gp: [N,k,chi] = [833,2,Mod(31,833)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("833.31");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(833, base_ring=CyclotomicField(48))
chi = DirichletCharacter(H, H._module([8, 27]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [160,16,0,16,0,0,0,-32,16,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(833, [\chi])\):
\( T_{2}^{80} - 8 T_{2}^{79} + 28 T_{2}^{78} - 48 T_{2}^{77} + 8 T_{2}^{76} + 168 T_{2}^{75} - 616 T_{2}^{74} + \cdots + 1 \)
T2^80 - 8*T2^79 + 28*T2^78 - 48*T2^77 + 8*T2^76 + 168*T2^75 - 616*T2^74 + 2136*T2^73 - 8556*T2^72 + 26624*T2^71 - 44232*T2^70 - 14096*T2^69 + 269280*T2^68 - 759392*T2^67 + 1613024*T2^66 - 3490896*T2^65 + 8032028*T2^64 - 15221288*T2^63 + 10063976*T2^62 + 50347096*T2^61 - 204225696*T2^60 + 442463648*T2^59 - 880333516*T2^58 + 1758332960*T2^57 - 3387855264*T2^56 + 6102102040*T2^55 - 5906568020*T2^54 - 13010747472*T2^53 + 67943047920*T2^52 - 160913906392*T2^51 + 363280861248*T2^50 - 802740184296*T2^49 + 1642563138072*T2^48 - 3319738192752*T2^47 + 5663633752768*T2^46 - 7457992675688*T2^45 + 9162158801088*T2^44 - 13070672954920*T2^43 + 17150545887692*T2^42 - 20735965776896*T2^41 + 8498389306575*T2^40 + 56547495914192*T2^39 - 136289906039380*T2^38 + 148166264713512*T2^37 - 58675641848160*T2^36 - 72747346226680*T2^35 + 171364394325604*T2^34 + 4115030891632*T2^33 - 24494606259692*T2^32 - 432168779521632*T2^31 + 582970980430608*T2^30 + 71467996098000*T2^29 - 817161703953336*T2^28 + 339606862818272*T2^27 + 163555385722016*T2^26 - 48655159420072*T2^25 + 43577745980056*T2^24 + 5655911596120*T2^23 + 69706254702356*T2^22 + 153565916136624*T2^21 + 94630258368128*T2^20 - 95512121457776*T2^19 + 7661010758168*T2^18 - 18818508977472*T2^17 + 11124771740560*T2^16 - 3857077592336*T2^15 + 2141417475260*T2^14 - 672351133944*T2^13 + 157769196128*T2^12 - 56517327096*T2^11 + 27642669992*T2^10 - 4047457424*T2^9 + 2556781720*T2^8 - 462357576*T2^7 + 13187520*T2^6 - 5747592*T2^5 + 1322440*T2^4 - 71664*T2^3 + 2732*T2^2 - 64*T2 + 1
\( T_{3}^{160} - 8 T_{3}^{158} - 20 T_{3}^{156} + 240 T_{3}^{154} + 584 T_{3}^{152} - 4152 T_{3}^{150} + \cdots + 19\!\cdots\!76 \)
T3^160 - 8*T3^158 - 20*T3^156 + 240*T3^154 + 584*T3^152 - 4152*T3^150 - 340480*T3^148 + 4039712*T3^146 - 43967534*T3^144 + 24463280*T3^142 + 3058090036*T3^140 - 6871772992*T3^138 - 43085646112*T3^136 - 885692393464*T3^134 + 16681878847508*T3^132 + 7385667549200*T3^130 + 295533153377953*T3^128 - 3776788514788520*T3^126 - 20292679203757772*T3^124 - 115802726129327912*T3^122 + 415184725945195120*T3^120 - 270156837706978504*T3^118 + 1767611444010839564*T3^116 + 146767561014324405352*T3^114 + 201440676606257938322*T3^112 + 3477167752538941351696*T3^110 + 25621356846383645741904*T3^108 + 91459122050385883468640*T3^106 + 512543221219548114905224*T3^104 + 2540386600387113009848256*T3^102 + 10555913676304654588739324*T3^100 + 45947140273369140968961600*T3^98 + 206166536341183690572618532*T3^96 + 658229933919089740259296384*T3^94 + 2386142170402232088821480068*T3^92 + 8300367327429392654884274568*T3^90 + 26270826202843009463771787016*T3^88 + 87654238789903698130386622152*T3^86 + 251267979412250369699456290328*T3^84 + 479566551942477829515002795384*T3^82 + 440529079602037408293394143394*T3^80 - 434462999646567579969791594640*T3^78 - 3272880615251466017534243680868*T3^76 - 10185234842674753213608789319688*T3^74 - 28592110597499578177743986116720*T3^72 - 79364025465359343806253810723400*T3^70 - 153547360618442899891392276395428*T3^68 - 104155716138347322539459782756792*T3^66 + 309941380503737221828161600333121*T3^64 + 1047891212209728054697269031623736*T3^62 + 2153944573919449752344011426699284*T3^60 + 4864112396142425032822260202118160*T3^58 + 10959552644828291945713683058039904*T3^56 + 20466989904094335739191053378509560*T3^54 + 23195079472641454027817501562308316*T3^52 - 1802596521083257211101257553021024*T3^50 - 40510870250797560382624441176708062*T3^48 - 17013482041963921961602176893321008*T3^46 + 36192456899557957858636394428660288*T3^44 - 9307478279054999656742398214930360*T3^42 - 26568168141363905282563826739425208*T3^40 - 1302238062510204283344547773950464*T3^38 + 8243996739173393795663309774530836*T3^36 - 1805923178408990224874956548286712*T3^34 - 1318289667279481321483044699558943*T3^32 + 17984185798857516852488173829922552*T3^30 - 6210068240438997550038207891075416*T3^28 - 7129892379808097521486525374183680*T3^26 + 10448667891187179375911337731188512*T3^24 + 5051136426215864390385845811321536*T3^22 + 28796735743350910933433360493184*T3^20 - 2726847949726763221666862410675712*T3^18 - 627817581758817179567685610793536*T3^16 - 34216084896286419675119188630016*T3^14 + 133325873839294215441902710109184*T3^12 + 50629468002543497066002120685568*T3^10 + 13649394955423977726872273176576*T3^8 - 278043314639479618274777751552*T3^6 + 4006829583051878066749845504*T3^4 - 33391332764467017230188544*T3^2 + 199316241922731493298176