −10.6571 3.61758i −0.435073 0.147687i
\(601\) −23.1053 34.5796i −0.942487 1.41053i −0.911632 0.411007i \(-0.865177\pi\)
−0.0308547 0.999524i \(-0.509823\pi\)
\(602\) 0 0
\(603\) 0.346906 0.143693i 0.0141271 0.00585164i
\(604\) −13.8520 1.82365i −0.563630 0.0742033i
\(605\) −5.27633 15.5436i −0.214513 0.631936i
\(606\) −5.52417 + 11.2019i −0.224404 + 0.455047i
\(607\) −2.49019 + 7.33585i −0.101074 + 0.297753i −0.985690 0.168565i \(-0.946087\pi\)
0.884617 + 0.466318i \(0.154420\pi\)
\(608\) −3.68085 3.68085i −0.149278 0.149278i
\(609\) 0 0
\(610\) −23.6175 9.78271i −0.956246 0.396090i
\(611\) 47.7156 + 27.5486i 1.93037 + 1.11450i
\(612\) −6.94916 + 7.45231i −0.280903 + 0.301242i
\(613\) −16.2538 28.1524i −0.656484 1.13706i −0.981520 0.191362i \(-0.938710\pi\)
0.325036 0.945702i \(-0.394624\pi\)
\(614\) −14.9257 + 11.4529i −0.602352 + 0.462201i
\(615\) 4.37044 6.54083i 0.176233 0.263752i
\(616\) 0 0
\(617\) −9.52017 + 1.89368i −0.383268 + 0.0762367i −0.382964 0.923763i \(-0.625097\pi\)
−0.000303681 1.00000i \(0.500097\pi\)
\(618\) 0.284243 + 4.33671i 0.0114339 + 0.174448i
\(619\) 31.5611 10.7136i 1.26855 0.430615i 0.395599 0.918423i \(-0.370537\pi\)
0.872951 + 0.487809i \(0.162204\pi\)
\(620\) −10.9597 8.40964i −0.440150 0.337739i
\(621\) 1.44971 11.0116i 0.0581747 0.441881i
\(622\) 2.34163 + 0.465780i 0.0938909 + 0.0186761i
\(623\) 0 0
\(624\) −0.601357 3.02323i −0.0240736 0.121026i
\(625\) −6.19084 23.1045i −0.247633 0.924181i
\(626\) −1.19307 + 18.2027i −0.0476845 + 0.727524i
\(627\) −0.394151 2.99388i −0.0157409 0.119564i
\(628\) 5.23250 9.06296i 0.208800 0.361652i
\(629\) 19.7813 1.99221i 0.788734 0.0794345i
\(630\) 0 0
\(631\) −17.0014 + 41.0450i −0.676815 + 1.63398i 0.0929663 + 0.995669i \(0.470365\pi\)
−0.769782 + 0.638307i \(0.779635\pi\)
\(632\) −19.0017 + 9.37062i −0.755849 + 0.372743i
\(633\) −7.63038 2.04455i −0.303280 0.0812637i
\(634\) −10.2306 11.6658i −0.406309 0.463307i
\(635\) −50.4900 + 3.30929i −2.00364 + 0.131325i
\(636\) 0.388512 1.95318i 0.0154055 0.0774487i
\(637\) 0 0
\(638\) −8.14546 19.6649i −0.322482 0.778540i
\(639\) −4.52212 3.96579i −0.178892 0.156884i
\(640\) −8.38586 4.13545i −0.331480 0.163468i
\(641\) 7.86047 6.89345i 0.310470 0.272275i −0.489903 0.871777i \(-0.662968\pi\)
0.800373 + 0.599502i \(0.204635\pi\)
\(642\) −6.33862 + 1.69843i −0.250165 + 0.0670316i
\(643\) −21.4816 14.3536i −0.847153 0.566050i 0.0544980 0.998514i \(-0.482644\pi\)
−0.901651 + 0.432464i \(0.857644\pi\)
\(644\) 0 0
\(645\) 24.7634i 0.975057i
\(646\) 3.51236 + 2.50526i 0.138192 + 0.0985680i
\(647\) −10.4457 + 6.03082i −0.410662 + 0.237096i −0.691074 0.722784i \(-0.742862\pi\)
0.280412 + 0.959880i \(0.409529\pi\)
\(648\) 13.7044 1.80421i 0.538358 0.0708762i
\(649\) −12.2468 24.8340i −0.480727 0.974818i
\(650\) −15.5392 + 15.5392i −0.609498 + 0.609498i
\(651\) 0 0
\(652\) −4.61326 + 3.08248i −0.180669 + 0.120719i
\(653\) 16.6249 18.9571i 0.650584 0.741849i −0.328679 0.944442i \(-0.606603\pi\)
0.979263 + 0.202593i \(0.0649367\pi\)
\(654\) −2.93755 + 3.82829i −0.114867 + 0.149698i
\(655\) 12.1789 15.8719i 0.475870 0.620166i
\(656\) −2.29293 + 2.61459i −0.0895241 + 0.102083i
\(657\) 28.1446 18.8056i 1.09802 0.733677i
\(658\) 0 0
\(659\) 20.1037 20.1037i 0.783130 0.783130i −0.197228 0.980358i \(-0.563194\pi\)
0.980358 + 0.197228i \(0.0631938\pi\)
\(660\) −4.06940 8.25192i −0.158401 0.321205i
\(661\) 26.8556 3.53561i 1.04456 0.137519i 0.411334 0.911485i \(-0.365063\pi\)
0.633228 + 0.773965i \(0.281730\pi\)
\(662\) 3.47351 2.00543i 0.135002 0.0779433i
\(663\) −4.42874 11.6889i −0.171998 0.453958i
\(664\) 4.81346i 0.186798i
\(665\) 0 0
\(666\) −9.97095 6.66237i −0.386366 0.258162i
\(667\) 14.3742 3.85155i 0.556570 0.149132i
\(668\) 11.0041 9.65030i 0.425760 0.373381i
\(669\) 2.15552 + 1.06298i 0.0833372 + 0.0410974i
\(670\) −0.364194 0.319389i −0.0140700 0.0123391i
\(671\) −12.2747 29.6338i −0.473861 1.14400i
\(672\) 0 0
\(673\) −6.19645 + 31.1517i −0.238856 + 1.20081i 0.656107 + 0.754668i \(0.272202\pi\)
−0.894963 + 0.446141i \(0.852798\pi\)
\(674\) 24.5242 1.60740i 0.944635 0.0619147i
\(675\) 13.5497 + 15.4505i 0.521528 + 0.594689i
\(676\) 4.55379 + 1.22019i 0.175146 + 0.0469302i
\(677\) −30.9549 + 15.2653i −1.18969 + 0.586692i −0.925857 0.377875i \(-0.876655\pi\)
−0.263837 + 0.964567i \(0.584988\pi\)
\(678\) 2.61265 6.30749i 0.100338 0.242238i
\(679\) 0 0
\(680\) 37.8686 + 11.3965i 1.45220 + 0.437035i
\(681\) −1.82673 + 3.16398i −0.0700003 + 0.121244i
\(682\) 2.28152 + 17.3299i 0.0873641 + 0.663596i
\(683\) −1.87161 + 28.5552i −0.0716152 + 1.09264i 0.799213 + 0.601048i \(0.205250\pi\)
−0.870828 + 0.491588i \(0.836417\pi\)
\(684\) 0.667887 + 2.49259i 0.0255373 + 0.0953065i
\(685\) −2.93099 14.7351i −0.111987 0.562998i
\(686\) 0 0
\(687\) −2.69662 0.536390i −0.102882 0.0204646i
\(688\) 1.42889 10.8535i 0.0544760 0.413786i
\(689\) −9.28110 7.12164i −0.353582 0.271313i
\(690\) −6.14256 + 2.08512i −0.233843 + 0.0793791i
\(691\) 0.165204 + 2.52053i 0.00628467 + 0.0958855i 0.999849 0.0173848i \(-0.00553405\pi\)
−0.993564 + 0.113270i \(0.963867\pi\)
\(692\) −7.98449 + 1.58821i −0.303525 + 0.0603748i
\(693\) 0 0
\(694\) 10.6202 15.8942i 0.403136 0.603336i
\(695\) 13.3465 10.2412i 0.506263 0.388470i
\(696\) −5.71356 9.89618i −0.216572 0.375114i
\(697\) −7.42050 + 11.9918i −0.281071 + 0.454223i
\(698\) −10.2019 5.89008i −0.386148 0.222943i
\(699\) −14.1063 5.84302i −0.533549 0.221003i
\(700\) 0 0
\(701\) −27.0241 27.0241i −1.02069 1.02069i −0.999781 0.0209056i \(-0.993345\pi\)
−0.0209056 0.999781i \(-0.506655\pi\)
\(702\) −5.35308 + 15.7697i −0.202039 + 0.595188i
\(703\) 2.22691 4.51573i 0.0839896 0.170314i
\(704\) 9.07673 + 26.7392i 0.342092 + 1.00777i
\(705\) −29.8346 3.92779i −1.12363 0.147929i
\(706\) −5.45423 + 2.25922i −0.205273 + 0.0850267i
\(707\) 0 0
\(708\) −2.74521 4.10850i −0.103171 0.154407i
\(709\) −6.16483 2.09268i −0.231525 0.0785922i 0.203266 0.979124i \(-0.434844\pi\)
−0.434791 + 0.900531i \(0.643178\pi\)
\(710\) −2.00827 + 7.49498i −0.0753692 + 0.281282i
\(711\) 17.4770 + 1.14550i 0.655439 + 0.0429598i
\(712\) −2.43491 3.17324i −0.0912522 0.118922i
\(713\) −12.2205 −0.457663
\(714\) 0 0
\(715\) −54.0490 −2.02132
\(716\) 9.28017 + 12.0942i 0.346816 + 0.451980i
\(717\) 14.9051 + 0.976930i 0.556640 + 0.0364841i
\(718\) 3.27103 12.2076i 0.122074 0.455585i
\(719\) 23.1005 + 7.84157i 0.861504 + 0.292441i 0.717009 0.697064i \(-0.245511\pi\)
0.144496 + 0.989505i \(0.453844\pi\)
\(720\) −4.47896 6.70324i −0.166921 0.249815i
\(721\) 0 0
\(722\) −16.5811 + 6.86811i −0.617084 + 0.255604i
\(723\) −17.9451 2.36252i −0.667385 0.0878630i
\(724\) −0.675083 1.98873i −0.0250893 0.0739106i
\(725\) −12.1781 + 24.6947i −0.452282 + 0.917138i
\(726\) −1.19138 + 3.50970i −0.0442163 + 0.130257i
\(727\) 34.9002 + 34.9002i 1.29438 + 1.29438i 0.932052 + 0.362325i \(0.118017\pi\)
0.362325 + 0.932052i \(0.381983\pi\)
\(728\) 0 0
\(729\) −2.68303 1.11135i −0.0993715 0.0411610i
\(730\) −37.8172 21.8338i −1.39968 0.808104i
\(731\) −1.55000 44.3650i −0.0573286 1.64090i
\(732\) −2.86196 4.95707i −0.105781 0.183218i
\(733\) −31.3722 + 24.0727i −1.15876 + 0.889146i −0.995246 0.0973948i \(-0.968949\pi\)
−0.163512 + 0.986541i \(0.552282\pi\)
\(734\) −6.48712 + 9.70866i −0.239444 + 0.358353i
\(735\) 0 0
\(736\) −13.7612 + 2.73727i −0.507245 + 0.100897i
\(737\) −0.0397520 0.606498i −0.00146428 0.0223406i
\(738\) 8.05458 2.73416i 0.296493 0.100646i
\(739\) 9.55548 + 7.33218i 0.351504 + 0.269719i 0.769388 0.638782i \(-0.220561\pi\)
−0.417884 + 0.908500i \(0.637228\pi\)
\(740\) 2.00241 15.2098i 0.0736101 0.559125i
\(741\) −3.10474 0.617571i −0.114055 0.0226870i
\(742\) 0 0
\(743\) 3.94527 + 19.8342i 0.144738 + 0.727647i 0.983178 + 0.182652i \(0.0584683\pi\)
−0.838440 + 0.544995i \(0.816532\pi\)
\(744\) 2.42876 + 9.06426i 0.0890427 + 0.332312i
\(745\) 1.89864 28.9676i 0.0695608 1.06129i
\(746\) −3.49465 26.5445i −0.127948 0.971864i
\(747\) 1.98959 3.44606i 0.0727951 0.126085i
\(748\) 7.80707 + 14.5291i 0.285455 + 0.531236i
\(749\) 0 0
\(750\) 0.183001 0.441803i 0.00668224 0.0161324i
\(751\) 12.6750 6.25060i 0.462516 0.228088i −0.196075 0.980589i \(-0.562820\pi\)
0.658591 + 0.752501i \(0.271153\pi\)
\(752\) 12.8495 + 3.44302i 0.468574 + 0.125554i
\(753\) 6.65617 + 7.58990i 0.242564 + 0.276591i
\(754\) −22.2654 + 1.45935i −0.810858 + 0.0531464i
\(755\) 8.74510 43.9646i 0.318267 1.60004i
\(756\) 0 0
\(757\) −12.0516 29.0951i −0.438022 1.05748i −0.976631 0.214923i \(-0.931050\pi\)
0.538609 0.842556i \(-0.318950\pi\)
\(758\) 6.35182 + 5.57040i 0.230709 + 0.202326i
\(759\) −7.29988 3.59990i −0.264969 0.130668i
\(760\) 7.52977 6.60343i 0.273134 0.239532i
\(761\) 14.8898 3.98972i 0.539756 0.144627i 0.0213661 0.999772i \(-0.493198\pi\)
0.518389 + 0.855145i \(0.326532\pi\)
\(762\) 9.49953 + 6.34738i 0.344132 + 0.229941i
\(763\) 0 0
\(764\) 12.1868i 0.440904i
\(765\) −22.4004 23.8116i −0.809889 0.860909i
\(766\) 16.1689 9.33514i 0.584207 0.337292i
\(767\) −28.7786 + 3.78877i −1.03913 + 0.136805i
\(768\) 5.41002 + 10.9704i 0.195217 + 0.395861i
\(769\) 2.91916 2.91916i 0.105267 0.105267i −0.652511 0.757779i \(-0.726285\pi\)
0.757779 + 0.652511i \(0.226285\pi\)
\(770\) 0 0
\(771\) 11.6252 7.76770i 0.418671 0.279747i
\(772\) −17.9767 + 20.4985i −0.646995 + 0.737756i
\(773\) 11.4019 14.8592i 0.410096 0.534448i −0.541946 0.840413i \(-0.682312\pi\)
0.952043 + 0.305965i \(0.0989791\pi\)
\(774\) −16.3003 + 21.2430i −0.585902 + 0.763563i
\(775\) 14.9086 17.0000i 0.535534 0.610659i
\(776\) −18.3799 + 12.2810i −0.659799 + 0.440864i
\(777\) 0 0
\(778\) 7.36843 7.36843i 0.264171 0.264171i
\(779\) 1.57957 + 3.20305i 0.0565939 + 0.114761i
\(780\) −9.56265 + 1.25895i −0.342398 + 0.0450775i
\(781\) −8.43161 + 4.86799i −0.301707 + 0.174190i
\(782\) 10.8742 4.12009i 0.388862 0.147334i
\(783\) 20.8657i 0.745681i
\(784\) 0 0
\(785\) 27.9172 + 18.6536i 0.996406 + 0.665777i
\(786\) −4.36340 + 1.16917i −0.155637 + 0.0417029i
\(787\) −11.3321 + 9.93803i −0.403948 + 0.354252i −0.837083 0.547077i \(-0.815741\pi\)
0.433135 + 0.901329i \(0.357407\pi\)
\(788\) −3.54504 1.74822i −0.126287 0.0622777i
\(789\) 2.51674 + 2.20712i 0.0895984 + 0.0785757i
\(790\) −8.64665 20.8749i −0.307634 0.742695i
\(791\) 0 0
\(792\) 5.83900 29.3546i 0.207480 1.04307i
\(793\) −33.5527 + 2.19916i −1.19149 + 0.0780944i
\(794\) −4.49267 5.12290i −0.159439 0.181805i
\(795\) 6.17160 + 1.65368i 0.218884 + 0.0586499i
\(796\) −7.21268 + 3.55690i −0.255647 + 0.126071i
\(797\) −2.08167 + 5.02558i −0.0737364 + 0.178015i −0.956450 0.291896i \(-0.905714\pi\)
0.882714 + 0.469911i \(0.155714\pi\)
\(798\) 0 0
\(799\) 53.6962 + 5.16946i 1.89964 + 0.182882i
\(800\) 12.9803 22.4826i 0.458924 0.794880i
\(801\) 0.431588 + 3.27824i 0.0152494 + 0.115831i
\(802\) 0.543667 8.29476i 0.0191976 0.292898i
\(803\) −14.1810 52.9243i −0.500438 1.86766i
\(804\) −0.0211601 0.106379i −0.000746259 0.00375170i
\(805\) 0 0
\(806\) 17.9716 + 3.57477i 0.633023 + 0.125916i
\(807\) 1.29492 9.83590i 0.0455834 0.346240i
\(808\) −41.2356 31.6412i −1.45066 1.11313i
\(809\) 10.6953 3.63058i 0.376028 0.127644i −0.127026 0.991899i \(-0.540543\pi\)
0.503054 + 0.864255i \(0.332210\pi\)
\(810\) 0.964127 + 14.7097i 0.0338760 + 0.516848i
\(811\) −42.8912 + 8.53159i −1.50611 + 0.299585i −0.878047 0.478575i \(-0.841154\pi\)
−0.628067 + 0.778159i \(0.716154\pi\)
\(812\) 0 0
\(813\) 9.29276 13.9076i 0.325911 0.487761i
\(814\) −15.4000 + 11.8168i −0.539769 + 0.414179i
\(815\) −8.90056 15.4162i −0.311773 0.540007i
\(816\) −1.76329 2.44927i −0.0617274 0.0857417i
\(817\) −9.73613 5.62116i −0.340624 0.196659i
\(818\) 15.1632 + 6.28082i 0.530170 + 0.219604i
\(819\) 0 0
\(820\) 7.69442 + 7.69442i 0.268701 + 0.268701i
\(821\) 2.67537 7.88138i 0.0933710 0.275062i −0.890204 0.455562i \(-0.849438\pi\)
0.983575 + 0.180500i \(0.0577716\pi\)
\(822\) −1.50039 + 3.04249i −0.0523320 + 0.106119i
\(823\) 14.9964 + 44.1780i 0.522742 + 1.53995i 0.812567 + 0.582868i \(0.198070\pi\)
−0.289825 + 0.957080i \(0.593597\pi\)
\(824\) −17.9310 2.36066i −0.624655 0.0822373i
\(825\) 13.9134 5.76312i 0.484403 0.200646i
\(826\) 0 0
\(827\) 29.5342 + 44.2010i 1.02700 + 1.53702i 0.830888 + 0.556439i \(0.187833\pi\)
0.196116 + 0.980581i \(0.437167\pi\)
\(828\) 6.58634 + 2.23576i 0.228891 + 0.0776980i
\(829\) −13.0854 + 48.8353i −0.454474 + 1.69612i 0.235155 + 0.971958i \(0.424440\pi\)
−0.689629 + 0.724163i \(0.742226\pi\)
\(830\) −5.12238 0.335739i −0.177800 0.0116537i
\(831\) −12.1717 15.8624i −0.422230 0.550261i
\(832\) 29.6016 1.02625
\(833\) 0 0
\(834\) −3.79858 −0.131534
\(835\) 28.5864 + 37.2546i 0.989275 + 1.28925i
\(836\) 4.16811 + 0.273192i 0.144157 + 0.00944856i
\(837\) 4.43488 16.5512i 0.153292 0.572093i
\(838\) 2.31217 + 0.784876i 0.0798726 + 0.0271131i
\(839\) −4.83475 7.23572i −0.166914 0.249805i 0.738578 0.674168i \(-0.235498\pi\)
−0.905492 + 0.424364i \(0.860498\pi\)
\(840\) 0 0
\(841\) 0.963620 0.399144i 0.0332283 0.0137636i
\(842\) 21.5723 + 2.84005i 0.743431 + 0.0978746i
\(843\) 0.755770 + 2.22643i 0.0260301 + 0.0766822i
\(844\) 4.83296 9.80027i 0.166357 0.337339i
\(845\) −4.86199 + 14.3230i −0.167258 + 0.492725i
\(846\) −23.0078 23.0078i −0.791024 0.791024i
\(847\) 0 0
\(848\) −2.60953 1.08090i −0.0896115 0.0371183i
\(849\) 2.80763 + 1.62099i 0.0963577 + 0.0556321i
\(850\) −7.53472 + 20.1535i −0.258439 + 0.691261i
\(851\) −6.78557 11.7530i −0.232606 0.402886i
\(852\) −1.37838 + 1.05767i −0.0472224 + 0.0362351i
\(853\) 29.6753 44.4123i 1.01606 1.52065i 0.171507 0.985183i \(-0.445136\pi\)
0.844557 0.535465i \(-0.179864\pi\)
\(854\) 0 0
\(855\) −8.12019 + 1.61521i −0.277705 + 0.0552389i
\(856\) −1.78605 27.2499i −0.0610459 0.931381i
\(857\) −20.1083 + 6.82585i −0.686887 + 0.233167i −0.642996 0.765870i \(-0.722309\pi\)
−0.0438912 + 0.999036i \(0.513975\pi\)
\(858\) 9.68219 + 7.42941i 0.330545 + 0.253636i
\(859\) −3.47875 + 26.4237i −0.118693 + 0.901566i 0.823692 + 0.567037i \(0.191911\pi\)
−0.942385 + 0.334529i \(0.891423\pi\)
\(860\) −33.5961 6.68267i −1.14562 0.227877i
\(861\) 0 0
\(862\) −3.40134 17.0997i −0.115850 0.582417i
\(863\) 3.39936 + 12.6866i 0.115716 + 0.431856i 0.999339 0.0363411i \(-0.0115703\pi\)
−0.883624 + 0.468197i \(0.844904\pi\)
\(864\) 1.28670 19.6312i 0.0437743 0.667866i
\(865\) −3.40923 25.8957i −0.115917 0.880479i
\(866\) −5.06487 + 8.77261i −0.172111 + 0.298105i
\(867\) −8.69169 8.61560i −0.295185 0.292601i
\(868\) 0 0
\(869\) 10.8493 26.1925i 0.368037 0.888520i
\(870\) 10.9298 5.39000i 0.370556 0.182738i
\(871\) −0.615445 0.164908i −0.0208536 0.00558770i
\(872\) −13.2402 15.0976i −0.448371 0.511269i
\(873\) 18.2348 1.19517i 0.617154 0.0404504i
\(874\) 0.574531 2.88836i 0.0194338 0.0977003i
\(875\) 0 0
\(876\) −3.74174 9.03335i −0.126422 0.305209i
\(877\) 0.233081 + 0.204406i 0.00787058 + 0.00690231i 0.663272 0.748378i \(-0.269167\pi\)
−0.655401 + 0.755281i \(0.727501\pi\)
\(878\) 13.1751 + 6.49724i 0.444638 + 0.219271i
\(879\) −10.4347 + 9.15103i −0.351955 + 0.308656i
\(880\) −12.6051 + 3.37752i −0.424917 + 0.113856i
\(881\) −9.52056 6.36144i −0.320756 0.214322i 0.384759 0.923017i \(-0.374284\pi\)
−0.705515 + 0.708695i \(0.749284\pi\)
\(882\) 0 0
\(883\) 7.97351i 0.268330i 0.990959 + 0.134165i \(0.0428352\pi\)
−0.990959 + 0.134165i \(0.957165\pi\)
\(884\) 17.0532 2.85402i 0.573563 0.0959912i
\(885\) 13.7294 7.92670i 0.461510 0.266453i
\(886\) 15.3870 2.02573i 0.516936 0.0680559i
\(887\) −10.2398 20.7643i −0.343819 0.697196i 0.654444 0.756111i \(-0.272903\pi\)
−0.998263 + 0.0589144i \(0.981236\pi\)
\(888\) −7.36885 + 7.36885i −0.247282 + 0.247282i
\(889\) 0 0
\(890\) 3.54673 2.36985i 0.118887 0.0794376i
\(891\) −12.1956 + 13.9064i −0.408567 + 0.465882i
\(892\) −2.02383 + 2.63750i −0.0677627 + 0.0883101i
\(893\) 8.31657 10.8384i 0.278303 0.362692i
\(894\) −4.32192 + 4.92820i −0.144546 + 0.164824i
\(895\) −40.6668 + 27.1727i −1.35934 + 0.908284i
\(896\) 0 0
\(897\) −6.03330 + 6.03330i −0.201446 + 0.201446i
\(898\) 9.48288 + 19.2294i 0.316448 + 0.641692i
\(899\) 22.7620 2.99667i 0.759155 0.0999447i
\(900\) −11.1453 + 6.43472i −0.371509 + 0.214491i
\(901\) −11.1603 2.57636i −0.371803 0.0858311i
\(902\) 13.7686i 0.458443i
\(903\) 0 0
\(904\) 23.6228 + 15.7843i 0.785684 + 0.524977i
\(905\) 6.50859 1.74397i 0.216353 0.0579716i
\(906\) −7.60981 + 6.67362i −0.252819 + 0.221716i
\(907\) 23.0597 + 11.3718i 0.765686 + 0.377594i 0.782811 0.622259i \(-0.213785\pi\)
−0.0171259 + 0.999853i \(0.505452\pi\)
\(908\) −3.79956 3.33213i −0.126093 0.110581i
\(909\) 16.4430 + 39.6969i 0.545380 + 1.31666i
\(910\) 0 0
\(911\) 7.50975 37.7541i 0.248809 1.25085i −0.631099 0.775703i \(-0.717396\pi\)
0.879908 0.475145i \(-0.157604\pi\)
\(912\) −0.762665 + 0.0499877i −0.0252544 + 0.00165526i
\(913\) −4.24687 4.84263i −0.140551 0.160268i
\(914\) 13.6697 + 3.66278i 0.452152 + 0.121154i
\(915\) 16.4706 8.12242i 0.544502 0.268519i
\(916\) 1.45542 3.51370i 0.0480886 0.116096i
\(917\) 0 0
\(918\) 1.63384 + 16.2230i 0.0539247 + 0.535438i
\(919\) −12.2096 + 21.1477i −0.402758 + 0.697597i −0.994058 0.108855i \(-0.965282\pi\)
0.591300 + 0.806452i \(0.298615\pi\)
\(920\) −3.52349 26.7636i −0.116166 0.882369i
\(921\) 0.883948 13.4864i 0.0291271 0.444393i
\(922\) −8.78058 32.7696i −0.289173 1.07921i
\(923\) 1.99114 + 10.0101i 0.0655391 + 0.329487i
\(924\) 0 0
\(925\) 24.6277 + 4.89876i 0.809754 + 0.161070i
\(926\) 0.304591 2.31360i 0.0100095 0.0760296i
\(927\) 11.8614 + 9.10160i 0.389581 + 0.298936i
\(928\) 24.9604 8.47292i 0.819366 0.278137i
\(929\) 0.809590 + 12.3520i 0.0265618 + 0.405255i 0.990350 + 0.138587i \(0.0442560\pi\)
−0.963788 + 0.266668i \(0.914077\pi\)
\(930\) −9.81541 + 1.95241i −0.321860 + 0.0640219i
\(931\) 0 0
\(932\) 11.7339 17.5610i 0.384356 0.575229i
\(933\) −1.36073 + 1.04412i −0.0445483 + 0.0341831i
\(934\) 13.0917 + 22.6755i 0.428374 + 0.741966i
\(935\) −48.1532 + 21.9456i −1.57478 + 0.717699i
\(936\) −27.1718 15.6876i −0.888138 0.512767i
\(937\) 16.2994 + 6.75144i 0.532479 + 0.220560i 0.632689 0.774406i \(-0.281951\pi\)
−0.100210 + 0.994966i \(0.531951\pi\)
\(938\) 0 0
\(939\) −9.26639 9.26639i −0.302397 0.302397i
\(940\) 13.3800 39.4161i 0.436406 1.28561i
\(941\) 11.7080 23.7416i 0.381671 0.773953i −0.618256 0.785977i \(-0.712161\pi\)
0.999928 + 0.0120235i \(0.00382730\pi\)
\(942\) −2.43693 7.17897i −0.0793995 0.233903i
\(943\) 9.54377 + 1.25646i 0.310788 + 0.0409160i
\(944\) −6.47485 + 2.68197i −0.210738 + 0.0872907i
\(945\) 0 0
\(946\) 24.0797 + 36.0378i 0.782898 + 1.17169i
\(947\) −8.76849 2.97650i −0.284938 0.0967233i 0.175312 0.984513i \(-0.443907\pi\)
−0.460249 + 0.887790i \(0.652240\pi\)
\(948\) 1.30942 4.88683i 0.0425280 0.158717i
\(949\) −57.3147 3.75661i −1.86052 0.121945i
\(950\) 3.31710 + 4.32293i 0.107621 + 0.140254i
\(951\) 11.1467 0.361458
\(952\) 0 0
\(953\) −44.1963 −1.43166 −0.715829 0.698275i \(-0.753951\pi\)
−0.715829 + 0.698275i \(0.753951\pi\)
\(954\) 4.20572 + 5.48100i 0.136165 + 0.177454i
\(955\) −39.0162 2.55726i −1.26254 0.0827509i
\(956\) −5.34769 + 19.9578i −0.172957 + 0.645483i
\(957\) 14.4795 + 4.91513i 0.468056 + 0.158884i
\(958\) −1.18036 1.76653i −0.0381356 0.0570739i
\(959\) 0 0
\(960\) −14.9366 + 6.18695i −0.482078 + 0.199683i
\(961\) 12.0425 + 1.58543i 0.388468 + 0.0511428i
\(962\) 6.54091 + 19.2689i 0.210887 + 0.621254i
\(963\) −9.98473 + 20.2470i −0.321754 + 0.652452i
\(964\) 8.04788 23.7083i 0.259205 0.763592i
\(965\) −61.8538 61.8538i −1.99114 1.99114i
\(966\) 0 0
\(967\) −47.6560 19.7398i −1.53251 0.634788i −0.552464 0.833537i \(-0.686312\pi\)
−0.980050 + 0.198749i \(0.936312\pi\)
\(968\) −13.3575 7.71198i −0.429328 0.247873i
\(969\) −3.01682 + 0.710418i −0.0969141 + 0.0228219i
\(970\) −11.7872 20.4161i −0.378465 0.655521i
\(971\) −29.5904 + 22.7055i −0.949603 + 0.728656i −0.962506 0.271261i \(-0.912559\pi\)
0.0129032 + 0.999917i \(0.495893\pi\)
\(972\) −8.38351 + 12.5468i −0.268901 + 0.402439i
\(973\) 0 0
\(974\) −39.9736 + 7.95124i −1.28084 + 0.254774i
\(975\) −1.03253 15.7534i −0.0330674 0.504511i
\(976\) −7.68758 + 2.60958i −0.246073 + 0.0835307i
\(977\) −3.68293 2.82601i −0.117827 0.0904121i 0.548167 0.836369i \(-0.315326\pi\)
−0.665994 + 0.745957i \(0.731993\pi\)
\(978\) −0.524643 + 3.98506i −0.0167762 + 0.127428i
\(979\) 5.24939 + 1.04417i 0.167771 + 0.0333718i
\(980\) 0 0
\(981\) 3.23857 + 16.2814i 0.103400 + 0.519825i
\(982\) 3.70200 + 13.8160i 0.118135 + 0.440887i
\(983\) −0.938826 + 14.3237i −0.0299439 + 0.456856i 0.956390 + 0.292094i \(0.0943521\pi\)
−0.986333 + 0.164761i \(0.947315\pi\)
\(984\) −0.964822 7.32855i −0.0307574 0.233626i
\(985\) 6.34081 10.9826i 0.202035 0.349935i
\(986\) −19.2441 + 10.3406i −0.612856 + 0.329313i
\(987\) 0 0
\(988\) 1.67570 4.04549i 0.0533110 0.128704i
\(989\) −27.1773 + 13.4023i −0.864187 + 0.426170i
\(990\) 30.8313 + 8.26122i 0.979883 + 0.262559i
\(991\) 9.75462 + 11.1230i 0.309866 + 0.353334i 0.885721 0.464217i \(-0.153664\pi\)
−0.575856 + 0.817551i \(0.695331\pi\)
\(992\) −21.6000 + 1.41574i −0.685802 + 0.0449498i
\(993\) −0.562126 + 2.82600i −0.0178385 + 0.0896804i
\(994\) 0 0
\(995\) −9.87394 23.8378i −0.313025 0.755709i
\(996\) −0.864177 0.757863i −0.0273825 0.0240138i
\(997\) −35.4937 17.5036i −1.12410 0.554343i −0.217382 0.976087i \(-0.569752\pi\)
−0.906715 + 0.421743i \(0.861418\pi\)
\(998\) 2.72232 2.38741i 0.0861734 0.0755720i
\(999\) 18.3804 4.92501i 0.581530 0.155821i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.2.bc.f.656.7 160
7.2 even 3 119.2.p.a.27.8 yes 80
7.3 odd 6 inner 833.2.bc.f.129.3 160
7.4 even 3 inner 833.2.bc.f.129.4 160
7.5 odd 6 119.2.p.a.27.7 80
7.6 odd 2 inner 833.2.bc.f.656.8 160
17.12 odd 16 inner 833.2.bc.f.607.3 160
119.12 even 48 119.2.p.a.97.8 yes 80
119.46 odd 48 inner 833.2.bc.f.80.8 160
119.80 even 48 inner 833.2.bc.f.80.7 160
119.97 even 16 inner 833.2.bc.f.607.4 160
119.114 odd 48 119.2.p.a.97.7 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.p.a.27.7 80 7.5 odd 6
119.2.p.a.27.8 yes 80 7.2 even 3
119.2.p.a.97.7 yes 80 119.114 odd 48
119.2.p.a.97.8 yes 80 119.12 even 48
833.2.bc.f.80.7 160 119.80 even 48 inner
833.2.bc.f.80.8 160 119.46 odd 48 inner
833.2.bc.f.129.3 160 7.3 odd 6 inner
833.2.bc.f.129.4 160 7.4 even 3 inner
833.2.bc.f.607.3 160 17.12 odd 16 inner
833.2.bc.f.607.4 160 119.97 even 16 inner
833.2.bc.f.656.7 160 1.1 even 1 trivial
833.2.bc.f.656.8 160 7.6 odd 2 inner